
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Large-math
xmlns="http://www.w3.org/1998/Math/MathML">mi>N/mi>

/math> theory of critical Fermi surfaces. II. Conductivity
Haoyu Guo, Aavishkar A. Patel, Ilya Esterlis, and Subir Sachdev

Phys. Rev. B 106, 115151 — Published 30 September 2022
DOI: 10.1103/PhysRevB.106.115151

https://dx.doi.org/10.1103/PhysRevB.106.115151


Large N theory of critical Fermi surfaces II: conductivity

Haoyu Guo,1 Aavishkar A. Patel,2 Ilya Esterlis,1 and Subir Sachdev1

1Department of Physics, Harvard University, Cambridge MA 02138, USA
2Center for Computational Quantum Physics,

Flatiron Institute, New York, New York, 10010, USA

(Dated: September 23, 2022)

1



Abstract
A Fermi surface coupled to a scalar field can be described in a 1/N expansion by choosing the fermion-

scalar Yukawa coupling to be random in the N -dimensional flavor space, but invariant under translations.

We compute the conductivity of such a theory in two spatial dimensions for a critical scalar. We find

a Drude contribution, and verify that the proposed 1/ω2/3 contribution to the optical conductivity at

frequency ω has vanishing co-efficient for a convex Fermi surface. We also describe the influence of

impurity scattering of the fermions, and find that while the self energy resembles a marginal Fermi liquid,

the resistivity and optical conductivity behaves like a Fermi liquid.

I. INTRODUCTION

One of the cornerstones of modern condensed matter theory is the Fermi liquid (FL) theory. The
central assumption of FL is the existence of well-defined quasiparticles as elementary excitations
of the system. Due to these quasiparticles, at low temperatures (T ) the resistivity scales as ρ =

ρ0 +AT 2 [1]. However, in the study of strongly correlated systems such as half-filled Landau level,
metallic quantum critical points and gapless quantum spin liquids [2–41], the strong interaction
destroys the quasiparticles and the resulting system is often dubbed a non-Fermi liquid (NFL).

The universal low-energy physics of non-Fermi liquids can be captured by the model of critical
Fermi surface (FS) [42], in which a Fermi surface of free fermions is coupled to critically fluctuating
bosons. Inspired by Sachdev-Ye-Kitaev (SYK) models [43–46], a previous work by the same authors
[47] (hereafter referred to as I) has proposed a controlled theory to perform 1/N expansion of the
problem: the main idea is to make the Yukawa coupling between fermions and bosons a random
variable in the N -dimensional flavor indices, but uniform in space.

The SYK model has an emergent time reparameterization symmetry, and consequently fluctu-
ations at a frequency scale ω ∼ 1/N are very strong, and change the critical behavior at ω � 1/N

[46, 48, 49]. In contrast, it was shown in I that the critical Fermi surface does not have any emer-
gent time reparameterization symmetry, and so the criticality of the corresponding 1/N expansion
is expected to be more stable than that of the SYK model. This is also reflected in the fact that
the large N entropy density of the critical Fermi surface vanishes as T → 0, while that of the SYK
model has a non-zero limit as T → 0.

In the study of strongly interacting metals such as cuprate high-Tc superconductors, near critical
doping the normal state shows ‘strange’ metallic behavior [50–55]. This includes T ln(1/T ) specific
heat and a linear-in-temperature resistivity much smaller than the quantum resistivity unit (in 2D,
h/e2), which is related to a ‘Planckian’ dissipation time ~/(kBT ). These experimental observations
can be encapsulated into a phenomenological theory called the marginal Fermi liquid [56]. It is
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conjectured that a marginal Fermi liquid could emerge from a non-Fermi liquid.

In this work, we study the transport properties of the critical Fermi surface from I, focusing on
the electrical conductivity of the fermions. We will study the translationally invariant (clean) model
of I, and also consider the effect of spatial potential disorder on the fermions. We demonstrate
that neither theory gives rise to linear-in-temperature resistivity due to various cancellations, even
though the fermions in the latter do acquire a marginal Fermi liquid self energy.

Building on the lessons learned in this paper, a mechanism for strange metal behavior with
linear-in-temperature resistivity is proposed in a companion paper [57]. We argue in Ref. [57] that
the ingredient missing in the present paper is spatial randomness in the interaction term between
the fermions and bosons.

In Sec. II, we review the previous work of I and summarize the main results of the present paper.
In Sec. III we present detailed derivation of results related to the clean model, and in Sec. IV we
discuss adding spatial potential disorder to the clean theory.

II. SUMMARY OF MAIN RESULTS

A. Translational Invariant (Clean) Model

We start by reviewing the SYK-inspired large N theory of the two-dimensional quantum-critical
metal [38, 47]. The imaginary time (τ) action for the fermion field ψi and scalar field φi (with
i = 1 . . . N a flavor index) is [47]

Sg =

∫
dτ
∑
k

N∑
i=1

ψ†ik(τ) [∂τ + ε(k)]ψik(τ)

+
1

2

∫
dτ
∑
q

N∑
i=1

φiq(τ)
[
−∂2

τ +Kq2 +m2
b

]
φi,−q(τ)

+
gijl
N

∫
dτd2r

N∑
i,j,l=1

ψ†i (r, τ)ψj(r, τ)φl(r, τ) , (2.1)

where the fermion dispersion ε(k) determines the Fermi surface, the scalar mass mb has to be
tuned to criticality and is needed for infrared regularization but does not appear in final results,
and gijl is space independent but random in flavor space with

gijl = 0 , g∗ijlgabc = g2 δiaδjbδlc , (2.2)

where the overline represents average over flavor space. The hypothesis is that a large domain of
flavor couplings all flow to the same universal low energy theory (as in the SYK model), so we can
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safely examine the average of an ensemble of theories. Momentum is conserved in each member
of the ensemble, and the flavor-space randomness does not lead to any essential difference from
non-random theories. This is in contrast to position-space randomness which we consider later,
which does relax momentum and modify physical properties.

The flavor-space average of the partition function of Sg leads to a ‘G-Σ’ theory, whose large N
saddle point of (2.1) has singular fermion (Σ) and boson (Π) self energies at T = 0 [47]

Π(iω, q) = −cb
|ω|
|q|

, Σ(iω,k) = −icfsgn(ω)|ω|2/3 ,

cb =
g2

2πκvF
, cf =

g2

2πvF
√

3

(
2πvFκ

K2g2

)1/3

. (2.3)

These results are obtained on a circular Fermi surface with curvature κ = 1/m where m is the
effective mass of the fermions. In this work, we re-derived the above results using the full Fermi
surface, while in the previous work in I, we have only considered the theory of two antipodal patches
around ±k0 on the Fermi surface to which q is tangent, with axes chosen so that q = (0, q) and
fermionic dispersion ε(±k0 +k) = ±vFkx+κk2

y/2. This is because transport computation requires
including momenta beyond patch theories.

The large N computation of the optical conductivity at zero temperature (T = 0) yields only
the clean Drude result Re[σ(ω)]/N = πN v2

F δ(ω)/2, where N = m/(2π) is the fermion density of
states at the Fermi level. This is obtained for a circular Fermi surface when only states on the
Fermi surface are considered (it is shown in Ref. [58] that Fermi surface curvature is important for
current vertices, and our approach implicitly includes these effects). By coincidence, this result
agrees with the patch theory, but we will show that the patch theory fails to fully capture transport
properties. The absence of a ω 6= 0 contribution is tied to an exact cancellation between self-energy
and vertex diagrams arising from momentum conservation. Previous literature which obtained a
|ω|−2/3 optical conductivity [2, 5] didn’t fully account for this cancellation; but other works [59–
61] did find the cancellation, and argued that it was present only for convex Fermi surfaces. In
the appendix we reproduce the calculations of [5] and show that the cancellation indeed happens
after obtaining a numerical coefficient undetermined in [5]. Furthermore, this cancellation can be
recast into a kinematical constraint for all odd harmonics of the Fermi surface [62, 63]: all odd
harmonic modes relax slowly even for a general Fermi surface, and the leading order contribution to
relaxation is due to states not exactly on the Fermi surface. When these additional relaxation are
included, we expect the optical conductivity to scale as σ(ω) ∼ 1/(−iω+ #ω2) ∼ 1/(−iω) + #|ω|0

(see Eq.(3.144)). Note that this ω2 scattering rate is still more singular than a scattering rate in a
translational invariant Fermi liquid [62, 63]. We have ignored umklapp processes as they are not
universal. We also note our large-N result agrees with recent arguments based on anomalies of
the N = 1 theory [64].
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B. Model with Potential Disorder

The results above show that a clean non-Fermi liquid cannot demonstrate linear-in-temperature
resistivity, and this motivates us to consider effects of spatial disorder. As a first attempt we
consider adding potential disorder:

Sv =
1√
N

∫
d2rdτ vij(r)ψ†i (r, τ)ψj(r, τ)

vij(r) = 0 , v∗ij(r)vlm(r′) = v2 δ(r − r′)δilδjm (2.4)

and here the overline is an now average over spatial co-ordinates and flavor space. The large N
limit of the G-Σ theory of Sg+Sv is described in Sec. IV, and yields results similar to earlier studies
[4, 59, 65]. The low frequency boson propagator now has the diffusive form ∼ (q2 + cd|ω|)−1 with
z = 2 (in contrast to z = 3 of the clean theory), while the fermion self energy has an elastic
scattering term, along with a marginal Fermi liquid [56] inelastic term at low frequencies

Π(iω, q) = −N g
2|ω|
Γ

, Γ = 2πv2N , (2.5)

Σ(iω,k = kF k̂) = −iΓ
2
sgn(ω)− ig2ω

2π2Γ
ln

(
eΓ3

N g2v2
F |ω|

)
,

at T = 0. However, the marginal Fermi liquid self energy, while leading to a T ln(1/T ) specific
heat, does not lead to the claimed [56] linear-T term in the DC resistivity, as it arises from forward
scattering of electrons off the q ∼ 0 bosons (this has also been noted in the recent work of Ref. [66]).
These forward scattering processes are unable to relax either current or momentum due to the small
wavevector of the bosons involved and the momentum conservation of the g interactions. As a
result, even a perturbative computation of the conductivity at O(g2) shows a cancellation between
the interaction-induced self energy contributions and the interaction-induced vertex correction,
leading to a DC conductivity that is just a constant, set by the elastic potential disorder scattering
rate Γ. A full summation of all diagrams at large N shows that the g interactions only renormalize
the frequency term in the Drude formula:

1

N
Re[σ(ω � T )] =

1

2

N v2
FΓ

ω̃2 + Γ2
, (2.6)

where
ω̃ = ω

(
1− g2

2π2N 2v4
F

[
vFΛ

4
+

Γ

4π
ln

(
Γ

eΛvF

)])
, (2.7)

and Λ ∼ kF is a UV momentum cutoff. In the limit of large Fermi energy (and hence large N v2
F ),

this renormalization is negligible and ω̃ ' ω. In addition, the boson drag only corrects Γ by order
ω2. The leading frequency dependence of the optical conductivity at frequencies ω � Γ is therefore
just a constant, and there is no linear in frequency correction. Correspondingly, in the DC limit,
there is no linear in T correction, and a conventional T 2 correction is expected.
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III. SPATIALLY UNIFORM QUANTUM-CRITICAL METAL

A. The model and notations

In this section, we review some properties of the clean model studied in the previous work of I,
and recapitulate some useful notations. For simplicity, we will work with K = 1 (boson velocity
set to one) which can be restored by dimensional analysis.

1. Lagrangian and G-Σ action

We write the action in Eq.(2.1) as a Lagrangian below

L =
∑
i

ψ†i (∂τ + εk − µ)ψi +
1

2

∑
i

φi(−∂2
τ + ω2

q +m2
b)φi +

∑
ijl

gijl
N
ψ†iψjφl . (3.1)

Here εk = k2/(2m) and ω2
q = q2 which physically describe the dispersions of fermions and bosons

respectively, should be understood as differential operators that act on the fields. The Yukawa
couplings gijl = g∗jkl are Gaussian random variables with zero mean and variance |gijl|2 = g2.
Throughout the paper we work in 2 + 1 dimensions.

Assuming the system self averages, we perform disorder average over gijl with a simple replica,
and next we introduce bilocal variables

G(x1, x2) = − 1

N

∑
i

ψi(x1)ψ†i (x2) ,

D(x1, x2) =
1

N

∑
i

φi(x1)φi(x2) ,
(3.2)

as well Σ(x1, x2) and Π(x1, x2) as Lagrangian multipliers to enforce the above definitions, to obtain
the G-Σ action

1

N
S[G,Σ, D,Π] =− ln det ((∂τ + εk − µ) δ(x− x′) + Σ) +

1

2
ln det

((
−∂2

τ + ω2
q +m2

b

)
δ(x− x′)− Π

)
− Tr (Σ ·G) +

1

2
Tr (Π ·D) +

g2

2
Tr ((GD) ·G) .

(3.3)

Here δ(x− x′) denotes a spacetime delta function.

We pause briefly the explain our notation, which is the same as in Ref. [67]. For two bilocal
functions f, g, we define their inner product as

Tr (f · g) ≡ fTg ≡
∫

dx1dx2f(x2, x1)g(x1, x2) . (3.4)
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The action of a linear functional A is defined as:

A[f ](x1, x2) ≡
∫

dx3dx4A(x1, x2;x3, x4)f(x3, x4) . (3.5)

The transpose acts both on functions and on functionals:

fT (x1, x2) ≡ f(x2, x1) , (3.6)

AT (x1, x2;x3, x4) ≡ A(x4, x3;x2, x1) . (3.7)

2. Saddle point

Going back to the action (3.3) and differentiating it, we obtain

δS

N
= Tr

(
δΣ · (G∗[Σ]−G) + δG · (Σ∗[G]− Σ) +

1

2
δΠ · (D −D∗[Π]) +

1

2
δD · (Π− Π∗[D])

)
,

(3.8)
where

G∗[Σ](x1, x2) = (−∂τ + µ− εk − Σ)−1(x1, x2) , (3.9)

Σ∗[G](x1, x2) =
g2

2
G(x1, x2) (D(x1, x2) +D(x2, x1)) , (3.10)

D∗[Π](x1, x2) = (−∂2
τ + ω2

q +m2
b − Π)−1(x1, x2) , (3.11)

Π∗[D](x1, x2) = −g2G(x1, x2)G(x2, x1) . (3.12)

In the first and the third line the inverse is in the functional sense. Therefore the saddle point
equations are simply

G = G∗[Σ] , Σ = Σ∗[G] , D = D∗[Π] , Π = Π∗[D] . (3.13)

3. Fluctuations about the saddle point

We can further expand (3.3) to second order around the saddle point to obtain the fluctuations
around the saddle point. Define the collective notation Ga = (D,G) and Ξa = (Π,Σ), where
a = b, f denotes boson/fermion. The gaussian fluctuations around the saddle point is described
by

1

N
δ2S =

1

2

(
δΞT δGT

)
Λ

(
WΣ −1

−1 WG

)(
δΞ

δG

)
, (3.14)
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where Λ = diag(−1/2, 1) acts on the b, f indices, and WΣ and WG are defined by

WΣ(x1, x2;x3, x4)aã =
δG∗[Ξ]a(x1, x2)

δΞã(x3, x4)
, WG(x1, x2;x3, x4)aã =

δΞ∗[G]a(x1, x2)

δGã(x3, x4)
. (3.15)

Later for the evaluation of the conductivity, we will be using fluctuation of self energies, which
is given by

〈δΞa(x1, x2)δΞã(x4, x3)〉 =

[
WG

1

WΣWG − 1
Λ−1

]
aã

(x1, x2;x3, x4) . (3.16)

For the G-Σ action (3.3), WΣ and WG are given by Feynman diagrams

WΣ(x1, x2;x3, x4) =


1

2

3

4

0

0
1

2

3

4

 , (3.17)

WG(x1, x2;x3, x4) =


0 −g2

(
1

2

3

4

+
1

2

3

4

)
g2

2

(
1

2

3

4

+
1

2

3

4

)
g2

1

2

3

4

 , (3.18)

where a black arrowed line denotes fermion propagator, a wavy arrowed line denotes boson prop-
agator (the arrow denotes momentum), and a dashed line denotes spacetime δ-function. The first
entry is boson and the second entry is fermion. Recalling Λ = diag(−1/2, 1), we see that ΛWΣ

and ΛWG are explicitly symmetric as required by quadratic expansion.

In momentum space, we can explicitly write down the action of WΣ and WG:

WΣ

(
B(k, p)

F (k, p)

)
=

(
G(k + p/2)G(k − p/2) 0

0 D(k + p/2)D(k − p/2)

)(
B(k, p)

F (k, p)

)
. (3.19)

WG

(
B(k, p)

F (k, p)

)
=

(
B̃(k, p)

F̃ (k, p)

)
, (3.20)

where

B̃(k1, p) = −g2

∫
d3k2

(2π)3
[G(k2 − k1)F (k2, p) +G(k1 − k2)F (−k2, p)] , (3.21)

F̃ (k1, p) = g2

∫
d3k2

(2π)3

[
1

2
G(k1 − k2) (B(k2, p) +B(−k2, p)) +D(k1 − k2)F (k2, p)

]
. (3.22)

Here p denotes the CoM 3-momentum and k denotes the relative 3-momentum. Unless stated
explicitly, we will be using

∫
dω/(2π) and T

∑
ωn

interchangeably.
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4. Relation to patch theories

In the previous paper I, we have studied the same theory within patch approximations εk =

±kx + k2
y. In this paper, we will take a different route by working with the full Fermi surface

and taking a patch-like approximation at a later stage. While patch theories produce the correct
solution to the saddle point equations, they are inadequate for transport computations. In partic-
ular, within the patch theory the vector nature of the current operator is neglected, and it behaves
very similar to the density operator. For example, in the single patch theory they are exactly
proportional and in the two patch theory with two antipodal patches, they differ by a ∓ sign on
the left/right patch. Due to this similarity, current-current correlation function can be inferred
from the density-density correlation function, and this results in zero conductivity at non-zero
frequency.

As we will see later in the theory of the full Fermi surface, the current operator as a vector,
is susceptible to additional scattering events than the density operator, which is a scalar. These
scattering events are due to bosons carrying momentum tangential to the Fermi surface. Because
the current operator contains l = 1 angular harmonics, there is a phase shift e−ilθkk′ associated
with the scattering event k → k′, which is absent for scalar operators. This effect has the same
origin as the (1 − cos θ) factor in the transport scattering rate of Boltzmann equations, and this
factor is set to zero in the patch theory.

B. Expression for Conductivity

1. Polarization Bubble

In this section we derive an expression for the conductivity from the G-Σ action. To define the
electric current, we use the minimal coupling scheme ∂µ → ∂µ + iAµ, i.e. kµ → kµ + Aµ, so the
only relevant term is the fermion determinant term as the following:

S[G,Σ, D,Π;A] = − ln det((∂τ +εk+A−µ)δ(x−x′)+Σ)− Tr (Σ·G)+Sb[D,Π]+Sint[G,D] , (3.23)

where Sb[D,Π] denotes the kinetic terms for the boson and Sint[G,D] describes the interactions.

The conductivity is given by Kubo formula

σµν(ω) = i
Πµν(iωn → ω + i0, k = 0)

ω
, (3.24)

and here the polarization Πµν is defined in real space by

Πµν
A (x, x′) = − δ2 lnZ[A]

δAµ(x)δAν(x′)

∣∣∣∣
A=0

, (3.25)
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where Z[A] =
∫
DGDΣDDDΠe−S is the partition function. We can alternatively write the above

expression as

Πµν
A (x, x′) =

〈
δ2S

δAµ(x)δAν(x′)
− δS

δAµ(x)

δS

δAν(x′)

〉
c

∣∣∣∣
A=0

, (3.26)

where the average only includes connected diagrams, and it is performed over bilocal fields. In
the leading large-N order, we can take S to be the saddle-point action. The expression in fourier
space is given by

Πµν
A (p) = −(2π)3

δ(0)

δ2 lnZ[A]

δAµ(−p)δAν(p)

∣∣∣∣
A=0

, (3.27)

where Aµ(x) =
∫

d3p
(2π)3Aµ(p)ei~p·~x−ip0x0 .

Let’s now compute the functional derivatives in (3.26). Expanding (3.23) in A by

S[A] = S0 + δAS + δ2
AS , (3.28)

where for the first order term we have

δAS = N

∫
x,x′

G∗[Σ](x, x′)δAεk+A(x′, x). (3.29)

Here G∗[Σ] is a functional of Σ which defines the RHS of SD equations:

G∗[Σ] =
1

−∂τ + µ− εk+A − Σ
, (3.30)

and ∂τ , µ, εk+A,Σ should be understood as bilocal fields or functionals on local fields.

We can proceed to second order in the expansion, which yields

δ2
AS =

N

2

[∫
x,x′,y,y′

G∗[Σ](x, y)δAεk+A(y, y′)G∗[Σ](y′, x′)δAεk+A(x′, x) + 2

∫
x,x′

G∗[Σ](x, x′)δ2
Aεk+A(x′, x)

]
.

(3.31)

We can see that the first term of (3.26) comes from (3.31), which can be evaluated directly
at the saddle point. The first term in (3.31) is a current-current correlator and the second term
is a contact term. The second term of (3.26), however, is zero at the saddle point (since they
are disconnected) and must be evaluated using fluctuations of the bilocal fields, i.e. summing the
ladder diagrams.

2. Vertex functions

To write down explicit expressions for the functional derivatives, we need to calculate the
vertex functions δAεk+A. For simplicity, we shall assume that we only turn on gauge field in the
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x-direction, and it is independent of y: Ax(τ, x, y) = Ax(τ, x). Under this assumption, the kinetic
term εk+A is

εk+A = εk(kx + Ax, ky) , (3.32)

where εk is a (smooth) function describing the dispersion, but the arguments kx + Ax and ky are
operators. Our above assumptions of Ax means that Ax commutes with ky, and therefore we can
unambiguously write down a Taylor expansion for εk:

εk(kx + Ax, ky) =
∞∑
n=0

1

n!
f (n)
x (0)(kx + Ax)

n , (3.33)

where fx(kx) = εk(kx, ky).

Let’s first calculate δAxεk+A, we can expand εk+A to first order in Ax:

δAxεk+A =
∞∑
n=0

1

n!
f (n)
x (0)

(
kn−1
x Ax + kn−2

x Axkx + · · ·+ Axk
n−1
x

)
. (3.34)

This is an operator equation, where the matrix elements are

kx(x, x
′) = −i∂xδ(x− x′), Ax(x, x

′) = Ax(x)δ(x− x′) . (3.35)

Insert these matrix elements into δAxεk+A, and we obtain

δεk+A

δAx(x0)
(x1, x2) =

∞∑
n=0

1

n!
f (n)
x (0)

n−1∑
m=0

(kn−1−m
x )(x1, x0)(kmx )(x0, x2)

=
∞∑
n=0

1

n!
f (n)
x (0)

n−1∑
m=0

(−i∂x1)n−1−m(i∂x2)mδ(x1 − x0)δ(x2 − x0)

=
∞∑
n=0

1

n!
f (n)
x (0)

(−i∂x1)n − (i∂x2)n

(−i∂x1)− (i∂x2)
δ(x1 − x0)δ(x2 − x0)

=
fx(−i∂x1)− fx(i∂x2)

(−i∂x1)− (i∂x2)
δ(x1 − x0)δ(x2 − x0) .

(3.36)

Here ∂x only acts on the x-component, but the delta functions are over the spacetime. We can
also write it in momentum space as

δεk+A

δAx(r)
(p, q) = Γx(p, q)δ(r + q − p) , Γx(p, q) =

fx(px)− fx(qx)
px − qx

. (3.37)

We remind the reader that here the external momentum r has no y component r = (r0, rx, 0).

To obtain the second derivative, we write

δ2
Axεk+A =

∞∑
n=0

1

n!
f (n)
x (0)

∑
a=0,b=0,a+b≤n−2

kaxAxk
b
xAxk

n−2−a−b
x . (3.38)
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The expression for the functional derivative is complicated for general external momentum, but we
only need it for the case where the two Ax’s carry opposite momenta, and the functional derivative
simplifies to

δ2εk+A

δAx(−r)δAx(r)
(p, r + p) =

δ(0)

(2π)3
∆x(p, r) , ∆x(p, r) = 2

(
d

dpx

fx(px)− fx(qx)
px − qx

)∣∣∣∣
q=r+p

. (3.39)

The expression for Γx and ∆x can be further simplified by noticing that in conductivity calcu-
lations we only need the homogeneous limit rx = 0, and we obtain

Γx(p, p) =
∂εk(p)

∂px
, ∆x(p, 0) =

∂2εk(p)

∂p2
x

. (3.40)

Therefore we can write down the contribution to ΠA from the first term of (3.26), which origi-
nates from (3.31):

Πxx
A1(r) = N

∫
d3p

(2π)3
G∗[Σ](p)Γx(p, r + p)G∗[Σ](r + p)Γx(r + p, p) , (3.41)

Πxx
A2(r) = N

∫
d3p

(2π)3
G∗[Σ](p)∆x(p, r) . (3.42)

These two terms are the same as the conventional current-current correlator term and the diamag-
netic term. This can be seen from the example

εk =
k2
x + k2

y

2m
Γx(p, p) =

px
m
, ∆x(p, 0) =

1

m
, (3.43)

which agrees with well-known results.

Finally, we look at the second term of (3.26). At leading N order we can expand G∗[Σ] and
obtain

Πxx
A3(r) =− N2

(2π)3δ(0)

∫
d3pd3q

(2π)6
G∗[Σ](p)G∗[Σ](p+ r)G∗[Σ](q)G∗[Σ](q + r)Γx(p+ r, p)Γx(q, q + r)

× 〈δΣ(p, p+ r)δΣ(q + r, q)〉 .
(3.44)

Here the δΣ(p, q) is the fourier transform of the fluctuating bilocal field

δΣ(p, q) =

∫
d3xd3yδΣ(x, y)e−i(~p·~x−p0x0)ei(~q·~y−q0y0). (3.45)

The correlator 〈δΣδΣ〉 ∝ N−1 is calculated in the previous paper I, where we have derived the
expression:

〈δΣ(p, p+ r)δΣ(q + r, q)〉 = N−1(2π)3δ(0)

[
WG

1

KG − 1
Λ−1

]
(p+ r/2, q + r/2; r) , (3.46)
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where the delta-function comes from energy-momentum conservation. The first two arguments on
the RHS label the relative momenta and the third argument denotes the CoM momentum. Since
we are looking at fermionic components, the matrix Λ can be replaced by identity.

Also notice that the GG factors in (3.41) and (3.44) are nothing but WΣ, we can therefore write
ΠA1 + ΠA3 as

Πxx
A13(r) ≡ Πxx

A1(r) + Πxx
A3(r) = N(Γx)T

1

W−1
Σ −WG

Γx , (3.47)

where the vertex function Γx is viewed as a two-point function by ignoring the leg with external
momentum r, and thus can be acted by WΣ.

The total polarization is therefore

Πxx
A = Πxx

A13 + Πxx
A2 . (3.48)

The above formalism can also be used to derive the charge-charge polarization function. Using
the minimal coupling scheme ∂τ → ∂τ + iAτ , we obtain the vertex function

Γτ (p, q) = i . (3.49)

There is no diamagnetic term for charge, so the charge-charge (density-density) polarization func-
tion is

Πττ
A = N(Γτ )T

1

W−1
Σ −WG

Γτ . (3.50)

3. Polarization bubble at the DC limit

In this section we show that at the DC limit px = 0, p0 → 0, the polarization bubble vanishes
in the presence of U(1) symmetry:

Πxx
A (px = 0, p0 → 0) = 0 . (3.51)

Here, we use pn to denote the discrete Matsubara frequency and p0 to denote the frequency
continued to real time, i.e. ipn → p0 + iη.

We introduce a renormalized vertex function V µ:

V µ = W−1
Σ

1

W−1
Σ −WG

Γµ . (3.52)

Therefore the current-current (paramagnetic) contribution to the polarization is

Πxx
A13(pn, ~p = 0) = NT

∑
qn

∫
d2~q

(2π)2
Γx(q, q)G(q + p)G(q)V x(p+ q, q) . (3.53)
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Here we have used the fact that the bare vertex Γx(q, q + p) = Γx(q, q) because ~p = 0.

The diamagnetic term is

Πxx
A2(pn, ~p = 0) = NT

∑
qn

∫
d2~q

(2π)2
∆x(q, 0)G(q) . (3.54)

Using (3.40), we can integrate by parts in qx to obtain

Πxx
A2(pn, ~q = 0) = −NT

∑
qn

∫
d2~q

(2π)2
Γx(q, q)G(q)2

(
Γx(q, q) +

∂Σ(q)

∂qx

)
. (3.55)

We therefore needs to show that the renormalized vertex V x(q, q + p) cancels the terms in the
parenthesis in (3.55) when p0 → 0.

Using the U(1) Ward identity (3.88) in the next section, we have

pµV
µ(p+ q, q) = G−1(q)−G−1(q + p) . (3.56)

Plugging in pµ = (−pn, px, 0) and expanding the Green’s functions, we get

− pnV τ (p+ q, q) + pxVx(p+ q, q) = −ipn + (εp+q − εq) + (Σ(p+ q)− Σ(q)) . (3.57)

Taking the limit px → 0 on both sides, and matching to linear order in px, we obtain

V x = Γx + pn
∂V τ

∂px
+
∂Σ(pn + qn, ~p)

∂qx
. (3.58)

Here both V x and Γx are evaluated at (p+ q, q) with ~p = 0, and the derivative of V τ is

∂V τ

∂px
≡ ∂V τ (k, q)

∂kx

∣∣∣∣
k=(pn+qn,~q)

. (3.59)

Now, the function V x given by (3.58), viewed as a function of pn can be analytically continued to
the complex pn plane and it has a branch cut at pn = −qn. There is no ambiguity in taking the
limit pn → η, and because ∂V τ/∂px is finite, we have

V x = Γx +
∂Σ(q)

∂qx
, (3.60)

and therefore Πxx(pn → 0, ~p = 0) = 0.

C. Ward Identities

For the clean model, Ward identities are an important tool that makes the evaluation of conduc-
tivities possible. The main idea is the following: We will apply arguments similar to Prange and
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Kadanoff [68] to integrate out momentum dependence in electron Green’s functions and reduce the
kernel W−1

Σ −WG in (3.47) to act only in frequency and angular harmonic space. Since the current
vertex function is a first angular harmonics proportional cos θk (but frequency-independent), the
conductivity can be schematically written as an inner product

σxx(iΩ) ∼ 〈cos θ| 1

W−1
Σ −WG

| cos θ〉 ∼
(∫

dθ cos2 θ

)
〈1| 1

W−1
Σ −W (1)

G

|1〉 (3.61)

Here due to rotation symmetry WΣ and WG can be decomposed into blocks acting on angular
harmonics (each block is a functional in frequency space) which we have factored out. WΣ is the
same for all angular harmonics, while WG acts as W (l)

G in the l-th angular harmonic sector.

The U(1) Ward identity yields an eigenvector equation satisfying

(W−1
Σ −W (0)

G ) |1〉 = Ω |1〉 . (3.62)

Physically, the difference between W
(0)
G and W

(1)
G is small in 1/kF due to small angle scattering

and can be calculated by gradient expansion. Therefore, the conductivity can be calculated using
first order perturbation as

σxx ∼ 1

Ω + δλ
, (3.63)

where
δλ ∝ 〈1|W (0)

G −W
(1)
G |1〉 . (3.64)

A conventional |ω|−2/3 conductivity [5, 69] corresponds to δλ ∝ Ω4/3, but our more careful com-
putation show that δλ = 0 due to momentum conservation. In section III E, we will formalize the
above discussions.

1. Master Ward identity

We first present a master Ward identity which includes both U(1) symmetry and diffeomorphism
invariance. We write the G-Σ action in the form

S

N
=− ln det (σf + Σ) +

1

2
ln det (−σb − Π)− Tr (Σ ·G) +

1

2
Tr (Π ·D) +

g2

2
Tr ((GD) ·G) ,

(3.65)

where
σf (x, x

′) = (∂τ + εk − µ)δ(x− x′) , (3.66)

and
σb(x, x

′) = (∂2
τ − ω2

q )δ(x− x′) (3.67)
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are the UV sources.

Consider the following change of variables (G,Σ, D,Π, σf , σb) → (G̃, Σ̃, D̃, Π̃, σ̃f , σ̃b) which
makes the action invariant:

G(x1, x2) =

∣∣∣∣∂y1

∂x1

∣∣∣∣∆ ∣∣∣∣∂y2

∂x2

∣∣∣∣∆ G̃(y1, y2)ei(λ(y1)−λ(y2)) , (3.68)

Σ(x1, x2) =

∣∣∣∣∂y1

∂x1

∣∣∣∣1−∆ ∣∣∣∣∂y2

∂x2

∣∣∣∣1−∆

Σ̃(y1, y2)ei(λ(y1)−λ(y2)) , (3.69)

D(x1, x2) =

∣∣∣∣∂y1

∂x1

∣∣∣∣1−2∆ ∣∣∣∣∂y2

∂x2

∣∣∣∣1−2∆

D̃(y1, y2) , (3.70)

Π(x1, x2) =

∣∣∣∣∂y1

∂x1

∣∣∣∣2∆ ∣∣∣∣∂y2

∂x2

∣∣∣∣2∆

Π̃(y1, y2) , (3.71)

σf (x1, x2) =

∣∣∣∣∂y1

∂x1

∣∣∣∣1−∆ ∣∣∣∣∂y2

∂x2

∣∣∣∣1−∆

σ̃f (y1, y2)ei(λ(y1)−λ(y2)) , (3.72)

σb(x1, x2) =

∣∣∣∣∂y1

∂x1

∣∣∣∣2∆ ∣∣∣∣∂y2

∂x2

∣∣∣∣2∆

σ̃b(y1, y2) . (3.73)

Here |∂y/∂x| is the Jacobian of y = y(x) , and ∆ is an arbitrary real number.

Define δλ,yG = G̃(x1, x2) − G(x1, x2) and similarly for other variables, we can write down a
master Ward identity

Tr (
δS

δG
δλ,yG+

δS

δΣ
δλ,yΣ +

δS

δD
δλ,yD +

δS

δΠ
δλ,yΠ) = −Tr (

δS

δσf
δλ,yσf +

δS

δσb
δλ,yδσb) . (3.74)

Taking functional derivatives of the master Ward identity (3.74) at the saddle point and using
(3.8), we obtain∫

dx1dx2

(
δΣ∗(x2, x1)

δG(x3, x4)
δy,λG(x1, x2)− 1

2

δΠ∗(x2, x1)

δG(x3, x4)
δy,λD(x1, x2)

)
= δy,λΣ(x4, x3) , (3.75)∫

dx1dx2

(
δΣ∗(x2, x1)

δD(x3, x4)
δy,λG(x1, x2)− 1

2

δΠ∗(x2, x1)

δD(x3, x4)
δy,λD(x1, x2)

)
= −1

2
δy,λΠ(x4, x3) , (3.76)

− δy,λG(x4, x3) +

∫
dx1dx2

δG∗(x2, x1)

δΣ(x3, x4)
δy,λΣ(x1, x2) = −

∫
dx1dx2

δG∗(x2, x1)

δΣ(x3, x4)
δy,λσf (x1, x2) ,

(3.77)
1

2
δy,λD(x4, x3)− 1

2

∫
dx1dx2

δD∗(x2, x1)

δΠ(x3, x4)
δy,λΠ(x1, x2) =

1

2

∫
dx1dx2

δD∗(x2, x1)

δΠ(x3, x4)
δy,λσb(x1, x2) .

(3.78)
Matching the above functional derivatives with the definitions of WΣ and WG, and using the
property that ΛWΣ and ΛWG are symmetric, we can bring the above four equations into a compact
form

(δy,λΠ, δy,λΣ)T = WG(δy,λD, δy,λG)T , (3.79)
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(W−1
Σ −WG)(δy,λD, δy,λG)T = (δy,λσb, δy,λσf )

T , (3.80)

and here the transpose only acts on b, f indices and doesn’t act on functions.

2. U(1) Ward identity

Setting y(x) = x, we obtain the U(1) Ward identity:

δλΣ = WGδλG , (3.81)

(W−1
Σ −WG)δλG = δλσf . (3.82)

Here the bosons are not charged under U(1) and therefore dropped.

Using the transformations (3.68), (3.69) and (3.72), we can explicitly write down δλΣ and δλG
in momentum space:

δλG(k, p) = i
[
G
(
k − p

2

)
−G

(
k +

p

2

)]
λ(p) , (3.83)

δλΣ(k, p) = i
[
Σ
(
k − p

2

)
− Σ

(
k +

p

2

)]
λ(p) , (3.84)

δλσf (k, p) = i
[
σf

(
k − p

2

)
− σf

(
k +

p

2

)]
λ(p) . (3.85)

Here λ(p) =
∫

d3xλ(x)e−ip·x, and p · x = ~p · ~x− p0x0. Using σf (k) = −ik0 + εk − µ, and the vertex
functions, we can rewrite δλσf as

δλσf (k, p) = −iλ(p)pµΓµ(k + p/2, k − p/2) , (3.86)

where pµ = (−pn, ~p).

Factoring out iλ(p), the U(1) Ward identity then reduces to the statements

Σ
(
k − p

2

)
− Σ

(
k +

p

2

)
= WG

[
G
(
k − p

2

)
−G

(
k +

p

2

)]
, (3.87)

and
G
(
k − p

2

)
−G

(
k +

p

2

)
=

1

W−1
Σ −WG

[−pµΓµ] (k, p) . (3.88)

The above two Ward identities are easy to check using the saddle point equations. The first
identity (3.87) follows from the fact that WG = δΣ/δG and that Σ is linear in G. By using explicit
forms of WΣ and WG, the second identity (3.88) is equivalent to[

Σ(k − p/2) +G−1(k − p/2)− Σ(k + p/2)−G−1(k + p/2)
]

= pµΓµ(k + p/2, k − p/2) , (3.89)

which is trivially satisfied by the vertex functions.
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3. Density-Density Correlation Function

We can use the Ward identity to compute the density-density correlation function at the limit
~p = 0. Setting pµ = (Ωn, 0), and using Γτ = i, the Ward identity (3.88) yields

1

W−1
Σ −WG

[1](r, p) =
1

iΩn

[G (irn − iΩn/2, ~r)−G (irn + iΩn/2, ~r)] , (3.90)

therefore

Π00(iΩn, ~p = 0) = T
∑
rn

∫
d2~r

(2π)2

1

iΩn

[G (irn − iΩn/2, ~r)−G (irn + iΩn/2, ~r)] = 0 , (3.91)

which agrees with [5]. A corollary of this result is that in a patch theory, the conductivity vanishes.
This is because εk = ±kx + k2

y implies Γx = ±1 and ∆x = 0, and therefore Πxx is proportional to
Π00.

4. Diffeomorphism Ward identity

Now we want to derive the Ward identity for translation symmetry, by setting λ = 0. Let
yµ = xµ + εµ, we can compute:

δy,λ=0G = −
(
∆∂µε

µ(x1) + ∆∂µε
µ(x2) + εµ(x1)∂xµ1 + εµ(x2)∂xµ2

)
G(x1, x2) , (3.92)

δy,λ=0Σ = −
(
(1−∆)∂µε

µ(x1) + (1−∆)∂µε
µ(x2) + εµ(x1)∂xµ1 + εµ(x2)∂xµ2

)
Σ(x1, x2) , (3.93)

δy,λ=0D = −
(
(1− 2∆)∂µε

µ(x1) + (1− 2∆)∂µε
µ(x2) + εµ(x1)∂xµ1 + εµ(x2)∂xµ2

)
D(x1, x2) , (3.94)

δy,λ=0Π = −
(
2∆∂µε

µ(x1) + 2∆∂µε
µ(x2) + εµ(x1)∂xµ1 + εµ(x2)∂xµ2

)
Π(x1, x2) , (3.95)

δy,λ=0σf = −
(
(1−∆) ∂µε

µ(x1) + (1−∆)∂µε
µ(x2) + εµ(x1)∂xµ1 + εµ(x2)∂xµ2

)
σf (x1, x2) , (3.96)

δy,λ=0σb = −
(
2∆∂µε

µ(x1) + 2∆∂µε
µ(x2) + εµ(x1)∂xµ1 + εµ(x2)∂xµ2

)
σb(x1, x2) . (3.97)

Since the choice of ∆ is arbitrary, we expect all terms proportional to ∆ to cancel identically in
the master Ward identity (3.74). This cancellation involves an extra ingredient, which is the UV
regularization of the determinant terms [67]: det(σf + Σ)→ det(σf + Σ)/ det(σf ), det(σb + Π)→
det(σb+Π)/ det(σb). After using this regularization, the cancellation of ∆ terms becomes manifest.
This regularization term is unimportant for the derived Ward identities (3.79) and (3.80) because
they are obtained from functional derivatives of (3.74) with respect to bi-local fields, but the
regularization term is independent of the fields.
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We can rewrite the above infinitesimal transformations in fourier space as

δy,λ=0A(k, p) = −ipµεµ(p)

(
∆A −

1

2

)[
A
(
k − p

2

)
+ A

(
k +

p

2

)]
− ikµεµ(p)

[
A
(
k − p

2

)
− A

(
k +

p

2

)]
= −ipµεµ∆A

[
A
(
k − p

2

)
+ A

(
k +

p

2

)]
− iεµ(p)

(
k − p

2

)
µ
A
(
k − p

2

)
+ iεµ(p)

(
k +

p

2

)
µ
A
(
k +

p

2

)
(3.98)

Here pµ = ηµνp
ν , with ηµν = (−,+,+). k denotes relative momentum and p denotes CoM momen-

tum. A = G,Σ, D,Π, σf , σb and ∆G denotes the corresponding value of ∆ appeared above.

The two Ward identities (3.79) and (3.80) with diffeomorphism can also be verified by using
the saddle point equations.

The Noether theorem states that

δyS = −
∫

d3xT µν∂µεν(x) , (3.99)

where T µν is the stress tensor. We are interested in the consequences of momentum conservation
(T 0i) at the transport limit, therefore we set ε0 = 0 and pµ = (pn, 0) in (3.98). Applying this to
δyσf and δyσb, we can read out the momentum vertices:

δy,λ=0σf (k, p) = iΓµ(k + p/2, k − p/2)kνpµεν , (3.100)

δy,λ=0σb(k, p) = iΓ̃µ(k + p/2, k − p/2)kνpµεν , (3.101)

where Γµ is the electron current vertex and Γ̃µ = (kn,−~k). The momentum vertices are therefore
read out to be Γ0ki and Γ̃0ki.

D. Solving the saddle point

We now solve the saddle point equations on the whole FS. We work in the units where the
boson velocity

√
K = 1. The boson self energy is

Π(iΩn, ~q) = −g2T
∑
ωn

∫
d2~k

(2π)2

1

iωn − ξk − Σ(iωn)

1

iωn + iΩn − ξk+q − Σ(iωn + iΩn)
. (3.102)

We expand the dispersion with ξk+q = ξk + vF q cos θkq and then we can perform the integral over
θkq and ξk to obtain

Π(iΩn, ~q) = πN g2T
∑
ωn

sgnωn (sgn (ωn + Ωn)− sgnωn)√
v2
F q

2 − (iΩn − Σ(iωn + iΩn) + Σ(iωn))2
, (3.103)
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where N = m
2π

is the fermion DoS. In the denominator, only the vF q term is relevant, and we get

Π(iΩn, q) = −γ |Ωn|
q

, γ =
N g2

vF
. (3.104)

As a sanity check, we compare with patch theory where m = 1/2 and vF = 1, we get γ = g2/(4π)

which agrees with two-patch theory in I. At zero Mastsubara frequency, we also need to include a
thermal mass term in the boson propagator

D(0, q) =
1

~q2 + ∆(T )2
, (3.105)

where ∆(T )2 ∼ T ln(1/T ) [13, 47, 70].

The electron self energy Σ = ΣQ + ΣT can be decomposed into a quantum part ΣQ ∝ |ω|2/3

and a thermal part ΣT ∝ T 1/2. The quantum part is

ΣQ(iωn, k) = g2

∫
d2q

(2π)2
T
∑

Ωn 6=0

1

q2 + γ |Ωn|
q

1

iωn − iΩn − ξk−q − Σ(iωn − iΩn)
. (3.106)

We expand ξk−q = ξk − qvF cos θq, and then integrate over θq to get

ΣQ(iωn, k) = g2T

∫ ∞
0

qdq

2π

∑
Ωn 6=0

1

q2 + γ |Ωn|
q

isgn (Ωn − ωn)√
(vF q)2 + A(ωn)2

, (3.107)

where A(ωn) = ωn + iΣ(ωn). We now evaluate the q integral. Due to the boson propagator, the
typical value of q is of order |Ωn|1/3, which is larger than A(ωn) in the scaling sense. Therefore we
can drop A(ωn) in the second factor and obtain

ΣQ(iωn, k) =
ig2

vF
T
∑
Ωn

∫ ∞
0

dq

2π

sgn (Ωn − ωn)

q2 + γ |Ωn|
q

=
ig2

3
√

3vFγ1/3
T
∑
Ωn

sgn (Ωn − ωn)

|Ωn|1/3

= −i2
2/3g2T 2/3sgn (ωn)

3
√

3π1/3γ1/3vF
H1/3

(
|ωn|
2πT

− 1

2

)
= − ig2

2
√

3πvFγ1/3
sgn (ωn)|ωn|2/3 , (T = 0) .

(3.108)

The above result also agrees with two-patch theory in [47] when γ = g2/(4π) , vF = 1. Here H1/3(x)

is HarmonicNumber[x,1/3] in Mathematica.

The thermal part of the self-energy is

ΣT (iωn, k) = g2T

∫
d2q

(2π)2

1

q2 + ∆(T )2

1

iωn − ξk−q − ΣQ(iωn)− ΣT (iωn)
. (3.109)
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Evaluating the q integral, we obtain

ΣT (iωn) = −isgnωn
g2T

2π

sec−1
(
vF∆(T )
|A(ωn)|

)
√
v2
F∆(T )2 − A(ωn)2

, (3.110)

where A(ωn) = ωn + iΣQ(iωn) + iΣT (iωn).

At the low-frequency limit |ωn + iΣQ(ωn)| � ∆(T ), we obtain

ΣT (iωn) = −isgnωnh(T ) , (3.111)

where h(T ) satisfies

h(T ) =
g2T

2π

cos−1
(

h(T )
vF∆(T )

)
√
v2
F∆(T )2 − h(T )2

. (3.112)

Since ∆(T )2/T →∞ as T → 0, the asymptotic behavior of h(T ) is

h(T )→ g2T

4vF∆(T )

1

1 + g2T
2πv2

F∆(T )2︸ ︷︷ ︸
'1

. (3.113)

E. Conductivity Computation

We will work at zero temperature T = 0.

1. Prange-Kadanoff Reduction

The saddle point computation above is consistent with a reduction method proposed by Prange
and Kadanoff [68]. It assumes that the fermionic spectral function A(ω,~k) has a sharp peak in ξk
at the Fermi surface, and doesn’t require a well-defined quasiparticle peak in ω. Therefore as an
approximation, we could restrict all fermionic momenta to be exactly on the FS, and work with
the angular variables. For application to our problem, there is an additional validity requirement1:
the typical peak in the boson propagator (as a function of momentum q) should be much wider
than the peak in the fermion propagator (as a function of ξk ∼ vF q), i.e.

vF |ImΠR(ω)|1/2 � |ImΣR(ω)| . (3.114)

1 In the original paper of Prange and Kadanoff [68], they were considering phonons with energy comparable to

Debye frequency. There the phonon propagator is controlled by the bare dispersion and can be considered as a

smooth function. In our model the boson momentum is small and the Landau damping term plays an important

role.
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The exponent 1/2 on the LHS is due to the fact that boson momentum appears in the propagator
as (q2 + Π)−1, and therefore the typical width in boson momentum is order |ImΠR|1/2.

The condition (3.114) implies a description using only fermions on the Fermi surface: For any
boson carrying momentum q‖ normal to the Fermi surface, it will excite a fermion with energy
ξk ∼ vF q‖. This energy is much larger than the width determined by fermion self energy and that
process has a much smaller amplitude due to small fermionic spectral weight. As a consequence, we
only consider bosons that connect fermions on the Fermi surface. When the two fermion momenta
are close, it also implies that the boson momentum is tangent to the Fermi surface — a feature
also seen in patch theories.

The condition (3.114) is indeed satisfied by the clean model we are considering: the fermion self
energy is of order ImΣ ∼ max(|ω|2/3, T 1/2/ ln(1/T )), and the boson self energy is ImΠ(ω 6= 0) ∼
|ω|/q ∼ |ω|2/3 and ImΠ(ω = 0) ∼ ∆(T )2 ∼ T ln(1/T ). However, this condition is violated when we
add disorder potential to the fermions, and therefore the method only applies to the translational
invariant model.

We now apply the reduction idea to conductivity computation. We are interested in optical
conductivity and we work at T = 0. We compute the paramagnetic term (3.47) of the polarization
function:

Πxx(iΩn, ~p = 0)/N = (Γx)T
1

W−1
Σ −WG

Γx , (3.115)

where we have assumed zero CoM momentum and a finite CoM frequency Ωn > 0. The diamag-
netic term exactly cancels the contribution of the paramagnetic term at zero frequency, so the
conductivity is

σxx(ω) =
Πxx(iΩn)− Πxx(0)

Ωn

∣∣∣∣
iΩn→ω+i0

. (3.116)

Near the Fermi surface, we can approximate the vertex function to be Γx(k, k) = vF cos θk,
which only contains first harmonics of θk. We can write Πxx as an inner product of the form

Πxx(iΩn)/N = v2
F 〈cos θk|

1

W−1
Σ −WG

| cos θk〉 . (3.117)

Here the inner product is defined as

〈f |g〉 =

∫
dω

2π

d2~k

(2π)2
f(~k, iω)g(~k, iω) , (3.118)

and |cos θk〉 denotes the constant function cos θk.

Notice that WΣ and WG are block operators as given in (3.17) and (3.18), and we are only
interested in the fermionic sector, we can perform a block inversion to obtain(

1

W−1
Σ −WG

)
FF

=
1

W−1
Σ,FF −WG,FF︸ ︷︷ ︸

WMT

−WG,FBWΣ,BBWG,BF︸ ︷︷ ︸
WAL

. (3.119)
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(a)

. . . . . .

(b)

. . . . . .

(c)

FIG. 1: Feynman diagrams blocks WMT and WAL for conductivity computation in Eq.(3.119).
(a) is Maki-Thompson (MT). (b),(c) are Aslamazov-Larkin (AL) diagrams.

Here the additional subscripts refer to boson/fermion blocks ofWΣ,WG. The two terms that emerge
from the block inversion can be interpreted as Maki-Thompson (MT) diagrams and Aslamazov-
Larkin (AL) diagrams. The diagrammatic representation of WMT and WAL are given in Fig. 1.

2. Maki-Thompson Diagrams

We apply the Prange-Kadanoff reduction to the MT diagram kernel WMT, which is given by

WMT[F ](ω,~k) = g2

∫
dω′

2π

d2~k′

(2π)2
D(k − k′)F (ω′, ~k′) . (3.120)

We factorize the momentum integral as∫
d2~k′

2π′
= N

∫
dθ′
∫

dξk′

2π
, (3.121)

where the density of state is N = kF/(2πvF ). Assuming the function F is sharply peaked on the
FS ξk′ = 0, we perform the integral over ξk′ first, obtaining

F̂ (ω′, θ′) =

∫
dξk′

2π
F (ω′, ~k′) , (3.122)

and other factors in (3.120) are assumed to have a smooth dependence on ξk′ , and are evaluated
at ξk′ = 0. In later steps we will also integrate over ξk, and therefore we can assume ~k is also on
the Fermi surface, we get

WMT[F̂ ](ω, θ, ξk = 0) = N g2

∫
dω′dθ′

2π

1

|~q|2 + γ|ω−ω′|
|~q|

F̂ (ω′, θ′) , (3.123)

where the boson momentum ~q = kF (θ̂ − θ̂′) and θ̂,θ̂′ are unit vectors corresponding to angles θ, θ′

respectively. To carry out the θ′ integral, we use a gradient expansion. Let θ′ = θ+δθ, and expand
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F̂ (ω′, θ′) = F̂ (ω′, θ) + δθ∂θF̂ (ω′, θ) + 1
2
δθ2∂2

θ F̂ (ω′, θ) + . . . . The momentum ~q is parameterized as
|~q| = 2kF sin(δθ/2). The result is

WMT[F̂ ](ω, θ, ξk = 0) =
g2

vF

2

3
√

3

∫
dω′

2π

[
1

γ1/3|ω − ω′|1/3
F̂ (ω′, θ)− γ1/3|ω − ω′|1/3

2k2
F

∂2
θ F̂ (ω′, θ)

]
.

(3.124)
Here we have only kept the leading order term in 1/kF for each order of derivative in θ. As we
will see later, the first term in the bracket cancels the self energies. In obtaining (3.124), we used
dimensional regularization by analytically continuing the following integral∫ ∞

0

dq
qη

q2 + a
q

=
π

3
a
η−1

3 sec
(π

6
(2η + 1)

)
(a > 0) , (3.125)

which is only convergent for −2 < η < 1 but continued to all η.

3. Aslamazov-Larkin diagram

Next we consider the

WAL[F ](k1) =− g4

2

∫
d3qd3k2

(2π)6
(G(k1 − q) +G(k1 + q)) (G(k2 − q) +G(k2 + q))

×D(q + p/2)D(q − p/2)F (k2)

= −g4

∫
d3qd3k2

(2π)6
G(k1 − q) (G(k2 − q) +G(k2 + q))D(q + p/2)D(q − p/2)

× F (k2) ,

(3.126)

where p = (Ωn, 0) denotes the CoM frequency. We first perform the Prange-Kadanoff reduction.
We rewrite (3.126) as (ν is the frequency component of q)

WAL[F ](ω1, ~k1) = −g4

∫
d3qd3k2d2~k′d2~k′′

(2π)6
G(ω1 − ν,~k′)δ(~q = ~k1 − ~k′)

×
(
G(ω2 − ν, ~k′′)δ(~q = ~k2 − ~k′′) +G(ω2 + ν,~k′′)δ(~q = ~k′′ − ~k2)

)
×D(q + p/2)D(q − p/2)F (ω2, ~k2) .

(3.127)

Next, we perform integrals over ξk2 , ξk′ and ξk′′ assuming other terms in the integrand are slow
varying, and we effectively restrict all fermionic momenta to be on the FS, parameterized by angles
θ1, θ2, θ

′, θ′′. The momentum delta functions then impose the following conditions on the angles:

(θ2, θ
′′) = (θ1, θ

′) or (θ′ + π, θ1 + π) if ~q = ~k1 − ~k′ = ~k2 − ~k′′;

(θ′′, θ2) = (θ1, θ
′) or (θ′ + π, θ1 + π) if ~q = ~k1 − ~k′ = ~k′′ − ~k2 .

(3.128)
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We can therefore integrate out θ2 and θ′′, yielding

WAL[F ](ω1, θ1, ξk1 = 0) = π2g4N 3

∫
dν

2π

dω2

2π
dθ′

1

qkF
D(q + p/2)D(q − p/2)sgn (ω1 − ν)

×
[
sgn (ω2 − ν)

(
F̂ (ω2, θ1) + F̂ (ω2, θ

′ + π)
)

+ sgn (ω2 + ν)
(
F̂ (ω2, θ

′) + F̂ (ω2, θ1 + π)
)]

.

(3.129)

Here the momentum ~q = kF (θ̂1 − θ̂′). To proceed, we should assume that the function F̂ has a
definite parity P = ±1 under inversion: F̂ (θ + π) = PF̂ (θ). We obtain

WAL[F ](ω1, θ1, ξk1 = 0) =
π2

2
g4N 3

∫
dν

2π

dω2

2π
dθ′

1

qkF
D(q + p/2)D(q − p/2)

× (sgn (ω1 − ν) + P sgn (ω1 + ν)) (sgn (ω2 − ν) + P sgn (ω2 + ν))
(
F̂ (ω2, θ1) + PF̂ (ω2, θ

′)
)
.

(3.130)

For computation of conductivity, we are interested in odd parity modes and we set P = −1 from
now on. Performing gradient expansion in θ, we get

W P=−1
AL [F ](ω1, θ1, ξk1 = 0) =

−g4

6
√

3kFv3
Fγ

2/3

∫
|ν|>|ω1|,|ν|>|ω2|

dνdω2

(2π)2

|ν + Ω/2|1/3 − |ν − Ω/2|1/3

|ν + Ω/2| − |ν − Ω/2|
∂2
θ F̂ (ω2, θ1) .

(3.131)

4. Resummation

In this part we include the effects of WΣ in (3.117) and (3.119). We expand the geometric series
to write

1

W−1
Σ −WMT+AL

= WΣ +WΣWMT+ALWΣ + . . . . (3.132)

In analyzing WMT and WAL in previous sections, we have assumed that they act on functions of ξk
which are sharply peaked on the Fermi surface. This assumption is justified by noting that theWΣ

factor as a product of two fermion Green’s functions which is indeed peaked on the Fermi surface.
Therefore, we have∫

dξk
2π

WΣ[F ](ξk, ω, θk) ' L(iω)θ(Ω/2− |ω|)F (ω, θk, ξk = 0) , (3.133)

where θ(Ω/2− |ω|) is the Heaviside theta function and

L(iω) =

∫
dξk
2π

WΣ(ξk, ω) =

∫
dξk
2π

G(i(ω + Ω/2), ξk)G(i(ω − Ω/2), ξk)

=
i

2

sgn (ω + Ω/2)− sgn (ω − Ω/2)

iΩ + Σ(i(ω − Ω/2))− Σ(i(ω + Ω/2))
=

1

Ω− iΣ(i(ω − Ω/2)) + iΣ(i(ω + Ω/2))
.

(3.134)
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We see that the effect ofWΣ is to restrict the functional space to be supported only on [−Ω/2,Ω/2].
We arrive at the following new inner product formula for Πxx, which is over functions of angle θ
and frequency ω (|ω| ≤ Ω/2):

Πxx(iΩ)/N = v2
F 〈cos θ‖ 1

L−1 −WMT −WAL
‖ cos θ〉 , (3.135)

with a reduced inner product

〈f‖g〉 = N
∫ 2π

0

dθ

∫ Ω/2

−Ω/2

dωf(iω, θ)g(iω, θ) . (3.136)

The operator L is defined by Eq. (3.134), and WMT and WAL are given by Eqs. (3.124) and (3.131)
respectively, understood as functionals acting on F̂ instead of F .

The vertex function f(θk) = cos θk appearing in (3.135) is frequency independent, allowing us
to compute its image under WMT and WAL explicitly:

WMT[f ](ω, θ) =
g2

vF

2

3
√

3

∫ Ω/2

−Ω/2

dω′

2π

[
1

γ1/3|ω − ω′|1/3
f(θ)− γ1/3|ω − ω′|1/3

2k2
F

∂2
θf(θ)

]
= [iΣ(i(ω + Ω/2))− iΣ(i(ω − Ω/2))] f(θ)

− g2γ1/3

8π
√

3vFk2
F

[
sgn (ω + Ω/2)|ω + Ω/2|4/3 − sgn (ω − Ω/2)|ω − Ω/2|4/3

]
∂2
θf(θ) .

(3.137)

W P=−1
AL [f ](ω, θ) =

−g4

6
√

3kFv3
Fγ

2/3

∫
|ν|>|ω|,|ν|>|ω′|,|ω′|<Ω/2

dνdω′

(2π)2

|ν + Ω/2|1/3 − |ν − Ω/2|1/3

|ν + Ω/2| − |ν − Ω/2|
∂2
θf(θ) .

=
g4

16π2
√

3kFv3
Fγ

2/3

[
sgn (ω + Ω/2)|ω + Ω/2|4/3 − sgn (ω − Ω/2)|ω − Ω/2|4/3

]
∂2
θf(θ) .

(3.138)

In obtaining (3.138), we again used dimensional regularization on the exponents of |ν ± Ω/2| to
drop the divergent parts at ν → ±∞.

Using the relation γ = Ng2

vF
= kF g

2

2πv2
F
, we see that the last line of (3.137) exactly cancels (3.138),

and therefore (
L−1 −WMT −W P=−1

AL

)
[f ] = Ωf . (3.139)

That is, any odd-parity frequency-independent function f(θ) is an eigenvector of L−1−WMT−WAL

with eigenvalue Ω.

This implies that the conductivity of the model is exactly Drude like

σxx(ω) = N
N v2

F

2

1

−iω
. (3.140)
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5. Discussion

a. Change of Integration Order: In obtaining the above results, we have exchanged the
order of integration between frequency and momentum, which can potentially modify the value
of the integral. However, the difference between two integration orders is due to UV divergence
at large frequency and momentum. There is exactly one diagram that has this behavior, which is
the one-loop bubble of fermions. By examining this diagram, it can be shown that changing the
integration order just cancels the diamagnetic term (3.42).

b. Cancellation and Ward Identity The Drude-like result (3.140) is due to two cancellation
related symmetries: First, the cancellation between self energies and Maki-Thompson diagrams
due to U(1) symmetry and charge conservation. Second, the cancellation between the Aslamazov-
Larkin diagram and the remainings of Maki-Thompson diagram is due to diffeomorphism symmetry
and momentum conservation. These cancellations can be related to the Ward identities derived
in Sec. III C by Prange-Kadanoff reduction. The almost cancellation between the self energy and
the MT diagram is a consequence of the U(1) Ward identity. This can be seen by integrating both
sides of Eq. (3.90) over ξr2. The cancellation between the rest of MT diagram and the AL diagram
can be seen as the following: Within the Prange-Kadanoff formalism, we only consider momenta
exactly on the Fermi surface. Therefore the current vertex function vF cos θ is proportional to the
momentum vertex function kF cos θ. Because the boson self-interaction is irrelevant at the critical
point, there is no boson-boson entry in the kernel WG, and from the Ward identity (3.79), we have

δyΠ = WG,BF [δyG] . (3.141)

Here δy denotes small diffeomorhism transformation as defined in Eqs.(3.92)-(3.97). Substitute the
above into (3.80) and we obtain(

W−1
Σ −WMT −WAL

)
[δyG] = δyσf −WG,FBWΣ[δyσb] . (3.142)

At the critical point, the bare boson momentum term σb is also irrelevant compared to the boson
self energy Π, and therefore the second term on the RHS (3.142) can be dropped. Multiplying(
W−1

Σ −WMT −WAL
)−1 on both sides and then perform Prange-Kadanoff reduction by integrating

over ξ, we see that the momentum vertex is exactly an eigenvector of L−1 −WMT −WAL with
eigenvalue Ω.

c. Slow Relaxation of Odd-Parity Modes We now argue that within the Prange-Kadanoff
approximation, every odd harmonic cosmθ satisfies the eigenvalue equation (3.139) at any order
of gradient expansion. As a corollary, (3.140) is valid at the critical point regardless of Fermi surface

2 For the constant function 1, the AL diagrams vanishes identically as the integral (3.130) is odd in ω2 when P = 1.
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shape, as long as it has inversion symmetry and is convex. This conclusion is in disagreement with
Ref. [69] which assumed that MT and AL diagrams would not cancel.

Eq. (3.139) has already been shown at second order in the gradient expansion. What happens
at higher order? It can be seen that both in WMT and WAL associated with each ∂θ there is a
factor of δθ ' q/kF ∼ γ1/3|Ω|1/3/kF . Therefore the gradient expansion is at the same time a 1/kF

expansion (i.e. the series is actually in (1/kF )∂θ). Momentum conservation implies that the series
vanishes identically for first harmonics to all orders in 1/kF , and therefore it must also vanish to
all orders in ∂θ, given P = −1.

When the Fermi surface is not exactly circular but still inversion symmetric and convex, we can
decompose the current vertex into angular harmonics of the momentum angle θk, and by inversion
symmetry it only contains odd harmonics. The convexity ensures that the number of solutions
to the angular delta functions remains unchanged [59] and the derivation to (3.139) continues to
hold. Since all odd-harmonics satisfy (3.139), the result (3.140) continues to hold.

There is a more intuitive way to understand the statement in terms kinematic constraint for
fermion collision. What happens in our model is a non-Fermi liquid generalization of a Fermi
liquid story [62, 63]. Within the Prange-Kadanoff approximation, we only consider momenta on
the Fermi surface scattering onto Fermi surface. Because of momentum conservation and Pauli’s
exclusion principle, when two initial momenta (~k1, ~k2) are not head-on (~k1 + ~k2 6= 0), the only
kinematically allowed process is forward scattering or particle exchange. This process doesn’t
cause any relaxation. When the two initial momenta are head-on, they are allowed to scatter to
any head-on pairs. However, this process only relaxes even harmonics of the Fermi surface, because
a pair of head-on particles have zero overlap with odd harmonics. This intuitive picture holds for
any inversion symmetric Fermi surface.

d. Beyond Prange-Kadanoff According to the Fermi liquid story [59, 62, 63], the first correc-
tion to the eigenvalue equation (3.139) is a superdiffusion term ∂4

θ in the angular coordinate. The
superdiffusion term can be understood as a two-particle correlated random walk on the angular
coordinate which conserves center of mass coordinate due to momentum conservation. Further-
more, the superdiffusion also intertwines angular and radial relaxation, and it is therefore beyond
the Prange-Kadanoff approximation. Following the analysis there, we can estimate the diffusion
coefficient to be

D ∼ ImΣR(δθ)4 ∼ g2γ|ω|2

k4
FvF

∼ g4|ω|2

(vFkF )3
. (3.143)

This result is accurate up to logarithmic corrections of order ln δθ [62]. The optical conductivity
is therefore

σxx(ω) ∼ 1

ω
〈cos θ| 1

−iω −D∂4
θ

| cos θ〉 ∼ N v2
F

1

−iω −D
∼ 1

−iω
+ |ω|0 . (3.144)
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This requires a non-circular Fermi surface since for first harmonics the correction term still vanishes
by momentum conservation.

At finite temperature, the quantum-critical scaling is violated by thermal fluctuations. However,
we expect the angular superdiffusion picture to still hold, but with the angular step δθ ∼ ∆(T )/kF

where ∆(T ) is the thermal mass. Therefore we have (when ω = 0)

D ∼ ImΣR(δθ)4 ∼ T 5/2 ln3/2(1/T ) . (3.145)

We should note that the scalings of the diffusion coefficients estimated above are still more sin-
gular than a translational invariant Fermi liquid. It has been calculated in [62, 63] that in a Fermi
liquid where collisions conserve momentum, the diffusion coefficient at DC scales as T 4 ln(1/T ).
For optical conductivity, we expect a scaling of ω4 ln(|ω|). In contrast, in a Fermi liquid with
disorder, all decay rates are expected to scale as ω2 or T 2.

e. A Would-be |ω|−2/3 Optical Conductivity The MT and AL diagrams were noted in earlier
work [5] but their cancellation was overlooked, as we review in Appendix A. If we consider the MT
diagram only, our calculation would reproduce the conventional |ω|−2/3 conductivity [5] (which, we
maintain, is absent). This can be seen by noting that at lowest order of angular expansion, the MT
diagram exactly cancels self-energy contribution (see the first line of (3.137)). This is related to
the U(1) Ward identity, and can be physically interpreted as forward scattering doesn’t contribute
to current dissipation. We have obtained an eigenvalue statement (L−1 −W (0)

MT)[f ] = Ωf which is
valid only at zeroth order of gradient expansion. Effect of small angle scattering is included as a
first order gradient expansion (the second line of (3.137)), which perturbs the eigenvalue equation
above by a term of order Ω4/3, whose leading order effect is to shift the eigenvalue by an amount
of order Ω4/3. As a result, we would obtain a Drude formula with scattering rate ∼ Ω4/3/k2

F , and
in the kF →∞ limit, this turns into a |ω|−2/3 in the conductivity:

σxx(ω) =
N v2

F

2

1

−iω + #
k2
F
|ω|4/3

∼ N v
2
F

2

(
1

−iω
+

#

k2
F

|ω|−2/3

)
. (3.146)

The above result can also be obtained in the picture of angular diffusion on the Fermi surface.
Because the constraints from momentum conservation is ignored, the leading order diffusion process
is no longer a correlated diffusion but a single particle diffusion with operator ∂2

θ . From this the
diffusion constant can be estimated as

D ∼ ImΣR(ω) (δθ)2 ∼ |ω|4/3 , (3.147)

which agrees with results above.
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IV. POTENTIAL DISORDER

In this part we investigate the spatially disordered theory with potential (v) disorder, and
compute its conductivity.

A. Lagrangian

The model we consider is

L =
∑
i

ψ†i (∂τ + εk − µ)ψi +
1

2

∑
i

φi(−∂2
τ + ω2

q +m2
b)φi +

∑
ijl

gijl
N
ψ†iψjφl +

∑
ij

vij(x)√
N

ψ†iψj . (4.1)

Here εk and ω2
q should be understood as differential operators. gijl is the random interaction and

vij is disorder. The averaging procedures of gijl and vij are given in Sec. II. The boson mass term
m2
b might be replaced by a fixed length constraint as in I. We will assume that in the low-energy

limit the disorder scattering rate Γ = 2πN v2 (N is DOS) is the largest scale.

1. Scaling Analysis

Assuming dynamical exponent z = 2 for the bosons, we have [τ ] = −2, [x] = [y] = −1. At
the fixed point, we assume the disorder self energy of the fermions and the boson kinetic term
are invariant under scaling. We can then determine [ψ] = 2 and [φ] = 1. Therefore the Yukawa
coupling and the fermion-disorder coupling are irrelevant. There is also the boson mass term φ2

which is relevant and the boson self interaction φ4 which is marginal, but we assume that they
have been tuned to criticality.

2. G-Σ action

After averaging out gijl and vij, we obtain the G-Σ action

S

N
=− ln det ((∂τ + εk − µ) δ(x− x′) + Σ) +

1

2
ln det

((
−∂2

τ + ω2
q +m2

b

)
δ(x− x′)− Π

)
− Tr (Σ ·G) +

1

2
Tr (Π ·D) +

g2

2
Tr ((GD) ·G) +

v2

2
Tr ((Gδ̄) ·G) ,

(4.2)

where δ is a space-time delta function and δ̄ is a spatial delta function.
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The saddle point equations are

G(iωn, ~k) =
1

iωn + µ− εk − Σ(iωn, ~k)
,

D(iΩn, ~q) =
1

Ω2
m + ω2

q +m2
b − Π(iΩn, ~k)

,

Σ(x) = g2G(x)D(x) + v2G(x)δ̄(x) ,

Π(x) = −g2G(x)G(−x) .

(4.3)

B. Solving the saddle point

In this disordered model, the Prange-Kadanoff method does not apply. In the presence of
disorder, the disorder contribution to electron self energy Σdis = −i(Γ/2)sgnωn dominates at low
energy. As a consequence, the peak in the electron Green’s function is now wider than the peak
in the boson Green’s function (as we will see the boson self energy scales linearly with frequency).
Therefore the Prange-Kadanoff method does not apply, and it is not legitimate in the scaling sense
to neglect momentum dependence in the electron self energy. However, the momentum dependence
only introduces non-dissipative corrections, and for the real part of optical conductivity we are
interested in the dissipative part, so to simplify the calculation we can still set fermionic momenta
to be on the Fermi surface.

1. Boson self energy

Let us compute the boson self energy first, which in momentum space reads

Π(iΩn, ~q) = −g2T
∑
ωn

∫
d2~k

(2π)2

1

iωn − ξ~k − Σ(iωn)

1

iωn + iΩn − ξ~k+~q − Σ(iωn + iΩn)
, (4.4)

where we have assumed that the electron self energy takes value on the Fermi surface, and ξ~k =

ε~k − µ. Expanding in small ~q and around a circular Fermi surface, we have

Π(iΩn, ~q) = −g2T
∑
ωn

∫
dθ

2π

∫
νdξ~k

1

iωn − ξ~k − Σ(iωn)

1

iωn + iΩn − ξ~k − Σ(iωn + iΩn)− vF q cos θ
.

(4.5)
Taking the ξ~k integral to be over the real line, we obtain

Π(iΩn, ~q) = −πN g2T
∑
ωn

sgn Ωn(sgn (ωn + Ωn)− sgnωn)√
v2
F q

2 − (iΩn − Σ(iωn + iΩn) + Σ(iωn))2

' − N g2|Ωn|√
v2
F~q

2 + Γ2
' −N g

2|Ωn|
Γ

≡ −γ|Ωn|
(4.6)
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Here N is density of states. Here we have assumed that at low frequencies the electron self energy
is dominated by disorder scattering Σ ' −iΓ

2
sgn (ωn).

The thermal mass of this boson self energy has been calculated in the previous paper I, which
is

∆(T )2 =

−πγTW0

(
− 1

π
ln

(
2πT

γeγE

))
ln

(
2πT

γeγE

) , γ =
N g2

Γ
. (4.7)

Here γE = 0.577 . . . is Euler’s constant, and W0 is Lambert W-function. Also note in this section
the meaning of the parameter γ is different from Sec. III.

2. Electron self energy

The electron self energy is given by

Σ(iωn, ~k) = g2

∫
d2~q

(2π)2
T
∑
Ωn

D(iΩn, ~q)G(iωn − iΩn, ~k − ~q) + v2

∫
d2~q

(2π)2
G(iωn, ~q) . (4.8)

The second term gives rise to the disorder contribution

Σdis(iωn, ~k) = −iΓ
2

sgn (ωn), Γ = 2πv2N . (4.9)

The first term can be split into thermal part and quantum part

ΣT (iωn, ~k) = g2T

∫
d2~q

(2π)2
D(0, ~q)G(iωn, ~k − ~q) (4.10)

Taking ~k to be on the Fermi surface, we can expand ξ~k−~q = vF q cos θ, we obtain

ΣT (iωn, ~k) = −g
2T

2π
sgn (ωn)

sec−1
(
vF∆(T )
A(ωn)

)
√
A(ωn)2 − v2

F∆(T )2
, (4.11)

where A(ωn) = ωn + iΣ(ωn) and ∆(T ) is the thermal mass. Taking the large Γ limit, we obtain

ΣT (iωn) = −ig
2T sgnωn

2π|A(ωn)|
ln

∣∣∣∣ 2A(ωn)

vF∆(T )

∣∣∣∣ =
−ig2T sgnωn

πΓ
ln

∣∣∣∣ Γ

vF∆(T )

∣∣∣∣ (4.12)

The quantum part is

ΣQ(iωn) = g2

∫
d2~q

(2π)2
T
∑

Ωn 6=0

1

γ|Ωn|+ ~q2

1

iA(ωn − Ωn)− ξ~k−~q
(4.13)
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Replace ξk−q = vF q cos θq and perform the angular integral, we obtain

ΣQ(iωn) = g2T
∑

Ωn 6=0

∫
qdq

(2π)

1

q2 + γ|Ωn|
−isgn (ωn − Ωn)√
v2
F q

2 + A(ωn − Ωn)2
(4.14)

Using low frequency and low energy approximations, we perform the frequency sum first and get

ΣQ(iωn) =
−ig2sgnωn

2π2γ

∫ ∞
0

qdq√
v2
F q

2 + Γ2/4

[
ψ

(
|ωn|
2πT

+
1

2
+

q2

2πTγ

)
− ψ

(
1 +

q2

2πTγ

)]
. (4.15)

At zero temperature, the above reduces to

ΣQ(iω) =
−ig2sgnω

2π2γ

∫ ∞
0

qdq√
v2
F q

2 + Γ2/4
ln

(
1 +
|ω|γ
q2

)

=
−ig2sgnω

2π2γ

(
−Γ

2v2
F

)(
2

√
1− 4|ω|γv2

F

Γ2
sinh−1

(√
Γ2

4|ω|γv2
F

− 1

)
+ ln

(
|ω|γv2

F

Γ2

))

=
−ig2ω

2π2Γ
ln

(
eΓ2

|ω|γv2
F

)
+O(ω2) .

(4.16)

This logarithmic behavior signatures the break down of Prange-Kadanoff reduction.

Alternative calculation of ΣQ: In (4.14), we perform the momentum integral over q first:

ΣQ(iωn) = −ig
2T

2π

∑
Ωn 6=0

sgn (ωn − Ωn)

cosh−1

(
|A(ωn−Ωn)|
vF
√
γ|Ωn|

)
√
A2(ωn − Ωn)− v2

Fγ|Ωn|
. (4.17)

To evaluate the sum to leading order in Γ, we replace A by Γ/2, and we obtain

ΣQ(iωn) = −ig
2T

π
sgnωn

∑
0<Ωn<|ωn|

2

Γ
ln

(
Γ

vF
√
γ|Ωn|

)

= −isgnωn
2g2T

πΓ

[(
|ωn|
2πT

− 1

2

)
ln

Γ

vF
√

2πTγ
− 1

2
ln ΓF

(
|ωn|
2πT

+
1

2

)]
,

(4.18)

where the ΓF denotes the gamma function. Taking the T → 0 limit, we recover (4.16).

Combining (4.12) and (4.18), we obtain

ΣQ(iωn) + ΣT (iωn) = −isgnωn
2g2T

πΓ

[
|ωn|
2πT

ln
Γ

vF
√

2πTγ
− 1

2
ln

∆(T )√
2πTγ

− 1

2
ln ΓF

(
|ωn|
2πT

+
1

2

)]
.

(4.19)
Including momentum dependence will shift Γ to Γ+ iξksgnωn, whose primary effect is to introduce
a real part to the self energy, which we will ignore.
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C. Conductivity in the disordered model

Now we calculate the conductivity in the disordered model. The conductivity is given by (3.47)
and (3.116).

We will have to invert the operator W−1
Σ −WG. Since the Prange-Kadanoff method doesn’t

apply, we will treat disorder scattering exactly and treat fermion-boson scattering perturbatively
in g. This is justified as g is irrelavent in this z = 2 theory.

Let’s set up the formalism. Similar to (3.119), we integrate out the bosons to write(
1

W−1
Σ −WG

)
FF

=
1

W−1
Σ,FF︸ ︷︷ ︸

W−1
Σ,0+W−1

Σ,1

− WG,FF︸ ︷︷ ︸
Wdis+WMT

−WG,FBWΣ,BBWG,BF︸ ︷︷ ︸
WAL

. (4.20)

Here WΣ,0 is a diagonal operator in k-space whose expression is

WΣ,0(k, p) = G0(k + p/2)G0(k − p/2) , (4.21)

where G0 is the Green’s function which only includes disorder:

G0(iω,~k) =
1

iω − ξk − Σdis(iω)
, Σdis(iω) = −iΓ

2
sgnω . (4.22)

Here p denotes CoM 3-momentum and k denotes relative 3-momentum.

W−1
Σ,1 is obtained from W−1

Σ,0 by doing first-order expansion in g2:

W−1
Σ,1(k, p) = −(ΣT (k + p/2) + ΣQ(k + p/2))G−1

0 (k − p/2)

− (ΣT (k − p/2) + ΣQ(k − p/2))G−1
0 (k + p/2) .

(4.23)

Wdis describes disorder scattering:

Wdis[F ](iω,~k) = v2

∫
d2~q

(2π)2
F (iω, ~q) , (4.24)

and in l-th angular harmonics, it takes the form

W
(l)
dis[F ](iω, ξk) = Γδl,0

∫
dξq
2π

F (iω, ξq) . (4.25)

Here and after the superscript (l) denotes fourier transform in the angular harmonics. The sim-
plicity of Wdis allows us to treat it exactly.

WMT describes scattering in Maki-Thompson diagrams:

WMT[F ](iω,~k) = g2

∫
d2~k′dω′

(2π)3
D(ω − ω′, ~k − ~k′)F (iω′, ~k′) (4.26)
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WAL describes scattering in Azlamasov-Larkin diagrams:

WAL[F ](k1) =− g4

2

∫
d3qd3k2

(2π)6
(G(k1 − q) +G(k1 + q)) (G(k2 − q) +G(k2 + q))

×D(q + p/2)D(q − p/2)F (k2)

= −g4

∫
d3qd3k2

(2π)6
G(k1 − q) (G(k2 − q) +G(k2 + q))D(q + p/2)D(q − p/2)

× F (k2) .

(4.27)

1. Zeroth order

The zeroth order polarization is

Πxx
0 (iΩ) = N(Γx)T

1

W−1
Σ0
−Wdis

Γx , (4.28)

where the bare vertex function is approximated by

Γx(k) = vF cos θk . (4.29)

Since Γx(k) only contains first harmonics, Wdis vanishes, and we obtain a Drude-like result

Πxx
0 (iΩ)/N =

N v2
F

2

Ω

Ω + Γ
, (4.30)

σxx,0(iω)/N =
N v2

F

2

1

−iω + Γ
. (4.31)

2. First order: Self-energy and Maki-Thompson diagrams

To first order, the polarization is

Πxx
1 = −N(Γx)T

1

W−1
Σ,0 −Wdis

(
W−1

Σ,1 −WMT −WAL
) 1

W−1
Σ,0 −Wdis

Γx . (4.32)

Using the fact that Γx only contains first harmonics, we have

Πxx
1 =N(Γx)TWΣ,0

(
W

(1)
MT +W

(1)
AL −W

−1
Σ,1

)
WΣ,0Γx

= N(Γx)TWΣ,0

(
Γ̃xMT + Γ̃xAL − Γ̃xΣ

)
.

(4.33)

In the transport limit p = (Ωn, 0), the kernel WΣ,1 is rotational invariant so we have dropped the
superscript.

In (4.33) we have defined three types of renormalized vertices Γ̃xΣ, Γ̃xMT and Γ̃xAL.
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a. Γ̃xΣ The first type Γ̃xΣ describes the contribution due to self-energies:

Γ̃xΣ(iωn, ~k) = W−1
Σ,1WΣ,0Γx = −vF cos θk (Σ+G+ + Σ−G−) , (4.34)

where we have used a shorthand notation

Σ± = ΣQ(iωn ± iΩn/2) + ΣT (iωn ± iΩn/2) , G± = G0(iωn ± iΩn/2, ~k) . (4.35)

b. Γ̃xMT Next we calculate Γ̃xMT:

Γ̃xMT(iωn, ~k) = vF cos θkg
2T
∑
νn

∫
qdq

2π

dθq
2π

D(νn, q)e
−iθkk′ 1

iA′+ − ξk + vF q cos θq

1

iA′− − ξk + vF q cos θq
,

(4.36)
where

A(ωn) = ωn +
Γ

2
sgnωn , A′± = A(ωn − νn ± Ωn/2) , (4.37)

and θq is the angle between ~k and ~q. The θkk′ above is the angle between ~k and ~k′ = ~k − ~q, and
because ~q is small compared to kF , we approximate

e−iθkk′ = 1− q2

2k2
F

sin2 θq . (4.38)

The boson propagator is given by

D(νn, q) =
1

q2 +M2(T, νn)
, M2(T, νn) =

γ|νn|, νn 6= 0 ;

∆(T )2, νn = 0 .
(4.39)

We can now perform the angular integrals in (4.36), which yields

Γ̃xMT = vF cos θkg
2T
∑
νn

∫ ∞
0

qdq

2π
D(νn, q)

1

A′+ − A′−

{(
sgnA′+√
A′2+ + v2

F q
2
−

sgnA′−√
A′2− + v2

F q
2

)

+
1

v2
Fk

2
F

[
sgnA′+

(√
A′2+ + v2

F q
2 − |A′+|

)
− sgnA′−

(√
A′2− + v2

F q
2 − |A′−|

)]}
,

(4.40)

where we have assumed ~k to be lying on the FS and set ξk = 0.

The 1/(A′+ − A′−) factor is a piecewise constant function (Ωn > 0):

1

A′+ − A′−
=

{
1

Ωn+Γ
, |νn − ωn| < Ωn/2;

1
Ωn
, |νn − ωn| > Ωn/2.

(4.41)

Plugging the above into the first line of (4.40), we can separate out a part which yields the self
energy and a correction term:

Γ̃xMT,a = vF cos θkg
2T
∑
νn

∫ ∞
0

qdq

2π

1

Ωn

D(q, νn)

(
sgnA′+√
A′2+ + v2

F q
2
−

sgnA′−√
A′2− + v2

F q
2

)

=
ivF cos θk

Ωn

(Σ+ − Σ−) ,

(4.42)
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Γ̃xMT,b = vF cos θkg
2T

∑
|νn−ωn|<Ωn/2

∫ ∞
0

qdq

2π

−Γ

Ωn(Ωn + Γ)
D(q, νn)

(
sgnA′+√
A′2+ + v2

F q
2
−

sgnA′−√
A′2− + v2

F q
2

)

= vF cos θk

(
−Γ

Ωn(Ωn + Γ)

)
g2T

2π

∑
|νn−ωn|<Ωn/2

 cosh−1
(

A′+
vFM(T,νn)

)
√
A
′2
+ − v2

FM
2(T, νn)

+ (+→ −)


= ivF cos θk

(
−Γ

Ωn(Ωn + Γ)

)
(Σ+ − Σ−) .

(4.43)

Γ̃xMT,a + Γ̃xMT,b = i
vF cos θk
Ωn + Γ

(Σ+ − Σ−) (4.44)

To obtain the above results, we evaluated the q integral first and next the νn sum with large Γ

approximation, and found the result agrees with (4.19).

Finally we compute the second line of (4.40), we again split it into two parts:

Γ̃xMT,c =
vF cos θkg

2T

v2
Fk

2
F

∑
νn

∫ ∞
0

qdq

2π

1

Ωn

D(q, νn)

[
sgnA′+

(√
A′2+ + v2

F q
2 − |A′+|

)
−sgnA′−

(√
A′2− + v2

F q
2 − |A′−|

)] (4.45)

Γ̃xMT,d =
vF cos θkg

2T

v2
Fk

2
F

∑
|νn−ωn|<Ωn/2

∫ ∞
0

qdq

2π

−Γ

Ωn(Ωn + Γ)
D(q, νn)

[
sgnA′+

(√
A′2+ + v2

F q
2 − |A′+|

)

−sgnA′−

(√
A′2− + v2

F q
2 − |A′−|

)]
(4.46)

The q-integral is UV divergent and we cut it off by a Pauli-Vilas regulator Λ ∼ kF∫ ∞
0

qdq

2π

(
1

q2 +M2
− 1

q2 + Λ2

)(√
|A|2 + v2

F q
2 − |A|

)
=
vFΛ

4
+

1

2π

[√
|A|2 −M2v2

F cosh−1

(
|A|
MvF

)
− |A| ln

(
Λe

M

)]
'vFΛ

4
+

1

2π
|A| ln

(
2|A|
eΛvF

)
− 1

4π|A|
M2v2

F ln

(
2
√
e|A|

MvF

)
.

(4.47)

Computing the frequency sum, we obtain

Γ̃xMT,c + Γ̃xMT,d =
vF cos θkg

2

πv2
Fk

2
F

Ωn

Ωn + Γ

[
vFΛ

4
+

Γ

4π
ln

(
Γ

eΛvF

)]
. (4.48)

Here we have dropped the last term in (4.47) because it scales as Ω2
n/Γ.
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c. MT+ self energy It’s easy to check that

(Γx)TWΣ,0

(
Γ̃xMT,a+b − Γ̃xΣ

)
= 0 , (4.49)

which can be seen after computing the ξk integral.

The rest from the MT diagrams contribute as

(Γx)TWΣ,0Γ̃xMT,c+d =
N v2

F

2

(
Ωn

Ωn + Γ

)2
2g2

(vFkF )2

[
vFΛ

4
+

Γ

4π
ln

(
Γ

eΛvF

)]
, (4.50)

and its contribution to conductivity is

σxx,1,MT(iω)/N =
N v2

F

2

−iω
(−iω + Γ)2

2g2

(vFkF )2

[
vFΛ

4
+

Γ

4π
ln

(
Γ

eΛvF

)]
. (4.51)

This result can be interpreted as an additional scattering rate in the Drude formula

σxx = N
N v2

F

2

1

−iω + Γ + 1
τMT(ω)

, (4.52)

where
1

τMT(ω)
= iω

2g2

(vFkF )2

[
vFΛ

4
+

Γ

4π
ln

(
Γ

eΛvF

)]
. (4.53)

There is no linear in T resistivity. Higher order corrections in 1/Γ will start at order |ωn|2 or
T 2, which is Fermi-liquid like. This cancellation is also reminiscent of the U(1) Ward identity
introduced in Sec. III C. However, because the disordered model is less controlled in the sense that
Prange-Kadanoff reduction is unavailable, we can’t give a rigorous argument as in the clean model.

3. Aslamazov-Larkin Diagrams

Now we show that the contributions from AL diagrams are also subdominant. The expression
to evaluate is

Πxx
1,AL(iΩ)/N =− g4

2

∫
d3q

(2π)3
D(q + Ω/2)D(q − Ω/2)X(q,Ω)2 (4.54)

where

X(q,Ω) =

∫
d3k

(2π)3
vk cos θkG0(k + Ω/2)G0(k − Ω/2) [G0(k + q) +G0(k − q)] . (4.55)

Here q = (ν, ~q) and k = (ω,~k). The notation q + Ω/2 means adding Ω/2 to the Matsubara
component. For conductivity computation we assume Ω > 0.
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We first evaluate X(q,Ω), plugging in the expression for G0 we have

X(q,Ω) = 2πN
∫

dω

2π

dξk
2π

dθk
2π

vk cos θk
1

iA(ω + Ω/2)− ξk
1

iA(ω − Ω/2)− ξk

×
[

1

iA(ω + ν)− ξk − vkq cos θkq − κq2
+ (ν → −ν, θq → π + θq)

]
.

(4.56)

Here θkq = θk − θq measures the angle between ~k and ~q, and A(ω) = ω + (Γ/2)sgnω. We have
included the Fermi surface curvature κ = 1/(2m). Noticing that A(ω) is an odd function of ω,
under standard approximations vk = vF and κ→ 0, the integrand is odd under (ω, ξk)→ −(ω, ξk)

and we get X(q, ω) = 0. Therefore, we need to keep terms that break the ξk → −ξk symmetry.
There are two sources: Fermi surface curvature and dependence of vk on ξk.

To set up the expansion, we write vk =
√

1 + 2ξk/(vFkF ) and κ = vF/(2kF ), and expand
Eq. (4.56) to first order in 1/kF , the first nonzero term is

X(q,Ω) =
N

2kF

∫
dω

dξk
2π

dθk
2π

cos θk
1

iA(ω + Ω/2)− ξk
1

iA(ω − Ω/2)− ξk

×

[
q2v2

F − 2ξ2
k + 2iξkA(ν + ω)

(iA(ν + ω)− ξk − qvF cos θkq)
2 + (ν → −ν, θq → θq + π)

]
.

(4.57)

The integral over ξk can be taken to be along the real line, since the finite band width only corrects
the result by O(1/k2

F ). As a result the ξk integral can be evaluated by residue method. The angular
integral is performed using the formula∫

dθk
2π

cos θk
(ia− b cos θkq)2

=
ib cos θqsgn a

(a2 + b2)3/2
, a ∈ R, b > 0.

The final result for X contains two analytic branches depending on whether |ν| < Ω/2 or
|ν| > Ω/2. The branch with |ν| < Ω/2 will connect to DRDA when Eq. (4.54) is continued to real
frequency, while the branch with |ν| > Ω/2 will connect to DRDR or DADA. It is shown in [71]
that only the first branch contributes at the low frequency limit (|Ω| < T ). In this limit, we are
allowed to expand in small |ν| and small |Ω| (both are of the same order), yielding

X(|ν| < Ω/2, q,Ω) =
N
kF

2iq3v3
Fν cos θq

(Ω + Γ)(q2v2
F + Γ2)3/2

+O(ν2,Ω2) . (4.58)

The numerator of the result has the same scaling as [71], but the denominator is different because
in our large N limit we have dropped vertex correction of Yukawa interaction due to disorders. In
obtaining Eq. (4.58), the frequency summation is over a piecewise constant function, and therefore
Eq. (4.58) should be valid at finite temperature as well.

Finally, we evaluate the integral (4.54) using (4.58) with ν ∈ [−Ω/2,Ω/2]. To lowest order in g
we can set γ = 0 in the boson propagators, and we obtain

Πxx
1,AL(iΩ)/N =

N v2
F

2

g4(Ω3 + 8πT 2Ω)

96π2Γ2(Γ + Ω)2kFvF
. (4.59)

39



Here we have used N = kF/(2πvF ).

Analytically continuing to real frequency Ω→ −iω + 0+, we obtain a effective scattering rate

1

τAL(ω)
=
g4(ω2 − 8π2T 2)

96π2Γ2kFvF
. (4.60)

Note that this is a correction to the elastic scattering rate Γ, as in (4.52). Therefore, the contri-
bution of AL diagrams is less singular than MT + self energy diagrams.

D. Discussion

Collecting the above results together, we see that the self energy and Maki-Thompson diagrams
only renormalize the −iω term in the Drude formula, while the Aslamazov-Larkin diagrams yield
a |ω|2 decay rate. In what follows, we try to interpret the above results in terms of diffusion
dynamics of Fermi surface as in the previous model.

At first glance, because the condition for Prange-Kadanoff reduction (3.114) is violated, it seems
inappropriate to talk about dynamics using states near the Fermi surface. However, following dis-
cussions in Sec. III E 1 we see that the violation of (3.114) means that both bosons with momentum
normal and transverse to the Fermi surface can be excited (not excluded by Pauli principle). Now
we discuss the effect of these two kinds of bosons.

Let’s first discuss the new part, which is the boson with momentum normal to the Fermi
surface. Fermions excited by these bosons will have their velocities pointing in the same direction
but renormalized a little bit by the bosons. These effects can be captured by renormalizing the iω
term in the conductivity, i.e. Eq.(4.52).

Next, for bosons with momentum tranverse to the Fermi surface, its effect can still be described
in the context of diffusion on the Fermi surface. Since momentum conservation is no longer
present, we won’t expect the correlated superdiffusion behavior in the clean model, but instead a
conventional diffusion dynamics with ∂2

θ diffusion term. The diffusion coefficient can therefore be
estimated as

D ∼ ImΣg,R(ω) (δθ)2 ∼ |ω|2 . (4.61)

Again, the diffusion coefficient is a product of the scattering rate (ImΣg,R ∼ |ω|) with the angular
steps (δθ ∼ q/kF ∼ |ω|1/2). This result can be matched with AL diagrams (4.60) as well as the
next order expansion of MT diagrams (4.52).

In reality, the effect of the above two kinds of bosons are mixed but the qualitative feature
should agree with the limiting cases of the above discussions.

To achieve linear-in-T resistivity, we would need a mechanism which yield diffusion coefficient
proportional to ω. Since the thermodynamics experiments favor a marginal Fermi liquid self energy
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which is linear in |ω|, the only way is to make the angular step δθ ∼ |ω|0. To achieve this, a small
momentum boson must cause large momentum change for the fermions, meaning that momentum
should not be conserved, either by a disordered interaction or Umklapp process. This also amounts
to suppress vertex correction diagrams.

V. CONCLUSIONS

In this work, we have computed the electrical conductivity of a critical Fermi surface at the
leading large N order.

For the translational invariant ‘clean’ model, we found that due to momentum conservation
and strong boson drag the DC resistivity is zero. In the optical conductivity the scattering rate
scales as |ω|2 and consequently the correction to Drude optical conductivity scales as |ω|0, which
is a weaker scaling than the |ω|−2/3 correction in previous literature [5]. Our results are in general
agreement with those of Refs. [59–61], who also argue that the cancellation of the |ω|−2/3 term is
present only for convex Fermi surfaces.

On the experimental side for the clean model, an |ω|2 scattering rate in the optical conductivity
cannot be distinguished from Fermi liquid-like corrections from impurities. However, it is known
that when momentum-conserving collisions dominate, the system enters viscous (hydrodynamic)
regime, and the DC current is determined by the external electric field non-locally through the
k-dependent conductivity σ(ω = 0, k). This non-local conductivity can be measured in transport
experiments as proposed in [72, 73]. We leave the computation of σ(k) to future study.

For the disordered model, we showed that upon adding disorder potential the critical boson
induces a marginal Fermi liquid self energy to the fermions, in addition to the elastic disorder
scattering rate. However, the MFL self energy is cancelled by boson vertex corrections, and does
not contribute to the transport lifetime. Therefore, to obtain MFL phenomenology in transport
coefficients, we need a mechanism which is not cancelled by vertex correction. In the companion
paper [57], we achieve this goal by introducing spatially disordered interactions.
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Notes added: (i) A recent independent work [64] reaches similar conclusions for the clean model
without spatial disorder by different methods. (ii) We learnt of the paper by Wu et al. [66]. They
confirm the cancellation of the linear-T term in the resistivity in the potential disorder model of
Section IV. They also considered Altshuler-Aronov corrections, and find a −1/T correction the
Drude resistivity.

Appendix A: Cancellation of self energy, Maki-Thompson and Aslamazov-Larkin diagrams

In this appendix we review the computation of Kim et al. [5], and demonstrate that the
cancellation of self energy, Maki-Thompson and Aslamazov-Larkin diagrams is already present in
their expressions, but was overlooked by them. Our new contribution is the computation of the
numerical coefficient c1 in Eq. (37) of Ref. 5, which they did not calculate.

We will follow the notation of Ref. 5 in this appendix. The boson propagator in their convention
is

D(iν, ~q) =
1

γ |ν|
q

+ χqη
, (A1)

and there is a form factor ~k/m in the fermion boson coupling ψ†k+qψkφq.

Following their calculation scheme, we use the above RPA propagator for bosons but treat
fermions in flavor large N . To leading order, the fermion Green’s function is free G0(iω,~k) =

(iω − ξk)−1.

The fermion self energy is

Σ(iω,~k) =

∫
dν

2π

d2~q

(2π)2

|k × q̂|2

m2
D(iν, ~q)G0(iω + iν,~k + ~q) (A2)

We evaluate the integral using Prange-Kadanoff reduction, yielding

Σ(iω,~k) = 2πN
∫

dν

2π

∫
dθk′

2π

k2
F cos2(θkk′/2)

m2
D
(
iν, kF

(
θ̂k′ − θ̂k

))(
− i

2

)
sgn (ω + ν) . (A3)

The integral can be calculated near the region |θkk′| � 1, yielding

Σ(iω,~k) = −iλ|ω|
2

1+η sgnω , (A4)

with
λ =

vF

4πχ
2

1+η γ
η−1
η+1 sin

(
2π

1+η

) . (A5)
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There are subleading corrections order |ω|
1

1+η /kF due to the form factor and geometry of the Fermi
surface, which are not important for the cancellations we demonstrate below.

Next, we calculate the boson polarization in the transport limit of vanishing wavevector ~Q = 0.

The self energy contribution is

Π(1)
xx (iΩ) =−

∫
dω

2π

d2~k

(2π)2

[
G0(iω + iΩ, ~k)2G0(iω,~k)Σ(iω + iΩ, ~k)

+G0(iω + iΩ, ~k)G0(iω,~k)2Σ(iω,~k)
] k2

2m2
,

(A6)

where the last k2/(2m2) term is the angle-averaged form factor. The result is

Π(1)
xx (iΩ) =

k2
F

2πm

1 + η

3 + η
λ

1

|Ω|
η−1
η+1

(A7)

The Maki-Thompson diagram contributes

Π(2)
xx (iΩ) = −

∫
dν

2π

d2~q

(2π)2

dω

2π

d2~k

(2π)2

k2 − (~k · q̂)2

m2

~k ·
(
~k + ~q

)
2m2

D(iν, ~q)

×G0(iω + iΩ, ~k)G0(iω,~k)G0(iω + iν + iΩ, ~k + ~q)G0(iω + iν,~k + ~q) ,

(A8)

where we have utilized rotation symmetry to write the vertex form factor as ~k · (~k + ~q)/(2m2).
Π

(2)
xx can be evaluated using the Prange-Kadanoff procedure described in the main text. We let

~k′ = ~k+~q and perform integral over ξk and ξk′ first, which projects ~k and ~k′ onto the fermi surface.
The remaining integral is

Π(2)
xx =−N 2

∫
dω

2π

dν

2π

∫
dθkdθk′

1

(iΩ)2

(
−1

4

)
D
(
iν, kF

(
θ̂k′ − θ̂k

))
(sgn (ω)− sgn (ω + Ω)) (sgn (ω + ν)− sgn (ω + ν + Ω))

k2
F cos2(θkk′/2)

m2

k2
F cos(θkk′)

2m2
.

(A9)

Here θkk′ = θk − θk′ . The above integral is evaluated by expanding the cos(θkk′) = 1 − 1
2
θ2
kk′ ,

yielding Π
(2)
xx = Π

(2a)
xx + Π

(2b)
xx

Π(2a)
xx = − k3

F

8m2π2 sin
(

2π
1+η

) 1 + η

3 + η

1

χ
2

1+η γ
η−1
η+1 |Ω|

η−1
η+1

, (A10)

and
Π(2b)
xx =

kF

32m2π2 sin
(

4π
1+η

) 1 + η

5 + η

1

γ
η−3
1+ηχ

4
1+η |Ω|

η−3
η+4

. (A11)
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In obtaining the above results, we have only kept higher order terms in q/kF from the cos θkk′ factor
but neglected order corrections in coming from the form factor or the Fermi surface geometry. This
is justified by directly manipulating the integrands of Π

(1)
xx + Π

(2)
xx using Ward identities discussed

in Ref. 5, or the main text, which show that the whole integrand is proportional to (1− cos θkk′),
which is the leading order q dependence.

It is easy to see that Π
(1)
xx + Π

(2a)
xx = 0 as in Eq. (29) of Ref. 5. However, there appear to be

typographical errors in [5], as our individual results disagree with Ref. 5 by some powers of 2.

Finally, we look at the Aslamazov-Larkin diagrams, which is

Π(3)
xx =

∫
dν

2π

dω

2π

dω′

2π

d2~k

(2π)2

d2~q

(2π)2
D(~q, iν + iΩ/2)D(~q, iν − iΩ/2)G0(iω + iΩ/2, ~k)

G0(iω − iΩ/2, ~k)G0(iω′ + iΩ/2, ~k′)G0(iω′ − iΩ/2, ~k′)G0(iω − iν,~k − ~q)[
G0(iω′ − iν,~k′ − ~q) +G0(iω′ + iν,~k′ + ~q)

] |~k × q̂|2
m2

|~k′ × q̂|2

m2

~k · ~k′

2m2
.

(A12)

This contribution is analyzed using Prange-Kadanoff reduction as described in the main text, with
similar steps. The result is

Π(3)
xx =

(
− kF

2πγ

)
kF

32m2π2 sin
(

4π
1+η

) 1 + η

5 + η

1

γ
η−3
1+ηχ

4
1+η |Ω|

η−3
η+4

. (A13)

Therefore Π
(3)
xx = (−kF/(2πγ)) Π

(2b)
xx . The value of γ should be calculated using Landau damping of

free fermions [5], which exactly yields γ = kF/(2π), and confirms the cancellation Π
(2b)
xx + Π

(3)
xx = 0.
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