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In strong-coupling regimes, quantum dynamical effects can alter conventional physics described by
perturbation theories, but the dynamical simulations of these quantum systems using matrix prod-
uct states—such as multi-level vibronic systems that are relevant to energy and electron transfer
reactions—suffer from rapid entanglement growth during their real-time evolution, impeding explo-
rations of spectra, dynamics, and kinetics. We examine the possibility of using non-unitary trans-
formations to alter dynamical entanglement growth in matrix-product-state simulations of quantum
systems, using the spin-Boson model to showcase the reduced entanglement. By appropriately
choosing the transformation, the entanglement growth rate is suppressed, improving the efficiency
of quantum dynamical simulations. Entanglement control is achieved by the transformation-induced
biased transitions among the system quantum states, and by “projecting” (approximately) the sys-
tem quantum state to one of the eigenstates of the system-bath coupling operator, thus controlling
the energy exchange between the system and bath. The transformation can be applied to quantum
many-body systems, including spin chains and multi-level vibronic systems; the approach improves
the numerical efficiency of the MPS simulations.

I. INTRODUCTION

Understanding and controlling quantum dynamics are
important for many areas ranging from many-body
physics to quantum computations [1–8]. While numeri-
cal techniques based on matrix product states (MPS) are
a powerful tool to study the time evolution of quantum
systems, accurate determination of the dynamics of quan-
tum systems remains a long-standing problem, due to the
complexities caused by quantum entanglement [9–17]. In
the low-entanglement regime, quantum dynamics can be
simulated efficiently using tensor-network techniques [18–
25] if the components of the system are not strongly cou-
pled or if the system is close to its ground state (assuming
no phase transition occurs). However, when the system is
far from equilibrium the entanglement entropy may grow
linearly in time [26–29], necessitating exponentially grow-
ing dimensions for the MPS, and impeding numerically
accurate simulations. Unfortunately, many important
physical processes exhibit high-entanglement during their
dynamical evolution. For example, the study of quantum
thermalization is an important challenge in theoretical
physics. Recent studies found that the thermalization
dynamics requires a description beyond the semi-classical
Boltzmann theory, and requires long-time dynamical sim-
ulations that are obstructed by the linear growth of en-
tanglement [30]. Also, in the field of cavity quantum elec-
trodynamics [31–34], where light and matter are strongly
coupled, the electronic-vibrational degrees of freedom of a
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molecular ensemble are strongly coupled to multiple cav-
ity modes, producing highly-entangled dynamical evolu-
tion and strongly-perturbed chemical reactivity [35–37].
Molecular and solid-state nano-junctions provide another
example, where strong electronic-vibrational entangle-
ment can significantly change the transport kinetics and
device performance. For example, the low-bias current
in single-molecule junctions and single-walled nanotube
quantum dots can be suppressed [38], and this effect is
known as the Franck-Condon (FC) blockade [39, 40].

Using MPS to study the quantum dynamics of these
highly-entangled systems has attracted intense interest
[25, 41–47]. Most proposed methods use global basis
transformations to reduce entanglement in the MPS,
since local on-site unitary transformations cannot change
the entanglement of a quantum state. These proposed
methods that use global basis transformations, however,
require that the Hamiltonians have some specific prop-
erties (e.g., linear couplings and a harmonic bath for a
system-bath model).

In this paper, we introduce a general local non-unitary
similarity transformation for open-system Hamiltonians
and examine its influence on the entanglement growth
rate during the real-time evolution of the open quantum
system. The transformation produces a family of Hamil-
tonians characterized by a continuous parameter that
controls the entanglement growth rate. By adjusting the
parameter, one can suppress the entanglement growth
in matrix product states during the real-time evolution
of highly entangled quantum systems. This method is
general and can be applied to almost any Hamiltonian,
including open quantum system Hamiltonians with an
anharmonic bath or non-linear system-bath couplings.
The approach has the potential to enable efficient non-
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Markovian simulations of large open quantum systems,
including multi-chromophore exciton chains in strong-
coupling regimes [48, 49]. The effect of non-unitary sim-
ilarity transformations on the simulation efficiency has
been explored extensively in the electronic-structure lit-
erature [50–53], but is much less-well explored for quan-
tum dynamics. Such a transformation not only sheds
light on improving the efficiency of numerical simulations
by tuning the entanglement growth in time-dependent
simulations, but also provides a promising way to explore
the hidden structure of the entanglement growth.

II. THEORY

The Hamiltonian of a system-bath quantum system is

Ĥ = Ĥs + Ĥsb + Ĥb (1)

where Ĥb describes a collection of bosons (interacting or
non-interacting) and Ĥsb contains couplings between the
system and the bosons, it is possible to obtain a new
Hamiltonian H using a similarity transformation: H =

eŜĤe−Ŝ . Here, we choose Ŝ to be Hermitian, in contrast
to the usual choice that Ŝ is anti-Hermitian. Thus, eŜ is
non-unitary: (eŜ)† = eŜ . In the similarity-transformed
frame, using an evolution operator Ut = e−iHt (~ = 1),
the time evolution of the expectation value (which is
transformation-invariant) for an observable Â is given by

〈Â〉 (t) = 〈ψ0|eŜU†t e−ŜAe−ŜUteŜ |ψ0〉 . (2)

We recognize that e−ŜUteŜ |ψ0〉 is the state at time t
in the original frame (i.e., without the similarity trans-
formation), and UteŜ |ψ0〉 is the state at time t in the
transformed frame.

A judiciously chosen Ŝ can alter the nature of the
Hamiltonian and favor the simulations. We will use the
zero-bias spin-boson model as an example. This Hamil-
tonian is a prototypical model to investigate electron and
energy transfer in condensed media:

Ĥ = ∆σ̂x +
∑
n

cnÂ⊗ (â†n + ân) +
∑
n

ωnâ
†
nân. (3)

∆ is the coupling between the two spin states |↑〉 and
|↓〉, and cn and ωn are the coupling strength and the
vibrational frequency associated with the n-th boson, re-
spectively. We use Â = σ̂z below. The simplest choice
of Ŝ is Ŝ = βσ̂z with β constant. Other forms of Ŝ are
possible (e.g., β

∑
n â
†
nân). We choose βσ̂z as a proof of

principle. The transformed Hamiltonian is then:

H(β) = eβσ̂z σ̂xe
−βσ̂z +

∑
n

cnσ̂z ⊗ (â†n + ân) +
∑
n

ωnâ
†
nân.

(4)

To better understand the effect of the similarity trans-
formation, we explicitly specify the matrix elements of

eβσ̂z σ̂xe
−βσ̂z :

eβσ̂z σ̂xe
−βσ̂z =

(
0 e2β

e−2β 0

)
. (5)

This matrix indicates that, after the transformation, the
transition from |↓〉 to |↑〉 is enhanced, while the reverse
transition is weakened. These incommensurate transition
strengths are reminiscent of the Aubry-André-Harper
model [54, 55], which can be realized in optical-lattice
experiments.

If the initial state of the spin is an eigenstate of σ̂z
(e.g., |↑〉), which is the case for most open quantum sys-
tem simulations, the effect of the non-unitary transfor-
mation eβσ̂z (·)e−βσ̂z is, to some extent, to freeze the spin
in its initial eigenstate. This freezing effect is favorable
for matrix-product-state simulations of open quantum
systems, since the initial state often has the lowest en-
tanglement. The parameter β characterizes a family of
Hamiltonians H(β), which are related to each other by
the non-unitary transformation. It is expected that some
of the Hamiltonians (i.e., for some special values of β) in
this family can show slower growth of entanglement dur-
ing the evolution than the original Hamiltonian H(0).

The transformed Hamiltonian (Eq. (4)) describes
a fictitious system which is related to the actual
system (Eq. (3)) by the non-unitary transformation
eβσ̂z (·)e−βσ̂z . The dynamics of the fictitious system
can be back-transformed to the dynamics of the ac-
tual system by the reverse transformation e−βσ̂z (·)e−βσ̂z .
The density matrix of the fictitious system ρf (t) =

UteŜ |ψ0〉 〈ψ0| eŜU†t is related to the density matrix of the
actual system ρ(t) by

ρ(t) =
e−βσ̂zρf (t)e−βσ̂z

tr[e−βσ̂zρf (t)e−βσ̂z ]
. (6)

This relation indicates that the fictitious reduced density
matrix of the spin trBρf (t) is still a legitimate density
matrix—after a normalization: ρf (t) → ρf (t)/tr(ρf (t)).
The entanglement of the fictitious system density matrix
can still be defined by the singular value decomposition
of the wave function expansion coefficient tensor in an
orthonormal basis. The entanglement of the fictitious
system wave functions has no simple relationship to the
entanglement of the actual wave function, in contrast to
the simple equation (6) that describes the relationships
for the wave functions themselves. This necessitates nu-
merical simulations to explore the properties of entangle-
ment growth for the Hamiltonian family {H(β)}. We will
use the zero-bias spin-boson model to show the entangle-
ment growth for different H(β)s in the result section.

III. NUMERICAL RESULTS

We use the Debye spectral density J(ω) = ηωcω
ω2

c+ω
2 for

the spin-boson model where η and ωc describe the cou-
pling strength and the characteristic frequency of the
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Parameter Physical Quantity

∆ spin coupling
η = 4∆ system-bath coupling
ωc = 1∆ characteristic bath frequency
kBT = 2∆ bath temperature
±ωmax = ±12.7324∆ frequency cutoffs in the discretization
Nmode = 200 the number of discretized bath modes

TABLE I. The reduced Planck constant ~ is set to be 1. η, ω,
T and ωmax are in the unit of ∆ (spin coupling). ±ωmax are
the upper and lower limits used in the discretization of the
Debye spectral density.

bath modes, respectively. To include finite-temperature
effects, the spectral density is thermalized by using a
temperature-dependent factor and extending the fre-
quency axis to negative infinity following Refs [56, 57].
The thermalized spectral density is discretized (with
maximum and minimum frequencies ωmax and −ωmax)
to generate the Hamiltonian in Eq. (3), which is then
transformed to the β-dependent Hamiltonian in Eq. (4).
No further basis transformation (e.g., the chain trans-
formation [41, 42]) is used. Thus, the topology of the
Hamiltonian is a “star” [46] which is known to have a
rapidly growing entanglement with time [46]. The pa-
rameters used for the spin-boson model are shown in Ta-
ble I. The parameters used have values typical for open
quantum system simulations. The initial state of the sys-
tem and the bath is set to be |↑〉⊗|0, 0, . . .〉. The second-
order time-evolving-block-decimation (TEBD2) method
[58] with swap gates [59] is used to propagate the wave
function. Note that the evolution operators used in
TEBD2 are nonunitary, since the Hamiltonian itself is
non-Hermitian. The non-unitary evolution operators de-
stroy the canonical form of a MPS. To restore the canon-
ical form and to obtain the correct singular values, we
perform a canonicalization procedure after each evolu-
tion step [58].

Fig. 1 shows the time-dependent polarization 〈σ̂z〉 ob-
tained by the reverse transformation of Eq. (6). The
results generated from the fictitious systems using the
reverse transformation agree well with the actual dy-
namics (β = 0, the thick line), validating the similarity-
transformation formalism. The lines with β > 0.8 and
β < −0.8 are not shown in Fig. 1, since they begin to
deviate from the correct dynamics.

We also plot the fictitious dynamics (i.e., tr(ρf (t)σz))
in Fig. 2 to demonstrate the freezing effect: with β > 0,
the population on |↑〉 in the fictitious system has slower
transfer than in the actual system. A sufficiently large β
(0.8) completely freezes the spin in its initial state (|↑〉).
With β < 0, the transfer from |↑〉 to |↓〉 is accelerated
and the reverse transfer is obstructed. These results are
consistent with the analysis in the Introduction.

Fig. 3 shows that members of the Hamiltonian family
{H(β)} have different entanglement growth rates. For
positive βs, the entanglement grows more slowly with

FIG. 1. The dynamics of the polarization 〈σz〉 and the real
part of non-diagonal ρ(t) elements for different β values. The
threshold for singular values is 10−5. The time step is 0.005.
If β is larger than 0.8 (or smaller than −0.8), the dynamics
begin to deviate from the exact line (β = 0). All of the lines
overlap.

FIG. 2. The dynamics of tr[σzρf (t)] without the reverse trans-
formation (Eq. (6)). The numbers indicate β values. The
population transfer from |↑〉 to |↓〉 is slowed with β > 0, while
negative β values accelerate the transfer. The thick purple
curve indicates the population dynamics of the actual system
with β = 0.

time when β is larger. For negative β values, a more
negative β value (e.g., −0.2 to −0.4) causes the entan-
glement growth of the fictitious systems to be faster, but
such an acceleration reaches its maximum at a critical
value of β (in this example, at β ∼ −0.4). If β continues
to become more negative (e.g., β = −0.8), the entan-
glement growth can be slower than its maximum speed
(β ∼ −0.4). This is because, with a very negative β,
the population in |↑〉 is transferred quickly to |↓〉, and it
remains in |↓〉, which disentangles the spin and the bath.

The similarity transformation presented here sup-
presses the entanglement growth rate in the evolving
quantum systems by almost 50%. The singular values
on the bonds (of the MPS) that are spatially close to the
transformed site are significantly affected by the transfor-
mation: the singular values are localized on the first few
eigenstates of the reduced density matrix. The bonds
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FIG. 3. Entanglement growth during the evolution of the
spin-boson model for different β values. The effective en-
tanglement Seff is a function of the von Neumann entangle-
ments {Sn} on every bond of a matrix product state: Seff =

ln( 1
L−1

∑
n e

3Sn)1/3 where L is the number of bonds [44]. We
use the binary logarithm to calculate the von Neumann en-
tanglement entropy of each bond: Sn = −

∑
i s

2
i log2 s

2
i where

si is the i-th singular value for the n-th bond.

far from the transformed site are less affected. We ex-
pect a more significant reduction of entanglement if a
global transformation is applied to a quantum many-
body Hamiltonian. For example, for a coupled spin chain,
a global similarity transformation impacts every spin.
Consequently, after the transformation, each bond con-
necting adjacent spins is dominated by a few large singu-
lar values, reducing the entanglement in the MPS more
significantly than in single-spin systems. To show the ad-
vantage of the global transformation for multi-spin sys-
tems (or coupled chromophores for electron and energy
transfer [60]), we use a GHZ [61] state of a 10-spin system
as an example. The GHZ state is |0〉

⊗10+|1〉⊗10

√
2

. Applying
the transformation e0.1σ̂z (·)e−0.1σ̂z to the first 0, 1, 2, . . . ,
10 spins, the entanglement entropies (measured using the
definition in the caption of Fig. 3) of the states obtained
with different numbers of transformations are 1.04, 1.01,
0.93, 0.82, 0.69, 0.57, 0.45, 0.36, 0.28, 0.22, and 0.17. A
relationship between the reduced entanglement and the
number of transformed spins is clearly observed. The
transformation is not limited to open quantum systems
or spin systems, but may be useful for simulations of
other quantum many-body systems, such as those that
describe the dynamics of electron-phonon systems and
correlated-electron systems [62].

The similarity transformation eβσ̂z (·)e−βσ̂z has alter-
natives. The generator of the transformation can be
σ+ = σx + iσy, σ− = σx − iσy, and any combi-
nation of their sum and product. These alternative
transformations indicate the potential of the similarity-
transformation method described here.

The entanglement suppression from the particular
choice of the transformation eβσ̂z (·)e−βσ̂z used here arises
from the suppressed transition between the two eigen-
states of the system component of the system-bath inter-

action term Â = σ̂z (see Eq. (5)). The transformed wave
function of the entire system (spin and bath) eβσ̂z |ψ(t)〉
is less entangled because the spin (the system) tends to
remain in one of the eigenstates of Â = σ̂z. For general
system-bath interactions, for example, Â = xσ̂z + zσ̂z
where x and z are scalars, the transformation eβÂ(·)e−βÂ
can be an initial choice of the optimal similarity transfor-
mation, since it “projects” (approximately) the state of
the spin to one of the eigenstates of the coupling operator
Â = xσ̂x + zσ̂z, reducing the energy exchange between
the spin and the bath. Our numerical tests show that this
transformation (eβA) is better than other combinations
of σ̂z and σ̂x for the suppression of growing entanglement.

Large |β| values could increase the numerical errors in
the simulations. A large |β| values requires a smaller
singular-value threshold to recover the original density
matrix, as in Eq. (6). An empirical value for the optimal
β is ∼ 0.8, which suppresses the population on |↑〉 to
∼ 20% of its original value.

IV. CONCLUSION

By applying a specific similarity transformation to
a quantum system, we introduced a family of non-
Hermitian Hamiltonians and explored the different
growth rates of entanglement numerically for the evo-
lution of open quantum systems. The similarity trans-
formation controls the transitions among the quantum
states of the system. The parameter (β) in the trans-
formation determines how the transitions are diminished
or enhanced. The quantum-state transition enhancement
and suppression can be tuned so that the quantum states
of the system and the bath are nearly disentangled during
the evolution, suppressing the growth of matrix product
state entanglement. Recent studies find that the dynam-
ics from the PT (parity-time) and anti-PT symmetric
Hamiltonians can produce reduced entanglement in the
evolution of the system-bath dynamics [63, 64]. Our re-
sult is consistent with the findings in those studies. The
similarity transformation introduced here is simple and
produces pronounced effects on the growth rate of en-
tanglement, even for a single-spin Hamiltonian. The nu-
merical advantages can be further manifested in simula-
tions of non-Markovian dynamics for large and strongly-
coupled multi-state systems, where large entanglement
prohibits long-time simulations [40, 44, 65]. The slow
growth of entanglement is favorable for MPS simulations,
but is not limited to open quantum systems.

Future studies can explore other similarity transforma-
tions that may further slow the growth of entanglement
during a simulation. Combining the similarity transfor-
mation and basis transformations (e.g., chain transfor-
mations) [41, 44, 46, 66] is also possible to change the
entanglement growth rate even further. It is also of in-
terest to study the effects of similarity transformations on
other exact and approximate numerical methods, includ-
ing the hierarchical equation of motion, quasi-adiabatic
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path integral, and quantum master equations.
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