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Motivated by the observation of nematic superconductivity in several systems, we revisit the
problem of the leading pairing instability of two-component unconventional superconductors on the
triangular lattice – such as (px, py)-wave and

(
dx2−y2 , dxy

)
-wave. Such a system has two possible

superconducting states: the chiral state (e.g. p+ ip or d+ id), which breaks time-reversal symmetry,
and the nematic state (e.g. p + p or d + d), which breaks the threefold rotational symmetry of
the lattice. Weak-coupling calculations generally favor the chiral over the nematic superconducting
state, raising the question of what mechanism can stabilize the latter. Here, we show that the
electromagnetic field fluctuations can play a crucial role in selecting between these two states.
Specifically, we derive and analyze the effective free energy for the two-component superconducting
order parameter after integrating out the gauge-field fluctuations, which is formally justified if the
spatial order parameter fluctuations can be neglected. A non-analytic cubic term arises, as in the
case of a conventional s-wave superconductor. However, unlike the latter, the cubic term depends
on the relative phase and on the relative amplitudes between the two order parameter components,
in such a way that it generally favors the nematic state. This result is a direct consequence of the
fact that the stiffness of the superconducting order parameter is not isotropic. Competition with
the quartic term, which favors the chiral state, leads to a renormalized phase diagram in which the
nematic state displaces the chiral state over a wide region in the parameter space. We analyze the
stability of the fluctuation-induced nematic phase, generalize our results to tetragonal lattices, and
discuss their applicability to candidate nematic superconductors, including twisted bilayer graphene.

I. INTRODUCTION

A nematic superconductor spontaneously breaks not
only the U(1) gauge symmetry, but also a discrete rota-
tional symmetry of the system, thus lowering the symme-
try of the point group that characterizes the underlying
lattice. Recent experiments have reported evidence of
rotational symmetry-breaking superconducting states in
different quantum materials, such as doped Bi2Se3 [1–4],
few-layer NbSe2 [5, 6], the topological semimetal CaSn3

[7], and the iron-based superconductors Ba1−xKxFe2As2

[8] and LiFeAs [9]. There is a longer list of materials
in which superconductivity can coexist with nematic or-
der, such as the iron chalcogenide FeSe [10] or the nickel
arsenide BaNi2As2 [11], but in these cases the supercon-
ducting state emerges in the presence of a nematically
ordered state that onsets at much higher temperatures
[12]. Interestingly, the recently discovered twisted bi-
layer graphene [13–16] has also been reported to dis-
play a nematic superconducting state in the “hole-doped”
side of the phase diagram, as indicated by the in-plane
anisotropy of the critical magnetic field and of the critical
current [17].

Theoretically, a nematic pairing state requires the si-
multaneous existence of (at least) two superconducting
order parameters whose relative phase is not π/2. Gen-
erally, there are two different scenarios in which this can
happen. In the first case, two independent order param-
eters, ψ1 and ψ2, condense at similar temperatures due
to some fine tuning of the microscopic parameters in-
volved [18]. One example is the s + d state proposed
in Ba1−xKxFe2As2 [19, 20]. In the second scenario,

the superconducting order parameter has two symmetry-
related components ψ = (ψ1, ψ2), i.e. it transforms as a
two-dimensional irreducible representation (irrep) of the
lattice point group. Examples of such order parameters
include the (px, py)-wave and

(
dx2−y2 , dxy

)
-wave in tri-

angular lattices or the (px, py)-wave and the (dxz, dyz)-
wave in tetragonal lattices [21]. Since this case does not
require fine tuning, we will focus on it in the remainder
of the paper.

It is convenient to parametrize ψ in terms of three an-
gles ϕ ∈ [0, 2π), β ∈ [−π/2, π/2] and α ∈ [0, 2π) as
ψ = |ψ|eiϕ

(
cosα, eiβ sinα

)
[22]. Below the transition

temperature Tc, the global phase ϕ acquires a definite
value and the U(1) gauge symmetry is broken. As for
α, which describes the relative amplitudes between the
two superconducting order parameters, and β, which de-
scribes the relative phase between ψ1 and ψ2, their al-
lowed values are not continuous, but restricted to discrete
sets by the symmetries of the system. In the particular
case of the triangular (or honeycomb) lattice, there are
two different possible sets of values [23]. The first one
is β = 0 and α = nπ

6 (with even n = 0, 2, .., 10 or odd
n = 1, 3, ..., 11), which corresponds to a nematic super-
conducting state. Fig. 1(a) shows the absolute value

square of the gap (|ψ|2) in the nematic phase, which
clearly breaks the threefold rotational symmetry C3z of
the lattice. Note that there are points in which |ψ|2 = 0,
corresponding to gap nodes. The different values of α
correspond to the different ways of breaking the C3z sym-
metry. The second set of allowed values corresponds to
α = π

4 and β = ±π2 . Because ψ∗ 6= ψ, time-reversal sym-
metry is broken, and the superconducting state is chiral.
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Figure 1. Plots of the superconducting gap function along a generic Fermi surface on the triangular lattice. The order parameter
is parametrized in terms of three angles as ψ = |ψ|eiϕ

(
cosα, eiβ sinα

)
. In this figure, the two components of ψ transform as

dx2−y2 and dxy waves (E2 irrep of D6). (a) The gap function in the nematic state, which lowers the C6z rotational symmetry
of the lattice to C2z, is obtained when α = nπ

6
[with even n = 0, 2, .., 10 (solid arrows) or odd n = 1, 3, ..., 11 (dashed arrows)]

and β = 0. To produce this plot we chose α = 0. (b) The gap function in the chiral state is obtained when α = π
4

and β = ±π
2

.
It does not break any lattice symmetry. However, this state breaks time reversal symmetry.

In this situation, |ψ|2 respects the threefold rotational
symmetry of the lattice and is never zero, as shown in
Fig. 1(b).

The key question is which microscopic mechanisms are
responsible for the selection between the two possible
pairing states – nematic or chiral. An argument usually
invoked is that the chiral state should be favored, since it
completely gaps out the Fermi surface [Fig. 1(b)], which
would presumably maximize the condensation energy. In
agreement with this expectation, weak-coupling calcula-
tions find that the chiral state is generally preferred [24–
28] – unless spin-orbit coupling is significant [29]. More-
over, in noncentrosymmetric systems, time-reversal sym-
metry must be broken [30]. These results raise the in-
teresting question of which mechanism stabilizes the ne-
matic superconducting states that appear to be realized
in the materials discussed above. Besides the aforemen-
tioned possibility of nearly degenerate single-component
pairing states [31–34], it has been pointed out that, in
the case of a two-component superconductor, coupling to
strong normal-state nematic or density-wave fluctuations
can tip the balance in favor of nematic superconductivity
[19, 24].

In this paper, we discuss another possible mechanism
that does not require additional degrees of freedom or
fine tuning. The key point is that, because the su-
perconducting order parameter is charged, it couples to
electromagnetic fluctuations. The effect of the gauge-
field fluctuations on conventional s-wave superconduc-
tors has been widely investigated [35–40]. The seminal
work of Ref. [35] showed that, upon integrating out the
gauge-field fluctuations, the superconducting transition
becomes weakly first-order due to the emergence of a
non-analytic negative cubic term in the free-energy ex-
pansion. Such an effect would be very small to be de-
tected due to the narrow window in which fluctuations
are important in s-wave superconductors. Because this
procedure of integrating out the electromagnetic fields is
formally justified only when the spatial order parameter
fluctuations can be neglected, this conclusion is robust
for type-I superconductors. For type-II superconductors,
duality mappings and Monte Carlo simulations indicate
that the transition remains second-order [36, 37, 39].

The role of gauge-field fluctuations on layered uncon-
ventional superconductors, where fluctuations generally
can play a more prominent role than in conventional
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superconductors, has been less studied. Ref. [41] con-
sidered the case of a general multi-band superconduc-
tor with isotropic stiffness and found, like in the s-wave
case, a fluctuation-induced first-order transition via a
renormalization-group calculation. A similar result was
found in Ref. [42] for a p-wave superconductor, and Ref.
[43] reported the same outcome in the case of color super-
conductivity, where the gauge field is non-Abelian. (See
also Ref [44].) A first-order transition was also found in
multi-band superconductors in the London limit [45, 46].
Here, we extend this kind of perturbative analysis to the
case of two-component superconductors in triangular and
tetragonal lattices, taking into account the anisotropy of
the superconducting stiffness introduced by the crystal
lattice. Specifically, we integrate out the gauge-field fluc-
tuations to obtain a renormalized Landau free-energy,
which is then minimized.

Similarly to the s-wave [35] and isotropic unconven-
tional superconductor cases [41, 42], we find a non-
analytic cubic term with an overall negative sign, indica-
tive of a first-order transition. However, the main differ-
ence is that this non-analytic term is not only dependent
on |ψ|3, but also on the angles α and β that distinguish
between the chiral and nematic states. This happens be-
cause the superconducting stiffness is not isotropic, as in
the s-wave case. Interestingly, by combining numerical
and analytical calculations, we find that the cubic con-
tribution to the free-energy is always minimized for the
nematic state. Consequently, because the chiral state
arises from the minimization of quartic terms of the free
energy, the nematic state becomes the global minimum
of the renormalized free-energy in a wide region of the
parameter-space where the chiral state was the global
minimum of the mean-field free-energy. We further ana-
lyze the stability of this gauge-field-fluctuations induced
nematic state as temperature is lowered below Tc. Fi-
nally, we discuss the limitations of our approach and
the possible application of our results to twisted bilayer
graphene and nematic superconductors in general.

The paper is organized as follows: we derive and
solve the superconducting free-energy renormalized by
electromagnetic field fluctuations in the case of a two-
component superconductor on a triangular lattice in Sec.
II. In Sec. III, we repeat the same procedure for the case
of a tetragonal lattice. In Sec. IV, we summarize and
discuss our results, presenting our concluding remarks.
Appendix A presents additional details of the derivation
of the renormalized free-energy.

II. TWO-COMPONENT SUPERCONDUCTOR
ON THE TRIANGULAR LATTICE

We first consider a two-component unconventional su-
perconductor on a lattice with threefold rotational sym-
metry in the presence of electromagnetic field fluctu-
ations. This applies to the cases of twisted bilayer
graphene, with a triangular moiré lattice and point group

D6, and to doped Bi2Se3 with a trigonal lattice and
point group D3d. Both of these groups admit two
two-dimensional irreps corresponding to px/py-wave or
dx2−y2/dxy-wave superconducting states – respectively,
E1 and E2 in the case of D6 and Eu and Eg in the
case of D3d. In all these cases, we parametrize the two-
component superconducting order parameter ψ as [22]:

ψ = |ψ|eiϕ
(
cosα, eiβ sinα

)
, (1)

where α ∈ [0, 2π) and β ∈
[
−π2 , π2

]
. The global phase ϕ

can take any values in [0, 2π).

A. Renormalized free-energy functional

We now generalize the approach of Ref. [35] of in-
tegrating out the electromagnetic field fluctuations for
the case of a two-component superconductor in a lat-
tice with threefold rotational symmetry. Denoting by A
the electromagnetic vector potential, and using the same
notation as Ref. [35], the Ginzburg-Landau free-energy
density has the form

F [ψ,A] = F0 [ψ] + Fgrad [ψ,A] +
1

8πµ0
(∇×A)

2
, (2)

where F0 [ψ] does not contain gradients of the supercon-
ducting order parameter and Fgrad [ψ,A] contains all the
symmetry allowed couplings between ψ and A. The last
term is the free massless action of the gauge field. Here,
µ0 is the magnetic permeability. The first term on the
right-hand side of Eq. (2) is given by [21, 23, 47]

F0[ψ] =
r

2
|ψ|2 +

u

4
|ψ|4 +

g

4

[(
ψ̄τ3ψ

)2
+
(
ψ̄τ1ψ

)2]
,

(3)
where τi refers to the Pauli matrices acting on the two-
dimensional space of ψ (with i = 1, 2, 3 ) and ψ̄ is the
transposed complex conjugate of ψ. The parameter r
changes sign at the bare transition temperature T0 as
r = r0(T−T0)/T0, with r0 > 0. Moreover, the conditions
u > 0 and g + u > 0 must hold for F0[ψ] to be bounded
from below. In terms of the parametrization (1), we have:

F0[ψ] =
r

2
|ψ|2 +

u

4
|ψ|4 +

g

4
|ψ|4

(
sin2 2α cos2 β + cos2 2α

)
.

(4)
To set the stage, we first review the mean-field results

for the case in which gradient terms are absent – see, e.g.,
Ref. [21]. Minimizing F0[ψ], the leading superconducting
instabilities of Eq. (4) are either the nematic or the chiral
state, both of which onset at r < 0. Specifically when g <
0, the leading superconducting state is nematic and the
order parameter has the form ψ ∝ (cosα, sinα) with α ∈
[0, 2π). When g > 0, the leading superconducting state
is chiral and ψ ∝ (1,±i). The mean-field phase diagram
obtained from minimizing the free-energy in Eq. (4) is
shown in Fig. 2. To this order in ψ, the Landau free-
energy does not fix α to any particular value when the
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Figure 2. Mean-field phase diagram, in the (u, g) parameter-
space, for a two-component superconductor on a triangular
lattice, based on the Landau free-energy expansion to quartic
order in ψ shown in Eq. (4). The white area in this plot
corresponds to the regions in parameter-space where the free
energy in Eq. (4) is unbounded.

nematic state is the minimum. As we will discuss later,
this continuous symmetry is lifted by sixth-order terms
in the free-energy. For simplicity, here we neglect such
sixth-order terms, since the quartic terms are enough to
select between the nematic or the chiral state. In Sec.
II C we discuss the role of the sixth-order terms in F0[ψ].

The second term on the right-hand side of Eq. (2)
consists of a sum of all symmetry allowed gradient terms
that couple ψ and A [21]:

Fgrad[ψ,A] =

K1 |Dxψ1 +Dyψ2|2 +K2 |Dxψ2 −Dyψ1|2

+K3

(
|Dxψ1 −Dyψ2|2 + |Dxψ2 +Dyψ1|2

)
+K4

(
|Dzψ1|2 + |Dzψ2|2

)
,

(5)

where Dx = ∂x − iq0Ax, etc. are the covariant deriva-
tives and q0 = 2e/~c. The above Ki parameters, known
as stiffness coefficients, penalize spatial variations of the
field in different directions. Importantly, the in-plane
stiffness of the order parameter is not isotropic. We con-
sider the situation in which the order parameter varies
weakly in space whereas the electromagnetic fields vary
more strongly. In this case, we can set ∇ψ = 0 in the
expression above. This step is formally only justified for
type-I superconductors, as explained in [35]. We will re-
visit this assumption in Sec. IV. Note that, in the ordered
chiral state, it has been argued that the superconduct-
ing gap excitations and the magnetic excitations become

mixed [48]. Here, we approach the transition from the
disordered phase. With this assumption, the gradient
terms simplify to:

Fgrad[ψ,A] =q2
0γ0 |ψ|2

(
A2
x+A2

y

)
+q2

0γ3(ψ̄τ3ψ)
(
A2
x−A2

y

)
+2AxAyq

2
0γ3(ψ̄τ1ψ)+A2

zq
2
0γz |ψ|2 ,

(6)
where we have defined the effective stiffness coefficients

γz = K4, γ0 =
K1 +K2 + 2K3

2
and γ3 =

K1 −K2

2
.

(7)
In a layered quasi two-dimensional system, the magni-
tude of γz should be much smaller than that of γ0. How-
ever, as it will be clear later on, our result is not too
sensitive to variations in γz.

To define the effective free-energy density of the single
variable ψ, Feff [ψ], we take the trace over the physically
allowed dynamic degrees of freedom of A. In other words,
the functional integral that defines Feff [ψ] is done over
all the purely transverse configurations of the vector po-
tential, A⊥,

e−βFeff [ψ] = e−βF0[ψ]

×
∫
DA⊥ e−β

∫
dV {Fgrad[ψ,A]+ 1

8πµ0
(∇×A)2},

(8)
where β = 1/ (kBT ) and Fi denotes the integrated free-
energy density Fi. It is convenient to proceed in the
Coulomb gauge, ∇·A = 0, where the Fourier component
of the vector potential that is parallel to the wave vector
k vanishes,

Ak · k̂ = 0. (9)

To impose the above condition, we move to the spher-
ical coordinate system k = k (sin θ cosφ, sin θ sinφ, cos θ)
and consider the spherical basis formed by the unit vec-
tors

k̂ = (sin θ cosφ, sin θ sinφ, cos θ) ,

θ̂ = (cos θ cosφ, cos θ sinφ,− sin θ) ,

φ̂ = (− sinφ, cosφ, 0) .

(10)

In this new basis, the Fourier components Ak are denoted
as

Ak = Akkk̂ +Aθkθ̂ +Aφkφ̂, (11)

in terms of which the transverse component of the elec-
tromagnetic field becomes simply A⊥k = (Aθk, Aφk) .
Thus, in the Cartesian basis, the Fourier components Ak

are given by:AxkAyk
Azk

 =

cos θ cosφAθk − sinφAφk
cos θ sinφAθk + cosφAφk

− sin θAθk

 , (12)
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As a result, Eq. (8) can be written in terms of Aθk and Aφk as

e−βFeff [ψ] = e−βF0[ψ]

∫
DA⊥ e

−
βψ2

s

8πµ0

∫
d3kA⊥

k MkA
⊥T
k ,

(13)
where we have defined ψ2

s = 8πγ0q
2
0µ0|ψ|2 and Mk is a

2× 2 matrix with components

(Mk)θθ = cos2θ
(

1− γz
γ0

+ γ3
γ0

cos 2α cos 2φ+ γ3
γ0

cosβ sin 2α sin 2φ
)

+ γz
γ0

+ k2

ψ2
s

,

(Mk)φφ = 1− γ3
γ0

(cos 2α cos 2φ+ cosβ sin 2α sin 2φ) + k2

ψ2
s

,

(Mk)θφ = (Mk)φθ = γ3
γ0

cos θ (cosβ sin 2α cos 2φ− cos 2α sin 2φ) .

(14)

Thus,
βψ2

s

8πµ0
Mk is the “mass matrix” of the gauge field.

Above the superconducting transition, where the super-
conducting order parameter ψs is zero, the mass matrix
has zero determinant, indicative of a massless field. For a
non-zero ψs, the functional integral in Eq. (13) only con-
verges if both eigenvalues of the matrix Mk are positive,
i.e., if the gauge field becomes massive. The conditions
for this to happen are that both γ0 and γz should be
positive and |γ3| < γ0.

The result of the functional integration over all phys-
ical configurations of A gives the effective free-energy
density functional for ψ, which is a sum of two terms

Feff [ψ] = F0 [ψ] + FEM[ψ]. (15)

The first term, F0[ψ], was defined in Eqs. (3) or (4)
whereas the second term FEM[ψ] is given by the result of
the Gaussian integration over the electromagnetic fields:

FEM[ψ] =
4TΛ3

3(2π)2
ln (ψs)

+
Tψ3

s

2(2π)3

∫ 2π

0

dφ

∫ 1

−1

dx

∫ Λ
ψs

0

dq q2 ln
(
c+ bq2 + q4

)
.

(16)
In Eq. (16), we performed a change of variables to x =
cos θ and q = k/ψs. Here, Λ is the momentum cutoff and
the polynomial c+bq2 +q4 = detMk. The dimensionless
quantities b and c are given by

b =
γz
γ0

+ 1 +

(
1− γz

γ0

)
x2

− γ3

γ0

(
1− x2

)
(cos 2α cos 2φ+ cosβ sin 2α sin 2φ) ,

c =
γz
γ0

+

[
1− γz

γ0
−
(
γ3

γ0

)2 (
cos2 β sin2 2α+ cos2 2α

)]
x2

− γzγ3

γ2
0

(
1− x2

)
(cos 2α cos 2φ+ cosβ sin 2α sin 2φ) .

(17)
In order to extract from FEM[ψ] the leading terms in
the order parameter, it is necessary to Taylor expand the

logarithm before integrating. After defining

a2
± =

b

2
±
√
b2 − 4c

2
(18)

we rewrite the integral FEM[ψ] as an infinite sum (see
Appendix A for details)

FEM[ψ] = − Tψ
3
s

48π2

∫ 2π

0

dφ

∫ 1

−1

dx
(
a3

+ + a3
−
)

+

∞∑
n=1

Tψ2n
s

2(2π)3

∫ 2π

0

dφ

∫ 1

−1

dx
(−1)n−1Λ−2n+3

n(−2n+ 3)

(
a2n

+ + a2n
−
)
.

(19)
The series that contains even powers of ψs, i.e. ψ2n

s , sim-
ply renormalizes the existing analytic terms in the bare
Landau free-energy. For n > 1, these corrections are
small due to the cutoff pre-factor Λ−2n+3. For n = 1,
the correction is independent of the angles α and β and
results in a renormalization of the bare transition tem-
perature T0. Therefore, hereafter, we ignore the infinite
series and focus only on the cubic term of Eq. (19):

FEM[ψ] = − Tψ
3
s

48π2

∫ 2π

0

dφ

∫ 1

−1

dx
(
a3

+ + a3
−
)
. (20)

The above cubic term is a non-analytic function of
ψ. Non-analytic contributions to the Ginzburg-Landau
free-energy are generally expected to arise when a mass-
less field is integrated out – see for instance the case of
nematic order parameters coupling to acoustic phonon
modes [49–52]. If we set γ3 = 0 and γ0 = γz, it fol-
lows that b = 2 and c = 1, such that a+ = a− = 1. In
this case, Eq. (20) gives a cubic term with a negative
coefficient, as in the case of an s-wave superconductor
[35]. What makes our case different from the s-wave case
is the additional stiffness coefficient γ3, which is absent
for a single-component superconductor, and which makes
FEM[ψ] depend on the relative angles α and β.

We first analyze numerically the dependence of the cu-
bic term FEM[ψ] on α and β. It is convenient to express
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minima on the (α, β) plane. The minima correspond to a
nematic state with order parameter ψ ∝ (cosα, sinα), where
α is not fixed to be any particular value.

the cubic term in terms of the dimensionless integral f (3)

that depends only on the ratios between the stiffness co-
efficients γ3

γ0
and γz

γ0
and on the angles α and β:

FEM[ψ] =
Tψ3

s

12π
f (3)

(
γ3

γ0
,
γz
γ0
, α, β

)
. (21)

with:

f (3) ≡ − 1

4π

∫ 2π

0

dφ

∫ 1

−1

dx
(
a3

+ + a3
−
)

(22)

We analyzed f (3) by plotting it as a function of α and
β for varying γz/γ0 ∈ [0, 1] and γ3/γ0 ∈ [−1, 1]. In all
cases we studied, we found f (3) < 0, like the simpler
case of the s-wave superconductor treated in [35]. More
importantly, the minima of f (3) occured for β = 0, with
an undefined value of α. This corresponds to a nematic
state parametrized by ψ ∝ (cosα, sinα). In Fig. 3, we
illustrate this behavior by showing a plot of f (3) for the
particular case γz

γ0
= 0.1 and γ3

γ0
= 0.8. For simplicity,

we restrict α to the range [0, π) since the free energy is
invariant under the shift α→ π + α.

To gain further insight on these numerical results, we
perform an analytic expansion of FEM[ψ] to second order
in γ3/γ0. We find:

FEM[ψ] ≈ −Tψ
3
s

12π

{
h1

(
γz
γ0

)
+

+

(
γ3

γ0

)2

h2

(
γz
γ0

)(
sin2 2α cos2 β + cos2 2α

)}
,

(23)
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x

Figure 4. Plots of the functions h1(x) and h2(x) defined
in Eq. (24). Note that both functions are positive and vary
weakly in the interval 0 < x < 1.

where h1(x) and h2(x) are given by

h1(x) =
1

8

[
10 + 3x+

3x2

√
1− x arctanh

(√
1− x

)]
h2(x) =

3

128(1− x)2
[ 8x2 − 5x− 6 + 16(1− x) lnx

+
19x2 − 48x+ 32√

1− x ln

(√
1− x+ 1√

x

)]
.

(24)
Both h1(x) and h2(x) are plotted in Fig. 4. We note

that the changes in h1(x) and h2(x) in the range 0 < x <
1 are relatively small, implying that our results should
not depend significantly on the value of γz/γ0. More
importantly, both functions are positive for 0 < x < 1,
which implies that the overall coefficient of the cubic term
is negative. For later convenience, we re-express Eq. (23)
as:

FEM[ψ] =

− λ0

3
|ψ|3

[
1 +

λ3

λ0

(
cos2 2α+ sin2 2α cos2 β

)]
,

(25)
where the positive parameters λ0 and λ3 are defined as

λ0 ≡
√

32π
(
γ0q

2
0µ0

)3/2
T h1

(
γz
γ0

)
,

λ3 ≡
(
γ3

γ0

)2√
32π

(
γ0q

2
0µ0

)3/2
T h2

(
γz
γ0

)
.

(26)

As we pointed out above, while such a negative non-
analytic cubic term also appears in the s-wave case and
in the isotropic p-wave case [35, 42], the novelty here is
that the non-analytic contribution also depends on α and
β due to the in-plane anisotropy of the superconducting
stiffness. From Eq. (25), since λ3 > 0, it is clear that
the term FEM[ψ] is minimized for β = 0 and arbitrary
α, which corresponds to a nematic superconducting in-
stability, in agreement with our numerical analysis.
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B. Leading instability of the renormalized
free-energy

Having derived an approximate analytical expression
for FEM[ψ], we are now in position to minimize the full
free energy Feff [ψ] given by Eq. (15) to find the leading
instability immediately below the superconducting tran-
sition temperature. Using Eqs. (4) and (25), we obtain:

Feff [ψ] =
r

2
|ψ|2 − λ0

3
|ψ|3 +

u

4
|ψ|4

+

(
g

4
|ψ|4 − λ3

3
|ψ|3

)(
cos2 2α+ sin2 2α cos2 β

)
.

(27)

The key point is that the leading superconducting in-
stability of the system – chiral or nematic – is determined
by the competition between the quartic and cubic terms,
which share the same functional dependence on α and β.
While the cubic term always favors the nematic phase,
the quartic term may favor either the nematic or the chi-
ral state depending on the sign of g, as shown in Fig. 2
above.

The presence of a negative cubic term renders the su-
perconducting transition first-order. As a result, one has
to compare the free energies of the two possible solutions
– nematic (β = 0) and chiral (β = ±π2 , α = π

4 ). Note
that, because the functional dependence of the renormal-
ized free-energy density Feff [ψ] on α and β is the same as
the dependence displayed by the bare free-energy density
F0[ψ], no additional solutions besides the chiral and ne-
matic ones are expected to arise from the minimization
of the free energy. In either case, after substituting the
appropriate values for the angles, the free energy acquires
the same general form:

F (µ)
eff [ψ] =

r

2
|ψ|2 − λµ

3
|ψ|3 +

uµ
4
|ψ|4, (28)

where µ denotes the nematic (µ = nem) or the chiral
(µ = ch) solution. We have:

λnem = λ0 + λ3 ;

λch = λ0 ;

unem = u+ g

uch = u
(29)

It is straightforward to minimize Eq. (28) with respect
to |ψ| and find the condition on the reduced temperature
r for which the minimized free energy becomes smaller
than that of the non-superconducting phase. We find
that the first-order transition for the µ solution takes
place at the reduced temperature r = rµ given by:

rµ =
2λ2

µ

9uµ
. (30)

At this transition, the superconducting order parameter
jumps according to:

∆|ψ|µ =
2λµ
3uµ

(31)

Chiral
ψ ∝ (1,±i)

Nematic
ψ ∝ (cosα, sinα)

0

−1.5

1.5

0 31.5

u

g

Figure 5. Phase diagram, in the (u, g) parameter-space, of
the leading superconducting instability obtained by minimiz-
ing the effective free energy in Eq. (27), which is renormalized
by the electromagnetic field fluctuations. The dotted line rep-
resents the phase boundary of the bare free energy, see Fig.
2. The phase boundary separating the nematic and chiral so-
lutions is a straight line given by Eq. (32). For this plot, we
set λ3

λ0
= 0.2.

Therefore, the leading (first-order) superconducting in-
stability is that whose free energy becomes negative first,
i.e. the solution with the largest rµ value. Using Eqs.
(29) and (30), the phase boundary g∗(u) between the chi-
ral and nematic phases in the (u, g) parameter-space is
given implicitly by the condition rch = rnem, from which
we derive:

g∗(u) =

[(
1 +

λ3

λ0

)2

− 1

]
u. (32)

Note that the chiral solution is the leading instability for
g > g∗ whereas the nematic solution is the leading one
for g < g∗.

The phase diagram of the renormalized free-energy is
shown in Fig. 5. Compared with the mean-field phase
diagram of the bare free-energy in Fig. 2, the main dif-
ference is that the nematic solution becomes the lead-
ing instability in a region of the parameter-space where
g > 0, thus displacing the chiral solution. Indeed, be-
cause λ3, λ0 > 0, it follows that g∗ > 0. This implies
that the nematic-chiral phase boundary of the renormal-
ized free-energy moves to the region of the parameter-
space where the chiral solution used to be the leading
instability. As a result, the nematic solution is favored
over a wider range of parameters as compared to the bare
free-energy case.

Another difference between the phase diagrams of Figs.
2 (bare free-energy) and 5 (free-energy renormalized by
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Chiral

Nematic

0

−1.5

1.5

0 31.5

u

g

R

Q

P

s

(a)

P Q R
0

0.5

1

1.5

r

(b)

Figure 6. (a) Definition of the path P → Q→ R in the phase
diagram of Fig. 5. (b) Evolution of the reduced temperature
r where either the nematic (purple line) or the chiral (cyan
line) transition takes place, i.e. max (rnem, rch), along the
path P → Q → R. For these plots, we used λ0 = 1 and
λ3 = 0.2. We also set u = 1 along the path P → Q→ R.

electromagnetic fluctuations) is that, in the former, the
leading instability is second-order and occurs always at
the reduced temperature r = 0. In the latter, the tran-
sition is first-order and occurs for a positive rµ given by
Eq. (30), which changes across the phase diagram. This
is illustrated in Fig. 6(b), where we plot max (rnem, rch)
along the P −Q−R path shown in Fig. 6(a).

Based on the quantitative estimates of Ref. [35], one
generally expects the cubic coefficients λ0 and λ3 to be
small, rendering the first-order transition very weak – in
other words, one expects the jump ∆ |ψ|µ in Eq. (31) to
be very small, λi � u. It is important to note, however,
that this does not imply that the effect of the electro-

magnetic field fluctuations on the selection between the
chiral and the nematic phase is negligible. Instead, from
the condition (32), we conclude that this effect is signifi-
cant when the ratio between the quartic coefficients g/u
is comparable to the ratio between the cubic coefficients
λ3/λ0. As a result, even though λi � u, this does not
preclude g/u ∼ λ3/λ0.

Going back to the effective free-energy in Eq. (27), it
is interesting to analyze in more depth the interplay be-
tween the cubic and quartic terms. Naively, one might
have expected that the nematic instability should always
be the leading one, since the cubic term favors the ne-
matic phase, whereas the chiral phase is only favored
by the higher-order quartic term (for g > 0, of course).
The reason why the quartic term can outcompete the
cubic one is because of the first-order character of the
transition. This can be seen by noting that, immedi-
ately below the first-order transition, the combination

g̃ ≡
(
g
4 − λ3

3∆|ψ|

)
acts as an effective coefficient of the

angular-dependent term in Eq. (27), where ∆|ψ| is the
jump in the superconducting order parameter. Plugging
in the value for ∆|ψ|ch obtained from Eq. (31), we find
that g̃ > 0 in the regime g > g∗. Clearly, a positive g̃
favors β = ±π/2 and α = π/4, consistent with a chiral
phase. Conversely, substituting the value for ∆|ψ|nem, we
find that g̃ < 0 in the regime g < g∗. A negative effec-
tive coefficient g̃ favors β = 0, consistent with a nematic
phase.

That the nematic phase can be stabilized in a regime
where the bare parameters of the free-energy would pre-
dict a chiral phase is the main result of our paper. Thus,
electromagnetic field fluctuations tilt the balance be-
tween the chiral and nematic states in favor of the latter.
Formally, this effect is enabled by the finite stiffness coef-
ficient γ3 in Eq. (6). Indeed, γ3 = 0 gives λ3 = 0, which
in turn implies g∗(u) = 0, recovering the nematic-chiral
phase boundary obtained from the bare free-energy. Note
that, as long as the gradient coefficients K1 and K2 in
Eq. (5) are different, γ3 will be nonzero. Therefore, the
microscopic origin of this effect is the fact that the stiff-
ness of a two-component superconductor is not isotropic
in momentum space.

C. Stability of the superconducting nematic state
below Tc

The phase diagram obtained in Fig. 5 refers to
the leading instability immediately below the first-order
transition temperature Tc set by rnem or rch. In this
section, we investigate the stability of the nematic so-
lution below the superconducting transition in the re-
gion 0 < g < g∗. Of course, since we are employing a
Ginzburg-Landau approach, this analysis is only formally
valid near rnem. As such, our calculations cannot be used
to establish what the zero-temperature superconducting
ground state is.
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(a) F (min)
eff

(b) |ψ|

(c) F (min)
eff

(d) |ψ|

(e) F (min)
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(f) |ψ|
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0
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Figure 7. (a) and (b): Evolution of the free energy minimum and of the magnitude of the order parameter, as functions of
the reduced temperature r. Both plots correspond to the point s in the phase diagram of Fig. 6(a). This means that we set
u = 1, g = 0.35, λ0 = 1 and λ3 = 0.2. (c)-(f): Same as (a)-(b) but in these cases, the sixth-order terms in Eq. (33) are
included. We set v1 = 1, v2 = 0 and either v3 = 0.10 [panels(c) and (d)] or v3 = 0.15 [panels (e) and (f)].

To assess the nematic phase below rnem, it is impor-
tant to also include the sixth-order terms of the Landau
free-energy F0 [ψ] that we have neglected so far. This is
because, as discussed above, minimization of the quartic-
order free-energy does not fix the value of the angle α that
characterizes the relative amplitude of the two compo-
nents of the gap function in the nematic superconducting
state, ψnem ∝ (cosα, sinα). A sixth-order term lowers
this artificial U(1) symmetry to a Z3 symmetry, as ex-
pected for a lattice with threefold rotational symmetry

[23, 47]. We thus include in our analysis the three sixth-
order terms that are allowed by the threefold rotational
symmetry of the lattice [21]:

F̄0 [ψ] =
v1

6
|ψ|6 +

v2

6
|ψ|2

[
|ψ|4 −

(
ψ̄τ2ψ

)2]
+
v3

6

(
ψ̄τ3ψ

) [(
ψ̄τ3ψ

)2 − 3
(
ψ̄τ1ψ

)2]
,

(33)

where new Landau coefficients v1, v2 and v3 were intro-
duced. To ensure that the free energy remains bounded,
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0

1

2

0 1 2 3 4

g

u

0 0.2 0.4 0.6 0.8 1

v3

Figure 8. Nematic-chiral phase boundary in the (u, g)
parameter-space. The dashed line is the phase boundary in
the absence of the sixth-order terms, as shown in Fig. 5. Each
solid curve represents the phase boundary for different values
of v3, as shown by the color-scale bar. In all cases, we set
λ3
λ0

= 0.2, v1 = 1, and v2 = 0.

they must satisfy v1 > 0, v1+v2 > 0 and v1+v2−|v3| > 0.
The first sixth-order term above, with coefficient v1, does
not distinguish between the chiral and the nematic states.
The second sixth-order term, with coefficient v2, can be
rewritten in terms of the angles α and β as:

F̄ (2)
0 [ψ] =

v2

6
|ψ|6

(
1− sin2 2α sin2 β

)
. (34)

Thus, if v2 > 0, the chiral state is favored by this term,
whereas if v2 < 0, the nematic state is favored. As for
the third sixth-order term, with coefficient v3, it can be
rewritten as:

F̄ (3)
0 [ψ] =

v3

6
|ψ|6 cos 2α

(
cos2 2α− 3 sin2 2α cos2 β

)
.

(35)
This term not only favors the nematic phase (β = 0),

regardless of the sign of v3, but it also restricts the al-
lowed values of α to a discrete set of six values. Indeed,

setting β = 0, we obtain F̄ (3)
0 [ψ] = v3

6 |ψ|6 cos 6α. As a

result, if v3 > 0, this term is minimized by α = (2n+1)π
6

with n = 0, 1, ..., 5; conversely, if v3 < 0, minimization
gives α = 2nπ

6 with n = 0, 1, ..., 5.
To investigate the stability of the nematic phase below

the superconducting transition, we numerically minimize
the full free-energy F̄eff ≡ Feff + F̄0, as given by Eqs.
(27) and (33), in both the nematic and chiral channels for
r < rnem. Our interest is in the region 0 < g < g∗, where

the electromagnetic field fluctuations change the leading
instability from chiral to nematic. For concreteness, we
consider the point s in the phase diagram of Fig. 6(a),
which is close to the nematic-chiral phase boundary. The

evolution of the free energy minimum, F̄ (min)
eff , as function

of r is shown in Fig. 7 (left panels), accompanied by the
evolution of the absolute value of the superconducting
order parameter |ψ| (right panels). Without the sixth-
order terms [panels (a)-(b)], the nematic state undergoes
a first-order transition to the chiral state relatively close
to rnem.

However, upon inclusion of the sixth-order contribu-

tions – particularly the F̄ (3)
0 [ψ] term that is responsible

for enforcing the discreteness of the α values – we find
that the nematic solution remains the global energy min-
imum over a significantly wider range of reduced temper-
atures r [panels (c)-(f)]. Interestingly, this effect is ap-
parent even for |v3| � v1. A finite v2 can either extend
the nematic solution to an even larger range of reduced
temperatures, if v2 < 0, or compress it to a narrower
range, if v2 > 0. Therefore, we conclude that the sixth-
order term (35) is important not only to lift the acciden-
tal U(1) symmetry of α, but also to stabilize the nematic
phase promoted by the electromagnetic field fluctuations
below the superconducting transition.

Another effect caused by the the sixth-order terms is
a change in the nematic-chiral phase boundary of Fig. 5.
As shown in Fig. 8, upon increasing the coefficient v3

(while keeping v1 and v2 fixed), the phase boundary ac-
quires a curvature and is no longer linear. Importantly,
this effect is only significant close to the origin of the
(u, g) parameter-space. As one moves away from the ori-
gin, all the boundaries become asymptotically close to
the linear boundary whose slope is determined solely by
the cubic coefficients λ0 and λ3.

III. TWO-COMPONENT SUPERCONDUCTOR
ON THE TETRAGONAL LATTICE

The main result derived in Sec. II – that electromag-
netic gauge-field fluctuations favor a nematic over a chiral
superconducting state – is not unique to the triangular
lattice. In this section, we extend the analysis to the case
of a two-component superconductor on a tetragonal lat-
tice. For concreteness, we consider the point group D4h,
such that ψ = (ψ1, ψ2) can transform as either the Eg
irrep – which corresponds to a (dxz, dyz)-wave supercon-
ductor – or the Eu irrep – corresponding to a (px, py)-
wave superconductor. To start, we review the known
results for the mean-field phase diagram (which can be
found e.g. in Refs. [21, 53]), following the notation of
Ref. [22]. The superconducting order parameter can still
be parametrized as in Eq. (1). However, instead of two,
there are three possible superconducting ground states:
the B1g nematic state ψ = (1, 0) /(0, 1), corresponding
to α = 2nπ

4 and β = 0, with n = 0, ..., 3; the B2g nematic

state ψ = (1, ±1), corresponding to α = (2n+1)π
4 and
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Figure 9. Absolute value squared of the gap function along a circular Fermi surface for a (px, py)-wave superconductor on a
tetragonal lattice. Three ground states are possible. A similar analysis was shown previously in Ref. [22]. (a) The B1g nematic
superconducting state, which reduces the C4z rotational symmetry of the lattice to a C2z symmetry. In this plot, we set α = 0.
(b) The B2g nematic superconducting state breaks the C4z rotational symmetry of the lattice as well; in this plot, we used
α = π

4
. (c) The chiral superconducting state is characterized by α = π

4
and β = ±π

2
. It does not break any lattice symmetry,

but it breaks time reversal symmetry.

β = 0, with n = 0, ..., 3; and the chiral state ψ = (1, ±i),
corresponding to α = π

4 , and β = ±π2 . The correspond-
ing absolute values of the gap function are shown in Fig.
9 for the particular case of a (px, py)-wave state – see also
Ref. [22], where a similar analysis was presented. Both
B1g and B2g nematic superconducting states break the
fourfold (C4z) rotational symmetry of the system, lower-
ing it to twofold (C2z). However, they are not symmetry-
equivalent, as the B1g state preserves the σv mirror re-
flections, whereas the B2g state preserves the σd mirror
reflections.

To proceed, we write the full Ginzburg-Landau free-
energy density as in Eq. (2). The non-gradient terms are
given by [21, 53]:

F0[ψ] =
r

2
|ψ|2 +

u

4
|ψ|4 +

g

4

(
ψ̄τ3ψ

)2
+
w

4

(
ψ̄τ1ψ

)2
(36)

=
r

2
|ψ|2 +

u

4
|ψ|4

+
g

4
|ψ|4 cos2 2α+

w

4
|ψ|4 sin2 2α cos2 β.

In order for F0[ψ] to be bounded, the Landau parameters
must satisfy the conditions u > 0, w+u > 0 and g+u >
0. Minimization of the free energy leads to the three
possible superconducting solutions mentioned above. As
shown in the mean-field phase diagram of Fig. 10, when
g < min {0, w}, the leading instability below r < 0 is the
B1g nematic superconducting state. When g > w and
w < 0, the selected state is the B2g nematic, whereas for
g > 0 and w > 0, it is the chiral state.

Chiral
ψ ∝ (1,±i)

Nematic B2g

ψ ∝ (1,±1)

Nematic B1g

ψ ∝ (1, 0) or (0, 1)

−1

−1

0

0

w
u

g
u

Figure 10. Mean-field phase diagram in the
(
w
u
, g
u

)
parameter-space for a two-component superconductor on a
tetragonal lattice, obtained by minimizing the free-energy in
Eq. (36). The white area in this plot corresponds to the
parameter-space region where the free-energy is unbounded
from below.
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The gradient terms are given by [21]:

Fgrad[ψ] = K1

[
|Dxψ1|2+|Dyψ2|2

]
+K2

[
|Dxψ2|2+|Dyψ1|2

]
+K3

[
(Dxψ1)

∗
(Dyψ2)+c.c.

]
+K4

[
(Dxψ2)

∗
(Dyψ1)+c.c.

]
+K5

[
|Dzψ1|2+|Dzψ2|2

]
,

(37)
where, as in Sec. II, Dx = ∂x−iq0Ax, etc. are the covari-
ant derivatives and Ki are the stiffness coefficients. As-
suming that the order parameter is spatially uniform in
the regime where the gauge-field fluctuations are strong,
the equation above is simplified to:

Fgrad[ψ] =q2
0γ0 |ψ|2

(
A2
x +A2

y

)
+ q2

0γ3(ψ̄τ3ψ)
(
A2
x −A2

y

)
+ 2AxAyq

2
0γ1(ψ̄τ1ψ) +A2

zq
2
0γz |ψ|2 ,

(38)
where we have defined the effective stiffness coefficients
as γz = K5,

γ1 =
K3 +K4

2
, γ3 =

K1 −K2

2
and γ0 =

K1 +K2

2
.

(39)
Note that, as compared to the triangular-lattice case,
there is an additional stiffness coefficient in the case of
the tetragonal lattice, since γ1 6= γ3. If these two coef-
ficients were fine-tuned to acquire the same value, one
would recover the results for the triangular lattice.

We now repeat the same steps as in Sec. II to integrate
out the electromagnetic field fluctuations and obtain the
effective free-energy density

Feff [ψ] = F0 [ψ] + FEM[ψ], (40)

with F0[ψ] defined in Eq. (36). The term FEM[ψ], result-
ing from the gauge-field fluctuations, acquires the same
form as in Eq. (20), with a2

± still defined by Eq. (18),
but with the new dimensionless quantities b and c given
by:

b =
γz
γ0

+ 1 +

(
1− γz

γ0

)
x2

−
(
1−x2

)(γ3

γ0
cos 2α cos 2φ+

γ1

γ0
cosβ sin 2α sin 2φ

)
(41)

and

c =
γz
γ0

+

[
1− γz

γ0
−
(
γ3

γ0
cos 2α

)2

−
(
γ1

γ0
cosβ sin 2α

)2
]
x2

− γz
γ0

(
1−x2

)(γ3

γ0
cos 2α cos 2φ+

γ1

γ0
cosβ sin 2α sin 2φ

)
.

(42)
We first study numerically the dependence of the cubic

term FEM[ψ] on α and β. As in the preceding section, it
is convenient to express it in terms of the dimensionless
integral f (3) given by Eq. (22), such that:

FEM[ψ] =
Tψ3

s

12π
f (3)

(
γ1

γ0
,
γ3

γ0
,
γz
γ0
, α, β

)
. (43)

(a) (b)
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Figure 11. (a) Dimensionless coefficient of the cubic term

f (3) (α, β) as a function of α and β for fixed γ1
γ0

= 0, γ3
γ0

= 0.8

and γz
γ0

= 0.1. (b) Location of the minima of f (3) (α, β) on

the (α, β) plane. The minima correspond to the B1g nematic
superconducting state with order parameter ψ ∝ (1, 0) or
ψ ∝ (0, 1).
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Figure 12. (a) Dimensionless coefficient of the cubic term

f (3) (α, β) as a function of α and β for fixed γ1
γ0

= 0.8, γ3
γ0

= 0

and γz
γ0

= 0.1. (b) Location of the minima of f (3) (α, β) on

the (α, β) plane. The minima correspond to the B2g nematic
superconducting state with order parameter ψ ∝ (1,±1).

We systematically analyzed f (3) (α, β) numerically for
various values of the stiffness coefficients. Because f (3)

only depends on cos 2α and sin 2α, we restricted the range
of α values to [0, π]. The stiffness coefficients were var-
ied systematically in the ranges γz

γ0
∈ [0, 1], γ1

γ0
∈ [−1, 1],

and γ3
γ0
∈ [−1, 1]. In all cases, we found f (3) (α, β) < 0.

More importantly, the values of α and β that minimize
f (3) (α, β) were found to always correspond to one of the
two nematic superconducting states. In particular, in
the cases where |γ1| < |γ3|, the minima are located at
α = 2nπ/4 with integer n, corresponding to the B1g

nematic superconducting state ψ ∝ (1, 0)/(0, 1). This
is illustrated in Fig. 11, where we show f (3) (α, β) for
the particular case γ1

γ0
= 0, γ3

γ0
= 0.8, and γz

γ0
= 0.1.
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Conversely, in all the cases where |γ1| > |γ3|, the min-
ima are at β = 0 and α = (2n+ 1)π/4 with integer n,
corresponding to the B2g nematic superconducting state
ψ ∝ (1,±1). Such a behavior is illustrated in Fig. 12 for
the particular case γ1

γ0
= 0.8, γ3

γ0
= 0, and γz

γ0
= 0.1.

Following the same steps as in Sec. II, we perform an

analytical expansion of f (3)
(
γ1
γ0
, γ3γ0 ,

γz
γ0
, α, β

)
to second

order in γ1/γ0 and γ3/γ0. We obtain:

FEM[ψ] ∼ −Tψ
3
s

12π

{
h1

(
γz
γ0

)
+

h2

(
γz
γ0

)[(
γ1

γ0
sin 2α cosβ

)2

+

(
γ3

γ0
cos 2α

)2
]}

,

(44)
where h1(x) and h2(x) were previously defined in Eq.
(24) and plotted in Fig. 4. Minimization of FEM[ψ]
leads to α = (2n+ 1)π/4 and β = 0 when |γ1| > |γ3|
and to α = 2nπ/4 when |γ3| > |γ1|, in agreement with
the numerical analysis. For convenience, we define the
coefficients:

λ0 ≡
√

32π
(
γ0q

2
0µ0

)3/2
T h1

(
γz
γ0

)
,

λ1 ≡
√

32π
(
γ0q

2
0µ0

)3/2
T

(
γ1

γ0

)2

h2

(
γz
γ0

)
,

λ3 ≡ λ1

(
γ3

γ1

)2

,

(45)

and rewrite the cubic term as:

FEM[ψ] =

− λ0

3
|ψ|3

(
1 +

λ1

λ0
sin2 2α cos2 β +

λ3

λ0
cos2 2α

)
,

(46)
Since FEM[ψ] has the same functional dependence on

α and β as the bare free-energy density F0[ψ], minimiza-
tion of the total free-energy density Feff [ψ] should yield
the same solutions as F0[ψ]. Like we did in Sec. II, to
find the leading instability, we compare the free energies
of the three solutions, since the cubic term renders the
transition first-order. In all cases, after substituting the
values for α and β corresponding to each solution, the
free-energy density acquires the same form:

F (µ)
eff [ψ] =

r

2
|ψ|2 − λµ

3
|ψ|3 +

uµ
4
|ψ|4 (47)

where µ labels the type of solution (µ = B1g, B2g, ch)
and:

λB1g
= λ0 + λ3 ;

λB2g
= λ0 + λ1 ;

λch = λ0 ;

uB1g = u+ g

uB2g
= u+ w

uch = u

(48)

As we showed in Sec. II, the first-order transition associ-
ated with the free-energy in Eq. (47) takes place at the

Chiral
ψ ∝ (1,±i)Nematic B2g

ψ ∝ (1,±1)

Nematic B1g

ψ ∝ (1, 0) or (0, 1)

−1

−1

0

0

g∗

u

w∗

u

w
u

g
u

Figure 13. Phase diagram, in the
(
w
u
, g
u

)
parameter-space,

for a two-component superconductor on a tetragonal lattice
obtained from minimization of the free-energy renormalized
by electromagnetic field fluctuations. The dotted lines rep-
resent the phase boundaries of the mean-field phase diagram
(see Fig. 10). For this plot, we set λ1

λ0
= 0.2 and λ3

λ0
= 0.3.

The quantities w∗ and g∗ are defined in Eq. (50), and in this
plot are given by w∗ = 0.44u and g∗ = 0.69u.

reduced temperature rµ =
2λ2
µ

9uµ
. Thus, the leading insta-

bility is the one with the largest transition temperature:

rB1g =
2 (λ0 + λ3)

2

9 (u+ g)

rB2g
=

2 (λ0 + λ1)
2

9 (u+ w)

rch =
2λ2

0

9u
(49)

It is now straightforward to determine the phase
boundaries in the

(
w
u ,

g
u

)
parameter-space. The chiral

solution is the leading instability in the region bounded
by w > w∗ and g > g∗, where:

w∗

u
=

[(
λ1

λ0
+ 1

)2

− 1

]
g∗

u
=

[(
λ3

λ0
+ 1

)2

− 1

]
. (50)

The fact that w∗, g∗ > 0 implies that the region of
the phase diagram where the chiral solution is realized
shrinks with respect to the region occupied by the chiral
solution in the mean-field phase diagram. This is illus-
trated in Fig. 13, where the renormalized phase bound-
aries are shown by the solid lines whereas the bare phase
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boundaries are given by the dashed lines. Therefore, af-
ter renormalization by the electromagnetic field fluctua-
tions, the nematic state becomes the leading supercon-
ducting instability over a significant range of parameters
for which the mean-field analysis would predict a chiral
state. This result is analogous to the case of the two-
component superconductor on the triangular lattice.

There is, however, one important difference, as there
are two symmetry-distinct nematic superconducting
states on the tetragonal lattice, namely the B1g and B2g

nematic solutions. Comparing rB1g and rB2g , we find
that, for w < w∗ and g < g∗, the phase boundary g̃ (w)
separating the two nematic phases is given by:

g̃ (w)

u
= −1 +

(w
u

+ 1
)(λ3 + λ0

λ1 + λ0

)2

, (51)

such that the B1g state is realized for g < g̃ (w) and the
B2g state, for g > g̃ (w). Compared to the phase bound-
ary of the mean-field phase diagram, g̃MF (w) = w, we
conclude that, for λ3 > λ1, the B1g nematic solution oc-
cupies a region of the parameter-space that was occupied
by the B2g nematic solution in the mean-field case. This
case is illustrated in Fig. 13. Conversely, for λ1 > λ3, it
is the B2g solution that occupies an expanded region of
the parameter-space.

IV. CONCLUSIONS

In this paper, we showed that electromagnetic fluc-
tuations play an important role in the selection be-
tween nematic versus chiral superconductivity for two-
component superconductors, such as (px, py)-wave and(
dx2−y2 , dxy

)
-wave states. Upon integrating out these

gauge-field fluctuations, they generate non-analytic cubic
terms in the free-energy that induce a first-order tran-
sition, similarly to the cases of the s-wave and multi-
component superconductors with isotropic stiffness an-
alyzed elsewhere [35, 41, 42], as well as of color su-
perconductivity involving quarks and gluons [43]. The
crucial difference is that, for the two-component super-
conductors studied here, the superconducting stiffness –
or, equivalently, the correlation length – is not isotropic
in the (x, y) plane due to the crystalline lattice. This
makes the non-analytic term in the free-energy sensitive
to whether the superconducting state is nematic or chi-
ral, favoring the former over the latter. The relevance
of this result stems from the fact that weak-coupling mi-
croscopic calculations generally place the system in a re-
gion of the parameter-space where minimization of the
mean-field free-energy predicts a chiral state. However,
as shown here, the non-analytic free-energy term aris-
ing from the gauge-field fluctuations changes the nature
of the leading instability in a significant portion of this
parameter-space region from chiral to nematic. As a re-
sult, the effect of the electromagnetic field fluctuations
on the superconducting free-energy provides a mecha-
nism by which a nematic state can be stabilized over

the chiral one, without requiring fine tuning or coupling
to non-superconducting degrees of freedom.

We emphasize that the size of the effect uncovered here
is not necessarily small, even if the induced transition is
very weakly first-order, as is the case for s-wave supercon-
ductors. Indeed, a weak first-order transition generally
implies that the coefficients of the cubic terms (λ0 and λ3

in our notation for the triangular-lattice case) are much
smaller than the coefficients of the quartic terms (u and
g in our notation). However, the change in the leading
superconducting instability from chiral to nematic pro-
moted by the gauge-field fluctuations takes place when
g/u . λ3/λ0, i.e. it depends on how the ratio between
the quartic terms compares with the ratio between the
cubic terms. Importantly, both ratios may be comparable
even if λ0, λ3 � u, g. This analysis reveals that the role of
the electromagnetic fluctuations on multi-component su-
perconductors is potentially much more significant than
in the case of single-component superconductors.

It is important to discuss the limitations of our ap-
proach. In order to integrate out the electromagnetic
field fluctuations, we assumed that, in the temperature
range where these fluctuations are significant, the spatial
variation of the superconducting order parameter can be
neglected. Formally, this can only be justified in type-
I superconductors, for which the correlation length is
smaller than the coherence length [35]. Other methods
that do not require this approximation of a uniform su-
perconducting order parameter were also employed for
the cases of the s-wave and isotropic multi-component
superconductors to study the stability of the predicted
first-order transition. Perturbative 4−ε renormalization-
group calculations and large-N expansions found the
same first-order transition as in the approach where the
gauge-field fluctuations are integrated out [35, 41, 42].
However, Monte Carlo simulations and duality mappings
revealed a second-order transition for type-II supercon-
ductors [36, 37, 39], indicating that a tricritical point
should take place as the ratio between the penetration
depth and coherence length is continuously changed.
This was also seen in the d = 3 renormalization-group
calculations of Refs. [38, 40]. The implications of these
other results to our findings deserve further investigation.
As discussed above, the central point in our paper is not
the first-order nature of the transition in two-component
superconductors, but the fact that the gauge-field fluctu-
ations affect differently the nematic and the chiral states.
Since this result is rooted on the anisotropy of the super-
conducting stiffness, it is reasonable to expect that it will
play a role in the selection of the leading instability re-
gardless of the ratio between the penetration depth and
the coherence length. This expectation can be verified
directly by appropriate Monte Carlo simulations [39]. In-
terestingly, Ref. [54] presented large-scale Monte Carlo
simulations of a model related to that of Eqs. (36) and
(37) in the London limit, finding a a first-order transition
to a chiral p-wave superconducting state. It would be in-
teresting to probe the behavior of this model in parame-
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ter ranges for which our calculations expect a first-order
transition to a nematic state.

Notwithstanding these caveats, it is useful to discuss
possible nematic superconductors for which our results
may be relevant. In the case of the tetragonal iron-
based superconductors Ba1−xKxFe2As2 [8] and LiFeAs
[9], which have been proposed to display a spontaneous
nematic superconducting state, the scenario put forward
involves nearly-degenerate s-wave and d-wave states, for
which our analysis is not applicable. Similarly, for few-
layer NbSe2, the twofold anisotropy observed experimen-
tally in the superconducting state has been associated
with a strain and magnetic-field promoted admixture be-
tween s-wave and d-wave/p-wave states [5, 6], although
a spontaneous condensation of a two-component super-
conducting order parameter cannot be completely ruled
out [55]. On the other hand, doped Bi2Se3 [1–4], which
has a trigonal crystal structure, has been proposed to be
a nematic two-component superconductor. In this case,
based on our results from Sec. II, gauge-field fluctuations
could provide a mechanism to stabilize a nematic super-
conducting state – in addition to the previously discussed
mechanism enabled by the spin-orbit coupling [29]. As
for CaSn3, little is known about the mechanism behind
the possible nematic superconducting state reported in
Ref. [7]. Although its crystal structure is cubic, which
was not explicitly analyzed in this paper, we expect that
the same effects uncovered for the triangular and tetrag-
onal lattices should emerge in this case as well.

Finally, twisted bilayer graphene was also recently
shown to display a nematic superconducing state [17]
(for an alternative perspective, see Ref. [56]). One pro-
posed scenario is that it arises from nearly-degenerate su-
perconducting states which, in turn, are expected from
pairing either promoted by interactions involving the van
Hove points [32] or mediated by the exchange of SU(4)
spin-valley fluctuations [34]. Below the degeneracy point,
e.g. between i-wave and d-wave or between p-wave and
f -wave instabilities, the coexistence state spontaneously
breaks threefold rotational symmetry under certain con-
ditions on the system parameters (see also [31, 33]). Al-
ternatively, a two-component superconductor yielding a
nematic superconducting state has also been proposed
[47, 57]. In this context, it has been shown that coupling
to strong normal-state density-wave fluctuations can pro-
mote the nematic over the chiral state [24]. While the ef-
fect of gauge-field fluctuations may be relevant, a direct
application of our results to twisted bilayer graphene is
complicated by the fact that this is a 2D superconductor
with rather unique properties. Indeed, as discussed in
Refs. [17, 58, 59], unlike most 2D superconductors, or-
bital effects are significant even when in-plane magnetic
fields are applied, as the Fermi surfaces associated with
opposite valleys are strongly distorted by the in-plane
fields due to inter-layer electronic tunneling. Interest-
ingly, in twisted multi-layer graphene with alternating
twist angles, this orbital effect is suppressed and the ne-
matic superconducting state is replaced by an isotropic

state [58]. While it is tempting to speculate that this
behavior may be attributed to a transition from nematic
to chiral superconductivity as the number of layers in-
creases, which should affect the impact of the gauge-field
fluctuations, further investigations are needed both the-
oretically and experimentally.
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Appendix A: Series expansion of FEM[ψ]

We start by repeating the expression in Eq. (16) for
FEM[ψ]:

FEM[ψ] =
4TΛ3

3(2π)2
ln (ψs)

+
Tψ3

s

2(2π)3

∫ 2π

0

dφ

∫ 1

−1

dx

∫ Λ
ψs

0

dq q2 ln
(
c+ bq2 + q4

)
.

(A1)
We re-write the argument of the logarithm in terms of

a+ and a− given by Eq. (18). We have:

ln
(
c+ bq2 + q4

)
= ln

(
q2 + a2

+

)
+ ln

(
q2 + a2

−
)

(A2)

Moreover, since

lim
q→0

qn ln(q) = 0 and

lim
q→0

qn ln

(
t

q2
+ 1

)
= 0

(A3)

for t ∈ C and n ∈ N, we can further rewrite the integrand
as

ln
(
c+ bq2 + q4

)
= 4 ln (q)+ln

(
a2

+

q2
+ 1

)
+ln

(
a2
−
q2

+ 1

)
.

(A4)
Therefore, the original integral of Eq. (A1) becomes

the sum of three terms I1, I2 and I3 given by

I1 =
4TΛ3

3(2π)2
ln (ψs) +

4Tψ3
s

(2π)2

∫ Λ
ψs

0

dq q2 ln (q) ,

I2 =
Tψ3

s

2(2π)3

∫ 2π

0

dφ

∫ 1

−1

dx

∫ Λ
ψs

0

dq q2 ln

(
a2

+

q2
+ 1

)
and

I3 =
Tψ3

s

2(2π)3

∫ 2π

0

dφ

∫ 1

−1

dx

∫ Λ
ψs

0

dq q2 ln

(
a2
−
q2

+ 1

)
.

(A5)



16

The integral in the first term I1 can be evaluated in a
straightforward way; we obtain:

I1 =
4TΛ3

9(2π)2
[3 ln (Λ)− 1] . (A6)

Therefore, the term I1 does not depend on the order pa-
rameter, and as such can be neglected. As for the second
and third terms, I2 and I3, we first focus on the integral

J ≡
∫ Λ

ψs

0

dq q2 ln

(
a2

q2
+ 1

)
, (A7)

where a could be either a+ or a−. We split J into three
parts:

J =

∫ a

0

dq q2 ln

(
a2

q2

)
+

∫ a

0

dq q2 ln

(
q2

a2
+ 1

)

+

∫ Λ
ψs

a

dq q2 ln

(
a2

q2
+ 1

)
.

(A8)

The first term in J gives∫ a

0

dq q2 ln

(
a2

q2

)
=

2a3

9
(A9)

whereas the second and third terms can be expressed as
an infinite series using the logarithm Taylor expansion:

J =
2a3

9
+

∫ a

0

dq q2
∞∑
n=1

(−1)n−1

n

( q
a

)2n

+

∫ Λ
ψs

a

dq q2
∞∑
n=1

(−1)n−1

n

(
a

q

)2n

.

(A10)

Performing the integrals order by order, we find

J =

[
2

9
+

∞∑
n=1

4(−1)n−1

4n2 − 9

]
a3+

∞∑
n=1

(−1)n−1a2n

n(−2n+ 3)

(
ψs
Λ

)2n−3

.

(A11)
Using the result

2

9
+

∞∑
n=1

4(−1)n−1

4n2 − 9
= −π

3
, (A12)

the expression for J can be further simplified to

J =− π

3
a3 +

∞∑
n=1

(−1)n−1a2n

n(−2n+ 3)

(
ψs
Λ

)2n−3

. (A13)

Substituting this expression for J in the definitions of I2
and I3, we obtain

I2 + I3 = − Tψ
3
s

48π2

∫ 2π

0

dφ

∫ 1

−1

dx
(
a3

+ + a3
−
)

+

∞∑
n=1

Tψ2n
s

2(2π)3

∫ 2π

0

dφ

∫ 1

−1

dx
(−1)n−1Λ−2n+3

n(−2n+ 3)

(
a2n

+ + a2n
−
)

,

(A14)
which gives Eq. (19) in the main text.
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