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We study the pairing of fermions by an interaction consisting of a Hubbard repulsion, mimicking
a screened Coulomb potential, and a dynamical phonon-mediated attraction. For such interaction,
the gap equation allows even- and odd-frequency solutions ∆e and ∆o. We show that odd-frequency
pairing does not develop within the Eliashberg approximation due to over-critical pair-breaking from
the self-energy. When vertex corrections are included, the pairing interaction gets stronger, and ∆o

can develop. We argue that even in this case keeping the self-energy is still a must as it cancels
out the thermal piece in the gap equation. We further argue that ∆o is not affected by Hubbard
repulsion and for strong repulsion is comparable to a reduced ∆e. The resulting superconducting
state is a superposition ∆e ± i∆o, which spontaneously breaks the time-reversal symmetry, despite
that the pairing symmetry is an ordinary s-wave.

I. Introduction

When two electrons in a superconductor form a Cooper
pair with gap function ∆(r, t), they must obey the Pauli
principle. This iron fact enables a systematic sym-
metry classification of superconducting order paramet-
ers. Interestingly, the Pauli principle can be obeyed even
when ∆(r, t) is odd under time exchange, ∆o(r, t) =
−∆o(r,−t), Refs. [1–5]. The Fourier transform of such
a gap function is an odd function of frequency along the
Matsubara axis, where ∆o(k, ωm) = −∆o(k,−ωm) can
be made real by a proper choice of the phase [3]. This
implies that at T = 0, ∆o(k, 0) = 0. Odd-frequency
(OF) superconductivity has a number of profound phys-
ical consequences: e.g., it leads to an s-wave supercon-
ductivity with no gap in the density of states at T = 0
without magnetic impurities. OF pairing has been ar-
gued to develop in a two-channel Kondo model [6] and is
particularly favorable in disordered electron liquids [7, 8]
and heterostructures [9, 10], where it was argued to be
observed in experiments [11, 12]. It also has a rich inter-
play with topological effects [13]. OF pairing can also be
induced by an external magnetic field [14–18].

However, in a regular bulk superconductor at zero field,
OF superconductivity remains mostly elusive despite be-
ing intensively searched for over the last three decades.
From a theoretical perspective, there are three obstacles
to OF superconductivity. First, an OF solution ∆o(ωm)
does not emerge at weak coupling because the vanish-
ing of ∆o(0) implies that there is no enhancement of the
pairing susceptibility by the Cooper logarithm. Second,
OF pairing is eliminated by the development of even-
frequency (EF) superconductivity, which reduces the ker-
nel in the OF pairing channel [3]. Third, even if EF su-
perconductivity does not develop for some reason, OF
pairing is destroyed by pair-breaking effects from fermi-
onic self-energy [19].

While the strong-coupling requirement cannot be
avoided, we argue there are ways to overcome the two
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other obstacles. In this work we revisit them in the con-
text of phonon-mediated superconductivity, by studying
a model of spin-1/2 fermions with an effective dynamical
interaction

V (Ωm) ∝ λ
(
f − Ω2

1

Ω2
1 + Ω2

m

)
. (1)

This model captures the competition between Hubbard
repulsion, parametrized by f , and phonon-mediated at-
traction [20–28].

Phonon-mediated OF superconductivity has been ana-
lyzed before, most notably by A. Balatsky and co-workers
(see [3] and references therein). They, however, focused
on spin-singlet ∆o(k, ω), which is odd in both k and ω.
We follow the original proposal by Berezinskii [1] and
consider OF superconductivity in the spin-triplet, spa-
tially even channel ∆o(k, ω) = ∆o(−k, ω), ∆o(k, ω) =
−∆o(k,−ω). For such superconductivity the momentum
dependence of the interaction is not relevant, and one can
approximate the electron-phonon interaction by the in-
teraction with an Einstein phonon, as in Eq. (1).

The model of Eq. (1) has been analyzed in Ref. [26] for
particular λ and Λ and without including fermionic self-
energy into consideration. We extend the analysis of [26]
to arbitrary parameters and also analyze how the results
change when the self-energy is included. A numerical
analysis of the effects of fermionic self-energy and vertex
corrections for phonon-mediated OF superconductivity
has been recently performed in Ref. [29]. Where applic-
able, our results are in agreement with this work.

We first analyze OF superconductivity in the model of
Eq. (1) on its own, assuming the EF superconductivity is
not present. We prove a compact and fairly general the-
orem that OF superconductivity cannot develop within
the canonical Eliashberg approximation, in which the in-
teraction that gives rise to the pairing is exactly the same
one that determines the fermionic self-energy. More spe-
cifically, we show that thermal contributions from the
static interaction to the pairing vertex Φo(ωm) and the
self-energy Σ(ωm) are exactly the same and cancel out in
the gap equation for ∆o(ωm) = Φo(ωm)/(1+Σ(ωm)/ωm),
but the non-thermal piece is stronger for the self-energy,
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and this does not allow OF superconductivity to develop.
We then go beyond this approximation, include vertex
corrections, and show that the dressed interaction in the
particle-particle channel becomes different from the one
in the particle-hole channel. We show that in our model
the pairing interaction gets relatively stronger and, as
a result, OF superconductivity does develop at strong
enough coupling. This is in agreement with Ref. [29],
where OF superconductivity has been obtained numeric-
ally in “vertex-corrected” Eliashberg theory [30].

We compute the onset temperature for OF pairing, Tc,
and show that a non-zero OF condensate develops below
Tc. We argue, however, that the self-energy cannot be
neglected entirely as thermal contributions to the pair-
ing vertex and the self-energy still cancel out even when
vertex corrections are present.

We next analyze the interplay between OF and EF su-
perconductivity. It has been shown previously [26, 31]
that static Hubbard repulsion suppresses EF supercon-
ductivity, but cancels out in the gap equation for OF
pairing. Taken at a face value, this would imply that
OF superconductivity wins at sufficiently strong Hub-
bard repulsion. We show that the situation is more com-
plex: While Hubbard repulsion is always detrimental to
EF pairing, it does not eliminate it completely at strong
coupling, which we need for OF pairing (by strong coup-
ling we mean large overall coupling constant λ in Eq.
(1)). The argument is that the EF gap function ∆e(ωm)
changes sign between small and large frequencies, and for
large enough λ the system chooses the position of the gap
change to almost completely eliminate the effect of the
Hubbard f . The outcome is that EF superconductivity
survives even when f tends to infinity, and the corres-
ponding Tc for EF pairing does not depend on f . We
argue that in this situation the onset temperature for EF
pairing is still higher, but the one for OF pairing be-
comes comparable when the Debye frequency Ω1 in (1)
becomes comparable to the Fermi energy, which acts as
the UV cutoff for the model. This condition can be real-
ized in low-density materials such as SrTiO3 [23, 25, 32],
Bi [33] and Half-heusler compounds [34]. When the on-
set temperatures for EF and OF pairing are comparable,
both ∆e and ∆o become non-zero below a certain T . We
show that the superconducting condensation energy is
the largest when the phases of the two gap functions dif-
fer by ±π/2, i.e., the order parameter is ∆e ± i∆o. Such
an order spontaneously breaks time-reversal symmetry,
even though the paring symmetry is still an ordinary s-
wave.

This paper is structured as follows: In Sec. II we in-
troduce the model and the gap equation for the EF and
OF components. In Sec. III A we momentarily neglect
the self-energy and analyze the appearance of the OF
solution for the gap once the coupling exceeds a certain
threshold. Furthermore, we discuss the special role of
the thermal term in the gap equation. In Sec. III B we
include the self-energy, analyze the set of coupled Eli-
ashberg equations for the pairing vertex and the self-

energy and show that the thermal term gets cancelled
in the gap equation, and that there is no solution for
a non-zero OF gap function. We then go beyond the
Eliashberg approximation, evaluate vertex corrections at
T = 0 and show that they increase the interaction in the
particle-particle channel compared to that in the particle-
hole channel and make OF superconductivity possible at
strong enough coupling. In Sec. III C we analyze vertex
corrections at a finite T > 0 and show that the thermal
term in the gap equation still cancels out. In Sec. IV
we discuss the interplay between EF and OF supercon-
ductivity: First, in Sec. IV A, we analyze the suppression
of the EF solution by a static repulsion and show that
once the coupling λ exceeds a critical value, EF super-
conductivity exists for arbitrary strong Hubbard repul-
sion f . Then, in Sec. IV B, we compare the couplings
and critical temperatures for EF and OF solutions. Fi-
nally, in Sec. V, we discuss the co-existence of EF and
OF gap functions and argue that in such a state time-
reversal invariance is spontaneously broken. Conclusion
and outlook are presented in Sec. VI. Technical details
are relegated to the Appendices.

II. Model and gap equation

We consider a system of spin-1/2 particles that interact
via a dynamical interaction [20–25, 27, 28]:

V (Ωm) =
2

ρ
× χ(Ωm), χ(Ωm) = λ

(
f − Ω2

1

Ω2
1 + Ω2

m

)
,

(2)

where Ωm is a bosonic Matsubara frequency, ρ is the
density of states, λ a dimensionless coupling constant, f
a dimensionless measure of the Hubbard repulsion, and
Ω1 is a typical phonon energy scale, e.g., Debye energy.
To distinguish between T = 0 and a finite T in the cal-
culations on the Matsubara axis, we will label fermionic
and bosonic frequencies as ω,Ω in the T → 0 limit, and
as ωm,Ωm at a finite T . We will measure all frequencies
in units of Ω1 and set Ω1 ≡ 1.

The dynamical interaction (2) gives rise to perturba-
tions in both the particle-particle and particle-hole chan-
nels. Without vertex corrections (the terms that dress
V (Ωm)), it yields a set of two coupled Eliashberg equa-
tions for the dynamical pairing vertex Φ(ω) and the self-
energy Σ(ω). These two equations can be combined into
a closed-form equation for the dynamical gap function
∆(ω) = Φ(ω)/(1 + Σ(ω)/ω) (see, e.g., Ref. [35] and App.
B). We assume that the EF gap function ∆e is spin-
singlet, and OF ∆o is spin-triplet and do not write spin
indices explicitly. One can easily verify that the gap equa-
tion has the same form for both ∆e and ∆o. At T = 0,

∆(ω) = −
∫ Λ

−Λ

dω′χ(ω − ω′)×
∆(ω′)−∆(ω)ω

′

ω√
(ω′)2 + |∆(ω′)|2

, (3)
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where the second term in the numerator on the r.h.s.
is the contribution coming from the self-energy. The di-
mensionless UV cutoff Λ is generally of order of the Fermi
energy in units of Ω1. For most metals Λ � 1, but for
low-density systems, Λ ' 1. We will study both Λ � 1
and Λ ' 1. Since we consider a momentum-independent

interaction for simplicity, the resulting gap function ∆(ω)
has s-wave symmetry; more general interaction potentials
can also lead to d-wave states etc.

The gap equation can be re-expressed by introducing
even and odd components: ∆e(ω) = ∆e(−ω), ∆o(ω) =
−∆o(−ω) [3, 14, 25, 26]:

∆e/o(ω) = −1

2

∫ Λ

−Λ

dω′
1√

(ω′)2 + |∆e(ω′) + ∆o(ω′)|2
×
(
χe/o(ω, ω

′)∆e/o(ω
′)− χo(ω, ω′)∆e/o(ω)

ω′

ω

)
(4)

χe(ω, ω
′) = χ(ω − ω′) + χ(ω + ω′) = 2λf − λ

1 + (ω − ω′)2
− λ

1 + (ω + ω′)2
(5)

χo(ω, ω
′) = χ(ω − ω′)− χ(ω + ω′) = − 4λ× ωω′

(1 + (ω − ω′)2) (1 + (ω + ω′)2)
. (6)

Viewed separately, ∆e(ω) and ∆o(ω) can be made real.
Observe that the Hubbard repulsion f is present in χe,
but drops out of χo and that the self-energy contribution
(the last term on the r.h.s. of Eq. (4)) contains χo for
both ∆e/o, i.e., it does not contain f . This last result
is a consequence of putting a symmetric cutoff on the
fermionic ω′ rather than on a bosonic ω′ − ω, like in
canonical Eliashberg theory. If we used the canonical
expression, we would find that the Eliashberg self-energy
does contain a term which depends on f . In the normal
state this term is

Σ(ω) = −λf
∫ Λ+ω

Λ−ω
dω′ (7)

in the sign convention such that G−1(k, ω) =
i (ω + Σ(ω)) − ξ(k), with ξ(k) the electron dispersion.
For simplicity, we work with a parabolic electron disper-
sion, ξk = |k|2/2m− µ, which can be linearized near the
Fermi surface. Eq. (7) would yield Σ(ω) = −2λfω and
let to the unphysical result that the quasiparticle residue
Z = 1/(1− 2λf) > 1. We argue that this is an artefact.
The issue can be traced back to the applicability of the
canonical Eliashberg-type treatment of the self-energy for
a model with frequency-independent Hubbard repulsion.
We recall that the Eliashberg self-energy is obtained by
integrating over ξ(k) in infinite limits, before integrat-
ing over frequency. This procedure is well justified when
the interaction drops starting from frequencies below the
cutoff, which is the case for the electron-phonon term, but
it is not justified for the frequency-independent Hubbard
term. Indeed, if we compute the self-energy to first order
in f by integrating over frequency first, we find that it is
purely static and just renormalizes the chemical poten-
tial. The implication is that the dynamical −2λfω term
in the self-energy is a parasitic one. It can be eliminated
by either keeping the cutoff in the bosonic propagator,
but adding a ghost counter-term to the Eliashberg self-
energy, or by imposing a symmetric cutoff on the integral
over fermionic ω′ rather than bosonic ω′−ω. This is what

we did in Eqs. (3) and (4). Either way, the Hubbard f
term does not contribute to the dynamical self-energy,
and the quasiparticle Z remains below 1. We verified
that for the equation for the pairing vertex and for ver-
tex corrections, which we consider later, the frequency
integrals are UV-convergent, and there is no difference
between placing a symmetric cutoff on a fermionic or a
bosonic frequency.

III. Properties of the gap equation for
odd-frequency pairing

In this section we solve the gap equation for ∆o, as-
suming that ∆e is absent.

A. Without fermionic self-energy

It is instructive to first solve the gap equation for ∆o(ω)
without fermionic self-energy. We remind that the self-
energy accounts for the second term in the numerator on
the r.h.s. of Eq. (4). Neglecting this term, we obtain the
truncated gap equation

∆o(ω) = −4λω

∫ Λ

0

dω′
ω′∆o(ω

′)√
(ω′)2 + ∆2

o(ω
′)

(8)

× 1

(1 + (ω − ω′)2) (1 + (ω + ω′)2)
.

This equation can be solved numerically by iteration. At
small λ, there is no non-zero solution for ∆o(ω) because
the pairing kernel is not logarithmically singular. How-
ever at large enough λ, exceeding the critical one, λoc ,
which depends on Λ, the solution does exist. We show
λoc as a function of Λ in Fig. 1. The critical coupling de-
creases with increasing Λ and saturates at λoc ' 0.88 at
Λ→∞.
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Figure 1. Critical value of the coupling, λo
c , as a function

of the cutoff Λ. Odd-frequency superconductivity at T = 0
develops when λ > λo

c .
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Figure 2. Odd-frequency gap function at T = 0 for λ =
1.1,Λ = 10, obtained by solving the gap equation without
fermionic self-energy.

In Fig. 2 we show ∆o for Λ = 10 and representative
λ = 1.1 > λoc . We see that ∆o(ω) scales as ω at small
frequencies, passes through a maximum at a higher ω,
and at even higher ω decreases as 1/ω3. This last beha-
vior can be obtained analytically by extracting ω from
the kernel on the r.h.s. of (8) and verifying a posteriori
that the remaining integral over ω′ converges.

We next move to finite T . To obtain the critical tem-
perature T oc for OF pairing, it is convenient to treat the
linearized gap equation as a matrix problem. A straight-
forward discretization of Eq. (8) leads to a matrix equa-
tion

∆o(ωm) =
∑
ω′

m>0

K(ωm, ω
′
m)∆o(ω

′
m), (9)

where ωm = (2m + 1)πT are (positive) Matsubara fre-
quencies and K is the matrix kernel

K(ωm, ω
′
m) = T × 8πλωm

(1 + (ω′m − ωm)2)(1 + (ω′m + ωm)2)
.

(10)

At the critical temperature T oc , the largest eigenvalue
κ(T ) of the matrix K is equal to 1. It would be nat-
ural to expect that κ(T ) is a decreasing function of T ,

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

T

0

0.5

1

1.5

2

2.5

5
(T

) diagonal
no diagonal

Figure 3. Scaling of the largest eigenvalue κ(T ) of the gap
equation kernel K, in the OF case for parameters Λ =
100, λ = 1.2. The green line shows κ(T ) when the diagonal
elements of K are included, and the dashed gray line corres-
ponds to the eigenvalue estimate of Eq. (11). The blue line
shows κ(T ) when the diagonal elements are excluded. As ex-
pected, the green and blue lines approach the same limit as
T → 0, because the weight of the diagonal entries vanishes in
this limit.

such that κ(T ) < 1 at T > T oc and κ(T ) > 1 at T < T oc .
However, the numerical analysis yields a different result:
κ(T ) increases with T (the green line in Fig. 3). This
leads to a quite exotic behavior: for λ > λoc , OF super-
conductivity exists at all T , and for λ < λoc , it emerges
at some finite T oc and exists at larger temperatures. For
the model of Eq. (2) this behavior was first obtained in
Refs. [26, 36]. A similar behavior for spin-singlet super-
conductivity with gap function odd in both k and ω was
obtained in the pioneering work of Ref. [2]. It was ar-
gued in [26] that κ(T ) is non-monotonic and eventually
drops at high enough T . This gives rise to a finite T oc
for λ > λoc , but to non-monotonic temperature variation
of ∆o below this temperature, and to reentrant OF su-
perconductivity at λ < λoc , which exists in the window
T oc < T < T oc,2 (for both end points, κ(T ) = 1). This
behavior is reproduced in our model if we impose a UV
cutoff on momentum integration, like it was done in [26].

The exotic behavior of κ(T ) is easy to understand from
Eq. (10): because typical ωm are of order T , off-diagonal
elements of K scale a 1/T 2, while the diagonal elements
K(ωm, ωm), which are thermal contributions from the
static interaction V (0), saturate at a finite value at large
T . As a result, the largest eigenvalue ofK at large enough
T is determined by the largest diagonal element [26], the
one at ωm = ω′m = πT :

T � 1 : κ(T )→ K(πT, πT ) =
8λ(πT )2

1 + 4(πT )2
. (11)

We present a numerical check of this behavior in Fig. 3.
The grey line in this Figure is κ(T ) obtained by keeping
only the diagonal terms in K(ωm, ω

′
m) (this is κ(T ) from

Eq. (11)), the green line is the full κ(T ). We see that the
two expressions coincide at large T . We argue below that
this exotic behavior is an artifact of neglecting the self-
energy. Indeed, one can see that in the full Eliashberg gap
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equation (3), which includes the self-energy, the thermal
contribution with ωm = ω′m cancels out. We show in Sec.
III C that this cancellation holds beyond the Eliashberg
approximation. This cancellation has a drastic effect on
where OF superconductivity develops in the (λ, T ) phase
diagram, which we discuss in detail in the next Section.
As a preview, in Fig. 3 by a blue line we show the scal-
ing of κ(T ) for K(ωm, ω

′
m) still given by (10), but with

diagonal terms set to zero. We see that κ(T ) has a con-
ventional behavior: it decreases with increasing T . For
such κ(T ), there is no OF superconductivity if λ < λoc ,
and if λ > λoc , the gap ∆o(ωm) is non-zero for T < T oc .

B. Role of self-energy at T = 0

We now discuss the self-energy in more detail. Our
first point is that when this term is kept, there is no non-
zero solution of the full Eliashberg gap equation (4) for
∆o(ωm) at any T , including T = 0. For interaction with
acoustic phonons, this was first observed in Ref. [19]. In
our case of purely dynamical interaction with an Einstein
boson, we can prove this explicitly. Namely, we argue
that if ∆o(ωm) emerges at some T oc , the corresponding
linearized gap equation at T immediately below T oc has
to satisfy the inequality

max
n

∣∣∣∣∆o(ωn)

ωn

∣∣∣∣ ≤
∑
mK

T
n,m

1 +
∑
mK

T
n,m

×
(

max
l

∣∣∣∣∆o(ωl)

ωl

∣∣∣∣) ,
(12)

where KT
n,m is the transpose of the OF matrix kernel in

Eq. (10) (see App. B for details). Because all components
of K are positive,

∑
mK

T
n,m/(1 +

∑
mK

T
n,m) < 1, hence

a non-zero ∆o(ωm) has to satisfy the strict inequality

max
n

∣∣∣∣∆o(ωn)

ωn

∣∣∣∣ < max
n

∣∣∣∣∆o(ωn)

ωn

∣∣∣∣ if ∆o 6= 0 , (13)

which is impossible.
When vertex corrections are included, the interplay

between the attraction in the odd-frequency pairing chan-
nel and pair-breaking by the self-energy becomes more
nuanced as the interaction in the particle-particle chan-
nel, χpp, and the one in the particle-hole channel, χph,
generally become different. Keeping the two interactions
as separate variables in the gap equation at T = 0, we
obtain the gap equation in the form

∆o(ω) = (14)

−
∫
dω′χpp(ω − ω′)×

∆o(ω
′)−∆o(ω)ω

′

ω × α(ω − ω′)√
∆2
o(ω
′) + (ω′)2

,

where

α(ω − ω′) =
χph(ω − ω′)
χpp(ω − ω′)

. (15)

For our purposes, this equation has to be projected to
odd-frequency channel.

That vertex corrections make χpp and χph non-
equivalent can be seen already in perturbation theory,
by collecting vertex corrections for these two interactions
to leading order in λ. We present the diagrams in Fig. 4,
and discuss computational details in Appendix B. We
emphasize that the result for the vertex correction dia-
gram does not depend on whether we impose a symmetric
cutoff on an internal fermionic frequency or on a bosonic
frequency in the evaluation.

The key point is that there are two vertex correction
diagrams for the pairing vertex but only one for the self-
energy. In both cases, the integration over two fermionic
and one bosonic propagator in the vertex correction piece
in Fig. 4(c) yields 2λf . Then under vertex renormaliza-
tion

χpp → χpp(1 + 4λf), χph → χph(1 + 2λf) (16)

Hence

α =
1 + 2λf

1 + 4λf
< 1 . (17)

To simplify the analysis, below we treat α < 1 as a phe-
nomenological parameter. In Fig. 5 we show the behavior
of the critical OF coupling λoc as a function of α, in the
limit of large Λ. At α = 1 (the original model with no
vertex corrections), λoc = ∞, which implies that there is
no OF pairing for any value of λ, as we already discussed.
However, once α becomes smaller than 1, λoc becomes fi-
nite, i.e., for strong enough λ, OF pairing does develop.
At α → 0, λoc approaches 0.88, as expected. The fact
that OF pairing develops when vertex corrections are in-
cluded has also been observed in a recent numerical work
[29].

We note in passing that for quantum-critical OF pair-
ing by a gapless boson (the limit Ω1 → 0, λ → ∞, λΩ2

1

tends to a constant), the system is at the boundary to-
wards OF pairing already without vertex corrections. In
this case OF superconductivity emerges already at infin-
itesimally small 1− α (Ref. [37]).

Also, the authors of Ref. [19] argued that the effect
of vertex corrections can be modeled by adding a spin-
dependent component of the interaction that acts differ-
ently in the particle-particle and particle-hole channels.
Accordingly, our results can be also modeled by introdu-
cing an extra spin-spin component of the interaction.

C. Role of self-energy at T > 0: cancellation of
thermal terms in the gap equation

So far we discussed vertex corrections at T = 0. The
situation at a finite T is a bit more tricky. Namely, at a
finite T we have to distinguish between vertex renormal-
ization of the interaction at a finite frequency transfer Ωm
and at zero frequency Ωm = 0. The contributions from
the latter to the pairing vertex and the self-energy are
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Figure 4. (a) Relevant corrections for the pairing vertex Φ. Straight lines represent full Green’s functions (including the self-
energy), wiggly lines the interaction V . Four-momentum notation is used: k = (ω,k), p = (ω′,p). (b) Relevant correction for
the self-energy. (c) The vertex correction piece. (d) Relevant contributions with zero frequency transfer Ωm = 0, represented
by dashed interaction lines. Full interaction lines imply a summation over all frequencies Ωm.
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Figure 5. Critical value of the coupling, λo
c , for large Λ = 20

as a function of the self-energy parameter α. When α = 1, λo
c

diverges and OF superconductivity cannot be realized

associated with thermal fluctuations. Vertex renormaliz-
ations to χpp(Ωm) and χph(Ωm) at a finite Ωm are essen-
tially the same as at T = 0, and the interplay between
vertex corrections to χpp(Ωm) and χph(Ωm) is governed
by α < 1. For interactions with Ωm = 0, computations to
the leading (first) order in λ yield a different result: there
is no factor of 2 difference between vertex corrections to
χpp(0) and χph(0). To see this, in Fig. 4(d) we pictori-
ally single out the interactions with Ωm = 0 by dashed
interaction lines. For the pairing vertex at Ωm = 0, there
are two different vertex correction diagrams, as before,
hence there is an overall factor of 2. For the self-energy,
there is only one diagram, but there are two choices to
select which of the two interaction lines carries Ωm = 0
and hence is associated with χph(0). This gives an ex-

tra factor of 2. Then the vertex corrections to χpp(0) and
χph(0) are the same. As a result, the thermal piece in the
gap equation cancels out even in the presence of vertex
corrections. We conjecture that this holds beyond first
order in λ. We recall that this cancellation eliminated a
would-be highly exotic behavior, in which the coupling
constant for OF pairing increases with increasing T .

To summarize, inclusion of vertex corrections with
proper treatment of the thermal terms makes OF super-
conductivity possible. However, the condition λ > λoc =
O(1) is required, and λoc is large if the vertex corrections
are weak. The conditions for OF pairing are easier to
fulfill in a quantum-critical regime, where the coupling is
large.

IV. Interplay between EF and OF pairing at
strong repulsion

A. EF superconductivity and its suppression by
static repulsion

As we said in the Introduction, a particle-particle in-
teraction of the form of Eq. (2) also allows for a conven-
tional superconductivity with even-frequency gap func-
tion ∆e(ω). Below we set ∆e(ω) to be real (we recall
that we label by ω a continuous Matsubara frequency at
T = 0). For a non-zero Hubbard repulsion f and Λ� 1,
such ∆e(ω) necessary has a node [22, 38]. A represent-
ative ∆e(ω) at T = 0 is shown in Fig. 6(b).

For generic f ≤ 1, ∆e is much larger than ∆o because
of the Cooper logarithm, and for λ < λoc is the only su-
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Figure 6. A comparison of OF (a) and EF (b) gap functions
at T = 0, obtained by solving the gap equation without the
fermionic self-energy. We set λ = 1.1, f = 1.5 and Λ = 10.

perconducting solution at T = 0. When the Hubbard
repulsion f increases, ∆e is suppressed. At weak coup-
ling, a phase transition into the normal state occurs when
f reaches a critical value fc. For Λ � 1 and α = 0, this
critical value is given by [28]

fc '
1

1− 2λ log(Λ)
+O(λ) for Λ� 1 . (18)

An exemplary (T -f) phase diagram for EF superconduct-
ivity is shown in Fig. 7. It is obtained by solving the gap
equation (14) for infinitesimally small ∆e(ω) for two val-
ues of α. As expected, the critical temperature for EF
pairing, T ec , vanishes at f > fc. As seen in the Figure, an
inclusion of a finite self-energy reduces T ec at f < fc, but
hardly impacts the value of fc itself. To understand this,
we note that the self-energy in the even-frequency case
still contains the odd component of the dynamical in-
teraction, χo, see Eq. (4). Near f = fc, the transition
temperature T ec is determined by fermions with small
frequencies due the IR-divergent Cooper logarithm. Be-
cause χo(ω, ω

′) vanishes at ω = ω′ = 0, it does not affect
the critical fc.

At a first glance the vanishing of T ec at f > fc implies
that for such f EF superconductivity is not a competitor
to OF superconductivity, and to get OF pairing one just
needs to find a way to increase f . However, the actual
situation is more complex. The reason is that, as we
found earlier, OF superconductivity only holds when λ >
λoc , and λoc is at least O(1), while Eq. (18) for fc only
holds for small λ. Once we increase λ, we find that there
is another critical value

λec '
1

2 log(Λ)
for Λ� 1. (19)

at which fc diverges. We have verified Eq. (19) numeric-
ally and show the results in App. C. For λ > λec, the EF

Figure 7. | log(T e
c )|−1 as function of f for two values of α,

which measures the strength of pair-breaking effect due to
fermionic self-energy (at α = 0 there is no effect from the self-
energy). One can see that | log(T e

c )|−1 scales linearly with f ,
meaning that T e

c ∼ exp(1/(fc− f)). We set Λ = 10, λ = 0.12.
A nonlinear frequency grid was used to reach the required
exponentially small temperatures. We have checked that the
details of the discretization have no impact on T e

c near where
it vanishes. Very close to fc, the critical temperatures become
too small to be numerically accessible; an extrapolation of T e

c

is shown with dashed lines.
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Figure 8. Comparison of λe
c (red) and λo

c (blue) as a function
of Λ for α = 0.2.

gap function is non-zero at T = 0 for all values of f . The
node in the corresponding ∆e(ω) is placed in such a way

that f ×
∫
dω′∆e(ω′)

ω′ → const. when f →∞.

B. Critical couplings and temperatures for EF and
OF superconductivity

We see from Eq. (19) that at large Λ and α = 0,
λec ∼ 1/ log (Λ) while λoc ' 0.88 is a constant. Then
λec < λoc . This is also true at a finite α as λoc increases
and λec remains almost the same. In this situation, it
is natural to expect that EF superconductivity prevents
the development of OF superconductivity, because when
∆e(ω) becomes non-zero, it reduces the strength of the
pairing kernel on the OF channel. This is the last of
the three obstacles for OF pairing that we listed in the
Introduction.
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Figure 9. Numerical results for T e
c (circles) and T o

c (dashed
horizontal line) as a function of f . We set Λ = 2, λ = 1.5,
α = 0.3. Yellow shading denotes the superconducting region.
The label ∆e + i∆o indicates the superconducting state with
broken time-reversal symmetry.

This obstacle becomes less drastic when Λ = O(1), like
in low-density materials, e.g., SrTiO3 [23, 25, 32], Bi [33]
and Half-heusler compounds [34]. In this situation λec
and λoc become comparable, as we show in Fig. 8. Cor-
respondingly, T ec and T oc also become comparable. There
is even a window of Λ in Fig. 8 where OF superconduct-
ivity develops first. For small α, the requirement on Λ
is even less restrictive. In Fig. 6 we show ∆o and ∆e,
obtained independently by solving the gap equation at
T = 0 at α = 0, i.e., without the self-energy term, for
λ = 1.1, f = 1.5 and Λ as large as 10. We see that
even for such large Λ the magnitudes of ∆o and ∆e are
comparable.

These observations suggest that at T = 0 both EF and
OF gap functions may be non-zero. Our next goal is to
find such a mixed state and determine the relative phase
factor between the U(1) order parameters ∆o and ∆e.

V. Spontaneous breaking of time-reversal
symmetry

We show an exemplary phase diagram in the (T, f)
plane in Fig. 9 by choosing a Λ for which EF supercon-
ductivity develops first below T ec , but T oc is close, and
while it is reduced by a finite ∆e, the OF component still
develops below a finite T .

As we will demonstrate below, the gap function in the
mixed state at T = 0 is of the form

∆(ω) = ∆e(ω)± i∆o(ω) . (20)

This agrees with Ref. [29], where a mixed state with spin-
singlet EF and spin-triplet OF order parameter with the
relative phase ±π/2 has been found numerically (for a
cuprate-like Fermi surface and d−wave spatial symmetry
of both gap functions).

A superconducting state with ∆(ω) from Eq. (20) has
a special property: it spontaneously breaks time-reversal
symmetry, despite that separately spin-singlet ∆e and

spin-triplet ∆o are invariant under time reversal. We
show in App. D that time-reversal T acts on the gap
function along the Matsubara axis simply as a complex
conjugation:

(T ◦∆)(ω) = [∆(ω)]
∗
. (21)

Taken separately, ∆e(ω) and ∆o(ω) are time-reversal in-
variant (we recall that ∆o is odd under time permutation,
but even under time reversal [3, 39]). However, ∆(ω)
from (20) does not remain invariant under time reversal.

To see that the relative phase between ∆e and ∆o is
±π/2, we consider the gap equation at T = 0 without
self-energy correction and assume that the gap function
is

∆(ω) = ∆e(ω) + exp(iφ)∆o(ω), (22)

and that ∆o is smaller than ∆e. To leading order in ∆o,
the gap equation in the OF channel then takes the form

exp(iφ)∆o(ω) = (23)

2

∫ Λ

0

dω′
χo(ω − ω′)∆o(ω

′)√
(ω′)2 + ∆2

e(ω
′)

×
(

exp(iφ)− cos(φ)∆2
e(ω
′)

(ω′)2 + ∆2
e(ω
′)

)
+O(∆2

o(ω
′))

One can easily verify that φ can be either zero or ±π/2.
For φ = 0, the expression in parentheses reduces to 1 −
∆2
e/((ω

′)2 + ∆2
e), which reduces χo. For φ = ±π/2, the

expression in parentheses becomes±i, in which case there
is no suppression. We conclude therefore that the mixed
state with φ = ±π/2 is indeed preferential. We note
in passing that the state ∆ = ∆e ± i∆o is also realized
when the time-reversal symmetry is broken explicitly by
applying a magnetic field, as shown in Ref. [14].

A spontaneous breaking of time-reversal symmetry can
be detected experimentally via muon spin relaxation or
Kerr rotation [40] and such states have been intensively
discussed in recent years, but chiefly for non-s-wave spa-
tial symmetry, or for multi-band s-wave superconduct-
ors [41]. In our case a superconducting state with broken
time-reversal symmetry emerges in a one-band s-wave
superconductor.

VI. Conclusion and outlook

In this work we considered OF superconductivity in a
model of fermions with an interaction potential which
contains a static Hubbard repulsion and a dynamical
phonon-mediated attraction. We critically reexamined
the three foes which usually prevent OF superconduct-
ivity: the necessity for strong coupling, the self-energy
effect and the suppression by EF superconductivity. We
have found that the strong coupling requirement cannot
be avoided, but there are ways to overcome the other two
obstacles. The self-energy does prevent OF supercon-
ductivity in the Eliashberg approximation, if the same
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interaction determines the pairing and the fermionic self-
energy. We argued that vertex corrections change this
balance and make OF pairing possible. At the same time,
the self-energy cannot be simply neglected as with and
without vertex corrections it leads to cancellation of the
thermal terms in the gap equation. Consequently, we
find an OF state, which is stable below T oc down to zero
temperature, and not the reentrant behavior observed in
previous works.

The suppression of OF pairing by pre-existing EF su-
perconductivity remains a problem when the Fermi en-
ergy is much larger than the typical phonon energy scale.
However, when these scales become comparable, the crit-
ical temperatures for EF and OF orders are comparable,
and OF superconducting order can co-exist with EF su-
perconductivity. We have shown that a mixed state with
the gap function ∆e(ω)± i∆o(ω) can be realized in this
case. This state spontaneously breaks the time-reversal
invariance.

It has been argued that induced OF superconducting
state may exhibit a paramagnetic Meissner effect (see
Ref. [42] and references therein). However, as shown in
Refs. [4, 5, 43] and also discussed in Ref. [3], for spon-
taneous OF superconductivity in the bulk, induced by a
retarded interaction, the Meissner effect is diamagnetic.
This can be seen explicitly by computing the superfluid
density ns (see Appendix E), which is manifestly positive.
While this result has been questioned in the literature
due to possible issues with spontaneous U(1) symmetry
breaking [44], in our understanding all ambiguities can be
avoided by consistently working in the functional-integral
formalism (and avoiding a Hamiltonian description). The
fact that a diamagnetic Meissner effect is ”conventional”
can also be seen by reformulating the OF theory in terms
of D(ω) = ∆o(ω)/ω, which is an even function of fre-
quency, like ∆e(ω) for EF superconductivity. Using the
description of OF superconductivity in terms of D(ω),
one straightforwardly obtains conventional electromag-
netic response of the superconducting state. A paramag-
netic Meissner effect can develop for induced OF super-
conductivity at a boundary of a system, but this is a
different setup from the one considered in this work.

Our analysis of the OF state was performed by study-
ing gap functions on the Matsubara axis. On the other
hand, the measurable physical properties of the system
are determined by the gap function on the real axis. Since
the OF gap vanishes at ω = 0, the density of states of an
OF superconductor is qualitatively similar to that of an
EF gapless superconductor in the presence of magnetic
impurities [45]. However, we expect crucial differences
in, say, the phase winding of the gap function and in the
behavior of low-energy collective modes, which could be
fruitful objects for future studies.

Note added: shortly after this paper was posted, a
work appeared [46] which contains a more general version
of the “No-go-theorem” for OF superconductivity within
the Eliashberg approximation due to the self-energy ef-
fects .
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A. Proof that ∆o vanishes within the Eliashberg
approximation

We introduce a function D(ω) = ∆o(ω)/ω. In terms
of R, the linearized gap equation (3) at finite T reads

D(ωn) =
∑
m

KT
n,m [D(ωm)−D(ωn)] , (A1)

where KT
n,m = K(ωm, ωn) is the transpose of the OF

kernel defined in Eq. (10).

By bringing D(ωn) to the left side, we get

D(ωn) =
∑
m

KT
n,m

1 +
∑
mK

T
n,m

×D(ωm) . (A2)

Now we assume that D(ωn) is finite for all n and look at
maxn |D(ωn)|:

max
n
|D(ωn)| =

max
n

∣∣ ∑
mK

T
n,m

1 +
∑
mK

T
n,m

×D(ωm)
∣∣ ≤

max
n

∣∣∣∣
∑
mK

T
n,m

1 +
∑
mK

T
n,m

∣∣∣∣× ∣∣D(ωm)
∣∣ ≤

max
n

∣∣∣∣
∑
mK

T
n,m

1 +
∑
mK

T
n,m

∣∣∣∣×max
l

∣∣D(ωl)
∣∣ , (A3)

where the triangle inequality was used. Since χo is at-
tractive, all entries of K are positive. Then we can re-
write Eq. (A3) as

max
n
|D(ωn)| ≤

∑
mK

T
n,m

1 +
∑
mK

T
n,m

×max
l

∣∣D(ωl)
∣∣ .

The first factor in the second inequality is smaller than 1
for any n. Assuming that maxn |D(ωn)| > 0, we obtain
the strict inequalitiy

max
n
|D(ωn)| < max

n
|D(ωn)| , (A4)

which is a contradiction. Therefore, we must have R =
0⇔ ∆o = 0.
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B. Vertex corrections

1. Evaluation at T = 0

Including the second order diagrams of Fig. 4 in the
main text, the linearized Eliashberg equation at T = 0
can be written down as

Φ(k) = −
∫
p

Φ(p)G(p)G(−p)V (k − p)× [1 + 2Γ(k, p)]

Σ(k) = −i
∫
p

G(p)V (k − p)× [1 + Γ(k, p)] , (B1)

where

Γ(k, p) = −
∫
l

G(l)G(p+ l − k)V (k − l), (B2)

and we use notations k = (ω,k), p = (ω′,p), l = (ω̃, l)
and the conventions

G(k) = (iω − ξ(k) + iΣ(k))
−1
, (B3)∫

k

=

∫
dωdk

(2π)d
, (B4)

with ξ(k) the electron dispersion, which can be linear-
ized near the Fermi surface. We will focus on d = 2 for
concreteness, and comment on the analogous 3d results
along the way.

Without the vertex corrections, Γ = 0, the gap equa-
tion (3) directly follows from (B1) by rewriting the defin-
ition of the gap, ∆(ω) = Φ(ω)/(1 + Σ(ω)/ω) as

∆(ω) = Φ(ω)− ∆(ω)

ω
Σ(ω) , (B5)

and evaluating the momentum integrals in (B1).
We now evaluate the vertex correction Γ, using bare

Green’s functions (no Σ), and working in the limit Λ →
∞ for simplicity. Shifting the integration variables, Γ can
be written as

Γ(k, p) = (−1)λ

∫
dldω̃

(2π)3

2

ρ
×
(
f − 1

1 + (ω̃)2

)
(B6)

× 1

i(ω̃ + ω′)− ξ+
1

i(ω̃ + ω)− ξ−
,

ξ+ = ξ(l +
1

2
(p− k)), ξ− = ξ(l− 1

2
(p− k)) .

We expand the dispersion as

ξ+ = ξ(l) + δq, ξ− = ξ(l)− δq, (B7)

δq =
1

2
vF |q| cos(φ), q = |p− k|, φ = ](q, l) ,

and integrate over ξ(l) in infinite limits. Such an ex-
pansion is legitimate as for Ω ≡ ω′ − ω � EF the relev-
ant contributions come from small angle scattering where
|q| � |k|, |p|. We call Γ1 the part ∝ f and the remainder

Γ2. To compute Γ1, we need to perform the frequency
integral first, since the integral is not absolutely conver-
gent. The computation is standard; it is the same as for
the polarization function, since the part ∼ f is short-
range. We obtain

Γ1 = 2λf

(
1− |Ω|√

Ω2 + (vF |q|)2

)
, (B8)

The second term in Γ1 contains |q|. To find the renor-
malization of the interactions which enter the Eliashberg
equations, we can take the s-wave part of this term. I.e.,
we write

|q|2 = |p− k|2 = 4k2
F sin2(θ/2), θ = ](p,k), (B9)

where k and p are on the Fermi surface. We then average∫ 2π

0

dθ

2π

|Ω|√
Ω2 + 16E2

F sin2(θ/2)
' |Ω|

2πEF
log

(
EF
|Ω|

)
(B10)

In d = 3, one obtains a correction ∼ |Ω|/EF without the
logarithm. In the limit EF � 1, the dynamical correction
is small, in accordance with Migdal’s theorem [47].

To compute Γ2, it is easier to perform the integral
over dispersion ξ first. This is allowed because the ex-
tra frequency-dependence renders the integral absolutely
convergent. The result is

Γ2 =2λfsign(Ω)
1√

(vF |q|)2 + Ω2
(B11)

×
[
arctan

(
1

ω

)
− arctan

(
1

ω′

)]
.

This term depends on ω and ω′ separately. I.e., it de-
pends on both ω − ω′ and ω + ω′. However, after taking
the s-wave part it will scale as |Ω|/EF similar to (B10).

Collecting the results, the vertex correction reads

Γ = Γ1 + Γ2 = 2λf + |ω − ω′| ×O
(

1

EF

)
, (B12)

The static part reads 2λf , as stated in the main text.

2. Additional diagrams

In Fig. 10(a), we show additional second order dia-
grams not considered so far. The first diagram renor-
malizes both χpp and χph alike, thus it cannot lead to a
non-zero OF solution. The second “rainbow” diagram is
already contained in the self-consistent Eliashberg equa-
tion. The third diagram can contribute in principle, but
it depends on ω+ω′ even for frequency-independent inter-
actions, and its contribution does not vanish for ω = ω′.
Thus, it cannot be treated in the Eliashberg framework.
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Figure 10. (a) Additional second order diagrams not con-
sidered in the main text. (b) Self-energy contribution where
both interaction lines are thermal.

3. Cancellation of the thermal terms

As discussed in the main text, at a finite temperat-
ure we can isolate two thermal contributions from the
second-order self-energy diagram. However, we need to
subtract the contribution shown in Fig. 10(b), where the
frequency transfer on both lines is zero. But this contri-
bution vanishes: To see this, we can expand the fermionic
dispersion around the external momentum k as

ξ(k + p) ' ξ(k) + vF p‖ + p2
⊥/(2m), (B13)

where p‖,p⊥ are the components of p parallel and per-
pendicular to k, respectively, and m is an effective mass.
Expanding ξ(k+p+ l) in the same way, for instance the
integral over p‖ vanishes for zero frequency transfer: if
the integral is evaluated by contour integration in infinite
limits, both poles are in the same half-plane. Note that
such an argument does not work if only one of the trans-
ferred frequencies is non-zero, while the other frequency
is integrated over, since in this case the additional fre-
quency integral must be evaluated before the momentum
integrals, yielding non-zero.

As a result, the thermal contributions to Φ and Σ in
Eq. (B1) read (with ω = ω′ and after evaluating mo-
mentum integrals):

Φth(ω) = − Φ(ω)

|ω + Σ(ω)|
V (0)× [1 + 4λf ] (B14)

= −∆(ω)

|ω|
V (0)× [1 + 4λf ]

Σth(ω) = −sign(ω)V (0)× [1 + 4λf ]

∆th(ω) = Φth(ω)− ∆(ω)

ω
Σth(ω) = 0 .
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Figure 11. Numerical estimation of λe
c (blue line), without

self-energy correction. Gray lines show the analytical estim-
ates (19) and (C1).

C. Behavior of λe
c

In Fig. 11, we numerically check the behavior of λec '
1/(2 log(Λ)) at large Λ by plotting 1/λec. Apart from
the nearly constant offset, which is expected since the
formula only holds with “logarithmic accuracy”, at very
large Λ the numerical result for 1/λec decreases compared
to the asymptotic expression. This is expected since in
the numerics a non-zero, though very small temperature
T is used, while λec is defined as the critical coupling at
zero temperature. Adapting the evaluation in Ref. [28]
(see Eq. (15) within), one can provide an estimate for
λec at a finite temperature T if one assumes that T only
serves as an IR cutoff, similar to ∆e(0) in Ref. [28]. One
finds

λec =
1

2 log(Λ)
×
(

1 +
log Λ

| log(T )|

)
. (C1)

As seen in Fig. 11, this formula correctly reproduces the
numerics up to the constant offset.

D. Time-reversal transformation of the gap
function

To derive the action of the time-reversal transforma-
tion T on gap functions on the Matsubara axis, we first
derive the action on real-frequency gap functions. We
work with retarded and advanced gap functions in the
time domain at zero temperature, which are defined as

∆R(t) = −iθ(t) 〈0|M̂(t)|0〉 (D1)

∆A(t) = +iθ(−t) 〈0|M̂(t)|0〉 ,

with |0〉 the interacting ground state, and

M̂(t) = {cα(t), cβ(0)} [iσy · (1+ dz · σz)]αβ , (D2)
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where the spin term describes both singlet and mixed
triplet. T acts on state vectors |ψ〉 and operators Ô as

|T ψ〉 = T |ψ〉 (D3)

T ◦ Ô = TÔT−1,

where T is an antiunitary matrix. Furthermore, expect-
ation values fulfill

〈T ψ|T φ〉 = 〈ψ|T †Tφ〉 = 〈ψ|φ〉∗ . (D4)

Using these properties, ∆R transforms as(
T ◦∆R

)
(t) = iθ(−t) 〈T 0|T ◦ M̂(t)|T 0〉 (D5)

= iθ(−t) 〈0|T †TM̂(t)T−1T |0〉 = iθ(−t) 〈0|M̂(t)|0〉
∗

= −
[
∆A(t)

]∗
.

Fourier-transforming, we obtain(
T ◦∆R

)
(Ω) = T ◦

∫
dt exp(iΩt)∆R(t) = (D6)

−
∫
dt exp(−iΩ(−t))

[
∆A(t)

]∗
= −

[
∆A(−Ω)

]∗
.

Note that T does not act on the measure dt, as can be
checked considering the inverse Fourier transform. With
Eq. (D6) at hand, we can infer the action of T on the
Matsubara gap function ∆(ω) from Cauchy’s theorem.
For concreteness, we focus on ∆o and assume that ∆o ∈
R as in the main text. For ω > 0, ∆o is related to ∆R

o

and ∆A
o as

∆o(ω) =
1

2πi

∫
dΩ

∆D
o (ω)

Ω− iω
(D7)

∆o(−ω) = − 1

2πi

∫
dΩ

∆A
o (Ω)

Ω + iω
. (D8)

By writing ∆
R/A
o (Ω) = ∆

R/A
1 (Ω) + i∆

R/A
2 (Ω), one can

check that the condition ∆o ∈ R leads to

∆
R/A
1 (Ω) = ∆

R/A
1 (−Ω) (D9)

∆
R/A
2 (Ω) = −∆

R/A
2 (−Ω),

In addition, from ∆o(ω) = −∆o(−ω) we obtain

∆A
o (Ω) = −∆D

o (ω)∗ . (D10)

Now we can compute (T ◦∆o)(ω) for ω > 0:

(T ◦∆o) (ω)
(D7),(D6)

= − 1

2πi

∫
dΩ
−
[
∆A
o (−Ω)

]∗
Ω + iω

(D9)
=

(D11)

1

2πi

∫
dΩ

∆A
o (Ω)

Ω + iω

(D8)
= −∆o(−ω) = ∆o(ω) = ∆o(ω)∗ .

Proceeding analogously for ∆e ∈ R, one also finds
(T ◦ ∆e)(ω) = ∆e(ω)∗. Due to the antilinearity of T ,
(T ◦ ∆)(ω) = ∆(ω)∗ then holds for arbitrary ∆(ω) of
the form ∆(ω) = ∆e(ω) + exp(iφ)∆o(ω), as required in

Sec. V.

E. Meissner effect

The magnetic response of a superconductor is determ-
ined by the energy-cost of phase fluctuations. Given a
spatially homogeneous mean-field solution ∆ with fluc-
tuating phase θ(x), the momentum-space action for θ is

Sθ ∼
∫
dq ns|q|2θ(q)θ(−q), (E1)

where we neglected temporal fluctuations of θ. As shown
in previous works [3–5, 43, 44], the superfluid density
ns, which enters Eq. (E4), takes the same form for both
EF and OF bulk superconductivity. We explicitly veri-
fied this result and confirmed it. At T = 0, the super-
fluid density ns, normalized to the normal-state density
of electrons, is:

ns =
1

2

∫
dω

|∆(ω)|2

(|∆(ω)|2 + ω2)
3/2

. (E2)

This is a manifestly positive expression. Therefore, the
Meissner effect is diamagnetic in both EF and OF cases.

If we simply evaluate Eq. (E4) in the OF state at T =
0, we run into a problem: for ∆(ω) ∼ ω as ω → 0 (see
Sec. III A), the integral is logarithmically divergent at
small frequencies, as already observed in Ref. [44]. Note
that this is the case only if the gap function is linear in
ω; for a general gap function which scales as ∆(ω) ∼ ωa

with a 6= 1, the integrand scales as{
ω2a−3 a > 1

ω−a a < 1,
(E3)

which leads to a convergent result.
For the given ω-linear gap function, the logarithmic

singularity of ns will be cut off by finite momenta q.
Therefore, the action for the phase field (E4) is modified
to

Sθ ∼
∫
dq ns(q)|q|2θ(q)θ(−q), ns(q) ∼ log(kF /|q|) .

(E4)

The Meissner response can be obtained by coupling the
system to an electromagnetic field A. In the conventional
case of Eq. (E4), the constant ns acts a a mass term for A,
which leads to a penetration depth λ ∼ 1/

√
ns. Taken at

face value, the logarithmic ns(q) obtained in (E4) then
implies a super-exponential decay of an external mag-
netic field in a superconductor, B(x) ∼ exp(−x log(x)).
However, we do not regard this as an observable effect,
but rather as an artifact of the mean-field approximation:
the logarithmic divergence of ns(q) likely signals that in
the full theory with fluctuations included, the gap func-
tion ∆(ω) scales as ωa, with a 6= 1. As discussed above,
in this case ns is finite, and the Meissner response is a
conventional.
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