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Abstract

Computing the GW quasiparticle bandstructure and Bethe-Salpeter Equation (BSE) absorption

spectra for materials with spin-orbit coupling has commonly been done by treating GW corrections

and spin-orbit coupling (SOC) as separate perturbations to density-functional theory. However,

accurate treatment of materials with strong spin-orbit coupling (such as many topological materials

of recent interest, and thermoelectrics) often requires a non-perturbative approach using spinor

wavefunctions in the Kohn-Sham equation and GW/BSE. Such calculations have only recently

become available, in particular for the BSE. We have implemented this approach in the plane-

wave pseudopotential GW/BSE code BerkeleyGW, which is highly parallelized and widely used in

the electronic-structure community. We present reference results for quasiparticle bandstructures

and optical absorption spectra of solids with different strengths of spin-orbit coupling, including

Si, Ge, GaAs, GaSb, CdSe, Au, and Bi2Se3. The calculated quasiparticle band gaps of these

systems are found to agree with experiment to within a few tens of meV. SOC splittings are found

to be generally in better agreement with experiment, including quasiparticle corrections to band

energies. The absorption spectrum of GaAs is not significantly impacted by the inclusion of spin-

orbit coupling due to its relatively small value (0.2 eV) in the Λ direction, while the absorption

spectrum of GaSb calculated with the spinor GW-BSE captures the large spin-orbit splitting of

peaks in the spectrum. For the prototypical topological insulator Bi2Se3, we find a drastic change

in the low-energy bandstructure compared to that of DFT, with the spinorial treatment of the

GW approximation correctly capturing the parabolic nature of the valence and conduction bands

after including off-diagonal self-energy matrix elements. We present the detailed methodology,

approach to spatial symmetries for spinors, comparison against other codes, and performance

compared to spinless GW/BSE calculations and perturbative approaches to SOC. This work aims

to spur further development of spinor GW/BSE methodology in excited-state research software,

and enables more accurate and detailed exploration of electronic and optical properties of materials

containing elements with large atomic number.

a bbarker6@ucmerced.edu
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I. INTRODUCTION

Solid state physics and materials research is increasingly focusing its attention on ma-

terials containing heavy elements. Such materials have large spin-orbit coupling, often ex-

ceeding 1 eV for atoms from the fifth and sixth rows of the periodic table. These materials

are important as thermoelectrics[1–8] and also can be topological insulators [9–17] and Weyl

semi-metals [18–21], among other novel topological phases[22–24]. Hybrid organic metal

halide perovskite materials are also of great interest for photovoltaics, and contain heavy el-

ements such as Pb, I[25], and/or Bi[26], and spin-orbit effects like Rashba splitting can play

a role in their optical properties [27]. The standard approach to investigating the ground

state electronic structure of these materials is Density Functional Theory (DFT)[28, 29].

Despite its widespread use to compute bandstructures, it is important to note that the

Kohn-Sham eigenvalues of DFT do not have a rigorous physical meaning apart from the en-

ergy of the highest occupied molecular orbital, resulting in the well-known band gap problem

of DFT. To compute excited-state properties such as bandstructures and absorption spectra,

one must go beyond DFT and use many-body perturbation theory approaches, such as the

GW[30, 31] and GW-BSE methods[32].

The Dirac equation gives the relativistic quantum mechanical description of a fermionic

wavefunction and yields four-component bispinor solutions. However, an expansion of the

Dirac equation to first order in c−2 yields the usual Schrödinger equation plus three addi-

tional terms[33]. For a system with N ions and n electrons, within the Born-Oppenheimer

approximation, these terms are

Hrel = −
n,N∑
i,I

1

8m2
ec

2
∇2

i VI(ri)−
n∑
i

∇4
i

8m3
ec

2
−

n,N∑
i,I

e2

2m2
ec

2
S · pi ×∇i (VI(ri)) , (1)

the Darwin, relativistic mass correction, and spin-orbit coupling terms, respectively. We

use VI(ri) to denote the potential from ion “I” for electron “i.” For valence electrons in

non-hydrogenic atoms, SOC scales as Z2[34, 35].

One should use such a “fully-relativistic” treatment for materials with sufficiently large Z,

starting with the calculation of the two-component spinor Kohn-Sham states and then using

these states to calculate excited-state properties, such as the quasiparticle bandstructure and

the absorption spectrum. This first-principles method also allows for capturing the effect of

the renormalization of the spin-orbit coupling strength [36], along with improved band gaps.
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The use of the term “fully-relativistic” is inherited from the terminology associated with

pseudopotentials used in such DFT calculations[37] which indeed use the Dirac equation for

the core atomic states – we do not use four-component Dirac-Kohn-Sham[38, 39] DFT in

this work. Likewise, calculations that begin with pseudopotentials that ignore spin-orbit

coupling, but do include the relativistic mass correction and Darwin terms are called “scalar

relativistic.”

For materials with weak spin-orbit coupling, quasiparticle bandstructures incorporating

spin-orbit coupling can be computed by separately calculating the additional contribution

to the energy eigenvalues from spin-orbit coupling via conventional perturbation theory.

First, wavefunctions |nk〉0 and energies EQP
nk, 0 are computed from Dyson’s Equation while

neglecting spin-orbit coupling[30, 31]:[
−~2∇2

2me

+ Vion + VH + Σ(EQP
nk, 0)

]
|nk〉0 = EQP

nk, 0|nk〉0 (2)

Corrections to the quasiparticle energies to include SOC are computed from diagonalizing

the Hamiltonian[40, 41]

Hn1,k,α;n2,k,β = 〈n1k|0 〈α|EQP
n1k, 0

δn1n2δαβ +HSOC
αβ |β〉 |n2k〉0 , (3)

where EQP
nk is the quasiparticle energy for band n at k-point k, HSOC

αβ is the spin-orbit

coupling Hamiltonian, terms with the subscript “0” denote quantities that neglect spin,

and |α〉 and |β〉 are spinor basis states, | ↑〉 =
(

1, 0
)T

or | ↓〉 =
(

0, 1
)T

. This ap-

proach, “GW+SOC,” has been successfully used in ab initio calculations of diamond- and

zinc-blende-structure semiconductors[42], metals such as Au[43], and topological insulators

Bi2Se3 [44] and Bi2Te3 [45], among other systems. When the Kohn-Sham bandstructure ne-

glecting spin-orbit coupling is qualitatively similar to the quasiparticle bandstructure that

includes it, the GW+SOC approach is generally sufficient. Despite the success of pertur-

bation theory in computing the changes of eigenvalues for materials with weak spin-orbit

coupling, there is a clear need for a non-perturbative first-principles treatment of materials

with strong spin-orbit coupling. In particular, some materials containing heavy elements,

such as Bi2Se3[46] and β-HgS[47, 48], have DFT bandstructures that change significantly

when spin-orbit coupling is included. In cases such as these, the perturbative GW+SOC

approach is quantitatively or even qualitatively inaccurate.

Due to the doubled number of bands and doubled size of the wavefunctions compared
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to spinless calculations, there is a significant increase in the already substantial computa-

tional expense of many-body perturbation theory calculations, not to mention a significant

increase in the complexity of the computer code. As a result, two-component spinor cal-

culations with GW have only recently become available, and used in the literature. The

all-electron FLAPW code SPEX’s implementation [49] was later followed by pseudopoten-

tial and PAW codes (WEST[50], Yambo[51], FHIaims [52], GPAW [53], and VASP[54]).

There are yet fewer spinor BSE codes available; to date, only Yambo [55] and BerkeleyGW

have the capability to solve the Bethe-Salpeter Equation with two-component spinor wave-

functions. While plane-wave DFT codes have become highly comparable in recent years

due to increasing consensus on the best algorithms to use, and great efforts to determine

the source of any discrepancies [56], there is a significant variation in the approaches used

in GW/BSE codes, including not only basis sets and pseudopotentials, but also plasmon

pole models, frequency integration, interpolation schemes, handling of the dielectric matrix,

acceleration of sums over empty states, solution of Dyson’s equation, and other numerical

tricks and details. Such details are only sometimes spelled out comprehensively for a given

code [57]. Benchmarking projects for GW codes – and especially for BSE – are still in their

infancy. A notable example is the GW100 project which studied a set of molecules with

different codes, each of which had its own distinct approaches to the GW problem.[58]

We have implemented the spinor GW/BSE approach in BerkeleyGW in order to provide

an independent implementation of this method for the general improvement of methodology

in this area. This work also allows calculations in BerkeleyGW which is a widely used and

well established code in the community, with extensive testing. BerkeleyGW also has partic-

ular advantages for GW/BSE with respect to massively parallel performance [59], Coulomb

truncation and interpolation [57], and sampling schemes for reduced-dimensional systems

[60]. In this paper, we present the results of this long-running implementation effort [61],

with a detailed exposition of the formalism and in particular the handling of the effect of sym-

metries on spinors, which has not been explicitly addressed in previous literature on spinor

GW/BSE. We also make careful comparisons to other codes, with their somewhat different

technical details, to establish the level of agreement achieved among spinor GW calcula-

tions, and demonstrate the performance of spinor GW vs. “scalar-relativistic” (“SR”) GW

calculations, in which only relativistic mass and Darwin terms are included in the construc-

tion of pseudopotentials, with SOC then included perturabitvely. While we make several
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direct comparisons for quasiparticle energy gaps and spin-orbit splittings for various conven-

tional test systems such as Group IV and III-V semiconductors with BerkeleyGW and other

two-component spinor GW codes, the best comparison that is available for two-component

spinor GW/BSE calculations for GaAs and GaSb is with Empirical Pseudopotential Method

calculations incorporating spin-orbit coupling perturbatively[62].

The ability to use two-component spinors in GW and GW/BSE scientific software al-

lows for the study of magnetic phenomena in materials, beyond the usual single-axis spin-

polarized calculations of self-energy corrections for majority and minority spin channels in

materials such as bulk Fe and NiO2[63–66]. While spin susceptibilities have been approx-

imated within the usual spin-polarized GW method[67–69], Ref. [70] derives results from

many-body perturbation theory for susceptibilities describing spin-spin and spin-charge in-

teractions. Spin susceptibilities[71] may then be used to calculate electron-magnon contri-

butions to quasiparticle energies, as in the recent work in Ref. [72]. Other codes do not

seem to have this functionality implemented. To assist in non-collinear or antiferromag-

netic calculations, magnetic symmetry groups have been exploited in the code Yambo to

reduce the necessary size of magnetic systems to the primitive chemical unit cell[73]. While

BerkeleyGW can treat magnetic systems within the supercell approach, the inclusion of spin

susceptibilities, as well as the use of magnetic symmetry groups, is an ongoing work. We

consider test systems with no magnetization in the present work.

This paper is structured as follows. In Section II, we review the theory of one-particle and

two-particle excited states within many-body perturbation theory in the GW approximation,

and how such calculations are performed in a plane-wave basis with wavefunctions that have

two spinor components, and we discuss the appropriate treatment of crystal symmetries

with spinorial wavefunctions, via quaternions, in a plane-wave basis set. In Section III,

we demonstrate the accuracy of our implementation in the BerkeleyGW software package

with calculations of the quasiparticle bandstructures and absorption spectra of materials

containing small, moderate, and large spin-orbit coupling strength, where spin-orbit band

splittings in conventional solids (all but Bi2Se3 in this work) are found to be equal within

tens of meV whether computed from DFT or GW, while band gaps are generally improved

with respect to experimental values from FR-GW compared to the perturbative treatment

of spin-orbit coupling, by 100-200 meV. In Section IV, we compare to available results

from other spinor GW codes [49–54, 74, 75], finding agreement within 10 meV for energy
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gaps compared to results from other codes – with the exception of Bi2Se3, a difficult case

needing a more sophisticated treatment. In Section V, we discuss the additional expense of

computations that use spinor wavefunctions. In Section VI, we conclude and give an outlook

for future development in spinor GW/BSE.

II. SPINOR WAVEFUNCTIONS IN MANY-BODY PERTURBATION THEORY

We begin by quickly summarizing the changes in quantities involved in the GW/BSE

approach with spinor wavefunctions. The derivation of the basic framework of Hedin’s

equations and the Bethe-Salpeter Equation is presented in the Supplementary Materials

[76]. Similar derivations in the literature include Ref. [70] for Hedin’s equations, Ref.

[36] for computing quasiparticle energies within GW, and Ref. [55] for the Bethe-Salpeter

Equation. Derivations including magnetic perturbations, not considered in this work, are

performed in Ref. [77].

To begin, a mean-field solution (typically from Kohn-Sham DFT) is computed with fully-

relativistic pseudopotentials[78], in which spin is not a quantum number of the state (as in

a spin-polarized or collinear calculation) but rather another argument of the wavefunction

alongside r. The Kohn-Sham wavefunction φKS
nk (r) =

∑
α=↑,↓ φ

KS
nkα(r)|α〉, with |φKS

nk↑|2 +

|φKS
nk↓|2 = 1, has the Kohn-Sham eigenvalue εKS

nk :∑
α,β

∫
dr
(
φKS
nkα(r)

)†
HKS
α,β φ

KS
nkβ(r) = εKS

nk . (4)

Then, the matrix elements (Eq. 9 in Ref. [57]) are required for the computation in a

planewave basis set of the RPA polarizability[79, 80], matrix elements of the self-energy

operator, matrix elements of the BSE kernel, and matrix elements of the velocity operator.

These matrix elements

Mnn′(k,q,G) =
∑
α

〈n,k + q, α|ei(q+G)·r|n′,k, α〉 (5)

may be computed for all G by multiplying the Fourier transforms of the wavefunctions, for a

spin component α common to both wavefunctions; computing the inverse Fourier transform

of this product[57, 81]; and then summing over spin index:

Mnn′(k,q, {G}) =
∑
α

FFT−1
(
φ∗nk+qα(r)φn′kα(r)

)
. (6)
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Since the (non-magnetic[82]) polarizability has its physical origin from density fluctuations

arising from the spin-independent Coulomb interaction, the form of the polarizability is

identical to the case in which spin-orbit is neglected, apart from the sums over the spin index

in the computation of the matrix elements in Eq. 6, the doubled number of both valence

and conduction wavefunctions within the summation over basis states, and any differences

in eigenfunctions and eigenvalues. In many cases, these differences are sufficiently small

such that one may calculate the polarizability using the Kohn-Sham eigenfunctions and

eigenvalues from a scalar-relativistic DFT calculation[36, 83]. However, in this work, we

use the Kohn-Sham eigenfunctions and eigenvalues from fully-relativistic DFT calculations

(“FR-DFT”).

To calculate the optical absorption spectrum, we may first try to evaluate the imaginary

part of the macroscopic dielectric function within the independent-particle approximation.

We may readily determine, using the usual expression[84, 85], the imaginary part of the

dielectric function to be

ε2(ω) =
8π2e2

ω2

∑
vck

∣∣∣∣∣λ ·∑
αβ

〈v,k, α|vαβ|c,k, β〉

∣∣∣∣∣
2

δ (ω − (Eck − Evk)) ,

where λ is the direction of light polarization. The velocity operator v = i [H, r] now has

a spin-dependence inherited from the Hamiltonian. However, it can be transformed just as

in the spin-independent case (explained in Ref. [86], containing a few additional details or

corrections compared to Ref. [57]) into

〈v,k|v|c,k〉 = −i (Eck − Evk) 〈v,k|r|c,k〉 (7)

containing now a spin-independent dipole operator. We evaluate in practice:

ε2(ω) = 8π2e2
∑
vck

∣∣∣∣∣λ ·∑
α

〈v,k, α|r|c,k, α〉

∣∣∣∣∣
2

δ (ω − (Eck − Evk))

where the dipole matrix element is calculated via a q → 0 limit. The momentum operator

−i∇ can be used to approximate v to avoid needing a set of wavefunctions on a shifted

k-grid, but this is a worse approximation than in the spinless case, as the fully relativistic

Hamiltonian contains additional non-local terms, not only the spin-orbit coupling but also

both of the scalar relativistic terms [87].
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When we use the BSE with interacting two-component spinor electron and hole wave-

functions, the absorption spectrum is then computed from

ε2(ω) = 8π2e2
∑
S

∣∣∣∣∣∑
vck

ASvck λ ·
∑
α

〈k, α|r|c,k, α〉

∣∣∣∣∣
2

δ
(
ω − ΩS

)
,

using the excitonic version of Eq. 7 [86]. We take the Tamm-Dancoff Approximation

(“TDA”) for the BSE Hamiltonian[88] in this equation for the imaginary part of the dielec-

tric function, though some systems require consideration of the full BSE Hamiltonian[89].

Calculations beyond the TDA for BSE with BerkeleyGW[90] are also compatible with spinor

wavefunctions, though this feature is not considered in this work.

We also note that in the presence of spin-orbit coupling, spin is generally no longer a good

quantum number, so it is no longer possible to refactor the Bethe-Salpeter Hamiltonian into

spin-singlet and -triplet block-diagonal submatrices[32]. Further, the number of valence

and conduction bands both double, relative to spinless calculations. This makes explicit

diagonalization of the BSE Hamiltonian, which scales as N3
basis = (NvNc)

3, more expensive

by a factor of 64 for solids, as the basis has quadrupled. However, the time spent performing

this diagonalization and computation of the absorption spectra remains a relatively rapid

calculation, compared to calculation of the screened interaction and the self-energy (see Sec.

V).

The most formidable computational challenge with the inclusion of two-component spinor

wavefunctions is the increase in the number of charge-density matrix elements (Eq. 6, which

must be calculated for the polarizability, self-energy, and BSE kernel). Compared to a

calculation performed on the same system without spin, the number of both valence and

conduction states double. Taking the ratio of the scaling of the charge-density matrix

element calculation with system size N [57], we find an increase in computation time by

(2N)2 2 log(2N)

N2 logN
= 8(1 + logN 2), (8)

where the additional factor of 2 in the numerator comes from having to compute the inverse-

FFT for each of the of two-component spinor wavefunctions. Since, at best, we are increasing

the cost of matrix element calculations by more than a factor of 8, we should make use

of symmetries of the Brillouin Zone to allow for converged calculations within reasonable

computational cost. (Detailed discussion about the performance of the major sections of the

BerkeleyGW code is included in Section V.)
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1. Symmetries, with spinor wavefunctions

Finally, we summarize results regarding the use of symmetries with spinor wavefunctions,

since BerkeleyGW constructs Kohn-Sham wavefunctions in the full Brillouin zone from those

calculated in an irreducible wedge[57]. More details are included in the Supplementary

Material[76].

Spinor Bloch functions are written

ψnk(r) = unk↑(r)e
ik·rχ↑ + unk↓(r)e

ik·rχ↓. (9)

and χα represents a spinor. The periodic functions unk↑ and unk↓ are spatial and thus

transform according to the usual treatment of symmetries. However, the spinor itself rotates

according to the rules of transformation for elements of the group SU(2):

P{R|τ}ψnk(r) = ũnRk↑(r) exp (iRk · r) exp (i n̂ · ~σ θ/2)χ↑

+ ũnRk↓(r) exp (iRk · r) exp (−i n̂ · ~σ θ/2)χ↓ , (10)

where n̂ and θ are the unit-axis and angle (about the axis n̂) that recreates the rotational

action of the symmetry operation R.

By calculating from the rotation matrix R a quaternion q that is guaranteed to be non-

singular[91–93], we evaluate the rotation angle θ from

θ = 2 arctan

(
q2

1 + q2
2 + q2

3

q4

)
, (11)

where arctan is a function with all real numbers as its domain, and evaluate the i’th com-

ponent of the axis of rotation ni from

ni =
qi√

q2
1 + q2

2 + q2
3

. (12)

The set of rotation matrices R for a crystalline system are usually stored in the basis

of lattice vectors in ab initio codes, as it allows these matrices (up to 48 in number) to be

written with nine integers. In this case, we must transform the rotation matrices in the

lattice basis, Rlat, to the rotation matrix in the Cartesian basis. If we form a matrix A out

of the lattice vectors, this transformation is

Rcart = ARlatA−1. (13)
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If instead we decide to use the reciprocal lattice vectors b1, b2, b3 to construct the matrix

B in a fashion as in the above, we make use of the identity BTA = 2πI to write

Rcart =
(
BT
)−1

RlatBT. (14)

This latter choice is beneficial if the matrices A and B are in fact stored as their transposes,

as some codes do.

Finally, we note that in the presence of inversion symmetries, “improper rotations” S

must be considered. While improper rotations are often considered to be the composi-

tion of a rotation and a mirror reflection about the plane perpendicular to the axis of the

rotation, instead we can consider the improper rotation S to be (in general, a different)

rotation R followed by inversion N , S = NR[94]. However, if both spatial inversion and

time-reversal operations commute with the Hamiltonian under consideration, the (spinor)

wavefunction is a simultaneous eigenstate of both symmetries. Thus in the presence of only

time-reversal symmetric terms in the Hamiltonian, the wavefunctions are unaffected by in-

version, apart from perhaps an overall phase factor. We identify improper rotations by the

property det (S) = −1, and if detected, use only the rotation part R of S to transform the

spinor components of the wavefunction.

III. TEST SYSTEMS

We present results for seven different materials with a wide range of spin-orbit coupling

(SOC) strengths. The diamond and zincblende semiconductors Si, Ge, and GaAs are techno-

logically important materials with weak SOC. GaSb has a spin-orbit splitting of its valence

bands of similar magnitude as its band gap. CdSe has a wurtzite structure and a significant

SOC (429 meV[95], over 25 times larger than that of wurtzite GaN, 16.8 meV[96]). Au is a

prototypical metal with strong SOC. Finally, Bi2Se3 has a nontrivial topological nature due

to the band inversion induced by its strong SOC, and is a particularly challenging case to

explore which has been studied in much previous literature.

A. Computational Details

We compute mean-field wavefunctions and eigenvalues from Density Functional Theory[28,

29]. For the exchange-correlation energy, we employ the Perdew-Zunger parameterization
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of the LDA[97]. We generate fully-relativistic pseudopotentials using the Optimized Norm-

Conserving Vanderbilt Pseudopotential (ONCVPSP) scheme[98] with parameters from the

Pseudo-Dojo pseudopotential database[99]. The pseudopotentials for Au, Bi, Cd, Ga, Ge,

and Sb contain the full shell of the semicore states (e.g., 5s25p65d10 for Bi) for accurate cal-

culation of the bare exchange[100]. All DFT calculations are carried out with the Quantum

ESPRESSO software package[101].

We first determine the equilibrium lattice constants and atom positions. Table I shows

that all relaxed lattice constants are in very good agreement with experimental measure-

ments. We instead use the experimental lattice parameters and atomic coordinates for

Bi2Se3 due to the sensitivity of its DFT bandstructure with respect to its geometry[102].

Next, the quasiparticle energies are computed with the one-shot “G0W0” approach, us-

ing the Hybertsen-Louie Generalized Plasmon Pole model[31, 103] for the inverse dielectric

matrix. For the case of bulk Au, we also calculated the quasiparticle band structure in

the Godby-Needs Plasmon Pole Model[104] and found differences of 50 meV or smaller in

the quasiparticle energies, in the range 6 eV above and below the Fermi energy[76]. For

the test systems Si, Ge, and GaAs, the difference in computed band gaps when using the

Hybertsen-Louie and Godby-Needs plasmon pole models is tens of meV[105], and the dif-

ference between the Godby-Needs plasmon pole model and the Hybertsen-Louie plasmon

pole model results for the bandgap of Bi2Se3 is presumed to be similar in magnitude to the

difference between the Hybertsen-Louie GPP and full-frequency results, also tens of meV.

The difference in computed bandgaps can be an order of magnitude larger for systems with

localized electrons such as transition metal oxides[105].

Table I summarizes our parameters for the empty state summations, the k-point sampling,

and the plane-wave cutoffs for the dielectric matrices. We use the static remainder method to

improve convergence with the number of empty states in the Coulomb-hole summation[106].

We verified that G0W0 evaluation of the self energy in the band-diagonal approximation

yields quantitatively accurate bandstructures for these test systems. Deviations from this

methodology in the computation of the bandstructure for Bi2Se3 are enumerated in Section

III D.

The k-point sampling and number of bands used in constructing the GW-BSE Hamil-

tonian are summarized in Table II. All excited-state calculations are carried out with the

BerkeleyGW software package.

12



TABLE I. The kinetic energy cutoffs Ecut, calculated lattice parameters, experimental lattice

parameters, Brillouin zone sampling, screened Coulomb cutoff εcut, and number of empty states

used in the sums for both the polarizability (“Chi”) and the Coulomb-hole (“COH”) term in the

self-energy. The pseudopotentials for Ge, Sb, Cd, and Au contain the full shell of the semicore

states (e.g., 4s24p64d10 for Sb)[100]. The experimental lattice parameters are from Ref. [96]. For

Si, Ge, GaP, GaAs, and GaSb, we use the same parameters as Ref. [42], and for Au, Ref. [107].

GaP results are discussed in Section IV .

Ecut (Ry) arelaxed
0 (Å) aexp.

0 (Å) k-grid εcut (Ry) Empty States

Si 120 5.48 5.47 8×8×8 20 800

Ge 120 5.63 5.66 8×8×8 25 600 Chi, 1000 COH

GaP 350 5.45 5.45 8×8×8 40 800 Chi, 1000 COH

GaAs 350 5.61 5.65 8×8×8 20 1002

GaSb 350 6.09 6.10 8×8×8 20 1002

CdSe 200 4.30 4.30 6×6×4 20 996

Au 72 4.08 4.08 8×8×8 50 2018

TABLE II. The values of the Brillouin Zone sampling of the fine grid, the number of valence and

conduction bands used as the basis for the BSE, and the Gaussian broadening of the delta function.

kfine grid Nv Nc Broadening (meV)

GaAs 12×12×12 6 8 150

GaSb 12×12×12 6 8 100

Au 12×12×12 6 4 150
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B. Summary of bandstructure for Si, Ge, GaAs, GaSb, CdSe, and Au

Since the bandstructures for Si, Ge, GaAs, GaSb, CdSe, and Au are well-known and

differ little when either including or disregarding spin-orbit coupling, we briefly summarize

the different approaches to their calculation and the results. Figures for these bandstructures

are included in the Supplementary Material[76].

In Tables III through VII, we compare values of interband gaps labelled according to

irreducible representation, with c for conduction band and v for valence band, as well as

spin-orbit split bands, labelled by high-symmetry point in the Brillouin Zone, for the valence

and conduction bands nearest in energy to the band gap that exhibit spin-orbit splitting.

We compare values as computed from FR-LDA, FR-GW, and GW+SOC, with the latter

from Ref. [42], along with experimental values.

These diamond/zincblende semiconductors with small to moderate spin-orbit coupling

have spin-orbit splitting values that are consistent within few tens of meV or better, re-

gardless of the calculation method. The band gaps are of course underestimated within

FR-LDA, while FR-GW and GW+SOC values differ by as much as 0.2 eV for all but Si.

In the case of Ge, we attribute the underestimated band gaps from Ref. [42] from the use

of a Ge pseudopotential that freezes the n = 3 semicore states in the core, rather than to

inherent limitations of the perturbative approach.

Additionally, these standard Group IV or III-V semiconductors may have their band

gaps estimated by an approach that combines more easily computed quantities, the band

gap ESR−GW
g from SR-GW and the valence band spin-orbit splitting ∆SOC

LDA(Γ, v) from FR-

LDA. The valence-band maximum is taken to be purely atomic (cationic, for compound

semiconductors) p states, which split due to spin-orbit coupling as in a free atom, with p3/2

states shifting upward in energy by 1
3
∆SOC and p1/2 downward by 2

3
∆SOC [108]. Within this

“atomic perturbation theory” approach,

EGW+SOC
g ≈ ESR−GW

g − 1

3
∆SOC

LDA(Γ, v). (15)

The “atomic SOC perturbation” estimates for the band gaps of Ge (0.95 eV), GaAs

(1.49 eV), and GaSb (0.82 eV) agree with the FR-GW values within 10 meV.

Wurtzite CdSe has fewer comparable calculations in the literature, so we report the FR-

LDA and FR-GW values computed for the band gap, spin orbit splitting of the valence
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band maximum, and the crystal field splitting of the Γ6 and Γ1 valence bands in Table VIII.

FR-GW values agree with experimental values within a few meV.

For Au, Table IX shows that the quasiparticle energies are generally improved with FR-

GW compared to FR-LDA, especially near the Fermi level. The FR-GW quasiparticle ener-

gies are in good agreement with a quasiparticle self-consistent GW (“QSGW”) calculation

in which SOC is added perturbatively, from Ref. [43], indicating that the perturbative treat-

ment of SOC for the bandstructure is sufficient. The Fermi level for FR-GW and SR-GW is

recalculated using the the Blöchl tetrahedron method[109] with the quasiparticle energies,

from the cms-py Python library[110]. The quasiparticle energies are largely similar whether

using the Hybertsen-Louie or the Godby-Needs GPP model, within an energy range of 6 eV

above or below the Fermi level [76].

C. Absorption spectra for GaAs, GaSb, and Au

For GaAs, the absorption spectrum differs little when computed from SR-GW/BSE or

FR-GW/BSE, as the spin-orbit split “E1” and “E1 + ∆” pair of peaks is split by 200 meV,

which is on the order of the resolution of the calculation (150 meV) with the given fine-grid

k-point sampling of 12×12×12 and is thus obscured. The GaAs spectra is included in the

Supplementary Material[76].

Figure 1 shows the absorption spectrum for GaSb calculated with the SR-GW-BSE and

FR-GW-BSE methods, as well as the non-interacting “RPA” method, in which the electron-

hole kernel in the Bethe-Salpeter Equation is disregarded, as well as a comparison with

experiment[111]. The RPA spectra are included to assess any differences in the spin-orbit

split peaks E1 and E1 +∆ due to renormalization of SOC from the electron-hole interaction.

The absorption spectrum of GaSb has significant differences when including SOC. First,

the absorption onset is shifted by 190 meV due to the large difference in the quasiparticle

band gap when including (0.82 eV) or neglecting SOC (1.07 eV). Also, we can clearly resolve

the 2.3 eV peak splitting into the E1 and E1 + ∆ peaks with the inclusion of SOC. The E1

and E1 + ∆ peak placements at 2.18 eV and 2.54 eV agree well with the experimental[111]

spectrum peak placements of 2.18 eV and 2.62 eV, respectively, and the EPM+SOC peak

placements of 2.22 eV and 2.86 eV[62]. These results, as well as the energies of the E0

and E2 peaks, are included in Table VI. The absorption spectra computed within RPA are
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qualitatively similar to that of the BSE, with the E1 and E1 + ∆ peak splitting agreeing

with that of the BSE under 10 meV, indicating no significant renormalization effects of SOC

from the electron-hole interaction.

The calculated interband absorption spectrum for Au shown in Fig. 2 shows a redshift in

the onset of absorption with the inclusion of spin-orbit coupling, and an additional absorption

peak at 1.6 eV, with the absorption spectra having minor qualitative changes when including

the electron-hole interaction (“BSE”) or not (“RPA”). The optical properties of Au are well-

known to be impacted by relativistic effects[112], and the inclusion of only scalar relativistic

effects is insufficient for a description of its absorption of visible light[112]. The red-shift of

the absorption onset compared to the experimental data from Ref. [113] is understood from

the LDA starting point leading to an underestimation of the energy relative to the Fermi

level for the lowest-energy unoccupied band at the X-point. The use of orbital-dependent

functionals in DFT ameliorates this underestimation[114], and presumably some level of

self-consistency in GW beyond one-shot G0W0 would also correct the underestimation. The

absorption spectrum was calculated with a 12×12×12 k-point sampling, six valence bands,

and four conduction bands.

TABLE III. The band gap and spin-orbit splitting for Si, computed at the FR-LDA and FR-GW

levels, compared to experiment. The fundamental band gap from experiment is reported with

Zero-Point Renormalization corrections.

FR-LDA FR-GW GW+SOC[42] Experiment

Eg (eV) 0.45 1.22 1.27 1.22 [115], 1.23 [116]

E(Γ6c)− E(Γ8v) (eV) 2.46 3.22 3.28 3.34 [117]

∆SOC(Γ, v) (eV) 0.05 0.05 0.05 0.044 [96]

∆SOC(Γ, c) (eV) 0.03 0.04 0.04 0.030 - 0.040 [96]

∆SOC(L, v) (eV) 0.03 0.03 0.03 0.030 [96]

∆SOC(L, c) (eV) 0.01 0.01 0.02 –
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TABLE IV. The band gap and spin-orbit splittings for Ge, computed at the FR-LDA and FR-GW

levels, compared to experiment. Experimental data is from Ref. [96] unless otherwise specified.

FR-LDA FR-GW GW+SOC[42] Experiment

Eg (eV) 0.13 0.74 0.54 0.79

E(Γ7c)− E(Γ8v) (eV) 0.15 0.96 0.38 0.90

∆SOC(Γ, v) (eV) 0.31 0.30 0.32 0.297

∆SOC(Γ, c) (eV) 0.22 0.21 0.24 0.200

∆SOC(L, v) (eV) 0.19 0.19 0.20 0.228

∆SOC(L, c) (eV) 0.10 0.08 0.12 –

TABLE V. The band gap and spin-orbit splitting for GaAs, computed at the FR-LDA and FR-GW

levels, compared to experiment. Experimental data is from Ref. [96] unless otherwise specified.

FR-LDA FR-GW GW+SOC[42] Experiment

Eg (eV) 0.55 1.49 1.31 1.57[118]

∆SOC(Γ, v) (eV) 0.32 0.34 0.35 0.340

∆SOC(Γ, c) (eV) 0.19 0.17 0.20 0.171

∆SOC(L, v) (eV) 0.20 0.21 0.22 0.22

∆SOC(L, c) (eV) 0.08 0.07 0.09 0.05
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TABLE VI. Absorption peak energies for GaSb, in eV. The E0 + ∆ does not appear in Ref. [62]

or Ref. [119].

FR-GW-BSE EPM+SOC[62] Experiment[119]

E0 + ∆ 1.19 – –

E1 2.18 2.22 2.184

E1 + ∆ 2.54 2.86 2.618

E2 4.06 4.37 4.286
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FIG. 1. The absorption spectra of GaSb, calculated at the SR-GW-RPA (cyan), SR-GW-BSE

(blue), FR-GW-RPA (magenta), and FR-GW-BSE (red) levels. RPA spectra are included to

assess any renormalization of SOC by the electron-hole interaction. Experimental results are from

Ref. [111].
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TABLE VII. The band gap and spin-orbit splittings for GaSb, computed at the FR-LDA and

FR-GW levels, compared to experiment. Experimental data is from Ref. [96].

FR-LDA FR-GW GW+SOC[42] Experiment

E(Γ6c)− E(Γ8v) (eV) 0.14 0.82 0.70 0.822

E(L6c)− E(Γ8v) (eV) 0.25 0.78 0.85 0.907

∆SOC(Γ, v) (eV) 0.74 0.73 0.73 0.756

∆SOC(Γ, c) (eV) 0.23 0.20 0.21 0.213

∆SOC(L, v) (eV) 0.42 0.42 0.42 0.430

∆SOC(L, c) (eV) 0.12 0.09 0.12 0.13

TABLE VIII. The band gap and spin-orbit splitting for CdSe, computed at the FR-LDA and

FR-GW levels, compared to experiment. The spin-orbit (SOC) and crystal field (CF) splitting

refers to the states at the top of the valence band at Γ. Experimental data is from Ref. [95].

FR-LDA FR-GW Experiment

Eg (eV) 0.58 1.85 1.84

∆SOC(Γ, v) (eV) 0.372 0.405 0.429

∆CF(Γ, v) (eV) 0.036 0.026 0.026

D. Bi2Se3

While the previous test systems confirm the sufficiency of treating SOC as a perturbation,

the GW+SOC approach for the bandstructure of Bi2Se3 has shown mixed results[44, 83].

The large spin-orbit splitting of the Bi 6p electrons inverts the positive and negative parity

p-like states (from the Bi 6p and Se 4p orbitals) near the band gap, creating a nontrivial value

of the Z2 topological index[46]. The “inverted” band gap is caused by the level-repulsion

of the inverted states at the Γ-point, mixing the character of the conduction and valence

states within a neighborhood of Γ[44]. The strength of this level repulsion depends on the

size of the band gap, which is underestimated in DFT. As a consequence, the bandstructure
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TABLE IX. The FR-LDA and FR-GW band energies in eV for Au relative to the Fermi energy,

as compared to QSGW+SOC and experiment. Bands at high-symmetry k-points are labelled

according to their double-group irreducible representation (see Ref. [43]).

FR-LDA FR-GW QSGW+SOC[43] Experiment

Γ+
6 -10.17 -10.22 -10.39 –

Γ+
8 -5.69 -6.05 -6.02 -5.09a, -6b, -6.01c

Γ+
7 -4.58 -4.89 -4.85 -4.45a, -4.6b, -4.68c

Γ+
8 -3.29 -3.67 -3.67 -3.55a, -3.65b, -3.71c

Γ−7 13.91 14.46 15.36 16c, 15.9d

Γ−6 17.26 17.81 17.97 18.8c

L+
6 -7.84 -8.11 -8.01 -7.8b

L+
4,5 -5.80 -6.21 -6.16 -6.23b, -6.2c

L+
6 -4.69 -5.08 -4.97 -4.88b, -5c

L+
6 -2.56 -2.87 -2.95 -3.2c

L+
4,5 -1.90 -2.19 -2.24 -2.3c, -2.5e

L−6 -1.32 -1.26 -1.63 -1e, -1f, -1.01g, -1.1h

L+
6 3.09 3.44 3.19 3.6e, 3.65f, 3.56g, 3.4h

a Ref. [120]
b Ref. [121]
c Ref. [122]
d Ref. [123]
e Ref. [124]
f Ref. [125]
g Ref. [126]
h Ref. [127]

computed from DFT and GW differ significantly when SOC is included, so the perturbative

treatment may be insufficient.

Due to the sensitivity of this system to the DFT functional and the atomic geometry[102],

in our study of the bulk band gap of Bi2Se3 as computed within FR-GW, we use the ex-

perimental geometry[96]. For consistency with the majority of previous calculations in the
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FIG. 2. The absorption spectrum of Au due to interband transitions, calculated at the GW-BSE

level. Spin-orbit is included (neglected) in the red (blue) curve. The experimental spectrum is

from Ref. [113].

literature [44, 83, 128, 129], we use the LDA functional. We use a Brillouin zone sampling

of 8×8×8 for constructing the charge density as well as the dielectric function. We use

a 160 Ry cutoff for the planewave basis for the wavefunctions and a 25 Ry cutoff for the

dielectric function. The polarizability (“Chi”) summation uses 1000 unoccupied bands, and

the Coulomb-hole (“COH”) summation uses 1254 bands. The quasiparticle energies are

estimated to be converged within about 30 meV [76].

We obtain the bandstructure in the neighborhood of the Γ-point by obtaining quasi-

particle energies at the Γ-point and at particular points along the Γ-to-L and the Γ-to-Z

high-symmetry lines, shown in Fig. 3. Ordinarily, bandstructures are determined from the

set of quasiparticle energies computed on coarse, regularly spaced k-point grid and a set of

overlap coefficients computed for the wavefunctions on the coarse grid and DFT-computed

wavefunctions that densely sample high-symmetry lines in the Brillouin Zone[57]. This ap-

proach does not work well, however, in cases such as Bi2Se3, especially near the Γ-point

where the DFT bandstructure and the quasiparticle bandstructure disagree significantly.

Instead, we directly compute quasiparticle energies along the Γ-to-L direction at 1
16
L, 1

8
L,

3
16
L, and 1

4
L, and along the Γ-to-Z direction at 1

16
Z, 1

8
Z, 3

16
Z, 1

4
Z, 1

2
Z, and Z. The whole

Γ-to-Z line is represented as it is a much shorter path in the Brillouin zone than the Γ-to-L

line. We then plot spline-interpolated curves as estimates to the quasiparticle bandstruc-

ture. The LDA bandstructure interpolated in a similar fashion shows good agreement with
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FIG. 3. The electronic bandstructure of Bi2Se3 along the (a) Γ to L and (b) Γ to Z directions,

including spin-orbit coupling, but only Hamiltonian matrix elements that are diagonal at the FR-

GW level: fully-relativistic (“FR”) LDA and GW in dashed green and solid red lines, respectively.
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FIG. 4. The electronic bandstructure of Bi2Se3 along the (a) Γ to L and (b) Γ to Z directions,

including spin-orbit coupling: the quasiparticle bandstructure computed from FR-GW with off-

diagonal entries in the Hamiltonian (solid black), and the quasiparticle bandstructure without

off-diagonals (solid, thinner red) and arbitrarily shifted downward by 0.05 eV for clarity.
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the bandstructure calculated explicitly at each k-point [76]. The (band-diagonal) FR-GW

bandstructure along the Γ-to-Z line suggests that the band-diagonal approximation is not

generally sufficient, as is apparent from the appearance of small, spurious[83, 128, 130]

bumps in both the conduction and valence bands in a very narrow region about Γ (Fig. 3).

These bumps are also seen in Ref. [131] for Bi2Te3 in the F − Γ− L k-point path, but are

small along that path for both Bi2Se3 and Sb2Te3.

We find a direct bulk band gap of 0.38 eV in the band-diagonal approximation, which

is in good agreement with values obtained from angle-resolved photo-emission spectroscopy

(ARPES)[128] (0.332 eV) as well as scanning tunneling spectroscopy (STS)[132] (0.3 eV).

Optical measurements of the gap, however, report a smaller value of 0.2 eV[130] and also

confirm a direct band gap at Γ.

To improve the quasiparticle bandstructure, we investigate the effect of including band-

off-diagonals in the calculation of the self-energy matrix elements:

Enk = Eig (εlkδlm + 〈l,k, α|Σαβ (Epk)− V xcδαβ|m,k, β〉) , (16)

where “Eig” denotes the eigenvalues of the matrix constructed from the self-energy in the

Kohn-Sham orbital basis, the band n is a member of the set of wavefunctions spanned by

all choices for the indices l and m, and the energy Epk at which the self-energy operator

is evaluated is chosen from either the row (Elk) or column (Emk), as the difference in

eigenvalues from this choice and an explicitly-constructed Hermitian matrix for the self-

energy correction,

1

2
(〈l,k, α|Σαβ (Elk)− V xcδαβ|m,k, β〉+ 〈l,k, α|Σαβ (Emk)− V xcδαβ|m,k, β〉), (17)

as used for quasiparticle self-consistent GW[133, 134] (QSGW), is found to be under 1 meV.

The QSGW approach involves reevaluating sums over empty states in both the dielectric

screening and the self-energy to arrive at converged quasiparticle wavefunctions, whereas

single diagonalization is a first correction to the “one-shot” G0W0 which supposes Kohn-

Sham wavefunctions as close enough to the quasiparticle wavefunctions.

We find that the choice of the four valence wavefunctions and two conduction wavefunc-

tions near the Fermi energy is sufficient to correct the deficiencies in the bandstructure when

using the LDA eigenfunctions as the quasiparticle wavefunctions [76]. The bandstructure

computed in this fashion is shown in Fig. 4. The band gap computed at first iteration
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is 0.33 eV, though we rigidly shift the gap to match that of the diagonal approximation,

0.38 eV, which is justified in the discussion after Eq. 20.

The necessity of calculating a matrix for the self-energy can be seen by noting that

the strength of the level repulsion – and therefore the character of the wavefunctions –

depends on the band gap value[44]. When changing the gap, as in a GW calculation, the

wavefunctions in the region where the character is inverted necessarily change along with the

extent of the region in the bandstructure with inverted orbital character. In Ref. [131], the

authors analyze the atomic orbital contributions to bands featuring bumps when computing

the bandstructure of Bi2Te3 and find that, for bands with avoided crossings due to spin-orbit

coupling, these bands in the LDA basis have a very narrow region in which band inversion

occurs, leading to sharp spikes. The updated off-diagonal basis however has a more extended

region of band inversion, allowing for a smoother bandstructure, consistent with the update

in the band gap from LDA to GW. The use of the LDA basis, then, is not adequate for

an accurate bandstructure in this region, nor are self-consistent schemes such as eigenvalue

self-consistent GW that do not update the quasiparticle basis set. QSGW would update the

LDA basis, along with updating estimates of the screening and self-energy[133]. However,

QSGW schemes that do not explicitly include vertex corrections beyond the usual GW

approximation can often overestimate bandgaps in solids by as much as 20 percent[135, 136].

Instead, this first-iteration approach to update the basis set provides us an efficient means

of correcting the basis set without having to carry through a full self-consistent cycle that

would require an additional contribution from vertex corrections.

In the usual band-diagonal approximation to the self-energy operator two energies are

calculated [57]. First, the self-energy operator is evaluated at the mean-field eigenvalues,

giving the first of these energies:

E0
nk = εDFT

nk + 〈nk|Σ(εDFT
nk )− V xc|nk〉. (18)

Σ is evaluated (within default settings in BerkeleyGW) at εDFT
nk and εDFT

nk +1 eV, from which

the derivative dΣnk

dE
and the renormalization factor

Znk =
1

1− dΣnk

dE

(19)

are computed. The quasiparticle energy EQP
nk can then be determined from Newton’s

Method, and written as

EQP
nk = ZnkE

0
nk + (1− Znk)εDFT

nk . (20)
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However, in band-offdiagonal calculations, the renormalization factors Z cannot be com-

puted in this way and thus the Newton’s Method approach to determining the quasiparticle

energy cannot be performed. The self-energy operator is a function of energy, and a solu-

tion to Dyson’s equation is found when this input energy is the same as the eigenvalue of

the Hamiltonian in Eq. 16. Initially, the Kohn-Sham energy eigenvalues are used as input

for the self-energy, and the basis set is taken to be the Kohn-Sham wavefunctions. After

diagonalization, a new set of energy eigenvalues and wavefunctions (expressed as a linear

combination of the Kohn-Sham wavefunctions) are used to construct a new Hamiltonian,

which is then diagonalized. This process is repeated until the energy eigenvalues do not

substantially change from one iteration step to another – only at that final iteration are the

energy eigenvalues the quasiparticle energies.

After a first diagonalization of the Hamiltonian constructed with Kohn-Sham energies

and bands, the difference between valence band maximum and conduction band minimum

at the Γ-point is 0.33 eV. This energy is analogous to the E0
nk energies in Eq. 18. However,

since all off-diagonal terms for the self-energy at the Γ-point for Bi2Se3 are found to be

zero within numerical precision, the self-consistently calculated quasiparticle energies must

match exactly at the Γ-point. We use this fact to rigidly shift the conduction band from the

off-diagonal calculation to match the quasiparticle band gap computed when neglecting off-

diagonal components, 0.38 eV: EQP
ck ≈ Eoff-diag

ck +(EQP, diag
c,k=Γ −Eoff-diag

c,k=Γ ). This is expected to be

acceptable when the off-diagonal matrix elements of the self-energy for the states away from

the Γ-point are sufficiently weakly sensitive to corrections to the Kohn-Sham eigenvalues.

As seen in Fig. 4 the conduction and valence bands are now unambiguously parabolic

after updating the basis set, so we can readily compute the effective masses. We calculate

an effective mass of 0.19 me for the holes and 0.14 me for the electrons, averaging over the

directions plotted. This compares favorably with the experimentally determined effective

masses, from magneto-optics, of 0.14 me for both the electrons and holes [130]. We note

that our determination of effective masses agrees despite the discrepancy in the value of the

band gap.

To investigate the sensitivity of the bandgap to the treatment of dynamics in the self-

energy operator, we also calculate the band gap at the Γ-point through the use of the full-

frequency treatment of the dielectric function, via the contour deformation method[137] and

a low rank approximation[138–140]. We used 15 imaginary frequencies, 200 eigenvectors in a
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reduced basis scheme, corresponding to roughly 10 percent of the full spectrum, a frequency

spacing of 0.25 Ry, with frequencies calculated out to 10 Ry. We found a slightly larger gap

than in the Hybertsen-Louie GPP, with a value of 0.41 eV. In conventional semiconductors,

redistribution of the weight of the screening from a single frequency typically results in a

lower gap; the increase of the gap for Bi2Se3 relative to the GPP result is understood as

a consequence of the inverted nature of the bandstructure. The small change in the value

indicates that the use of a GPP model for the dynamics in the self-energy is sufficiently

accurate for quasiparticle energies.

We can compare our FR-GW calculations of the bandstructure to a GW+SOC calculation[44]

performed with BerkeleyGW. The band gap in GW+SOC is found to be direct at Γ, with

a value of 0.33 eV, with parabolic valence and conduction bands. (See Table XI for com-

putational details.) In all FR-GW cases, the quasiparticle bandgap is found to be in a

range between 0.38 eV to 0.41 eV, depending on the treatment of the frequency-dependence

of the self-energy operator, and an update to the quasiparticle basis set is required to

recover parabolic bands for the valence band maximum and conduction band minimum.

Unlike the perturbative GW+SOC approach, FR-GW more readily allows for a quasipar-

ticle self-consistent approach to arrive at a quasiparticle basis set in which the dependence

on qualitatively inaccurate starting-point mean-field bands is removed.

IV. COMPARISON WITH OTHER IMPLEMENTATIONS

Other excited-state GW codes have implemented compatibility with spinor wavefunc-

tions, including pseudopotential plane-wave codes WEST[50] and Yambo[51], pseudopoten-

tial PAW codes VASP[54] and GPAW[53], and all-electron codes FHI-AIMS[52], Questaal[75],

TURBOMOLE[74], and SPEX[36, 49]. At present, only Yambo[51, 55] and BerkeleyGW

have BSE with spinor wavefunctions implemented. We compare our present results with

these other implementations, as a first attempt at benchmarking spinorial GW and GW-

BSE calculations in the spirit of the GW100 set[58] and the community effort to examine

reproducibility of G0W0 calculations in solids[141]. For the standard semiconductors Si,

GaP (parameters in Table I), and GaAs, we find good agreement (in Table X) with the

computed spin-orbit splitting at the valence band maximum as computed in Ref.[50], de-

spite that work’s use of different pseudopotentials from the SG15 database[142] with PBE
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exchange-correlation functionals[143]. The differences between the present calculations and

that of WEST for GaAs are larger than that of Si and GaP due to the considerable under-

estimation of the direct band gap for GaAs at the SR-GW level computed in Ref. [50] using

pseudopotentials from the SG15 database (0.62 eV), compared to that from the Pseudo-

Dojo database (1.26 eV), a discrepancy not present in their results for Si and GaP. Also

apparent in Table X is agreement in the shifts of the band gaps upon inclusion of spin-orbit

coupling to tens of meV. Results were not found in the literature for FR-GW/BSE calcu-

lations of these materials as a comparison. Yambo’s spin-orbit implementation paper [73]

shows results on 2D transition-metal dichalcogenides only, and YAMBO results for GaSb

are available only as an unconverged tutorial example[144].

Several results have been reported in the literature for the bulk quasiparticle bandgap

for Bi2Se3, from both GW+SOC and FR-GW approaches. The GW implementation in

Yambo[51, 73], a plane-wave pseudopotential excited-state code that computes the polariz-

ability and self-energy with sums over empty states, is most directly comparable to Berke-

leyGW, and we find good agreement for our computed FR-GW results for the band gap in

the diagonal approximation: 0.36 eV from Ref. [145], and 0.38 eV, present work. The quasi-

particle bandstructure in Ref. [145] suggests a direct gap at Γ, though the resolution is not

fine enough to determine if the bands have a parabolic dispersion. The present calculation of

the band gap differs only by 20 meV from a prior calculation using BerkeleyGW employing

the “GW+SOC” approach[44], in which spin-orbit coupling was added perturbatively after

evaluating quasiparticle energies that neglected spin. The bandstructure reported in Ref.

[129] uses pseudopotentials without semicore Bi orbitals, with both Gaussian orbital and

plane-wave basis sets in separate calculations. This bandstructure is computed with a non-

uniform sampling of the Brillouin Zone for evaluation of self-energy matrix elements, up to

78×78×1 near the zone-center, featuring a direct gap of 0.20 eV and valence band maximum

at the Γ-point with a flattened parabolic shape. FR-GW FLAPW calculations[83, 128] using

the SPEX[36, 49] code show a sensitivity to the band gap to calculation parameters at both

the DFT and GW levels. Changing the number of local orbitals from 1[128] to 2[83], lmax for

GW from 4[128] to 5[83], planewave cutoff for GW from 3.5 bohr−1[128] to 2.9 bohr−1[83],

and number of empty states from 300[83] to 500[128] changes the band gap from 0.34 eV

to 0.20 eV. By contrast, a perturbative GW+SOC calculation[83] with FLAPW found a

vanishing band gap, and the bands appeared to become linear, unexpected for the bulk ma-
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TABLE X. The spin-orbit splitting at the valence band maximum and the change of band gap

upon inclusion of spin-orbit coupling for Si and GaAs, in comparison to results computed in the

code WEST[50].

∆SOC(Γ, v) (eV) EFR
g − ESR

g (eV) Eg (eV)

FR-LDA FR-GW DFT GW FR-GW

Si, present 0.047 0.049 -0.016 -0.016 1.22

Si, Ref. [50] 0.048 0.049 -0.016 -0.017 1.36

GaP, present 0.089 0.086 -0.027 -0.024 2.57

GaP, Ref. [50] 0.083 0.092 -0.028 -0.031 1.91

GaAs, present 0.320 0.340 -0.098 -0.109 1.49

GaAs, Ref. [50] 0.328 0.344 -0.136 -0.123 0.13
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terial. To conclude, different descriptions of the wavefunctions for Bi2Se3 can give a direct

bandgap from about 0.2 to 0.35 eV, with these values within about 0.1 eV of experimental

values[128, 130, 132]. Further study regarding self-consistent updates to the quasiparticle

wavefunctions within the planewave pseudopotential FR-GW approach can elucidate the

features of the bands near the Fermi energy responsible for this sensitivity, and more clarity

on the disagreement from ARPES[128] and transmissivity measurements[130] is needed. A

comparison between these Bi2Se3 calculations is presented in Table XI.

V. PERFORMANCE

We give a comparison in the performance of BerkeleyGW for the representative case of

GaAs with and without spinor wavefunctions. We see in Table XII that the calculation of the

wavefunctions for the self-energy matrix elements (“DFT Coarse”) takes four times longer,

in accordance with expectation from having to double the number of bands and double the

size of each wavefunction, for the spin-up and spin-down components. The calculation of the

wavefunctions for the basis of the BSE Hamiltonian (“DFT Fine”) is more rapid, since the

bottleneck in generating these wavefunctions is the number of k-points and not the number

of bands. Calculation of the dielectric matrix (“Epsilon”) sees an increase in cost of only

2.5, far less than the increase in cost of generating the matrix elements alone, because the

matrix inversion step is a significant fraction of runtime, and it is unaffected by spinors

since the size of the dielectric matrix is the same when including or disregarding spin. The

calculation of quasiparticle energies (“Sigma”), however, is closer to the expected increase

in cost, at a factor of 4.1. The costs of constructing the BSE kernel (“Kernel”) and solving

the eigenvectors and eigenvalues (“Absorption”) have the largest increases, at 6.4 and 15.0,

respectively. The Kernel code requires the calculation of three sets of matrix elements, an

increase in cost partially offset by time spent on the better-scaling routines such as I/O. We

discuss the Absorption code performance in more detail below.

The Absorption code has four main routines: I/O, interpolation of the quasiparticle

energies, interpolation of the kernel matrix elements, and diagonalization. We see the per-

formance of each when disregarding spin and when using spinor wavefunctions in Table XIII.

The I/O necessarily has an increase in cost of a factor of 4, from the increase in the size of

the wavefunction files. Similarly, the interpolation of the quasiparticle energies takes nearly
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TABLE XI. Comparison between present FR-GW and other excited-state calculations from the

literature for the bulk band gap for Bi2Se3. PW = plane wave, PSP = pseudopotential, GPP =

generalized plasmon pole, GN = Godby-Needs plasmon pole, CD = contour-deformation.

Structure SOC Basis XC Grid, Grid, No. Empty Frequency Band

Treatment Set Functional Polarization Self-energy States Dependence Gap (eV)

present expt. FR-GW PW PSP LDA 8×8×8 8×8×8 1254 GPP 0.38

Ref. [44] expt. GW+SOC PW PSP LDA 6×6×6 6×6×6 ∼500 GPP 0.36

Ref. [145] relaxed FR-GW PW PSP PBE 6×6×6 6×6×6 3000 GN 0.36

Ref. [128] expt. FR-GW FLAPW LDA 4×4×4 4×4×4 300 CD 0.34

Ref. [83] expt. FR-GW FLAPW LDA 4×4×4 4×4×4 500 CD 0.20

Ref. [83] expt. GW+SOC FLAPW LDA 4×4×4 4×4×4 500 CD 0.01

Ref. [129] expt. FR-GW PW/Gaussian PSP LDA 8×8×8 Non-uniforma 234 GN 0.20

a 10×10×1 to 78×78×1
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4 times longer, for the same reason. The interpolation of the kernel matrix elements in-

creases cost by a factor of 10.1, less than an estimated increase of 16, since the interpolation

coefficients have been calculated in the previous step, and the multiplication with the kernel

matrix elements is performed as an optimized matrix-matrix multiplication with the Level

3 BLAS call ZGEMM[57]. The diagonalization sees an increased cost by a factor of 56.8,

close to the expected factor of 64.

VI. CONCLUSION

Our implementation of spinor GW/BSE in the BerkeleyGW excited-state software enables

computation of the quasiparticle energies and absorption spectra for materials with large

SOC. The use of DFT one-particle wavefunctions with two spinor components necessarily

increases the cost of calculation, found in practice to be at best about three times more

expensive than when neglecting SOC, and with the calculations necessary for calculating

the optical absorption within the GW-BSE being much more expensive due to the increase

in basis set size. The careful use of symmetry however can significantly reduce the cost in

some systems.

We demonstrated our implementation on the test systems Si, Ge, GaAs, GaSb, CdSe, and

Au, which were readily calculated in the band-diagonal, one-shot G0W0 method. The band

gaps, spin-orbit splittings, and energy eigenvalues were shown to be highly accurate across

this range of different spin-orbit coupling strengths. The band gaps were also shown to be

well-approximated when introducing SOC as a perturbation to the valence band maxima

computed while neglecting spin. The topological insulator material Bi2Se3, however, needed

some correction to the LDA basis for the quasiparticle states. While a fairly accurate band

gap of 0.38 eV was computed within band-diagonal G0W0, the bandstructure shows small

but unphysical features in a small neighborhood about the Γ-point. We demonstrated that

correcting the LDA basis states by diagonalizing the G0W0 Hamiltonian was able to remove

this unphysical feature, and provide effective masses in good agreement with experiment.

We additionally performed fully-relativistic Bethe Salpeter Equation calculations of the

absorption spectra for GaAs and GaSb. We show that the absorption spectrum for GaAs is

similar within both the SR-GW-BSE and FR-GW-BSE. For GaSb we are able to resolve the

spin-orbit split E1 and E1+∆ peaks, with their placement within tens of meV of experiment.
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TABLE XII. Comparison of performance of BerkeleyGW on GaAs, when disregarding spin and

when using spinor wavefunctions.

Step No. CPUs CPU Hours (no spin) CPU Hours (spinor) Ratio

DFT Coarse 1024 162 650 4.0

DFT Fine 1728 173 490 2.8

Epsilon 864 864 2160 2.5

Sigma 864 2760 11232 4.1

Kernel 600 560 3600 6.4

Absorption 600 48 720 15.0

TABLE XIII. Comparison of performance of Absorption executable in BerkeleyGW when disre-

garding spin and when using spinor wavefunctions, as seen in calculations of GaAs.

Step Wall time, no spin (s) Wall time, spinor (s) Ratio

I/O 138 560 4.0

Interp. WFN 57 240 4.2

Interp. Kernel 27 274 10.1

Diag. 53 3013 56.8
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The perturbative treatment of spin-orbit coupling for electronic structure, GW+SOC,

shows high agreement with the more costly non-perturbative FR-GW approach for many

test systems. Such systems, even with nominally strong spin-orbit coupling as in GaSb

and Au, have fully-relativistic DFT bandstructures that have high qualitative agreement

with that from FR-GW. However, for materials such as Bi2Se3 that possess both a narrow

bandgap and strong spin-orbit coupling, the significant qualitative differences between the

fully-relativistic DFT bandstructures and FR-GW motivate the use of the FR-GW approach.

GW+SOC approaches for Bi2Se3 have shown conflicting qualitative descriptions of the bulk

bandgap[44, 83], while the FR-GW approaches[83, 128, 129, 145] have been consistent,

within about 0.1 eV. Further, the use of FR-GW allows for updating the quasiparticle wave-

functions, which then gives good quantitative agreement with the experimentally measured

effective masses for electrons (0.14 me, experiment[130] and computed and holes (0.14 me,

experiment[130] and 0.19 me, computed) for Bi2Se3. The use of FR-GW-BSE for the test

systems of GaAs and GaSb considered presently gives no significant advantage[62] over the

perturbative approach[146], and results on monolayer transition metal dichalcogenides in

the literature also show agreement to a few 10 meV between the non-perturbative and per-

turbative inclusion of SOC in the GW-BSE excitonic binding energies [55]. However, it

is reasonable to think that in materials where SOC gives a qualitative difference in band-

structure, like Bi2Se3, there may be stronger effects in BSE not captured by a perturbative

treatment.

The availability of spinor GW/BSE calculations in BerkeleyGW opens the way to in-

creased use of fully-relativistic quasiparticle and excitonic absorption calculations in the

electronic structure community, enabling more accurate and detailed exploration of topo-

logical materials which have garnered great recent research interest, as well as in thermo-

electric and photovoltaic materials. BerkeleyGW has particular strengths for large and

reduced-dimensional systems, such as a defect in a 2D topological material[147]. Further

developments include the use of magnetic group symmetries to facilitate the computation

of non-collinear magnetic systems without the requirement of large supercells[73], and the

calculation of non-collinear spin-susceptibilities[72], as well as more benchmarking FR-GW-

BSE for materials with large spin-orbit coupling and large exciton binding energies. We find

good agreement with other existing GW implementations, and believe that further detailed

comparison can help to improve implementations of this methodology and ensure accuracy.
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This implementation of spinor GW/BSE in BerkeleyGW was publicly released in BGW

version 3.0, and a tutorial example for performing GW/BSE calculations is available at URL

https://workshop.berkeleygw.org/tutorial-workshop-resources/about.
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E. M. Hankiewicz, T. Brauner, Č. Drašar, S. Schreyeck, S. Grauer, K. Brunner, C. Gould,
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