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The quantum entanglement between two excitons in two-dimensional materials, embedded in an
optical microcavity, was investigated. The energy eigenstates of a Jaynes-Cummings like Hamilto-
nian for two qubits coupled to a single cavity mode have been calculated. The quantum entanglement
between such states was estimated by calculating the concurrence between two qubits in each of
these eigenstates. According to the results of our calculations, if the system is allowed to decay
only through the emission of cavity photons at low temperatures, there is a maximally entangled
eigenstate, protected from decay. We demonstrated that the existence of such a state results in the
counter-intuitive conclusion that, for some initial states of the system, the fact that the cavity is
leaky can actually lead to an increase in the average concurrence on the timescales of the average
photonic lifetime. By briefly analyzing the three-qubit model, we have demonstrated that the prob-
ability for the entanglement to be preserved is enhanced when the number of qubits is increased.
In addition, we calculated the time evolution of the concurrence between a pair of excitons in a
strained graphene monolayer.

PACS numbers: PACs

I. INTRODUCTION

Modern quantum technologies and the prospects for their development are based on the use of quantum two-level
(2D) systems as qubits. A number of physical realizations of qubits in systems with discrete spectra have been
discussed. These include ultra cold ions and atoms in traps, impurities in diamond, and various types of supercon-
ducting qubits. Spatially extended semiconductors and new 2D materials, as well as transition metal dichalcogenides
(TMDCs) all have a band structure, However, in the presence of transverse magnetic field, a 2D system has a discrete
spectrum consisting of degenerate Landau levels. When electrons pass from filled Landau levels to unfilled excited
electron states, then due to the Coulomb attraction between electrons and holes, they form 2D magnetoexcitons, the
energy of which depends continuously on the integral of motion in a magnetic field, i.e., the magnetic momentum.
This integral of motion is a consequence of the invariance of the system with respect to simultaneous translation and
gauge transformation (see Refs. [1, 2]). As a result of the continuous dependence of the magnetoexciton energy on
the magnetic pulse, the full spectrum of the system is not discrete, but consists of bands (see Ref. [3]).

Low-dimensional 2D materials have been the subject of an enormous amount of scrutiny within the past few decades
[4–6], but, ever since the already historic work where Novoselov, Geim and their collaborators managed to obtain
both monolayer and bilayer samples of graphene in 2004 [7], interest in the field has increased substantially by the
exciting new physical frontiers it opened. Soon thereafter, a great number of researchers began to investigate the
properties of graphene [8–10] as well as other 2D materials that quickly followed. All those studies have been very well
summarized in a variety of review papers, of which one of the most well-known was published in 2007 by Katsnelson
[11]. Fundamentally new properties of 2D systems are exhibited in pseudomagnetic fields, which arise, in particular,
upon deformation of graphene (see Refs. [9, 10, 12, 13]). One of the many interesting properties of 2D materials is
that it is the perfect environment for the development of magnetoexcitons [3], the pseudoparticle consisting of the
bound states of a negatively charged electron and a positively charged hole. There are two types of excitons that can
appear on 2D materials. These are direct excitons, when the electron and the hole are on the same layer, and indirect
excitons, when they are on different layers.

An interesting discovery in recent years has been the fact that when mechanical strain is applied to a monolayer
of graphene, a pseudo-magnetic field is generated within that sheet [14]. For this system, excitons, formed by an
electron and a hole in different valleys, have dispersionless Landau levels [15], whereas excitons in a uniform external
magnetic field display a non-trivial energy dispersion relation [3]. This gives rise to well defined energy gaps and might
be employed as qubits, if one considers only the ground state and first excited state of each exciton. Our focus in
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this paper will be cases where we investigate the entanglement between two such qubits induced by their interaction
with a cavity mode. Another way to restrict excitons to discrete energy levels in 2D is to trap them in harmonic
potentials. One way to do this is through pinning the 2D material with a thin needle [16], or to apply a potential
difference between two layers of the material [17]. These methods to achieve discrete energy levels for excitons can
be applied to various 2D materials, including a class of monolayers of direct band-gap materials, namely, Transition
Metal Dichalogenides (TMDCs) [18, 19].

Another important property of graphene is the chirality of its two independent valleys. This leads to the fact that
circularly polarized light is absorbed in different valleys, depending on the sign of the circular polarization. In addition,
a consequence of the chirality of the valleys is that the pseudomagnetic field arising during deformation has opposite
directions in different valleys. As a result of this, the appearance of a pseudomagnetic field during deformation does
not contradict the absence of violation of invariance with respect to time reversal in the system in the absence of a
real magnetic field.

When graphene is pumped by plane-polarized photons, the absorption of photons occurs in both valleys, accompa-
nied by the appearance of electrons and holes in them. As a result of Coulomb attraction, these electrons and holes
form excitons. Moreover, electrons can bind both with holes from their own valley (intravalley excitons) and with
holes from another valley (intervalley excitons).

Since the pseudomagnetic field acts in the same way on an electron and a hole, and the pseudomagnetic fields in
different valleys have the opposite direction (opposite sign), the spectrum of intervalley pseudomagnetoexcitons, as can
be easily shown, turns out to be discrete, in contrast to magnetoexcitons in real magnetic fields. Therefore, intervalley
excitons can be used as quantum elements for quantum technologies. A pair of intervalley excitons can be located
either in the same pair of graphene valleys, or in different pairs of valleys, and the electrons in each pair of valleys
have two choices for holes. Therefore, there are four states for intervalley excitons, which have the same energies and
other properties due to the symmetry between the valleys. Thus, intervalley excitons are actually ququarts, which
can also be used as intermediate elements in quantum technologies [20]. Note that the properties of the considered
ququarts can be controlled using an external real magnetic field.that removes degeneracy and splits levels. This can
be used in quantum technologies.

The discrete states for electrons in strained graphene have been studied recently. The zero-temperature semimetal-
superconductor (Kekule insulator) transition in graphene and for surface states of topological insulators was analyzed
theoretically in Ref. [21]. An experimental study of electron states and the resulting electronic transport properties
of uniaxially strained graphene has been reported in Ref. [22]. The theoretical study of electronic edge states in
time-periodically driven strained armchair terminated graphene nanoribbons, performed by considering a short-pulse
spatial-periodic strain field, has been presented in Ref. [23]. A consistent experimental observation of valley polariza-
tion and inversion in strained graphene via pseudo-Landau levels, splitting of real Landau levels, and valley splitting of
confined states using scanning tunneling spectroscopy [24]. While in the research mentioned above, the discrete level
spectrum for electrons in strained graphene which was analyzed, in this paper we apply the approach, implying the
discrete level spectrum for excitons in strained graphene [15], to study the quantum entanglement between two and
three excitons treated as two-level systems (qubits). The discrete states for electrons in strained graphene have been
studied recently. The zero-temperature semimetal-superconductor (Kekule insulator) transition in graphene and for
surface states of topological insulators was analyzed theoretically in Ref. [21]. An experimental study of electron states
and the resulting electronic transport properties of uniaxially strained graphene has been reported in Ref. [22]. The
theoretical study of electronic edge states in time-periodically driven strained armchair terminated graphene nanorib-
bons, performed by considering a short-pulse spatial-periodic strain field, has been presented in Ref. [23]. A consistent
experimental observation of valley polarization and inversion in strained graphene via pseudo-Landau levels, splitting
of real Landau levels, and valley splitting of confined states using scanning tunneling spectroscopy [24]. While in the
research mentioned above, the discrete level spectrum for electrons in strained graphene which was analyzed, in this
paper we apply the approach, implying the discrete level spectrum for excitons in strained graphene [15], to study
the quantum entanglement between two and three excitons treated as two-level systems (qubits).

Quantum entanglement is a degree of bonding which quantum subsystems might have that has no classical counter-
part. Since it cannot be created locally (by acting on a single subsystem), but it can be transferred from one subsystem
to another, it is usually treated as an important resource in quantum information and quantum computation [25],
and, like any useful resource, quantifying it has become an important challenge. Many different ways of measuring
the entanglement of a quantum system have been suggested [26–29]. One of those is Concurrence [29], a measure of
entanglement between a pair of two-leveled quantum systems, or simply, two qubits.

Recently, the conditional concurrence created by the dynamical Lamb effect of two qubits within a microcavity
which changes its frequency suddenly was calculated [30]. In this paper, we find the concurrence created by two
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pseudomagnetic excitons on a graphene sheet under strain embedded in a microcavity interacting with one of its
modes in the rotating wave approximation (RWA). After that, motivated by the well known work of Greenberger,
Horne and Zeilinger [31], where it was shown that the study of the dynamics of quantum systems of more than
two elements is enough to prove the validity of quantum mechanics, we do a brief study of the dynamics of the
entanglement between three qubits.

The rest of our paper is organized as follows: In Sec. II, we define the system under investigation, which consists
of a pair of excitons on a graphene sheet under strain inside an optical microcavity. In Sec. III, we present and solve
a model Hamiltonian for the system. Sec. IV is devoted to a study of the entanglement created by the dynamics
through calculating the concurrence between the excitons. We study in Sec. V what happens when the system is
subject to dissipation. In Sec. VI, we investigate the time evolution of the entanglement between those two excitons.
This is accomplished by calculating the time evolution of the concurrence. In Sec VIII, we generalize the model for
more than two qubits. In Sec. VII, we apply our model to the case of excitons on a graphene sheet under strain and
explain how to generalize the result to other 2D materials. The possible physical realizations for the system under
consideration are analyzed in Sec. IX. In Sec. X, we compare our results with those of some recent papers. In Sec.
XI, we present a summary of this work.

II. EXCITONS ON A GRAPHENE SHEET UNDER STRAIN

It has been shown that particles on a graphene sheet that is subjected to strain obey a Hamiltonian which is
equivalent to one describing the effects of magnetic field [14]. The effect of these so-called pseudomagnetic fields differs
from real magnetic fields by the fact that they are charge-independent, affecting positively and negatively charged
particles the same way. Strain-induced pseudomagnetic fields in graphene, like external magnetic fields, provide a
favorable environment for the formation of excitons, the quasiparticles formed by the bound state of electrons and
holes. Within this environment, the resulting excitons, formed by an electron and a hole in different valleys, have a
non-dispersive discrete energy spectrum [15]. In contrast, excitons in an applied magnetic field have discrete energy
levels each of which is dispersive [3]. The energy eigenvalues for the pseudomagnetoexcitons (PMEs) have been
calculated [15] and are given by

En,ñ,m̃ = ε0n,ñ + E′ñ,m̃ , (1)

where, for the simplest case in which the electron and hole masses are the same,

ε0n,ñ = ~ωc(n+ ñ+ 1). (2)

The quantum numbers n and ñ quantify the cyclotron motion of the center of mass and relative motion, respectively.
The term E′ñ,m̃ represents the excitonic binding energy which depends on a new quantum number m̃. Calculated
values for the excitonic binding energies E′ñ,m̃ are presented in Ref. [15]. In Eq. (2), the cyclotron frequency ωc is

given by ωc =
B

m
, where B is the intensity of the pseudomagnetic field (Be has units of Teslas) and m is the electronic

mass.

Since they present a discrete set of energy eigenstates, under suitable conditions, PMEs can be treated as qubits.
Here, we consider a system consisting of two such qubits that are coupled to a single cavity mode and study the
quantum entanglement between them.
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Figure 1: System studied throughout the paper, consisting of 2 excitons on a strained sheet of graphene interacting
with a single mode inside an optical microcavity.

From this point forward, we consider a system consisting of two such PMEs, on a strained graphene sheet inside
an optical microcavity (Fig. 1). We consider the exciton-exciton interaction to be negligible and the excitons do not
interact directly with one another, but both are in contact with the same cavity mode and are allowed to become
entangled by such.

III. A JC-LIKE MODEL FOR TWO QUBITS IN A MICROCAVITY

Qubits form the basics for quantum computing, and quantum entanglement is the key resource present in quantum
computing that makes it such a powerful tool. Under the right circumstances, we can consider excitons on a graphene
sheet under strain to be qubits. Under these conditions, we applied a Jaynes-Cummings-like model to study the
quantum entanglement created between two qubits that are coupled to a single cavity mode.

Let us consider a system consisting of two qubits interacting with a cavity mode with Hamiltonian

Ĥ = Ĥ0 + V̂ ′RWA (3)

with the unperturbed Hamiltonian Ĥ0 given by

Ĥ0 = ~

 2∑
j=1

ω0 |ej〉 〈ej |+ ωkâ
†â

 , (4)

where, in this notation, |ej〉 is the excited state of qubit j, ~ω0 is the energy gap of the qubits, ωk is the mode
frequency and â† and â are the creation and annihilation operators for photons in the cavity. Here, we consider the
excited state for the qubit, |e〉, to consist of an exciton in its first excited state, and |g〉 to consist of that same exciton
in the ground state. Also, for simplicity, in Eq. (4), we relabel the excitonic energies so that the energy of an exciton in
the ground state is set equal to 0. The energy gap ~ω0 comes directly from Eq. (1) and is equal to ~ω0 = E′0,1−E′0,0.
Therefore, the eigenstates of Ĥ0 are |n; ij〉, having energy Enij given by

Enij = ~[ω0(i+ j) + nωk] (5)
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where i = 1 (j = 1) if the first (second) qubit is in the excited state |e〉 and i = 0 (j = 0) if the first (second) qubit is
in the ground state |g〉.

The interaction Hamiltonian on the rotating wave approximation (RWA), V̂ ′RWA is given by [32]

V̂ ′RWA = ~λ
2∑
j=1

(
σ̂+
j â+ σ̂−j â

†) (6)

where σ̂±j are the creation (+) and annihilation (-) operators for the qubit j and λ is the exciton-photon coupling
constant.

This Hamiltonian is similar to that for the Jaynes-Cummings model [33, 34], except that it is for two qubits in one
cavity mode. Since the qubits interact with the mode according to the RWA, the destruction (creation) of photons
is determined by the creation (annihilation) of qubit excitations. Therefore, as for the Jaynes-Cummings model, we
can treat each manifold with fixed number of excitations, meaning the sum of the number of photons and the number
of qubit excitations, individually. The n-th manifold is composed of the states with n total excitations, namely
|n; 00〉 ≡ |0n〉, which is the state with n cavity photons and no qubit excitations; |n− 1; 01〉 ≡ |1n〉, the state with
n−1 cavity photons and with qubit “1" in the excited state |e〉; |n− 1; 10〉 ≡ |2n〉, the state with n−1 cavity photons
and with the qubit “2" in the excited state |e〉 and |n− 2; 11〉 ≡ |3n〉, the state with n − 2 total excitations and
both qubits in the excited state. It is important to note that each manifold is 4-dimensional with exception to the
n = 1, which is 3-dimensional and to the n = 0 which is composed only with the ground state, |0; 00〉. The effective
Hamiltonian, Ĥn, on the n-th manifold appears directly from Eq. (3) and is equal to

H1 = ~

ωk λ λ
λ ω0 0
λ 0 ω0

 , (7)

for n = 1 and

Hn = ~


nωk λ

√
n λ

√
n 0

λ
√
n (n− 1)ωk + ω0 0 λ

√
n− 1

λ
√
n 0 (n− 1)ωk + ω0 λ

√
n− 1

0 λ
√
n− 1 λ

√
n− 1 (n− 2)ωk + 2ω0

 , (8)

when n = 2, 3, · · · . For the ground state, H |0; 00〉 = 0. One can find in a straightforward way the energy eigenstates
for the Hamiltonian in (7). The eigenvalues of (7) are

ε0 = ω0

ε± =
1

2

(
(ω0 + ωk)±

√
(ω0 − ωk)2 + 8λ2

)
, (9)

with eigenvectors

|ψ0〉 =
1√
2

(|0; 01〉 − |0; 10〉)

|ψ±〉 =
1√

2 + a2±

(a± |1; 00〉 − |0; 01〉 − |0; 10〉) , (10)

where a± is given by

a± =
1

2λ

[
(ω0 − ωk)±

√
(ω0 − ωk)2 + 8λ2

]
. (11)

The eigenvalues and eigenvectors of (8), however, are much more difficult to obtain. However, this problem is
solved when we consider the resonance case where the cavity frequency is the same as the qubit transition frequency,
ω0 = ωk ≡ ω. In this case, Eqs. (7) and (8) become
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H1 = ~

ω λ λ
λ ω 0
λ 0 ω

 (12)

Hn = ~


nω λ

√
n λ

√
n 0

λ
√
n nω 0 λ

√
n− 1

λ
√
n 0 nω λ

√
n− 1

0 λ
√
n− 1 λ

√
n− 1 nω

 . . (13)

The eigenvalues of (12) are

ε0 = ω

ε± = ω ±
√

2λ, (14)

with eigenvectors

|ψ0〉 =
1√
2

(|0; 01〉 − |0; 10〉) (15)

|ψ±〉 =
1

2

(
±
√

2 |1; 00〉 − |0; 01〉 − |0; 10〉
)
, (16)

which are simply Eqs. (9-10) at resonance.

The eigenvalues of Eq. (13) are given by

εn0 = nω (17)

εn± = nω ±
√

2(2n− 1)λ , (18)

where the first eigenvalue is doubly degenerate. The corresponding eigenvectors are as follows

|ψn0,1〉 =
1√
2

(|n− 1; 01〉 − |n− 1; 10〉) (19)

|ψn0,2〉 =
1√

2n− 1

(√
n− 1 |n; 00〉 −

√
n |n− 2; 11〉

)
(20)

|ψn±〉 =
1√

8n− 4

[√
2n |n; 00〉+

√
2(n− 1) |n− 2; 11〉 ±

√
2n− 1 (|n− 1; 01〉+ |n− 1; 10〉)

]
. (21)

Here, |Ψn0,1〉 and |Ψn0,2〉 are the two degenerate eigenstates with eigenvalue εn0 and |ψn±〉 are the eigenstates
corresponding to the eigenvalue ε±. It is interesting to note that the eigenvalues and eigenvectors of Eqs. (12) and
(13) do agree with each other for the case n = 1, with the exception of the eigenvector |ψn0,2〉, which, for n = 1,
contains a vector that does not exist in reality, corresponding to a state with 1 photon, as can be readily seen from
Eq. (20).

IV. CONCURRENCE FOR ENERGY EIGENSTATES

Now that we have the energy eigenstates for the Hamiltonian, we can determine the quantum entanglement for
each of them. The most used measure for quantum entanglement between two qubits is the concurrence [25] which
is what we employ here. We can use Eq. (19-21) to determine the concurrence between a pair of qubits in energy
eigenstates for all n > 1 and Eqs. (15) and (16) to calculate the concurrence for all energy eigenstates corresponding
to n = 1. The concurrence for a pair of qubits in state |ψ〉 = a |00〉+ b |11〉+ c |10〉+ d |01〉, where 〈ψ|ψ〉 = 1 is given
by [25]

C(ψ) = 2|ab− cd| . (22)
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For a mixed state with density matrix ρ, the concurrence of the system is defined by [29]

C = max{0, λ1 − λ2 − λ3 − λ4} , (23)

where λi are the eigenvalues in descending order of ρ̃ρ. The matrix ρ̃ is the result of applying the spin-flip operator
to ρ so that

ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) . (24)

By substituting Eq. (19-21) in Eq. (22), we obtain the concurrence for the n > 1 energy eigenstates to be

C(ψn0,1) = 1 n ≥ 1

C(ψn0,2) =
2n

√
1− 1

n2

2n− 1
;n ≥ 2

C(ψn±) =

∣∣∣∣∣1− 2n

(
1−

√
1− 1

n2

)∣∣∣∣∣
4n− 2

;n ≥ 1 . (25)

Also, for n = 1, we substitute Eqs. (15) and (16) into Eq. (22) to find

C(ψ0) = 1

C(ψ±) =
1

2
. (26)

It is interesting to note that, in the case when there is resonance, the concurrence does not depend on any of the
system parameters (i.e., the energy gap ω and the coupling strength λ). The concurrence of an eigenstate of the

Hamiltonian which is in a superposition of |ψn0,1〉 and |ψn0,2〉 such as |Ψ〉 =
1√

|a|2 + |b|2
(
a |ψn0,1〉+ b |ψn0,2〉

)
is

given by

C(Ψ) =
1

|a|2 + |b|2

∣∣∣∣∣∣∣∣a
2 − b2

2n

√
1− 1

n2

2n− 1

∣∣∣∣∣∣∣∣ (27)

which can vary continuously between 0 and 1.

If the system is off resonance for the states represented by Eq. (10) or (11), the concurrence will be equal to

C(ψ0) = 1

C(ψ±) =
2

2 + a2±
, (28)

where a± is given by Eq. (11). We see that in this case the concurrence depends only on the dephasing (ω0−ωk) and
on the coupling strength between the qubits and a cavity mode photon, λ, but not on the individual frequencies ω0

and ωk. It is reasonable to expect that the same will be true for n > 1.
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V. DISSIPATIVE SYSTEM

So far, we have considered ideal systems that do not interact with the environment. For those systems, the quantum
entanglement is preserved, not decaying with time. However, real systems experience various forms of dissipation that
end up destroying the entanglement between the qubits. In this section, we study the dynamics of the same system
as described above , but now in the presence of dissipation, in order to see how the concurrence (and, with it, the
quantum entanglement) evolves in time.

From this point onward, we assume that this system is not isolated and, therefore, it suffers dissipation. When
a system experiences any form of dissipation, its time evolution ceases to obey Schrödinger’s equation. The most
common forms of dissipation force the system to evolve under a master equation such as [35]

ρ̇ = −i[Ĥ, ρ] + κL(â)ρ+

2∑
j=1

(
γL(σ̂−j )ρ+ γφL

(
σ̂
(3)
j

)
ρ
)
, (29)

where ρ is the system’s density matrix, the Lindblad operators L are defined as [35]

L(Â)ρ = ÂρÂ† − 1

2

(
Â†Âρ+ ρÂ†Â

)
, (30)

and κ, γ and γφ represent possible channels of dissipation representing, respectively, the cavity relaxation, qubit
relaxation and qubit dephasing.

First, let us consider the effect due to each term of Eq. (29). The Schrödinger term (i[H, ρ]) neither creates nor
destroys excitations, it can only transform a photon on an excitation on either qubit or transform an excitation on
either qubit into a photon, the Lindblad terms can only destroy excitations or simply dephase the system. This means
that, if we start with a system with a maximum value for n total excitations, we need only to concern ourselves
with matrix elements between states with n or less total excitations, because neither term in the master equation is
able to create excitations, only interchange them or destroy them. In particular, if we are interested in systems with
one excitation, we need only treat matrix elements between the states |0; 00〉 ≡ |0〉, |0; 10〉 ≡ |1〉, |0; 01〉 ≡ |2〉 and
|1; 00〉 ≡ |3〉, where this relabeling was made for a cleaner notation. In this case, we can write the density matrix ρ(t)
as [32]

ρ(t) =

3∑
i,j=0

ρij(t) |i〉 〈j| , (31)

where the matrix elements obey the usual conditions, i.e., ρij = ρ∗ji, 0 ≤ ρii ≤ 1 and
∑
i ρii = 1. Substituting (31)

into (42), we find

ρ̇ij = −i 〈i| [Ĥ, ρ] |j〉+ 〈i|

κL(â)ρ+

2∑
j=1

(
γL(σ−j )ρ+ γφL

(
σ
(3)
j

)) ρ |j〉
= ρ̇Sij + ρ̇Lij , (32)

where

ρ̇Sij = −i 〈i| [Ĥ, ρ] |j〉

ρ̇Lij
= 〈i|

κL(â)ρ+

2∑
j=1

(
γL(σ−j )ρ+ γφL

(
σ
(3)
j

)) ρ |j〉 . (33)

In the low-temperature regime, we neglect the effect due to phonons on the properties of the graphene sheet and
the decay of the system is governed by the cavity decay. In this regime, we have γ = γφ = 0. Equation (32) gives rise
to a set of ten independent, linear differential equations that are dealt with in Appendix for the case where the main
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form of dissipation is through cavity decay. In the Appendix, we focus our attention on the steady states, which are
preserved by the dynamics and on finding the differential equations that govern the dynamics for each element of the
density matrix. The non-trivial steady state is found in equations (A19) and (A20). The differential equation system
(A14) was then used to create a program that simulates the dynamics.

There are mainly two important results taken from the solution in Eq. (32). The first one is that when dissipation
comes mainly from cavity decay, meaning that at low temperature T , the maximum entangled Bell state |0; Ψ−〉,

|0; Ψ−〉 =
1√
2

(|0; 10〉 − |0; 01〉) (34)

is a steady state and does not decay into the ground state. Another is that the characteristic decay time for all other
states is of the order of τ = 1/κ, as it should be expected.

VI. CONCURRENCE AS A FUNCTION OF TIME

(a) (b) (c)

Figure 2: Concurrence between two qubits as a function of time for a system with no dissipation for four different
initial states (a) ρ0 = |0; 10〉 〈0; 10|, meaning the first qubit starts in the excited state and the second in the ground
state; (b) |0; Ψ+〉 〈0; Ψ+|, the maximally entangled state that is not an eigenstate of Eq. (3); and (c) |1; 00〉 〈1; 00|,
both qubits originally from the ground state and the cavity with a single photon.

As it was shown, the dynamics of a system that evolves under a master equation such as Eq. (32) intertwines the
states of both qubits. This means that one should expect the concurrence between those qubits to be a function of
time. At low temperature, the system can only decay through the loss of cavity photons. In this case, the only two
steady states are the ground state, |g〉 = |0; 00〉, which has no concurrence (C = 0) and the state |0; Ψ−〉, given by
Eq. (34).

A computer program that simulates the time evolution of a system governed by equation (A14) was written and
both the concurrence and probability for the system to decay to the ground state were calculated as a function of
time. For all the simulations shown in this session, we chose the Rabi frequency to be 2π

2
√
2
ns−1.

We start with Fig. 2 which presents the evolution of the concurrence as a function of time for a system with no
dissipation (κ = 0). The effect of the dynamics is such that it creates oscillations between states |0; Ψ+〉 and |1; 00〉
with frequency ω = 2

√
2λ. The maximally entangled state |0; Ψ−〉, which has concurrence C = 1, is a steady state that

has been omitted from the figure for better visualization of the non-trivial cases. The result is that the concurrence
as a function of time presents oscillations between a maximum and minimum value that depends on the initial state.
However, the most interesting result appears when we take dissipation into account. Figs. 3 and 4 show what happens
with such systems for two different initial states.
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(a) (b) (c)

Figure 3: In the first row, concurrence between two qubits as a function of time for a system with dissipation for
three different values of κ: (a) κ = 1ns−1; (b) κ = 0.1ns−1 and (c) κ = 0.01ns−1. In the second row, we have the
probability for the system to decay to the ground state as a function of time. In these simulation, the initial state of
the system is always state ρ0 = |0; 10〉 〈0; 10|.

Fig. 3 shows how the concurrence evolves as a function of time for a system originally with one qubit in the excited
state and one in the ground state for different cavity decay rates κ, while Fig. 4 shows the same information for a
system originally in the maximally entangled Bell state |0; Ψ+〉. The interesting thing to note is that although for the
one in Fig. 4 the concurrence eventually decay to zero as the system decays to the ground state with probability one,
for the initial state represented in Fig. 3, the decaying process actually increases the concurrence as time passes, and
the decay probability goes to 0.5.

The expression for ρ(t0) is given by

ρ(t0) = ρ0 |ψ0〉 〈ψ0|+ ρ+ |ψ+〉 〈ψ+|+ ρ− |ψ−〉 〈ψ−|+
∑
i6=j

ρij |ψi〉 〈ψj |+ ρg |0; 00〉 〈0; 00| , (35)

where, as in Eq (10), |ψ0〉 = |0; Ψ−〉 and the sum is taken over i, j = +,− and 0. The effect of the master equation
on this basis is to keep ρ0 constant while slowly of all other terms on the first manifold (all ρij ’s along with ρ±) and
increasing the probability for the system to be found on the ground state, ρg. The system will asymptotically decay
to the final state

ρ(t→∞) = ρ0 |ψ0〉 〈ψ0|+ (1− ρ0) |0; 00〉 〈0; 00| . (36)
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(a) (b) (c)

Figure 4: The first row displays the concurrence between two qubits as a function of time for a system with dissipation
for three different values of κ: (a) κ = 1ns−1; (b) κ = 0.1ns−1 and (c) κ = 0.01ns−1. In the second row, we have the
probability for the system to decay to the ground state as a function of time. In these simulations, the initial state of
the system is always state ρ0 = |0; Ψ+〉 〈0; Ψ+|.

When the system reaches the state represented in Eq. (36), the concurrence can be calculated in a straightforward
way by Eq. (23) and found to be

C(t→∞) = ρ20, (37)

which is nothing more than the square of the probability for the system to be found in the maximally entangled Bell
state |0; Ψ−〉, defined in Eq. (34). The time which the system takes to decay to such a state is clearly dependent on
the decay rate κ of the cavity, but the final state only depends on the initial state. This means that, in some cases,
concurrence can be protected from, and even created by, dissipation in the system. This protection from decay comes
from the fact that we are considering that the system can only decay through the emission of cavity photons and
there exists an eigenstate of the Hamiltonian in which there are no cavity photons.

VII. CONCURRENCE BETWEEN EXCITONS ON A GRAPHENE SHEET UNDER STRAIN

We can now combine the results obtained in the previous sections to properly calculate the entanglement for our
system of interest. In order to do so, we consider the same system as that in Ref. [15], which is that for a graphene
sheet under a strain-induced magnetic field of magnitude Bz

e = 50 T , embedded in a GaAs microcavity with dielectric
constant ε = 13. Assuming that the system is in resonance with the cavity, we need only to find the value of the Rabi
splitting in order to calculate the time evolution of the concurrence between the excitons.

The Rabi splitting for excitons in graphene under a high magnetic field inside an optical microcavity has been
calculated and found to be [36]

~λ = e

(
~πvF rB√

2εW

) 1
2

, (38)

where e is the electronic charge, rB =
√
~/Bz is the magnetic length for chosen magnetic field Bz, ε is the dielectric

constant of the cavity, vF is the Fermi velocity for electrons in graphene and W is the cavity’s volume. The calcu-
lations in Ref. [36] that led to Eq. (38) depended only on a single electron wave function and on the fact that the
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excitonic binding energy was much smaller than the band gap. The single electron wave function for an electron in a
pseudomagnetic field is completely isomorphic to that of an electron in an external magnetic field and the excitonic
binding energy is also much smaller than the gap. This means that the Rabi splitting for excitons on a graphene
sheet under strain is the same as the one for excitons on a graphene sheet in high magnetic field and is also given by
Eq. (38). Choosing the intensity of the strain-induced pseudomagnetic field as Bz

e = 50 T , a number that has been
achieved experimentally for carbon nanotubes [14], the Fermi velocity for electrons in graphene to be vF = 106m/s
and a GaAs microcavity (ε = 13) of volume W = 1.69× 103µm3 [37], the Rabbi splitting becomes ~λ = 0.027 meV.
The time evolution of the mean value of the concurrence was calculated for such a system that is inside a medium
quality cavity, where photons have a medium lifetime of 1 µs (κ = 10−3ns−1). Those results are shown in Fig. 5 for
many different initial states. The initial states |Ψ0〉 considered in Fig. 5 for t = 0 could be prepared, for example, by
creating the excitons by irradiating a precise femtosecond laser pump on the graphene sheet.

(a) (b)

Figure 5: In the first row, the concurrence between a pair of qubits averaged in a single Rabi cycle as a function of
time for a system with dissipation for three chosen initial states |Ψ0〉: (a) |Ψ0〉 = |0; 10〉; and (b) |Ψ0〉 = |0; Ψ+〉. The
second row shows the probability for the system decaying to the ground state as a function of time.

Figure 5 shows that the effect due to cavity decay is not always the one which might seem intuitive, i.e., destroying
the concurrence between excitons. This may be true if the system starts with no component in the Bell state |0; Ψ−〉,
when written in Bell’s basis. However, if there are components on this basis vector, the final concurrence will not
be zero and can occasionally even increase with time due solely to the fact that the cavity decays. The maximally
entangled steady state |0; Ψ−〉, that has concurrence C = 1 and has zero probability to decay to the ground state has
been omitted from the figure for better visualization. For such systems, the concurrence between two PMEs can be
preserved throughout the entire lifetime of the excitons on graphene which, at low temperatures, can be a very long
time since in this regime, excitons can only decay by photon emission and the |0; Ψ−〉 state is protected from such
decay. Even though we considered excitons on a graphene sheet under strain throughout this paper, the same results
apply to any excitonic system in which excitons have a set of discrete energy levels. One such example is for trapped
excitons on a TMDC monolayer or bilayer. One can make such a trap by, for example, pinning the TMDC with a
thin needle [16] or by applying a potential difference between two layers at a given point [17].
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VIII. THE 3-QUBITS CASE

In order to check whether a system with more than two qubits embedded in a single cavity mode would yield similar
results, we now carry out a brief study of the three-qubit system. A system of three qubits in resonance with a single
cavity mode will obey a Hamiltonian

Ĥ = Ĥ0 + V̂ ′RWA (39)

with the unperturbed Hamiltonian Ĥ0 given by

Ĥ0 = ~ω0

 3∑
j=1

|ej〉 〈ej |+ â†â

 , (40)

and the interaction in the RWA V̂ ′RWA

V̂ ′RWA = ~λ
3∑
j=1

(
σ̂+
j â+ σ̂−j â

†) . (41)

As for the one and two-qubit case, this Hamiltonian divides the system’s Hilbert space into manifolds with the
same total number of excitations. The manifold for n = 1 total excitations is composed of the states |1; 000〉, |0; 100〉,
|0; 010〉 and |0; 001〉. Similar to the two qubit case, in the presence of dissipation, the system will evolve under a
Master equation of the form [35]

ρ̇ = −i[Ĥ, ρ] + κL(â)ρ (42)

with the Lindblad operator L(â)ρ defined by Eq. (30). In Fig. 6, we evaluated the probability for such a system to
decay to the ground state as a function of time for chosen initial states.

(a) (b) (c)

Figure 6: Probability P (t) for a three qubit system to decay to the ground state |0; 000〉 as a function of time for
~λ = κ = 1 ns−1 for various initial states. (a) ρ0 = |1; 000〉 〈1; 000|; (b) ρ0 = |0; 100〉 〈0; 100|; (c) ρ0 = |Ψ+〉 〈Ψ+|,
where |Ψ±〉 =

1√
2

(|0; 100〉 ± |0; 010〉).

In Fig. 6, we can see that just as for the two-qubit case, the system does not decay to the ground state with

probability one for all initial states. Again, there exists a maximally entangled state |Ψ−〉 =
1√
2

(|0; 100〉 − |0; 010〉)

which has zero probability for it to decay and was omitted from the figure for a clearer presentation. We can assume
that, just like for the two qubits case, the fact that the system does not decay with probability one means that some
quantum entanglement is preserved. Additionally, by looking at Fig. 6 (b), which starts in an originally pure and
un-entangled state, at least for that case, the average amount of quantum entanglement in the system it is enhanced
by the possibility for the system to decay.
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(a) (b) (c)

Figure 7: Probability P (t) for a three qubit system (upper row) or a two qubit system (lower row) to decay to the
ground state (|0; 000〉 for three qubits, or |0; 00〉 for two) as a function of time for ~λ = κ = 1 ns−1 for various initial
states. (a) The system starts with no qubit excitations and one cavity photon; (b) The system starts with no cavity
photons, one qubit in the excited state and all others in the ground state; (c) The system starts with no cavity photons
and one pair of qubits in the maximunly entangled Bell state |Ψ+〉.

In Fig. 7, we compare our results for the dynamics for two and three qubits, by analyzing the decay probability for
equivalent initial states in both cases. As it can be seen from the figures, the time it takes for the system to thermalize
is independent of the number of qubits. We can also see that the probability for the three-qubit system to remain in an
exited state after thermalization and, therefore, present some degree of entanglement, is always equal or greater than
that for the two-qubit system, for equivalent initial states. This probability is equal for the cases in which the system
starts either in a state with one photon in the cavity and no excitations of the qubits, or the system starts with two
qubits in the maximally entangled Bell state |Ψ−〉. For the cases in which the system starts with no cavity photons
and a single excited qubit or no cavity photons and a pair of qubits in the maximally entangled Bell state |Ψ+〉, the
three-qubit system is less likely to decay than the ywo-qubit one. One can understand this fact by noting that for three
qubits, there are actually two linearly independent eigenstates of the original Hamiltonian with no cavity photons,

namely |Ψ−1,2〉 =
1√
2

(|0; 100〉 − |0; 010〉) and |Ψ−1,3〉 =
1√
2

(|0; 100〉 − |0; 001〉) (|Ψ−2,3〉 =
1√
2

(|0; 010〉 − |0; 001〉) is

also an eigenstate, but it is LD of the previous two since it can be written as |Ψ−2,3
〉 = |Ψ−1,3

〉 − |Ψ−1,2
〉). This

means that there is an additional stable state that the system can remain in as t → ∞. This is the reason why the
probability for the system to remain entangled is greater for the higher qubit count.

IX. POSSIBLE PHYSICAL REALIZATIONS

The following physical realizations are possible for similar qubits based on intervalley excitons: First, for pristine
(or gapless) graphene with donor impurities or due to the control electrode, the chemical potential will be in the
upper (conductivity) band. Then a magnetic transition is possible between Landau levels in the same conduction
band. This transition requires pumping with terahertz photons. As a result of pumping by terahertz photons with
linear polarization, intervalley excitons will arise. Secondly, in pristine graphene, pumping by photons in the optical
region of the spectrum is necessary, which transfers electrons from the filled Landau level in the valence band to an
unfilled Landau level in the conduction band.

Note that the results of this work are valid not only for inter-valley excitons in graphene in a pseudomagnetic
field, but also for excitons in other physical systems with a discrete spectrum. For example, one can use excitons in
a TMDC material in a 2D trap created by the deformation potential from the tip of a scanning probe microscope.
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Another option is a system of Frenkel excitons in 2D organic materials. For efficient control of such qubits and their
use in quantum technologies, these systems can be placed in a spatially limited optical cavity with a discrete photon
spectrum with resonant frequencies for qubits.

The most important property of qubits used in quantum technologies is quantum entanglement, and no entanglement
occurs during adiabatic changes in the system of qubits. For entanglement, a non-adiabatic effect is necessary. With
such an effect, interesting phenomena also arise in quantum electrodynamics in a cavity such as the dynamic Lamb
effect (see Refs. [30, 38] and references therein). In fact, quantum entanglement should appear immediately upon the
above-described appearance of intervalley excitons after pumping with linearly polarized light. Similarly, quantum
entanglement of qubits should appear immediately after the pumping of excitons in the trap or pumping of Frenkel
excitons. Calculating the properties of such quantum entanglement and its time dependence is the goal of our work.
Modern quantum technologies and the prospects for their development are based on the use of quantum two-level
systems, i.e., qubits.

Principally new properties of 2D systems arise in pseudomagnetic fields, which arise, in particular, in graphene under
strain. This is due to the fact that the effect of pseudomagnetic fields does not depend on the sign of the charge and
is the same for electrons and holes.Another important property of graphene is the chirality of only two independent
valleys, which leads to the fact that circularly polarized light is absorbed in different valleys of graphene, depending
on the sign of circular polarization. Additionally, the consequence of chirality is that the resulting pseudomagnetic
field during deformation has a different sign in different valleys. Consequently, the appearance of a pseudomagnetic
field due to deformation of graphene does not contradict the absence of violation of invariance with respect to time
reversal contrary to the case of graphene in real magnetic field.

If graphene is pumped by plane polarized photons, they are absorbed in both valleys, accompanied by the appearance
of electrons and holes in them. As a result of the Coulomb attraction, these electrons and holes form excitons not
only in the same valley but also from different valleys. They are more stable due to forbidden luminescence as a
consequence of the law of energy and momentum conservation. Consequently, intervalley pseudomagnetoexcitons
have discrete spectra and can be used as quantum elements in quantum technologies.

X. DISCUSSION

The model which is studied here bears clear similarities with the well studied double Jaynes-Cummings model, where
two entangled qubits are each placed within a well-defined cavity mode. The time evolution for the entanglement
for such a system has been thoroughly investigated in the past by other research groups [39–41]. Additionally, it is
important to emphasize the key difference between that model and ours. In our model, two qubits that may or may
not be initially entangled, are both inserted into a single cavity mode. This system has been briefly described by
Casanova et al. [42], but, since it was not the main focus of their work, they did not provide details of its dynamics.
In the system under consideration in our paper, entanglement can be created or destroyed, depending on the system’s
original state.

Another important comment is the generality of our model. Here, we applied our results to a system of excitons on
a graphene sheet under strain, but, in reality, any physical structure that can be approximated as a two-level system
might be used to study the model presented here. This generality might lead to verification of the model in many
different physical setups.

XI. CONCLUDING REMARKS

In this paper, we have investigated quantum entanglement between a pair of excitons, formed by an electron and a
hole from different valleys in a graphene monolayer under strain within an optical microcavity. We first developed a
Jaynes-Cummings like model for two qubits coupled to a single cavity mode which governs the system in the rotating
wave approximation (RWA). We then calculated the energy eigenstates of such a model. We measured the degree of
entanglement of such states by calculating the concurrence between the two qubits in each of these eigenstates. It
was shown that if the system is allowed to decay only through the emission of cavity photons, which is the case at
low temperatures, there is a maximally entangled eigenstate which is protected from decay.

We have shown that the existence of such a state leads to the counter-intuitive consequence that, for some initial
states of the system, the fact that the cavity is leaky can actually lead to an increase in the average concurrence on
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timescales of the average photonic lifetime. After that, by analyzing the three-qubit version of the model, we have not
only shown that these results also hold for multi-qubits, but also exhibited evidence that the initial-state-dependent
protection for quantum entanglement from decay appears to increase with the number of qubits. Lastly, we used the
energy eigenfunctions and eigenvalues for PMEs obtained in Ref. [15] to formally calculate the time evolution of the
concurrence between two PMEs in graphene. In addition, we have discussed the applicability of our approach for
different 2D materials, such as TMDC monolayers. A worthy next step for this research will be to study in greater
depth the three-qubit model. Specifically, we plan to analyze the evolution of the well-known Greenberger-Horne-
Zeilinger (GHZ) state [31]. The results of our calculations reveal that the quantum entanglement for three qubits is
more stable than for two qubits. This may be explained by the fact that the three-qubit system is characterized by
more degrees of freedom than the two-qubit system. Therefore, based on the reported results of our calculations, one
could conclude that the three-qubit system based on excitons in a strained 2D material is a more reliable candidate
for quantum technologies than the two-qubitsystem.
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Appendix A: Dissipative dynamics

We determine the solution for the set of differential equations represented by Eq. (32), in the case where only the
cavity decay is included (γ = γφ − 0). For this, we first turn our attention to the dissipative term represented by Eq.
(33). If γ = γφ − 0, this equation becomes

ρ̇Lij
= 〈i|κL(â)ρ |j〉

= âρâ† − 1

2

(
â†âρ+ ρâ†â

)
. (A1)

On this manifold, the effect of the operator â is to take the system from the state with one photon and zero excitonic
excitations, |3〉 = |1; 00〉, to the ground state |0〉 = |0; 00〉, i.e.,

â = |0〉 〈3| (A2)
â† = |3〉 〈0| . (A3)

Making use of Eq.] (A2-A3) in Eq. (A1), we find

L(â)ρ = ρ33 (|0〉 〈0| − |3〉 〈3|)− 1

2

2∑
j=0

(ρ3j |3〉 〈j|+ ρj3 |j〉 〈3|) , (A4)

where ρij = 〈i| ρ |j〉. This leads to

ρ̇L00
= κρ33

ρ̇L33 = −κρ33
ρ̇Li3 = −κ

2
ρi3; i = 0, 1, 2

ρ̇L01
= ρ̇L02

= ρ̇L11
= ρ̇L12

= ρ̇L22
= 0 ., (A5)

All the other coefficients are obtained by recalling that ρij = ρ∗ji.

In order to find the terms ρ̇Sij
, we first determine the result obtained when the Hamiltonian acts on each state of

our basis, i.e.,

Ĥ |0〉 = 0

Ĥ |1〉 = ω0 |1〉+ λ |3〉
Ĥ |2〉 = ω0 |2〉+ λ |3〉
Ĥ |3〉 = ωk |3〉+ λ (|1〉+ |2〉) . (A6)

https://doi.org/10.1103/PhysRevLett.105.100505
https://doi.org/10.1088/0953-4075/39/15/s09
https://doi.org/10.1103/PhysRevA.76.042313
https://doi.org/10.1103/PhysRevLett.105.263603
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Making use of this result in Eq. (30), we find

ρ̇S00 = 0

ρ̇S01 = iω0ρ01 + iλρ03

ρ̇S02
= iω0ρ02 + iλρ03

ρ̇S03
= iωkρ03 + iλ(ρ01 + ρ02)

ρ̇S11
= −iλ(ρ31 − ρ13)

ρ̇S12
= −iλ(ρ32 − ρ13)

ρ̇S13 = −i(ω0 − ωk)ρ13 − iλ(ρ33 − ρ11 − ρ12)

ρ̇S22 = −iλ(ρ32 − ρ23)

ρ̇S23
= −i(ω0 − ωk)ρ23 − iλ(ρ33 − ρ22 − ρ21)

ρ̇S33
= −iλ(ρ13 − ρ31 + ρ23 − ρ32). (A7)

By combining Eqs. (A5) through (A5), with Eqs. (A7) through (A7) and using the fact that ρij = ρ∗ji, we can rewrite
Eq. (32) as

ρ̇V =
[
iΛ +

κ

2
Γ
]
ρV , (A8)

where ρV is the column vector

ρV = (ρ00, ρ01, ρ10, ρ02, ρ20, ρ03, ρ30, ρ11, ρ12, ρ21, ρ13, ρ31, ρ22, ρ23, ρ32, ρ33, )
T , (A9)

the matrix Λ is given by

Λ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 ω0 0 0 0 λ 0 0 0 0 0 0 0 0 0 0
0 0 −ω0 0 0 0 −λ 0 0 0 0 0 0 0 0 0
0 0 0 ω0 0 λ 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −ω0 0 −λ 0 0 0 0 0 0 0 0 0
0 λ 0 λ 0 ωk 0 0 0 0 0 0 0 0 0 0
0 0 −λ 0 −λ 0 −ωk 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 λ −λ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 λ 0 0 0 −λ 0
0 0 0 0 0 0 0 0 0 0 0 −λ 0 λ 0 0
0 0 0 0 0 0 0 λ λ 0 (ωk − ω0) 0 0 0 0 −λ
0 0 0 0 0 0 0 −λ 0 −λ 0 (ω0 − ωk) 0 0 0 λ
0 0 0 0 0 0 0 0 0 0 0 0 0 λ −λ 0
0 0 0 0 0 0 0 0 0 λ 0 0 λ (ωk − ω0) 0 −λ
0 0 0 0 0 0 0 0 −λ 0 0 0 −λ 0 (ω0 − ωk) λ
0 0 0 0 0 0 0 0 0 0 −λ λ 0 −λ λ 0



, (A10)
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and the matrix Γ is given by

Γ =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −2



. (A11)

First, we note that, as expected, ρ̇00 = −(ρ̇11 + ρ̇22 + ρ̇33), which means that the equation for ρ00 is redundant
and is not needed to solve the system, so we can eliminate the first entry to ρV and the first line and column of the
matrices Λ and Γ, without any effect. Then, we realize that the remaining problem can be expressed as

ρ̇V = MρV , (A12)

where the matrix M can be written as

M =

(
B 06×9

09×6 A

)
, (A13)

where B is a 6× 6 matrix, A is a 9× 9 matrix and 0m×n is a m× n matrix with all-zero elements. This means that
the time evolution does not mix elements ρ0i with i 6= 0 with elements ρij with i, j 6= 0, nor does it mix ρ00 with ρ0i
with i 6= 0. Therefore, if |0〉 ρ 〈i| = 0 for i = 1, 2, 3 at t = 0, |0〉 ρ 〈i| = 0. These are the cases we are interested in,
since we want to see how the Hamiltonian eigenvalues |ψ0〉 and |ψ±〉 evolve in time, and they do not involve the state
|0; 00〉.

For such cases, the time evolution is given by

ρ̇ = Aρ (A14)

with

ρ = (ρ11, ρ12, ρ21, ρ13, ρ31, ρ22, ρ23, ρ32, ρ33)T (A15)

and

A =



0 0 0 iλ −iλ 0 0 0 0
0 0 0 iλ 0 0 0 −iλ 0
0 0 0 0 −iλ 0 iλ 0 0
iλ iλ 0 a 0 0 0 0 −iλ
−iλ 0 −iλ 0 a∗ 0 0 0 iλ

0 0 0 0 0 0 iλ −iλ 0
0 0 iλ 0 0 iλ a 0 −iλ
0 −iλ 0 0 0 −iλ 0 a∗ iλ
0 0 0 −iλ iλ 0 −iλ iλ −κ


, (A16)
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where a = −κ2 + i(ωk − ω0). Now, all that needs to be done is to find the eigenvectors of this matrix and select from
these the ones in which ρij = ρ∗ji, which will be the ones with meaningful physical reality.

The spectral decomposition of A is rather complicated with very long expressions for most of the eigenvectors and
eigenvalues. However, there is one interesting solution that arises with an eigenvalue of zero, which is represented by
the vector

ρ0 = (1,−1− 1, 0, 0, 1, 0, 0, 0)T , (A17)

which means that, by going back to the definition of the string ρ from Eq. (A15) and using Eq. (42), the state
represented by the density operator ρ given by

ρST =
1

2
(|1〉 〈1|+ |2〉 〈2| − |1〉 〈2| − |2〉 〈1|) (A18)

is a stationary state. It is a simple matter to show that Eq. (A18) canbe expressed as

ρST = |Ψ−〉 〈Ψ−| (A19)

where the maximum entangled Bell state |Ψ−〉 is given by [32]

|Ψ−〉 =
1√
2

(|1〉 − |2〉) =
1√
2

(|0; 10〉 − |0; 01〉) . (A20)

It is important to note that all other eigenvalues have a negative real part, which means that all other eigenvectors
represent states that decay to the ground state exponentially with time. In the case of resonance (ω0 = ωk), the
eigenvalues of A are λ1 = 0, λ2 = λ3 = −κ

2
, λ4 = λ5 = −κ

2
− i
√

32λ2 − κ2 and λ6 = λ7 = λ8 = λ9 = −κ
4

+

i
√

32λ2 − κ2, which means that all states other then ρST decay with a characteristic time no larger than τ =
4

κ
.
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