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A charge-4e superconductor forms due to the condensation of quartets of electrons. While in
previous works the mechanism for the formation of charge-4e superconductivity has been analyzed
in terms of the binding of Cooper pairs in unconventional superconductors, its properties in the
fermionic sector have not been studied systematically due to its inherently interacting nature even
at the mean-field level. Here we propose a solvable model for a charge-4e superconductor – a spinful
version of the Sachdev-Ye-Kitaev model with an anomalous quartic term. We show that the ground
state is gapless and resembles a heavy Fermi liquid. We analytically solve for the superfluid density
and show that it is perturbative in the strength of the charge-4e order parameter, in sharp contrast
with a regular (charge-2e) superconductor. Upon lowering temperature, we show that the correlation
between charge-4e order and regular interaction terms can drive a first-order phase transition to a
charge-2e superconducting state.

I. INTRODUCTION

As described by the Bardeen-Cooper-Schrieffer (BCS)
theory, a metallic system becomes superconducting when
Cooper pairs with charge 2e formed by electrons con-
dense [1]. Going beyond this paradigm, it has been
recently theoretically proposed that in the presence of
strong correlation effects, a condensate of a quartet of
electrons with charge 4e can form and condense. Such a
state is known as a charge-4e superconductor, which has
been theoretically proposed to exist in a range of strongly
correlated systems [2–12]. The charge-4e condensate was
also proposed to exist in superfluid 3He [13].

Despite its resemblance to a regular charge-2e super-
conductor, the theoretical description of a charge-4e su-
perconductor is much more challenging. First, unlike
charge-2e superconductivity that emerges for weak cou-
pling via a logrithmically divergent contribution to pair-
ing susceptibility [14], no such weak-coupling instabil-
ity of electrons exists towards charge-4e superconductiv-
ity. For this reason, existing theories of charge-4e su-
perconductivity usually assume some underlying strong
interactions between the electrons, and address the for-
mation of charge-4e superconductivity within a bosonic
theory describing the binding of two Cooper pairs and
the condensing of the composite object [4, 5, 7, 11, 12].
(See also Ref. [15] for an example in a neutral superfluid
from a composite order parameter.) As an emergent de-
grees of freedom, the Cooper pair order parameter breaks
particle-number conservation as well as some other sym-
metries such as translational symmetry (known as a pair-
density-wave state) [5, 10], rotational symmetry [11, 12],
or certain internal symmetries [7]. Upon increasing tem-
perature, charge-4e condensate emerges as a vestigial or-
der [5, 15–18] via partial melting of the Cooper pair order
parameter by restoring certain spatial or internal symme-
tries.
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However, the behavior in the fermionic sector in a
charge-4e superconductor, which is outside the scope of
these approaches, remains to be understood. Unlike a
charge-2e superconductor which admits a non-interacting
mean-field description, the mean-field description of a
charge-4e superconductor is inherently interacting, since
the order parameter couples to four fermion operators [9].
While a charge-2e order parameter gaps the Fermi sur-
face, it is natural to expect that the charge-4e order pa-
rameter leaves the Fermi surface gapless [4] just like a
regular interaction term in the Fermi liquid theory (al-
though such an interaction breaks U(1) symmetry).

Moreover, it is an open question how “good” a su-
perconductor a charge-4e superconducting state is, i.e.,
whether it has a significant superfluid density, which
is relevant for the Meissner effect and for its stability
against phase fluctuations (especially in 2d). It is well-
known that for a charge-2e superconductor, due to the
gapped Fermi surface, the superfluid density is equal to
the total electron density at low temperatures, indepen-
dent of the magnitude of the order parameter (see e.g.,
Ref. [19] and Appendix C 2). As the fermions are ex-
pected to be gapless in a charge-4e superconductor, a
natural question is whether the superfluid density is com-
parable to the total electron density.

Upon lowering the temperature, the gapless excitations
in the fermionic sector strongly contribute to the renor-
malization of the boson theory, which can potentially lead
to the low-temperature instabilities such as the forma-
tion of charge-2e condensate, consistent with results from
the bosonic perspective. Indeed, in a determinant quan-
tum Monte Carlo study, it was shown that the gapless
fermionic excitations in general destroys the charge-4e
condensate in the presence of an attractive interaction
at low temperatures [9]. However, an analytical under-
standing of such a pairing transition and the stability of
the charge-4e superconductivity is still missing.

The study of properties of a charge-4e superconductor
is also motivated by the theoretical description of a Z4

spin liquid with an emergent spinon Fermi surface. In
terms of the fermionic spinons f , the system lacks the
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U(1) symmetry but instead has a Z4 symmetry, which
allows an ∼ f†f†f†f† term, which is marginal under
renormalization group flow. resembling a charge-4e su-
perconductor. As this interaction is marginal, it has been
speculated [20] that such a Z4 spin liquid admits a gap-
less Fermi-liquid like ground state, making it a promising
candidate for gapless spin liquids. From this perspective,
a detailed description of a charge-4e superconductor, in
particular whether its ground state is indeed gapless and
Fermi-liquid like, is highly desirable.

As we mentioned, an obvious challenge to the theoret-
ical description of a charge-4e superconductivity in the
fermionic sector is its inherently interacting nature, even
at the mean-field level. If the charge-4e (“quartetting”)
order parameter is weak, one may expect a perturbation
theory departing from free electrons to apply. However,
as charge-4e superconductivity is expected to derive from
strong correlation effects, there is no particular reason to
expect the charge-4e order parameter to be weak com-
pared to other energy scales in the problem. To this end,
we note that there has been remarkable progress achieved
by applying the Sachdev-Ye-Kitaev (SYK) model [21, 22]
to describe strongly interacting fermionic systems with-
out long-living quasiparticle excitations [23, 24]. The
SYK model is a solvable of strongly interacting random
fermions without quasiparticles in zero spatial dimen-
sions [25, 26]. The generalizations of the SYK model
to nonzero dimension lattice models predict the linear in
temperature resistivity [23, 27, 28], which is the charac-
teristic property of a strange metal [29–31]. On the other
hand, SYK-like models have been constructed to analyze
the superconducting transition of non-Fermi liquids [32–
41].

In this work, we present a solvable strong-coupling
model for fermion-sector properties of a charge-4e su-
perconductor. Similar to the SYK model, the model is
dominated by interaction effects, which in this case is due
to the condensate of the charge-4e superconducting or-
der parameter. Instead of speculating on the microscopic
origin of the charge-4e condensate, we treat it as a mean
field and analyze the properties of the ground state and
its low-temperature stability. Specifically, we consider a
two-dimensional itinerant-fermion system subject to lo-
cal four-fermion interactions that are random in the fla-
vor space but preserves spatial translation. As with all
SYK-like models [27, 28, 35], we take the limit in which
there are a large number of fermion flavors N → ∞.
In our model there are two types of interaction terms
— a “regular” four-fermion interaction ∼ J that de-
scibes a pair-hopping process in flavor space within a lat-
tice site, and an anomalous charge-4e interaction ∼ ∆4e

that describes a “pair-pairing” process. The ratio of the
strengths of the two interaction terms can be tuned, and
we mainly focus on the nontrivial limit in which these
interactions are much larger than the Fermi energy εF .

By solving the Schwinger-Dyson equations, we first
show that the ground state of the charge-4e superconduc-
tor is gapless. In fact, despite a non-conserving particle

number, for this particular model there exist a Luttinger-
Ward functional [42] and the Fermi surface encloses a
fixed volume equal to the expectation value of the number
density. At lowest temperatures, the system behaves like
a heavy Fermi liquid, in sharp contrast with a charge-2e
superconductor. Just like a Fermi liquid, the long-lived
gapless quasiparticle is due to kinematic constraints of
scattering processes in the vicinity of the Fermi surface.
Nevertheless, we show that the system has a nonzero su-
perfluid density given by ns/n = β∆2

4e/[J 2+(β+1)∆2
4e].

Here β ≡ 4∂kΣ(kF )/vF is a parameter responsible for the
Fermi velocity renormalization, where vF is the Fermi
velocity and ∂kΣ(kF ) is the momentum derivative of the
self-energy at the Fermi level. Within our model we find
0 < β = O(1) and its numerical value depends on the de-
tails of the Fermi surface. In the ∆4e � J limit, similar
to the “weak-pairing” limit for a charge-2e superconduc-
tor, the superfluid density is vanishingly small. In the
opposite limit, the superfluid density is a significant por-
tion of the total electron density, but is still less than the
latter. Similar to the lattice generalization of the SYK
model [27, 28], the heavy-Fermi liquid behavior specifies
an intermediate energy scale, which corresponds to the
renormalized Fermi energy ε∗F ∝ ε2

F /
√
J 2 + ∆2

4e. At
temperatures ε∗F � T � (J ,K), the system behaves
as a non-Fermi liquid. In this regime, the Fermi ve-
locity is suppressed, i.e., β = O(εF /U). As a conse-
quence, the superfluid density is parametrically small,
ns/n = O(εF /U).

We argue that many results above traces back to the
breaking of U(1) symmetry in the mean-field ground
state. This naturally raises the question of total charge
conservation and, therefore, its relevance to an isolated
superconductor with fixed number of particles [43]. We
show that particle-number conservation can be restored
by treating the order parameter, in particular its phase
degree of freedom, as a dynamical field. The ground
state for such a system has strong entanglement in the
Fock spaces of the fermions and bosons. We show that
this makes our results, such as the violation of the Lut-
tinger’s theorem and superfluid density, valid for a U(1)-
symmetric charge-4e superconductor with fixed particle
number.

We also study the low-temperature stablity of the
charge-4e superconducting phase. This instability is akin
to the pairing instability of a regular metal, which low-
ers its entropy by gapping out the Fermi surface upon
lowering the temperature. For our model, we show that,
through a first-order transition, the 4e bound state is un-
stable toward dissociation into equal-flavor, spin-singlet,
and local Cooper pairs if the pair-hopping interaction J
and the charge-4e interaction ∆4e are correlated. The
transition temperature is determined by the strength
of the correlation between J and ∆4e. Depending on
whether the transition occurs in the heavy Fermi liquid
regime or the non-Fermi liquid, the effective pairing in-
teraction is either a constant analogous to the BCS the-
ory, or logarithmically singular analogous to that in color
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superconductivity [44, 45], described by the γ-model at
γ → 0+ [46]. On the other hand, if there are no correla-
tions between pair-hopping J and pair-pairing ∆4e, the
system remains stable and heavy Fermi-liquid like down
to zero temperature.

The model we consider here is rather artificial – in
particular, there are N4 independent order parameters,
treated as static but random variables with a vanishing
average and nonvanishing variance. However, we note
that even if the order parameter is not random, its effect
on quantities such as Green’s functions and superfluid
density can still only enter via the variance |∆4e|2 at low-
est order. Therefore we expect our toy model, which can
be analytically solved, to be able to capture certain quali-
tative properties for a generic charge-4e superconductor,
despite the complicated structure of the order parame-
ter. In particular, we argue that the three main results
we obtained — the gaplessness, the smallness of super-
fluid density, and the low-temperature pairing tendency
are generic features of a charge-4e superconductor.

The rest of this paper is organized as follows. In Sec-
tion II we present the model for a mean-field charge-4e
superconductor, its effective action, and the correspond-
ing saddle-point equations. In Section III we analyze
the properties of the charge-4e superconductor, includ-
ing its gaplessness, its behaviors at different tempera-
ture regimes, and its superfluid density. In Section IV,
we argue that our findings are valid beyond mean-field
for an isolated charge-4e superconductor preserving total
charge. In Section V we consider the potential instability
of the charge-4e superconudctor toward charge-2e super-
conductivity upon lowering temperature. In Section VI
we briefly comment on the implication of our results on
the stability of charge-4e superconductors.

II. THE MODEL

Our Hamiltonian for a charge-4e superconductor reads

H =H0 +Hint (1)

H0 =
∑
k

N∑
i=1

ξkΨ†kiΨki, (2)

Hint =
k−dF
N3/2

∫
dr

N∑
i<j,k<l,i<k

(3)

(
Jij;klΨ†riiσy(Ψ†rj)

T ΨT
rkiσ

T
y Ψrl

+ ∆4e,ij;kl Ψ
†
riiσy(Ψ†rj)

T Ψ†rkiσy(Ψ†rl)
T + h.c.

)
,

where

ξk =
k2

2m
− µ (4)

is the fermionic dispersion with the Fermi energy εF =
k2
F /(2m), vF= kF /m is the Fermi velocity, kF is the

Fermi momentum, m is the fermion mass, and d is the
spatial dimension. In Eq. (3) the form of interaction
is similar to that in the translationally invariant com-
plex SYK model [28] with a charge-4e quartic term [9].
Indeed, the first term in the Hamiltonian Eq. (1) de-
scribes the SYK interaction of N flavors of spin-1/2

fermions Ψri =
(
ψri↑ ψri↓

)T
, while the second term in-

troduces four-fermion interactions in forms of pair hop-
ping (J ) and “pair pairing” (∆4e). It is implied that
~ = kB = e = 1 throughout the paper.

As in the SYK model, we take the large-N limit, in
which the coupling constants Jij;kl and ∆4e,ij;kl are con-
stant in space and real independent Gaussian random
variables with respect to flavor indices with finite vari-
ances

J 2
ij;kl = J 2, ∆2

4e,ij;kl = ∆2
4e. (5)

In addition, we also assume a finite correlation between
J and ∆4e, such that

Jij;kl∆4e,ij;kl = ρJ∆4e, (6)

where ρ ∈ (−1, 1) sets the correlation between the two en-
sembles. Formally, the correlated sets Jij;kl and ∆4eij;kl

of random variables are described by the bivariate Gaus-
sian distribution [47]:

P (J,∆4e)∝ (7)

exp

[
− 1

2(1− ρ2)

(
J 2
ij;kl

J 2
+

∆4e,ij;kl

∆2
4e

− 2ρ
Jij;kl∆4e,ij;kl

J∆4e

)]
.

For the majority of our work, we will consider the non-
trivial strong-coupling limit, in which (J 2 + ∆2

4e)� εF .
In the opposite weak-coupling limit, one expects a more
conventional system behavior that is smoothly connected
with the free Fermi gas. We will briefly comment on this
regime when we discuss the superfluid density in Sec.
III C.

Our model preserves spin-rotation symmetry, and thus
we take the fermionic Green’s function to be spin-
diagonal:

−N−1
N∑
i

〈Ψri(τ)Ψ†0i(0)〉=σ0G(τ, r). (8)

For later purposes, we also introduce an anomalous (pair-
ing) Green’s function in the equal-flavor, spin-singlet
channel

F̂ (τ, r)=−N−1
N∑
i

〈Ψri(τ)ΨT
0i(0)〉= iσy F (τ, r), (9)

F̂+(τ, r)=−N−1
N∑
i

〈Ψ∗ri(τ)Ψ†0i(0)〉=−iσy F ∗(τ, r). (10)

We emphasize that the anomalous Green’s function is
not a direct consequence of the charge-4e condensate,
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but rather of a possible transition toward a charge-2e
condensate. We will address this in Section V.

Applying the standard machinery widely used in the
SYK-like models [32–34, 38] generalized to include po-
tential pairing effects discussed in details in Appendix A,

we perform the disorder average and decouple the inter-
actions with the bi-local fields using Lagrangian multi-
pliers Σ, Φ, Φ∗. We obtain the large-N effective action
in imaginary time for the Hamiltonian (1)

− S
N

=
∑
ω,k

ln

(
(iω − ξk − Σ(k)) (iω + ξk + Σ(−k))− Φ∗(k)Φ(k)

)

+
A

T

∫
x

(
2Σ(x)G(−x) + Φ(x)F ∗(x) + Φ∗(x)F (x) +

k−2d
F J 2

2

(
G(x)2G(−x)2 + F ∗(x)2F (x)2

)
+
k−2d
F ∆2

4e

4

(
G(x)4 +G(−x)4 + F ∗(x)4 + F (x)4

)
−
k−2d
F ρJ∆4e

2

(
F ∗(x)2 + F (x)2

) (
G(x)2 +G(−x)2

))
, (11)

where T is temperature and A is the system’s size. Here∑
ω denotes summation over the Matsubara frequencies

and
∫
x

=
∫
dτ
∫
dr. The fields Σ, Φ, Φ∗ and G, F , F ∗

are bi-local, e.g., Σ = Σ(x, x′) (with x = (τ, r)), and due
to translational invariance it only depends on x−x′. We
have thus defined, e.g., Σ(x) ≡ Σ(x, 0) and its Fourier
transform Σ(k) (with k = (ω,k)), to simplify notations.

The fields Σ and Φ enter the effective action (11) as
the self-energy and the pairing vertex. Specifically, the
variation of the effective action with respect to G and
F produces the first pair of the Schwinger-Dyson (SD)
equations

k2d
F Σ(x) =− J 2G(x)2G(−x)−∆2

4eG(−x)3

+ ρJ∆4e

(
F ∗(x)2 + F (x)2

)
G(−x), (12)

k2d
F Φ∗(x) =− J 2F ∗(x)2F (x)−∆2

4eF (x)3

+ ρJ∆4e

(
G(x)2 +G(−x)2

)
F (x). (13)

The variation of the effective action with respect to Σ
and Φ gives the second pair of the SD equations for the

full Gor’kov Green’s function

G(k)=
iω+ξk+Σ(−k)

(iω−ξk−Σ(k))(iω+ξk+Σ(−k))−Φ∗(k)Φ(k)
,

(14)

F ∗(k)=
Φ∗(k)

(iω−ξk−Σ(k))(iω+ξk+Σ(−k))−Φ∗(k)Φ(k)
.

(15)

III. PROPERTIES OF THE CHARGE-4e
SUPERCONDUCTING STATE

We begin our analysis by considering the charge-4e
state with Φ∗ = Φ = 0. As we mentioned, the ver-
tices Φ, Φ∗ in the effective action (11) correspond to the
conventional charge-2e pairing, which may develop via a
low-temperature instability that we consider in Section
V. In this regime, the effective action is structurally sim-
ilar to the translationally invariant lattice model studied
in Ref. [28]:

− S
N

= 2
∑
ω,k

ln

(
− iω+ξk+Σ(k)

)
+
A

T

∫
x

(
2Σ(x)G(−x)+

k−2d
F J 2

2
G(x)2G(−x)2+

k−2d
F ∆2

4e

2
G(x)4

)
, (16)

with additional U(1)-breaking ∆4e-terms in the interac-
tion Hamiltonian (3) contribute to the effective action.

A. Heavy Fermi liquid and non-Fermi liquid
behaviors

We derive the Green’s function of the Hamiltonian
(1) in absence of charge-2e pairing. In this case, the

Schwinger-Dyson equations (12) simplify to

Σ(k)=−Tk−dF
∑
q

(
J 2Π(q)+∆2

4eΠ(−q)
)
G(q − k), (17)

Π(q)=Tk−dF
∑
k

G
(q

2
+ k
)
G
(q

2
− k
)
, (18)

G(k)=
1

iω − ξk − Σ(k)
. (19)
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Here Π(q) is the particle-particle bubble, and the self-
energy (17) correspond to the melonic diagrams with J -
and ∆4e-vertices.

The solution of the Schwinger-Dyson equations (17-
19) is quite similar to that for the 2d model considered
in Ref. [28]. In the strong-coupling limit, the bandwidth
of the free fermions ∼ εF and the characteristic strength
of the SYK-like interaction

U =
√
J 2 + ∆2

4e (20)

give rise to an intermediate energy scale ε2
F /U , which

corresponds to the renormalized bandwidth.
Within the renormalized bandwidth, that is, ω, T �

ε2
F /U , the system behaves as a heavy Fermi liquid. The

self-energy is given by

Σ(ω,k) = −iZ−1ω +
β

4
vF · k, (21)

where Z ∼ εF /U � 1 and 0 < β = O(1). Note that dif-
ferent from the result in Ref. [28], we find that generically
β > 0; this will be important to the result of superfluid
density. We introduce the factor of four in the equation
(21) to simplify the expression for the superfluid density
in Section III C. The Green’s function has a quasiparticle
form

G(ω,k) =
Z

iω − v∗F · k
, ω, T � ε2

F /U, (22)

where v∗F ∼ ZvF is the renormalized Fermi velocity.
We leave the detailed derivation of the self-energy and
Green’s function for Appendix B 1.

At higher energies above the renormalized bandwidth,
ε2
F /U � ω, T � U , the system behavior is essentially

local [28]. We thus expect the Green’s function at leading
order to be the same as that for the zero-dimensional
SYK model:

Σ(ω,k) ' −iπ−1/4
√
U |ω|sgn(ω). (23)

In this regime, since Σ � iω − ξk, the Green’s function
is given by

G(ω,k) ' −iπ1/4 sgn(ω)√
U |ω|

, ε2
F /U � ω, T � U. (24)

Indeed, one can verify that the momentum dependence
of Σ(ω,k) is parametrically small, suppressed by εF /U ,
i.e.

Σ(ω,k) ' −iπ−1/4
√
U |ω|sgn(ω) +

β

4
vF · k, (25)

where β = O(εF /U). This suppression can be un-
derstood as follows. As pointed out in Ref. [28], for
T � ε2

F /U the k-dependent terms in the Green’s fuc-
ntion is small compared with ω-dependent terms and
can be treated perturbatively in the small parameter

εF /U . To obtain the k-dependence in Σ(ω,k), at lead-
ing order, one keeps k-dependence in only one of the
Green’s functions. At this order, after integrating over
momentum, the resulting contribution is completely k-
independent. Therefore, the leading k-dependent contri-
bution to Σ(ω,k) is suppressed by εF /U . We show more
details in Appendix B 2.

Before we end this subsection, we briefly mention that
for T � U , the system behaves as a weakly-interacting
Fermi gas, just like the regular SYK model [21]. We also
note that so far we have focused on the strong-coupling
regime with a nontrivial intermediate energy scale. In
the oppsite weak-coupling limit εF � U , we expect the
ground state is a Fermi liquid perturbatively connected
to free fermions.

B. Luttinger relation

In a charge-2e superconductor, the order parameter
couples bilinearly to the fermion operators, which scat-
ter an electron into a hole. Through a Bogoliubov trans-
formation, one explicitly obtains the spectrum of gapped
excitations, in quanta of the Bogoliubons that are linear
superposition of an electrons and a hole [19, 48]. How-
ever, for a charge-4e superconudctor, the order parame-
ter behaves as an anomalous four-fermion interaction. As
we have seen, the ground state is gapless with a Fermi
surface and in this sense similar to a Fermi liquid. A
natural question is whether the volume enclosed by the
Fermi surface is related to the (average) number density
of the system, which is true for a real Fermi liquid by the
celebrated Luttinger’s theorem.

Historically, for a Fermi liquid, Luttinger’s theorem
was proven perturbatively via the Luttinger-Ward func-
tional [42, 49]. Later, it was proven topologically [50, 51]
by directly connecting the ultraviolet (UV) theory with
its infrared (IR) properties with a ’t Hooft anomaly. The
proofs in the second category explicitly requires a U(1)
symmetry, which our model lacks. Nevertheless, it is still
interesting to investigate the fate of Luttinger’s theorem
for a charge-4e superconductor via the Luttinger-Ward
functional.

The Luttinger-Ward (LW) functional Φ[G] is defined
via the relation [42]:

Σ(ω,k) =
δΦ[G(ω,k)]

δG(ω,k)
. (26)

For a regular Fermi liquid, the Luttinger-Ward functional
was contructed via summing over two-particle irreducible
vacuum diagrams order by order [42]. In our SYK-like
model, the random all-to-all nature of the interactions in
SYK-like models [28, 52] allows us to explicitly obtain
the Luttinger-Ward functional.

For the SYK-like models, it is straightforward to ful-
fill this requirement because of the structure of the self-
energy equation [28, 52]. Indeed, from (17) with F = 0,
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one has

Φ[G]=−k−2d
F

∫
x

(
J 2G(x)2G(−x)2+∆2

4eG(−x)4
)
. (27)

We note that unlike a charge-2e superconductor whose
Luttinger-Ward functional is not single-valued [53], here
Φ[G] is a well-behaved functional of G.

To check the Luttinger relation, the particle density
(per flavor) reads

n=2
∑
k

G(τ=0+,k)=2

∫
dω

2π

∫
dk

(2π)2
G(ω,k)e−iω0+

(28)

with a factor of two originating from spin. Using the
equation for the Green’s function (14), we substitute

iG(ω,k)=G(ω,k)∂ωG(ω,k)−1+G(ω,k)∂ωΣ(ω,k) (29)

to Eq. (28). When integrated over ω, the first term is
given by

I1 =2i

∫
dk

(2π)2

∫
dω

2π
∂ω lnG(ω,k)e−iω0+

=− 1

π

∫
dk

(2π)2

(
arg(GR(0,k))−arg(GA(0,k))

)
=2

∫
|k|≤kF

dk

(2π)2
, (30)

which is the volume of the Fermi liquid. Here we have
deformed the contour to the imaginary axis, and used the
analytic properties of the Green’s functionsG(ω → −iω±
0+) = GR,A(ω) as well as the stability of the ground state
enforcing Im Σ(0,k) = 0.

When integrated over ω, the second term in Eq. (29)
is given by

I2 = −
∫
ω

Σ(ω,k)∂ωG(ω,k) = −
∫
ω

δΦ

δG
∂ωG, (31)

Here it’s tempting to claim that, using a chain rule the
integrand is a total derivative “∂Φ(ω)/∂ω”, and thus
I2 =

∫
ω
∂ωΦ(ω) = 0. However, this is not true — from

the definition of the functional derivative, we have

I2 =− d

dε
Φ[G(ω, k)+ε∂ωG(ω, k)]

∣∣∣∣
ε=0

=− d

dε
Φ[G(ω + ε, k)]

∣∣∣∣
ε=0

=− d

dε
Φ[G(x)e−iετ ]

∣∣∣∣
ε=0

. (32)

For a regular Fermi liquid, this vanishes due to the U(1)
symmetry. However, it is clear that the ∆2

4e term in
Eq. (27) is not invariant under G(x)→ G(x)eiετ , due to
the broken U(1) symmetry of a charge-4e superconduc-
tor. Therefore, I2 6= 0, and the usual Luttinger relation

between the average number density and the Fermi sur-
face volume is violated [54].

The evaluation of I2 involves UV details of the the-
ory, and we leave the derivation of a modified Luttinger
relation to a future work.

C. Superfluid density

For a system of N fermionic flavors, the superfluid den-
sity ns (per flavor) is given by the photon mass term
generated by integrating out the fermions:

LA = N
ns
2m

A2. (33)

Using the parabolic dispersion ξk = (k − eA)2/2m −
µ, there are two contributions to ns from the fermions,
known as diamagnetic and paramagnetic terms [19]:

ns = n+mΠ(0), (34)

where Π(0) is the current-current correlator. For an
isotropic system, without loss of generality,

Π(0) =

∫
k

k

m
·Γ(k, k)G(k)2 (35)

where k = (ω,k) and Γ(k, k) is the renormalized current
vertex whose bare value is k/m.

In a normal metal, these two terms exactly cancel,
which is a direct consequence of the Ward identity for
p = (0,p)

p · Γ(k, k + p)G(k)G(k + p) =−G(k) +G(k + p), (36)

or in the p→ 0 limit,

Γ(k, k) = −∂kG−1(k). (37)

Indeed, plugging (37) to (35) and integrating by parts,
we find ns = 0 in (34). For completeness, we prove the
Ward identity in Appendix C 1.

The Ward identity is, in turn, a direct consequence of
the particle number conservation. In a superconductor
with no particle number conservation, the original Ward
identity Eq. (36) is violated. Instead, we show in Ap-
pendix C 3 for a charge-4e superconductor, there are two
additional terms in the modified Ward identity, which are
Fourier transforms of the six-point functions

4∆4e〈ψ(x1)ψ̄(x2)ψ̄4(x)〉−4∆∗4e〈ψ(x1)ψ̄(x2)ψ4(x)〉, (38)

where symbolically ψ4(x) represents the quartetting term
for the charge-4e superconductor that is compatible with
fermionic statistics.

For a general interacting model, the six-point func-
tions in Eq. (38) involves infinite numbers of diagrams
and cannot be expressed in a closed form. However, in
our SYK-like model, we only need to include melonic dia-
grams to leading order in 1/N , which enables us to obtain
analytically
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FIG. 1. Panel (a): The diagrammatic representation of the modified Ward identity for the charge-4e superconductor (42). The
gray triangle denotes the current vertex (k/m)Γ(k, k), while the gray rectangle designates the four-point vertex χ(q, q, k, k).
The solid black lines are the renormalized Green’s functions and the dashed red lines are the disorder contractions. Panel (b):
Fully renormalized current vertex (41). Panel (c): The four-point function χ(q, q, k, k) of the charge-4e superconductor. Panel
(d): The self-energy due to the “pair-pairing” interaction.

p · Γ(k, k + p)G(k)G(k + p) = −G(k)+G(k + p) + 4Σ∆4e
(k)G(k)G(k + p)− 4Σ∆4e

(k + p)G(k)G(k + p)

+ 4

∫
q

Σ∆4e(q)G(q)G(q + p)χ(q, q + p, k, k + p)G(k)G(k + p)

− 4

∫
q

Σ∆4e
(q + p)G(q)G(q + p)χ(q, q + p, k, k + p)G(k)G(k + p), (39)

as shown in Fig. 1 for the case of p→ 0. Here Σ∆4e
is a

self-energy-like diagram but with only ∆4e vertices (see
Fig. 1(d)), which satisfies in our model

Σ∆4e(ω,k) =
∆2

4e

∆2
4e + J 2

Σ(ω,k). (40)

The four-point vertex χ(q, q + p, k, k + p) is a given by
the sum of a series of ladder diagrams. Within our SYK-
like model, at each rung there are four types of diagrams
with J and ∆4e vertices. The four-point vertex χ and
the fully renormalized current vertex Γ are related by

Γ(k, k) =
k

m
+

∫
q

χ(k, k, q, q)G2(q)
q

m
. (41)

Taking the p→ 0 limit in Eq. (39), we have

Γ(k, k)G(k)2 = ∂kG(k)− 4∂kΣ∆4e
(k)G2(k)

− 4k̂

∫
q

k̂ · ∂qΣ∆4e(q)G
2(q)χ(q, q, k, k)G2(k), (42)

where k̂ is a unit vector in the direction of the inter-
nal momentum k. Compared with (37), the additional
two terms here represent the effect of non-conservation
of particle number and are responsible for the superfluid
density ns. We illustrate the modified Ward identity di-
agrammatically in Fig. (1).

Multiplying both sides by k and integrating over k we
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obtain the paramagnetic contribution to ns in Eq. (34),

mΠ(0) =

∫
k

k · Γ(k, k)G2(k)

=

∫
k

k · ∂kG(k)− 4

∫
k

k · ∂kΣ∆4e
(k)G2(k)

− 4

∫
k

∫
q

k · ∂qΣ∆4e(q)G
2(q)χ(q, q, k, k)G2(k). (43)

Next, swapping k and q in the last term, and using the
relation (41) between the four-point vertex χ and the
current vertex Γ, we obtain∫

k

k · Γ(k, k)G2(k)

=

∫
k

k · ∂kG(k)− 4m

∫
k

∂kΣ∆4e
(k)Γ(k, k)G2(k), (44)

and thus ∫
k

(k + 4m∂kΣ∆4e(k)) Γ(k, k)G2(k)

=

∫
k

k · ∂kG(k) = −n. (45)

Assuming the main contribution to the left hand side
of Eq. (45) comes from the Fermi surface, we have

mΠ(0) =

∫
k

k · Γ(k, k)G2(k)

' − n

1 +
4

vF
k̂ · ∂kΣ∆4e

(k)
∣∣∣
k=kF

, (46)

and the superfluid density is

ns = n+mΠ(0) =
nα

1 + α
, (47)

where

α =
4

vF
k̂ · ∂kΣ∆4e(k)

∣∣∣
k=kF

. (48)

In the present model, using Eq. (40) and Eqs. (21) we
have

α = β
∆2

4e

J 2 + ∆2
4e

, (49)

where we remind that β ≡ 4 k̂ ·∂kΣ(k)|k=kF /vF is a non-
universal O(1) constant in the heavy FL regime, and thus

ns =
β∆2

4e

J 2 + (β + 1)∆2
4e

n. (50)

Eq. (50) is one of the key results of this work. From
the f -sum rule [55] and the stability conditon of the “Hig-
gsed” gauge field, we expect that 0 ≤ ns ≤ n. As Eq. (50)
remains valid at J = 0, this in turn requires β > 0. In-
deed, this is what we found for the heavy FL regime in
Sec. III A, different from the result in Ref. [28].

It is now straightforward to obtain the superfluid den-
sity of the charge-4e superconductor in various regimes:

• In the strong-coupling limit, for T � ε2
F /U , the

system behaves qualitatively as its heavy Fermi-
liquid ground state. As we have found in Sec. III A,
0 < β ∼ O(1). In this regime the superfluid ratio
ns/n depends on the ratio between J and ∆4e. For
∆4e � J , the superfluid density is perturbatively
small in its order parameter, ns/n ∼ ∆2

4e/J 2. In
the opposite limit including the case with J = 0,
ns ∼ n but the superfluid ratio is still in general
smaller than one. These features are in sharp con-
trast with a charge-2e superconductor.

• In the strong-coupling limit, for ε2
F /U � T � U ,

the system behaves as a non-Fermi liquid. Strictly
speaking, in this regime T is much greater than the
renormalized bandwidth ε2

F /U , so the contribution
to the momentum integral is not concentrated near
the Fermi surface but is rather smeared across the
entire Fermi sea. However, we expect ∂kΣ∆4e

in
Eq. (45) in the entire Fermi sea to be suppressed
by εF /U , for the same reason why β is so. We
expect (50) to remain qualitatively correct. From
Sec. III A, β = O(εF /U), and the superfluid density
ratio is also suppressed, i.e., ns/n ∼ εF /U .

We note in passing that in a 2d model, going be-
yond the mean-field theory, the charge-4e order can
be destroyed via a Berezinskii–Kosterlitz-Thousless
transition [19, 56, 57] due to phase fluctuations, as
it was shown in the earlier studies of charge-4e su-
perconductivity [4]. In our model the transition
occurs for Nns/n . T/εF . The factor of N comes
from N flavors of fermions, since we have assumed
phase coherence of all the charge-4e order param-
eters. Thus even though ns is small in εF /U , the
quasi-long-range order remains robust in the large-
N limit.

• Eq. (50) remains valid for the weak coupling limit
U � εF , in which the system is a perturbative
Fermi liquid at low temperatures. In this regime,
both the self-energy and β are of the order of
(U/εF )2. Therefore ns/n ∼ (U/εF )2.

We end this subsection by contrasting the superfluid
density in a charge-4e superconductor with that in a
charge-2e (BCS) superconductor. For completeness, we
evaluated the superfluid density for a charge-2e super-
conductor in Appendix C 2 by the modified Ward iden-
tity method. Shown in Eq. (C11), the modified Ward
identity for the charge-2e superconductor is quite similar
to that for the charge-4e case. In both cases the modi-
fication to the Ward identity comes from the self-energy
Σ∆ due to the superconducting order parameter. The
key difference, however, is that for the charge-2e order,
Σ∆ is singular even for a small ∆ (see Eq. (C12)), leading
to a much larger superfluid density ns = n. We note that
the same singularity in self-energy is responsible for the
gapping of the Fermi surface in a charge-2e superconduc-
tor.
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In this sense, the smallness of superfluid density for a
charge-4e superconductor can be viewed as a consequence
of the gaplessness of the Fermi surface. As we expect the
gaplessness of the Fermi surface to be a robust feature
for a generic charge-4e superconudctor, we expect its su-
perfluid density ratio ns/n is generally small just like in
our model (unless ∆4e is much larger than any other en-
ergy scale in the problem, in which case ns/n can be a
significant fraction like our case).

IV. FIXED PARTICLE NUMBER: BEYOND
MEAN-FIELD THEORY

In the previous Section, many of our results are associ-
ated with the spontaneous breaking of the U(1) symme-
try in the mean-field theory. For an isolated system that
becomes superconducting, the total particle number N
remains a good quantum number and the U(1) symmetry
is intact. An interesting question is whether our previous
conclusions remain valid. In this Section we answer this
question in the positive by going beyond mean-field the-
ory and explicitly constructing a U(1)-symmetric wave
function for the charge-4e superconductor.

In a conventional charge-2e superconductor there is a
well-known procedure [43, 58] to restore particle num-
ber conservation, which we briefly describe before mov-
ing to charge-4e superconductors. This can be done by
treating the Cooper pair wave function ∆ as a dynami-
cal Hubbard-Stratonovich auxillary field, and single out
its phase degree of freedom ∆ = |∆|e2iθ as a quantum
variable. With this modification, the action is given by

S[ψ, θ] =

∫
x

∑
σ=↑↓

ψ̄σ(x)(∂τ − ∂2
r

2m − µ)ψσ(x)

−
∫
x

(
|∆|e2iθψ̄↑(x)ψ̄↓(x) + h.c.

)
, (51)

and the conserved particle number should be regarded as

N̂ = N̂fermion + 2N̂Cooper, (52)

where N̂fermion =
∫
dr
∑
σ ψ
†
σ(r)ψσ(r) is the number of

electrons, and N̂Cooper is the number of Cooper pairs.

The phase factor e2iθ̂ can be viewed as a Cooper pair
annihilation operator and satisfies the commutation re-
lation

[N̂Cooper, e
2iθ̂] = −e2iθ̂. (53)

Neither N̂fermion nor 2N̂Cooper is a good quantum
number, only their sum is. Moreover, since S[ψ, θ] is
introduced via a Hubbard-Stratonovich auxillary field
that derives from a fermion-only model Sf [Ψ], we have

〈N̂fermion〉S = 〈N̂fermion〉Sf = N and 〈N̂Cooper〉 = 0. The

fact that 〈N̂Cooper〉 = 0 can also be seen from adding a
small kinetic term ∝ (∂τθ)

2 to the action and canonically
quantizing the action.

After integrating out the fermions in Eq. (51), one ends
up with a XY -model action for θ

S[θ] =
χ

2
(∂τθ)

2 +
ns
2m

(∂rθ)
2, (54)

where due to U(1) gauge invariance, χ is the compress-
ibility of the system, and ns is the superfluid density.

With a fixed N , θ is not a good quantum number.
Rather, the ordered state of θ should be thought of as
exhibiting off-diagonal long-range order (ODLRO) [59],
in which

lim
x→∞

〈e2iθ(x) e−2iθ(0)〉 = 1. (55)

With ODLRO one can neglect the fluctuation effects of
θ, at least in the long-distance limit.

Accordingly, the ground state wave function of a con-
ventional superconductor described by Eq. (51) can be
modified to a number-conserving one with N particles,
in which θ has long range correlation but is not a good
quantum number. Since N and θ are conjugate variables,
this can be done via a Fourier transform

|N〉 =

∫
dθe−iNθ|BCSθ〉 ⊗ |θ〉, (56)

where

|BCSθ〉 =
∏
k

[
uk + vke

2iθψ†↑(k)ψ†↓(−k)
]
|0〉. (57)

In the above |0〉 is the empty state for the electrons, |θ〉 is
an eigenstate for θ satisfying 〈θ|θ′〉 = δ(θ−θ′) [60]. Simi-
lar to the coupled superfluid setup considered in Ref. [43],
here |N〉 can be thought of as a mean-field BCS state
coupled with a superfluid of Cooper pairs.

The important insight is that, apart from particle-
number conservation, all fermionic spectral properties
of the states |N〉 and |BCSθ〉 are identical. Indeed, the
anomalous self-energy and energy gap of a conventional
self-energy only depends on |∆|2, insensitive to averaging
over θ in |N〉.

We argue that a similar prescription can be directly
extended to an isolated, number-conserving charge-4e su-
perconductor. Namely, the action is given by

S[Ψ, θ]=

∫
x

( N∑
i=1

Ψ†ix(∂τ − ∂2
r

2m − µ)Ψix +Hint(θ)
)
, (58)

where the interaction Hamiltonian (3) is replaced by
Hint(θ) : ∆4e,ij;kl → ∆4e,ij;kl e

4iθ. In the above, we as-
sumed phase coherence in the flavour space. The con-
served particle number can be written as

N̂ = N̂fermion + 4N̂quartet, (59)

with [N̂quartet, e
4iθ̂] = −e4iθ̂.

We are similarly led to a quantum XY -model for θ,
whose action is of the same form as Eq. (54). Instead of
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acquiring a mean-field value for θ, an isolated charge-4e
superconductor exhibits ODLRO in e4iθ. With ODLRO,
the ground state wave function can then be written as

|N〉 =

∫
dθ |MFθ〉 ⊗ e−iNθ|θ〉. (60)

Here |MFθ〉 is the mean-field wave function with an or-
der parameter at a fixed phase θ. Unlike the charge-
2e case, the charge-4e SC is an interacting system and
its mean-field wave function cannot be analytically ex-
pressed. However, due to the auxillary nature of |∆|e4iθ,
we do know that

N = 〈N |N̂fermion|N〉 = 〈MFθ|N̂fermion|MFθ〉, (61)

where the second equality follows from direct evaluation
on Eq. (60).

In two spatial dimensions and above, at T = 0 the
ODLRO in an XY -model is guaranteed as long as the
superfluid density ns > 0, which can be self-consistently
verified from the fermionic sector. Remarkably, the su-
perfluid density for an isolated charge-4e superconductor
is the same as that in the mean-field theory. For every
|MFθ〉, the superfluid density is a good quantum number
and is independent of θ. Indeed, as we showed in Sec-
tion III C, ns for a mean-field state is expressed via the
anomalous self-energy Σ∆4e

, which in turn only depends
on |∆4e|2. Thus the averaging over |θ〉 in the number-
conserving state |N〉 leads to the same value of ns ob-
tained using a mean-field theory, which is indeed posi-
tive. We see that this property obtained from mean-field
theory ensures long-range order even when fluctuation
effects are included.

The superfluid density we obtained in the previous sec-
tion is expressed in terms of 〈n〉MF in a mean-field state,
and using Eq. (61), for a number-conserving system it
can be equally expressed via the conserved number den-
sity n = N/V .

The same argument can be straightforwardly applied
to show that our conclusion on the Luttinger relation
extends to a number-conserving system.

Our conclusion that the charge-4e SC is gapless can
also be extended beyond mean-field theory. To this
end, one can construct a number-conserving excited state
|N, ex〉 via the same strategy as |N〉:

|N, ex〉 =

∫
dθ |MFθ, ex〉 ⊗ e−iNθ|θ〉. (62)

Since neither the energy of |MFθ〉 nor that of |MFθ, ex〉
depends on the value of θ, the energy gap of a system
with a fixed particle number is the same as that in the
mean-field theory, which vanishes in the thermodynamic
limit.

V. PAIRING INSTABILITY

In this section, we analyze the low-temperature in-
stability against charge-2e superconductivity. Through

this low-temperature instability the system enters a low-
entropy state by gapping out the Fermi surface, similar
to the pairing instability in a regular Fermi liquid. The
specific channel of the pairing order depends on the mi-
croscopic model; however, a similar transition may be
expected for a generic charge-4e superconductor [9] as
long as there is an attractive interaction in certain pair-
ing channels.

To analyze the pairing instability, we reinstate and
cross-correlation ρ between J and ∆4e, and the pairing
vertex Φ in the Schwinger-Dyson equations, Eqs. (12-15).
The SD equations for the self-energy and for the pairing
vertex are nonlinear and, thus, complicated to solve in
general case. Yet, to examine the onset of pairing in-
stability one can analyze the pairing susceptibility in the
normal state, with

G0(k) =
1

iω − ξk − Σ0(k)
, (63)

k2d
F Σ0(x) =− J 2G0(x)2G0(−x)−∆2

4eG0(−x)3. (64)

The self-consistent equation (13) for the pairing vertex Φ
is given by, up to cubic order in Φ

F (k) '−G0(k)Φ(k)G0(−k), (65)

k2d
F Φ∗(x) ' ρJ∆4e

(
G0(x)2 +G0(−x)2

)
F (x)

− J 2F ∗(x)2F (x)−∆2
4eF (x)3. (66)

Note that in the presence of a nonzero Φ, the Green’s
function G in Eq. (14) gets renormalized by O(|Φ|2),
which also leads to contribution to the pairing equation
that is cubic in Φ and proportional to ρJ∆4e. As the
pairing problem is only analytically tractable at ρ � 1,
we neglect this contribution.

From the linear term in Eq. (66) we see that effectively,
the attractive pairing interaction is formed by a combi-
nation of a ∆4e interaction and a J interaction vertices,
which we show in Fig. (2) Since both ∆4e and J are ran-
dom variables within the flavor sector, cross correlations
between the two are needed. Indeed, we have verified
that up to leading orders of 1/N , the effective interac-
tions with only J and ∆4e vertices do not contribute to
the pairing channel we consider.

The signs of the cubic terms in Eq. (66) indicate that
the pairing transition is first-order [32, 38]. To see this
more clearly, we note that (66) can be thought of as a
variation of the Ginzburg-Landau (GL) functional [19,
61] SGL = −(NA/T )

∫
x
LGL[Φ,Φ∗] with the Lagrangian

density

LGL[Φ,Φ∗]= −Φ(x)F ∗(x)− Φ∗(x)F (x)

+
k−2d
F ρJ∆4e

2

(
G0(x)2 +G0(−x)2

) (
F ∗(x)2 + F (x)2

)
−
k−2d
F J 2

2
|F (x)|4 −

k−2d
F ∆2

4e

4

(
F ∗(x)4 + F (x)4

)
, (67)

where F (k) = −G0(k)Φ(k)G0(−k). The GL functional
(67) is a perturbative expression where the higher or-
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FIG. 2. Diagrammatic representation of the equation for the
paring vertex (68).

der terms, F 6, F 8 and so on, originate from the expan-
sion of the logarithm in the effective action (11). In ab-
sence of correlation (ρ = 0) between the pair hopping
and pair pairing terms in the Hamiltonian (1), the GL
functional (67) has a form LGL ∼ aΦ2 − bΦ4 + cΦ6,
with a, b, c > 0. We found that the pairing problem
is quite similar to that of the original spinless/spin-
polarized complex SYK model [32, 62], which is known
to not host a pairing transition [38]. However, turn-
ing on weak positive cross correlations |ρ| � 1 changes
the GL functional in the quadratic term to LGL =
[a− |ρ|J∆4ea

′(T )]Φ2− bΦ4 + cΦ6, which always has two
local minima for a − |ρ|J∆4ea

′(T ) → 0+, one at Φ = 0
and the other at Φ 6= 0, with the latter being the global
minimum. The fact that two local mininum develops be-
fore the quadratic term becomes negative indicates that
the system has gone through a first-order phase transi-
tion. Therefore, at the transition temperature T2e, we
expect ρJ∆4ea

′(T2e) to be smaller than, but of the same
order as a. In other words, at the first-order transition
toward a charge-2e superconductor, the eigenvalue λ of
the linearized version of Eqs. (65,66):

λΦ∗(k) = −ρJ∆4eTk
−d
F

×
∑
q

(Π(q − k) + Π(k − q))G0(q)Φ(q)G0(−q) (68)

becomes of O(1) (but smaller than one). Here the effec-
tive interaction is given by the particle-particle bubble

Π(q) = Tk−dF
∑
k

G0 (k)G0 (q − k) . (69)

We note that unlike conventional linearized gap equation,
the phase of Φ affects λ. This is because in a charge-4e
superconudctor, the U(1) symmetry is broken.

We now analyze the eigenvalue problem (68) for the
pairing vertex in the NFL regime and in the heavy FL
regime respectively. We first start from the NFL regime

at high temperatures, and study the charge-2e instability.
If the T2e we obtain is higher than the characteristic NFL
temperature ε2

F /U , then the pairing phase develops be-
low this temperature, preempting the heavy Fermi liquid
phase. In this case, the charge-2e phase can be viewed
as emerging from a (charge-4e) non-Fermi liquid. On the
other hand, if the T2e obtained using NFL Green’s func-
tions is lower than ε2

F /U , it means that our calculation is
not self-consistent – one needs to consider contributions
from both NFL and heavy FL fermions in the pairing
problem.

In the NFL regime, the particle-particle bubble Π in
Eq. (69) is logarithmic in frequency transfer, similar to
that in color superconductivity [44, 45]. Assuming the
momentum cutoff is O(kF ), up to a non-universal con-
stant we have

Π(Ω) =− 1

2
√
πU

∫ U

−U
dω

sgn (ω) sgn (Ω− ω)√
|ω|
√
|Ω− ω|

' 1√
πU

ln
U

|Ω|
, (70)

where we have used the Green’s functions in the NFL
regime, as the typical frequency transfer is of the order
of T2e, which we assume for now to be much larger than
ε2
F /U .
The eigenvalue problem for the pairing vertex is then

simplified to

λΦ∗(ω) = −ρJ∆4e

πU2

∫ U

T

dΩ
Φ(Ω)

Ω
ln

U2

|Ω2 − ω2|
, (71)

where the temperature T appears as the IR cut-off. The
gap equation (71) can be resolved with logarithmic ac-
curacy [44–46]. Splitting the frequency integral into two
regions: T2e ≤ Ω ≤ |ω| and |ω| ≤ Ω ≤ U , and introduc-
ing the logarithmic coordinates x = ln Λ

|ω| and y = ln Λ
Ω ,

we approximate Eq. (71) with

Φ∗(x) = −g
(∫ x

0

dy yΦ(y) + x

∫ ln Λ
T2e

x

dyΦ(y)

)
, (72)

where we defined the coupling constant

g =
ρJ∆4e

πλU2
=

ρJ∆4e

πλ (J 2 + ∆2
4e)

. (73)

The equation (72) is equivalent to the second-order dif-
ferential equation

d2Φ∗(x)

dx2
− gΦ(x) = 0 (74)

with the boundary conditions Φ∗(0) = 0 and
Φ∗x(ln U

T2e
) = 0. A similar equation can be derived for the

conjugated pairing vertex starting from Eq. (68). From
here we deduce that the pairing vertex is imaginary (real)
for ρ > 0 (ρ < 0), and

Φ(ω) ∝ sin

(
√
g ln

U

|ω|

)
, (75)
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while the superconducting transition temperature can
be found from the temperature onset satisfying
cos(
√
g ln U

T2e
) = 0:

T2e ∼ Ue−
π

2
√
g ∼ U exp

(
− U√
|ρ|J∆4e

#

)
, (76)

where # stands for a nonuniversal O(1) number. The un-
certainty here comes from the fact that the phase tran-
sition is first-order, which occurs when λ is O(1) but
smaller than one.

The solution for T2e above is only self-consistent if it is
larger than ε2

F /U . Otherwise, potential pairing can only
occur in the heavy Fermi liquid regime, which requires
a separate analysis. In this case, the typical frequency
transfer Ω is much smaller than the ε2

F /U , and there
are two contributions to the particle-particle bubble, one
from the NFL regime, and the other from the heavy FL
regime. The contribution from the NFL regime is similar
to the previous case, except that here the effective lower
cutoff of the integral is instead ε2

F /U :

ΠNFL(Ω) ' 1

2
√
πU

ln
U2

ε2
F

. (77)

The contribution from the heavy FL regime, on the other

hand, is evaluated in Appendix B 1 (denoted as Π̃(ω, q);
see discussions therein):

ΠFL ∼
1

U

(
sinh−1 2ε∗F

v∗F q
− sinh−1 |Ω|

v∗F q

)
. (78)

For typical momentum transfer q ∼ kF and typical fre-
qyency transfer Ω ∼ T2e, we see that ΠFL ∼ 1/U �
ΠNFL, and thus

Π(Ω) ' 1

2
√
πU

ln
U2

ε2
F

. (79)

In other words, the pairing of fermions in the heavy FL
regime is actually mediated by the particle-particle fluc-
tuations in the NFL regime.

In the heavy FL regime, the eigenvalue problem for
pairing is thus given by

λΦ∗(k) = −ρJ∆4eZ
2

√
πU

ln

(
U2

ε2
F

)
Tk−dF

×
∑
Ω

∫
dq

(2π)2

Φ(q)

Ω2 + Z2ξ2
q

, (80)

where Z ∼ 1/(k−dF ν0U). The pairing temperature has
the familiar BCS-form [19]:

T2e ∼
ε2
F

U
exp

(
− U2

|ρ|J∆4e ln(U2/ε2
F )

#

)
. (81)

where again # stands for a nonuniversal O(1) number.
In contrast with the conventional BCS theory, the phase
transition is first-order.

VI. DISCUSSION

In quest of the basic properties of a charge-4e super-
conductor, in this work we constructed a mean-field toy
model describing a Fermi surface coupled to strong four-
fermion interactions and charge-4e superconducting or-
der parameters. It is analytically tractable in the large-N
limit beyond perturbation theory.

We obtained several key results. First, in contrast with
a charge-2e superconductor, the Fermi surface remains
gapless and hosts long-lived quasiparticles in its vicinity
at low-energies. Despite that, unlike the Fermi liquid, the
volume enclosed by the Fermi surface does not obey the
Luttinger theorem. At higher-energies, we found that
strong interaction effects make the system behave as a
non-Fermi liquid.

Second, in sharp contrast to a charge-2e superconduc-
tor, we found that the superfluid density for a charge-4e
superconductor is in general smaller than the electron
density, i.e., ns < n, and is perturbatively small if ∆4e is
small compared to the strength of regular interactions.

Third, we found that in the presence of correlation be-
tween J and ∆4e, the system admits a low-temperature
pairing instability toward charge-2e pairing phase via a
first-order transition. The phase transition can either oc-
cur in the Fermi liquid regime or non-Fermi liquid regime,
in the latter of which the pairing problem bears remark-
able similarity to color superconductivity.

Furthermore, we extended our analysis beyond the
mean-field approach and demonstrate the validity of our
results for an isolated charge-4e superconductor that pre-
serves its total charge.

While the quantitative results inevitably depend on
the microscopic model, we argued that the results above
at a qualitative level are rather general for charge-4e su-
perconductors. Indeed, we showed that the smallness
of the superfluid density and the low-temperature insta-
bility are directly connected with the gaplessness of the
Fermi surface, which is an expected feature of a generic
charge-4e superconductor.

We note that recently charge-4e superconducting
states have been proposed to exist in twisted bilayer
graphene [11], the pair-density-wave state of cuprate su-
perconudctors [4], and in the putative Z4 spin liquids [20].
Also, experimental evidence of the charge-4e supercon-
ductivity in the Kagome metal was reported in the re-
cent preprint [63]. It will be interesting to extend our
results to these contexts, either perturbatively or using
numerical methods such as quantum Monte Carlo in the
Majorana basis.
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Appendix A: Effective action and saddle-point analysis

In this Appendix we derive the saddle-point equations for the Hamiltonian (1) in the main text. To simplify the
presentation, we ignore the spatial dimensions of the problem since the procedure of the disorder averaging remains
intact. The results of this Section are straightforward to generalize for the finite dimensional model.

We begin with a zero-dimensional version of the symmetrized interaction Hamiltonian (3) in the main text

Hint =

N∑
i<j;k<l;i<k

Vij;kl, (A1)

Vij;kl =
Jij;kl
N3/2

(
Ψ†i iσy(Ψ†j)

T ΨT
k iσ

T
y Ψl + h.c.

)
+

∆4e,ij;kl

N3/2

(
Ψ†i iσy(Ψ†j)

T Ψ†kiσy(Ψ†l )
T + h.c.

)
(A2)

=
1

N3/2

(
Jij;kl

(
ϕ†ij ϕkl + h.c.

)
+ ∆4e,ij;kl

(
ϕ†ij ϕ

†
kl + h.c.

))
, (A3)

where we introduce the bilinear operators ϕ,ϕ†:

ϕ†ij =Ψ†i iσy(Ψ†j)
T = ψ†i↑ψ

†
j↓ − ψ

†
i↓ψ
†
j↑ = ϕ†ji, (A4)

ϕkl =ΨT
k iσ

T
y Ψl = ψk↓ψl↑ − ψk↑ψl↓ = ϕlk. (A5)

The coupling constants are given by the two sets {J} and {∆4e} of real independent random Gaussian variables.
Both {J} and {∆4e} are drawn from the bivariate distribution (7) in the main text with a correlation parameter
−1 < ρ < 1 between the two sets of random variables.

We evaluate the disorder average of the partition function straightaway since the effects of the replica symmetry
breaking are negligible in the SYK model [64]. To do so, we integrate over each independent coupling coefficient with
the bivariate Gaussian distribution (7):

zij;kl ≡ exp

{
−
∫
dτ Vij;kl(τ)

}
=

∫
dJij;kl d∆4e,ij;kl P (Jij;kl,∆4eij;kl)

× exp

{
− Jij;kl

∫
dτ
(
ϕ†ij(τ)ϕkl(τ) + h.c.

)
−∆4e,ij;kl

∫
dτ
(
ϕ†ij(τ)ϕ†kl(τ) + h.c.

)}
= exp

{
J 2

2N3

∫
dτdτ ′

(
ϕ†ij(τ)ϕji(τ

′)ϕ†lk(τ ′)ϕkl(τ) + ϕ†ij(τ)ϕ†ji(τ
′)ϕkl(τ)ϕlk(τ ′) + h.c.

)
+

∆2
4e

2N3

∫
dτdτ ′

(
ϕ†ij(τ)ϕ†ji(τ

′)ϕ†kl(τ)ϕ†lk(τ ′) + ϕ†ij(τ)ϕji(τ
′)ϕ†kl(τ)ϕlk(τ ′) + h.c.

)
+ ρ
J∆4e

N3

∫
dτdτ ′

(
ϕ†ij(τ)ϕ†ji(τ

′)ϕkl(τ)ϕ†lk(τ ′) + ϕ†ij(τ)ϕji(τ
′)ϕkl(τ)ϕlk(τ ′) + h.c.

)}
, (A6)

where (. . . ) denotes the disorder average. The interacting part of the effective action can be found from

Sint = −
N∑

i<j;k<l;i<k

Vij;kl ln zij;kl ' −
1

8

N∑
i,j,k,l=1

ln zij;kl, (A7)

where the z̄ terms with the coinciding indices are neglected in the large-N limit.

To decouple the 8-fermion interactions in Eqs. (A6,A7), we introduce the self-energies and Green’s functions via
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the following identities:

1 =

∫
DΣDG exp

∑
σ=↑↓

∫
dτdτ ′Σσσ(τ, τ ′)

(
NGσσ(τ ′, τ)−

N∑
i=1

ψ̄iσ(τ)ψiσ(τ ′)

) , (A8)

1 =

∫
DΦDF+ exp

{∫
dτdτ ′ Φ↑↓(τ, τ

′)

(
NF+
↓↑(τ

′, τ)−
N∑
i=1

ψ̄i↑(τ)ψ̄i↓(τ
′)

)}
, (A9)

1 =

∫
DΦ+DF exp

{∫
dτdτ ′ Φ+

↓↑(τ, τ
′)

(
NF↑↓(τ

′, τ)−
N∑
i=1

ψi↓(τ)ψi↑(τ
′)

)}
, (A10)

where we assume G↑↓ = G↓↑ = 0 and F↑↑ = F↓↓ = F+
↑↑ = F+

↓↓ = 0. The anomalous contributions (A9,A10) to
the effective action are introduced in accordance with definition of the anomalous blocks of the Gor’kov’s Greens’s
function (9,10) in the main text. Using the identities (A8-A10), we compute the effective action (A7). Indeed, the
contributions to the effective action after the disorder average (A6) can be expressed in terms of 4-fermion products:

N∑
i,j=1

ϕ†ij(τ)ϕji(τ
′) =

N∑
i,j=1

Ψ†i (τ)iσy(Ψ†j(τ))TΨT
j (τ ′)iσTy Ψi(τ

′)

= N

N∑
i=1

(
ψ̄i↑ ψ̄i↓

)
τ

(
G↓↓(τ

′, τ) 0
0 G↑↑(τ

′, τ)

)(
ψi↑
ψi↓

)
τ ′

= 2N2G↑↑(τ
′, τ)G↓↓(τ

′, τ), (A11)

N∑
i,j=1

ϕ†ij(τ)ϕ†ji(τ
′) =

N∑
i,j=1

Ψ†i (τ)iσy(Ψ†j(τ))TΨ†j(τ
′)iσy(Ψ†i (τ

′))T

= N

N∑
i=1

(
ψ̄i↑ ψ̄i↓

)
τ

(
0 −F+

↓↑(τ, τ
′)

F+
↓↑(τ

′, τ) 0

)(
ψ̄i↑
ψ̄i↓

)
τ ′

= −2N2F+
↓↑(τ

′, τ)F+
↓↑(τ, τ

′), (A12)

N∑
i,j=1

ϕij(τ)ϕji(τ
′) =

N∑
i,j=1

ΨT
i (τ)iσTy Ψj(τ)ΨT

j (τ ′)iσTy Ψi(τ
′)

= N

N∑
i=1

(
ψi↑ ψi↓

)
τ

(
0 F↑↓(τ

′, τ)
−F↑↓(τ, τ ′) 0

)(
ψi↑
ψi↓

)
τ ′

= −2N2F↑↓(τ
′, τ)F↑↓(τ, τ

′). (A13)

Substituting Eqs. (A11-A13) into Eqs. (A6,A7), we derive the effective action for the Hamiltonian (A1):

S =

N∑
i=1

∫
dτdτ ′

(
ψ̄i↑ ψi↓

)
τ

(
δττ ′∂τ + Σ↑↑(τ, τ

′) Φ↑↓(τ, τ
′)

Φ+
↓↑(τ, τ

′) δττ ′∂τ − Σ↓↓(τ
′, τ)

)(
ψi↑
ψ̄i↓

)
τ ′

−N
∫
dτdτ ′

( ∑
σ=↑↓

Σσσ(τ, τ ′)Gσσ(τ ′, τ) + Φ↑↓(τ, τ
′)F+
↓↑(τ

′, τ) + Φ+
↓↑(τ, τ

′)F↑↓(τ
′, τ)

+
J 2

2

(
G↑↑(τ, τ

′)G↑↑(τ
′, τ)G↓↓(τ, τ

′)G↓↓(τ
′, τ) + F+

↓↑(τ, τ
′)F+
↓↑(τ

′, τ)F↑↓(τ, τ
′)F↑↓(τ

′, τ)
)

+
∆2

4e

4

(
G↑↑(τ, τ

′)2G↓↓(τ, τ
′)2 +G↑↑(τ

′, τ)2G↓↓(τ
′, τ)2 + F+

↓↑(τ, τ
′)2F+

↓↑(τ
′, τ)2

+F↑↓(τ, τ
′)2F↑↓(τ

′, τ)2
)
− ρ J∆4e

2

(
G↑↑(τ, τ

′)G↓↓(τ, τ
′) +G↑↑(τ

′, τ)G↓↓(τ
′, τ)
)

×
(
F+
↓↑(τ, τ

′)F+
↓↑(τ

′, τ) + F↑↓(τ, τ
′)F↑↓(τ

′, τ)
))
. (A14)
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Integrating over fermions we get

S =−N
∑
ω

ln

(
(iω − Σ↑↑(ω)) (iω + Σ↓↓(−ω))− Φ↑↓(ω)Φ+

↓↑(ω)

)
−N

∫
dτdτ ′

( ∑
σ=↑↓

Σσσ(τ, τ ′)Gσσ(τ ′, τ) + Φ↑↓(τ, τ
′)F+
↓↑(τ

′, τ) + Φ+
↓↑(τ, τ

′)F↑↓(τ
′, τ)

+
J 2

2

(
G↑↑(τ, τ

′)G↑↑(τ
′, τ)G↓↓(τ, τ

′)G↓↓(τ
′, τ) + F+

↓↑(τ, τ
′)F+
↓↑(τ

′, τ)F↑↓(τ, τ
′)F↑↓(τ

′, τ)
)

+
∆2

4e

4

(
G↑↑(τ, τ

′)2G↓↓(τ, τ
′)2 +G↑↑(τ

′, τ)2G↓↓(τ
′, τ)2 + F+

↓↑(τ, τ
′)2F+

↓↑(τ
′, τ)2

+F↑↓(τ, τ
′)2F↑↓(τ

′, τ)2
)
− ρ J∆4e

2

(
G↑↑(τ, τ

′)G↓↓(τ, τ
′) +G↑↑(τ

′, τ)G↓↓(τ
′, τ)
)

×
(
F+
↓↑(τ, τ

′)F+
↓↑(τ

′, τ) + F↑↓(τ, τ
′)F↑↓(τ

′, τ)
))
, (A15)

where
∑
ω

denotes the summation over the Matsubara frequencies.

The effective action (A15) has a saddle-point in the large-N limit, therefore, we take the variation of the effective
action with respect to the bi-local fields G, F , and F ∗ that leads to the first set of the Schwinger-Dyson equations:

δS

δG↑↑
= 0 ⇒ Σ↑↑(τ) =− J 2G↑↑(τ)G↓↓(τ)G↓↓(−τ)−∆2

4eG↓↓(−τ)2G↑↑(−τ)

+ ρJ∆4e

(
F+
↓↑(τ)F+

↓↑(−τ) + F↑↓(τ)F↑↓(−τ)
)
G↓↓(−τ), (A16)

δS

δG↓↓
= 0 ⇒ Σ↓↓(τ) =− J 2G↓↓(τ)G↑↑(τ)G↑↑(−τ)−∆2

4eG↑↑(−τ)2G↓↓(−τ)

+ ρJ∆4e

(
F+
↓↑(τ)F+

↓↑(−τ) + F↑↓(τ)F↑↓(−τ)
)
G↑↑(−τ), (A17)

δS

δF+
↓↑

= 0 ⇒ Φ↑↓(τ) =− J 2F+
↓↑(τ)F↑↓(τ)F↑↓(−τ)−∆2

4eF
+
↓↑(τ)2F+

↓↑(−τ)

+ ρJ∆4e (G↑↑(τ)G↓↓(τ) +G↑↑(−τ)G↓↓(−τ))F+
↓↑(τ), (A18)

δS

δF↑↓
= 0 ⇒ Φ+

↓↑(τ) =− J 2F↑↓(τ)F+
↓↑(τ)F+

↓↑(−τ)−∆2
4eF↑↓(τ)2F↑↓(−τ)

+ ρJ∆4e (G↑↑(τ)G↓↓(τ) +G↑↑(−τ)G↓↓(−τ))F↑↓(τ), (A19)

where we have used translational invariance in the arguments of the bilocal fields τ, τ ′ → τ − τ ′ → τ . The second set
of the Schwinger-Dyson equations is

δS

δΣ↑↑
=0 ⇒ G↑↑(ω) =

iω + Σ↓↓(−ω)

(iω − Σ↑↑(ω)) (iω + Σ↓↓(−ω))− Φ↑↓(ω)Φ+
↓↑(ω)

, (A20)

δS

δΣ↓↓
=0 ⇒ G↓↓(−ω) =

−iω + Σ↑↑(ω)

(iω − Σ↑↑(ω)) (iω + Σ↓↓(−ω))− Φ↑↓(ω)Φ+
↓↑(ω)

, (A21)

δS

δF↑↓
=0 ⇒ F+

↓↑(ω) =
Φ+
↓↑(ω)

(iω − Σ↑↑(ω)) (iω + Σ↓↓(−ω))− Φ↑↓(ω)Φ+
↓↑(ω)

, (A22)

δS

δF+
↓↑

=0 ⇒ F↑↓(ω) =
Φ↑↓(ω)

(iω − Σ↑↑(ω)) (iω + Σ↓↓(−ω))− Φ↑↓(ω)Φ+
↓↑(ω)

. (A23)

For the self-energies we imply Σ↑↑ = Σ↓↓ = Σ under spin-rotation symmetry as stated in Eq. (8) in the main text.
Here Φ↑↓ and Φ+

↓↑ are the pairing vertexes in the spin-singlet channel. Assuming that the energetically favorable

pairing vertex is even in frequency, we have Φ↑↓ = −Φ↓↑ = Φ and Φ+
↓↑ = −Φ+

↑↓ = Φ∗. The same relations hold for the

Green’s functions which are introduced in Eqs. (9,10) in the main text. As such, we simplify the Schwinger-Dyson
equations to

Σ(τ) =− J 2G(τ)2G(−τ)−∆2
4eG(−τ)3 + ρJ∆4e

(
F ∗(τ)2 + F (τ)2

)
G(−τ), (A24)

Φ∗(τ) =− J 2F ∗(τ)2F (τ)−∆2
4eF (τ)3 + ρJ∆4e

(
G(τ)2 +G(−τ)2

)
F (τ) (A25)
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and

G(ω) =
iω + Σ(−ω)

(iω − Σ(ω)) (iω + Σ(−ω))− Φ∗(ω)Φ(ω)
, (A26)

F ∗(ω) =
Φ∗(ω)

(iω − Σ(ω)) (iω + Σ(−ω))− Φ∗(ω)Φ(ω)
. (A27)

It is straightforward to generalize these saddle point equations to Eqs. (12-15) in the main text for the finite-
dimensional model. One can also derive the Schwinger-Dyson equations by variation of the effective action (11)
in the main text, where the pairing and spin symmetries of the considered saddle-point have been already accounted.

Appendix B: Derivation of the normal-state Green’s function in 2d

In this Appendix, we derive the normal-state self-energy and Green’s function. We self-consistently show that there
is an emergent energy scale ε∗F = ε2

F /U . At frequencies and temperatures below this scale, i.e., ω, T � ε∗F , the
system is a heavy Fermi liquid, and for ε∗F � ω, T � U , the system behaves as a non-Fermi liquid.

For simplicity of presentation, our derivation below is performed for the 2d case. It is however straightforward to
generalize our derivation to a d > 2 case, by including additional angular directions for the momentum integral.

1. Heavy Fermi liquid at T � ε2F /U

At low temperatures, we take the ansatz that the low-energy form of the Green’s function takes the form of (19)
in the main text:

G(ω,k) =
Z

iω − ξ∗k
, ω, T � ε∗F . (B1)

Here Z is the quasiparticle residue, ξ∗k ≈ v∗F · k is the renormalized dispersion, v∗F is the renormalized Fermi velocity,
and ε∗F is the renormalized Fermi energy.

We begin with evaluation of the particle-particle bubble (18) with the ansatz (B1):

Π(Ω,q) =Π0 + Π̃(Ω,q)

=Π0 + Z2k−2
F

∫ ε∗F

−ε∗F

dω

2π

∫
dk

(2π)2

1
iΩ
2 + iω − ξ∗q

2 +k

1
iΩ
2 − iω − ξ

∗
q
2−k

. (B2)

The first term Π0 here comes from fermions with higher energies, e.g., in the NFL regime. For our purposes here the
relevant Ω, v∗F q � ε2

F /U , and thus these high-energy contributions are constant in Ω, v∗F q.

We consider low-lying excitations and, hence, expand the dispersion ξ∗q
2±k
' ξ∗k±

v∗F ·q
2 in the excitation momentum

q. Furthermore, we introduce the density of states ν∗, which is constant ν∗ = kF /(πv
∗
F ) in two dimensions, and

replace the integral over fermion momentum k with the energy ε integral:

Π̃(Ω,q) 'ν∗Z2k−2
F

∫ ε∗F

−ε∗F

dω

2π

∫ 2π

0

dθ

2π

∫ +∞

−∞
dε

1
iΩ
2 + iω − ε− v∗F q

2 cos θ

1
iΩ
2 − iω − ε+

v∗F q

2 cos θ

=ν∗Z2k−2
F

∫ ε∗F

|Ω|
2

dω

∫ 2π

0

dθ

2π

4ω

4ω2 + v∗F
2q2 cos2 θ

= 2ν∗Z2k−2
F

∫ ε∗F

|Ω|
2

dω√
4ω2 + v∗F

2q2

=ν∗Z2k−2
F

(
sinh−1 2ε∗F

v∗F q
− sinh−1 |Ω|

v∗F q

)
. (B3)

Here θ is the angle between q and k, q = |q|, and v∗F is the renormalized Fermi velocity. We close the contour in
the upper half complex plane when evaluating the integral over energy ε. For the frequencies −|Ω|/2 < ω < |Ω|/2
there are two contributing poles that cancel each other, while both −ε∗F ≤ ω ≤ −|Ω|/2 and |Ω|/2 ≤ ω ≤ ε∗F regions
contribute one pole each.

The particle-particle bubble (B3) is an even function of frequency and momenta Π̃(Ω,q) = Π̃(−Ω,−q). Further-
more, the constant piece Π0 leads to a constant real piece after the integral, contributing to the renormaliztion of
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the chemical potential. Therefore, for the frequency and momentum dependence of the self-energy Σ we only need

Π̃(Ω,q) in the particle-particle bubble. From Eq. (17) we get

Σ(ω,k) =− ZU2k−2
F

∫ ε∗F

−ε∗F

dΩ

2π

∫
dq

(2π)2

Π̃(Ω,q)

iΩ− iω − ξ∗q−k−kF
, (B4)

where k is the deviation from the Fermi surface.
In order to self-consistently solve for Z and v∗F , we separately consider the frequency and momentum dependence

of the self-energy Σ at leading order. For the frequency dependence, we get

Σ(ω,k = 0) = −iU2Z3ν∗k−4
F

∫
qdq dΩ

4π2

sgn(ω − Ω)√
(ω − Ω)2 + v∗2q2

(
sinh−1 2ε∗F

v∗F q
− sinh−1 |Ω|

v∗F q

)
. (B5)

The leading, linear in ω, contribution comes from small internal frequency Ω� v∗F q:

Σ(ω,k = 0) ≈ −iω × 2U2Z3ν∗

v∗F k
4
F

∫
dq

4π2
sinh−1 2ε∗F

v∗F q
∼ iω × U2Z3ν∗

v∗F k
3
F

, (B6)

while the opposite limit v∗F q � Ω yields a frequency dependence ω2 lnω [28].
In the strong coupling limit, the self-energy effects dominate the fermion Green’s function:

Z−1 ∼ U2Z3ν∗

v∗F k
3
F

. (B7)

As we shall see later, the renormalized Fermi velocity and density of states are given by v∗F ∼ ZvF and ν∗ ∼
k2
F /(ZεF ) ∼ kF /(ZvF ), which leads to

Z ∼ εF
U
� 1, (B8)

where we have used εF ∼ vF kF .
Let us now evaluate the k-dependence of Σ near the Fermi surface:

Σ(ω = 0,k) = U2Z3ν∗k−4
F

∫
dq dΩ

8π3

v∗F (qx − kx)

Ω2 + v∗2F (qx − kx)2

(
sinh−1 2ε∗F

v∗F q
− sinh−1 |Ω|

v∗F q

)
, (B9)

where qx, kx refer to the momentum components in the direction perpendicular to the local patch of the Fermi surface.
This is justified for q2

y � kF (qx − kx), which is the dominant regime that contributes to the integral.
The first term in the parenthesis, after Ω integration becomes ∝ sgn(qx − kx). Aside from a constant term, to

leading order in k (defined as the deviation from the Fermi surface), it is

∼
∫ k

−k
dqx

∫ √kF k
0

dqy ln
4ε∗F
v∗F q

, (B10)

By a simple dimensional analysis, this contribution to Σ comes as a higher-order term ∼ sgn(kx)|kx|3/2 ln |kx|.
The frequency integral with the second term in the parenthesis yieds a log, cut by v∗F q above and vF |qx−kx| below.

We have

Σ(ω = 0, kx) ≈ const−U2Z3ν∗k−4
F

∫
dq

4π3

qx − kx
q

ln
q

|qx − kx|
, (B11)

which agrees with Eq. (D14) of Ref. [28] using a slightly different method. However, as we show below the evaluation
of the integral in Eq. (B11) leads to a result with an opposite sign. Interestingly, the correct sign is crucial for our
purposes as it ensures the superfluid density is positive and consistent with the f -sum rule [55].

The leading contribution to Eq. (B11) comes from the region in which qy � qx such that the logarithm in the
integrand is large, and in which |qx − kx| � q2

y/kF such that the dispersion is linear. Keeping terms up to linear-in-k
order

Σ(ω = 0, kx) ≈const− kx ×
U2Z3ν∗

π3k4
F

∫ kF

0

dqy
qy

∫ qy

q2
y/kF

dqx

[
ln
qx
qy

+ 1

]
=const + kx ×

U2Z3ν∗

π3k4
F

∫ kF

0

dqy
qy
kF

ln
kF
qy
. (B12)
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While the last integral is only accurate up to a non-universal factor, it is clear that it is positive, contrary to the
result in Ref. [28].

We thus obtain

Σ(ω = 0, kx) ≈ const+β kx
U2Z3ν∗

k3
F

≡ const + β vF kx, (B13)

where we use Eq. (B8) and the fact that ν∗ = ν0/Z. The non-universal coefficient 0 < β = O(1) may depend on the
geometry of the specific Fermi surface. The result that β = O(1) also confirms the expression for the renormalized
Fermi velocity v∗F = ZvF we previously used in deriving Z.

From the above results on Z and β, we see that the renormalized Fermi energy is given by

ε∗F = ZεF ∼
ε2
F

U
. (B14)

Similar to the standard case, the Fermi-liquid solution is only valid if

T � ε∗F ∼
ε2
F

U
. (B15)

To confirm the analytical estimates for the quasiparticle renormalization, we use the result (B3) and numerically
evaluate the self-energy (B4) for a 2d circular Fermi surface for arbitrary excitation momentum q. Computing
numerically the frequency and momentum integrals in Eq. (B4) for electrons with the quadratic dispersion and Fermi
energy εF = k2

F /(2m), we derive the self-energy in the leading order in frequency and momentum:

Σ(ω, kx) ' const− iω α1

(2π)2
Zk−4

F (ν0U)2 +
vF
2
kx

α2

(2π)2
Z2k−4

F (ν0U)2, (B16)

where we use that ν∗ = k2
F /(2πε

∗
F ) and express it in terms of the density of states of the free fermions ν∗ = ν0/Z. Here

we have chosen the Fermi momemtum kF aligned with the kx component of the electron’s momentum k = {kx, ky}.
The numerical coefficients α1 ≈ 13.1 and α2 ≈ 4 are found from the frequency and momentum dependence of the
self-energy (B4) shown in Fig. 3 in the low frequency (ω ≤ 0.1ε∗F with 11 points) and small momentum (kx ≤ 0.05kF
with 11 points) Comparison of the imaginary part of the self-energy (B16) in a strong coupling limit (k−2

F ν0U � 1)
with the quasiparticle ansatz (B1) fixes the quasiparticle residue Z:

Z =
2π
√
α1

1

k−2
F ν0U

≈ 10.9
εF
U
. (B17)

Substituting the quasiparticle residue (B17) into Eq. (B16), we obtain

Σ(ω, kx) ' const− i Z−1ω +
α2

2α1
vF kx, (B18)

which gives us the self-energy expression (21) in the main text with

β = 2α2/(α1) ≈ 0.6.

2. Non-Fermi liquid at ε2F /U � T � U

At higher temperatures than the renormalized Fermi energy, one expects that the kinetic energy of the fermions
becomes negligible. In this Subsection, we show that the system is a local NFL.

We assume and then verify that in area ∼ k2
F around the Fermi surface, at higher-temperatures the Green’s function

to zeroth order takes a k-independent form

G(ω,k) ' G(0)(ω) +G(1)(ω,k) + · · · , G(1) � G(0). (B19)

The derivation of G(0) is quite similar to that in the 0d SYK model, the only difference being an momentum integral
that cancels the k−2

F in the coupling constant in our case. Therefore, at leading order, the fermion Green’s function is

G(0)(ω) ' −iπ1/4 sgn(ω)√
U |ω|

(B20)
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FIG. 3. The self-energy (B4) in the Fermi liquid regime for a circular Fermi surface. Left panel: frequency dependence of the
self-energy. Right panel: momentum dependence of the self-energy. The red lines shows the fit with α1 = 13.1 for frequency
and α2 ≈ 4 for the momentum dependencies of the self-energy. The momentum dependence of the self-energy is shifted by a
constant in Eq. (B13), so that it originates from kx = 0.

with the fermionic self-energy given by

Σ(0)(ω) ' −iπ−1/4
√
U |ω| sgn(ω). (B21)

This solution is valid when ω, εF � Σ(ω), which is satisfied in the temperature range

ε2
F

U
� T � U, (B22)

which is complementary to the temperature regime for heavy Fermi liquid behavior.
The momentum dependence of the self-energy in this regime can be evaluated perturbatively:

Σ(x) 'Σ(0)(x) + Σ(1)(x), (B23)

k4
FΣ(0)(x) =− U2G(0)(x)2G(0)(−x) (B24)

k4
FΣ(1)(x) =− J 2G(0)(x)2G(1)(−x)− 2J 2G(0)(x)G(0)(−x)G(1)(x)− 3∆2

4eG
(0)(−x)2G(1)(−x). (B25)

The corresponding Green’s function is [28]

G(ω,k) 'G(0)(ω) +G(1)(ω,k), (B26)

G(0)(ω) =− 1

Σ(0)(ω)
, (B27)

G(1)(ω,k) =G(0)(ω)2
(
ξk + Σ(1)(ω,k)

)
. (B28)

The perturbation series is controlled by the small parameter εF /U .
Applying the Fourier transform to the self-energy correction (B25), we notice that only G(1) among the product of

three Green’s functions explicitly depends on momenta. As such,

Σ(1)(ω,k) ∼
∫
dq dΩ f(Ω)G(1)(Ω− ω,k− q), (B29)

where f(Ω) is defined by G(0)(Ω) which is momenta independent. The key observation here is, since the external
momentum k can be absorbed into the internal momentum Q, the mometum integral is independent on k. Therefore,
we have

Σ(1)(ω,k) = Σ(1)(ω), (B30)

and the k dependence of Σ(ω,k) comes in the perturbative expansion at the next order. Thus by dimensional analysis,

Σ(0,k) ∼ εF
U

vF · k. (B31)
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Appendix C: Ward identity and superfluid density

In this Appendix we derive the modified Ward identity for superconductors.

1. Ward identity in a metal

For completeness, we first derive the Ward idetity from the path integral formalism for a metal with free-electron
dispersion. This derivation is well-known and presented in detail in quantum field theory books, e.g., [65].

The Ward identity, introduced in the main text in Eq. (37), directly relates the quasiparticle current vertex Γ to
the quasiparticle velocity −∂kG−1:

Γ(k, k) = −∂kG−1(k). (C1)

This is a direct consequence of minimal coupling to the electromagnetic field, which in turn comes from gauge
invariance as we show below.

We begin with the path integral for two-point functions

〈ψ(x1)ψ̄(x2)〉 ∼
∫
DψDψ̄ ψ(x1)ψ̄(x2)e−S[ψ,ψ̄]

=

∫
Dψ′Dψ̄′ ψ′(x1)ψ̄′(x2)e−S[ψ′,ψ̄′], (C2)

where in the second line we have performed a change of variable ψ → ψ′ = eiα(x)ψ, where α(x) is an arbitrary function
of x = (τ, r).

Expanding the bottom line in Eq. (C2) to linear order in α(x) and subtracting it from the top line in the same
equation we get

0 =

∫
DψDψ̄

∫
x

iα(x)ψ(x1)ψ̄(x2) [δ(x− x1)− δ(x− x2)− i∂µjµ(x)] e−S[ψ,ψ̄], (C3)

where ∂µ = (∂τ , ∂r) and jµ = (iψ̄ψ,−i(ψ̄∂rψ − (∂rψ̄)ψ)/(2m)). Here we have used the conservation law due to U(1)
symmetry of the action. Namely, the change in the action due to ψ → ψ′ can only be proportional to the gradient
term ∂µα(x), with the coefficient being the conserved current as stated by the Noether’s theorem.

We then obtain the following relation between correlation functions

− i∂µ〈jµ(x)ψ(x1)ψ̄(x2)〉 = −[δ(x− x1)− δ(x− x2)]〈ψ(x1)ψ̄(x2)〉. (C4)

We apply the Fourier operatorF̂◦ =
∫
x,x1,x2

e+ipxe+ikx1e−i(k+p)x2◦ to both sides of Eq. (C4) and take the limit of

zero frequency ω → 0 in the Fourier components of the particle current jµ(ω,p). Then using the Wick’s theorem for
the left side of Eq. (C4), we obtain the equation (36) from the main text

p · Γ(k, k + p)G(k)G(k + p) = −G(k)+G(k + p), (C5)

where we introduced the current vertex function Γ(k, k + p) = (k + p/2)/m for a free fermion system. The Green’s
function is defined as G(k) = −〈ψkψ̄k〉. Taking the limit p → 0 in Eq. (C5), we derive the current vertex to
quasiparticle velocity relation (37) used in the main text.

2. Modified Ward identity and superfluid density in a charge-2e superconductor

For a superconductor (charge-2e or charge-4e), U(1) symmetry is broken, and Ward identity can be modified
accordingly. For completeness, here we derive the modified Ward identity in a mean-field BCS superconductor.

In a BCS superconductor, the action contains the anomalous term

S ⊃ −
∫
x

∆ψ̄↑(x)ψ̄↓(x) + h.c., (C6)

which does not remain invariant under ψ↑,↓ → ψ′↑,↓ = eiα(x)ψ↑,↓.
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To account for the change of the action due to the anomalous term, Eq. (C3) should be modified to

0 =

∫
DψDψ̄

∫
x

iα(x)ψ↑(x1)ψ̄↑(x2) [δ(x− x1)− δ(x− x2)− i∂µjµ(x)

−2∆ψ̄↑(x)ψ̄↓(x) + 2∆ψ↑(x)ψ̄↓(x)
]
e−S[ψ,ψ̄], (C7)

Similar to the previous section, the equation (C7) translates to momentum representation as

p · Γ(k, k + p)G(k)G(k + p) = −G(k) +G(k + p)

+ F̂ ◦ 2∆〈ψ̄↑(x)ψ̄↓(x)ψ↑(x1)ψ†↑(x2)〉 − F̂ ◦ 2∆〈ψ↓(x)ψ↑(x)ψ↑(x1)ψ†↑(x2)〉, (C8)

Applying the Wick’s theorem and assuming the s-wave real constant pairing, we have

F̂ ◦ 2∆〈ψ̄↑(x)ψ̄↓(x)ψ↑(x1)ψ†↑(x2)〉 = 2G(k)Σ∆(k)G(k + p), (C9)

whee Σ∆(k) is the self-energy due to the pairing vertex. For a BCS superconductor, we have

G(k) = − iω + ξk
ω2 + ξ2

k + ∆2
, Σ∆(k) =

∆2

iω + ξk
. (C10)

where ξk = (k− eA)2/2m−µ is the dispersion relation. Taking the p→ 0 limit, we have the modified Ward identity
(36) for a superconductor

Γ(k, k)G2(k) = ∂kG(k)− 2G2(k)∂kΣ∆(k). (C11)

The first term in Eq. (C11) again cancels the diamagnetic contribution discussed in Section III C in the main text,
and the second term yields

ns = 4

∫
k

k2

m

∆2
0

(ω2 + ξ2
k + ∆2)2

, (C12)

where the additional factor of 2 accounts for both spin species. Introducing the density of states for a two-dimensional
case ν0 = k2

F /(2πεF ) at zero temperature, we have

ns = 4

∫
k

k2

m

∆2
0

(ω2 + ξ2
k + ∆2)2

=
4ν0εF
π

∫ +∞

−∞
dω

∫ +∞

−∞
dξ

∆2
0

(ω2 + ξ2 + ∆2)2
= 2× k2

F

π
= n. (C13)

The fact that ns is independent of ∆ is related to the superfluid density being a Fermi surface effect. No matter
how small ∆ is, pairing always equally mixes electrons and holes at the Fermi surface. Therefore ns is significant even
if ∆ is small.

3. Modified Ward identity in a charge-4e superconductor

Now, we shall derive the Ward identity for a charge-4e superconductor from the main text (38). The imaginary
time action for a charge-4e superconductor reads

S ⊃
∫
x

( N∑
i=1

Ψ†xiσ0

(
∂τ −

∂2
r

2m
− µ

)
Ψxi +

k−dF
N3/2

N∑
i<j,k<l,i<k

(
∆4e,ij;kl Ψ

†
xiiσy(Ψ†xj)

T Ψ†xkiσy(Ψ†xl)
T + h.c.

))
, (C14)

where we use the fermionic spinor Ψ†xi =
(
ψ̄i↑(x) ψ̄i↓(x)

)
(not to be confused with the Nambu spinor in Section C 2).

Similar to Appendix C 1, we define the two-point function for a given spin and flavour

〈ψ1↑(x1)ψ̄1↑(x2)〉 ∼
∫
DψDψ̄ e−S[ψ,ψ̄]ψ1↑(x1)ψ̄1↑(x2), (C15)
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which remains invariant under the change of variables ψns → ψ′ns = eiα(x)ψns. Accordingly, the Ward identity is
modified as

− i∂µ〈jµ(x)ψ1↑(x1)ψ̄1↑(x2)〉 = −[δ(x− x1)− δ(x− x2)]〈ψ1↑(x1)ψ̄1↑(x2)〉

−
4k−dF
N3/2

N∑
i<j,k<l,i<k

∆4e,ij;kl 〈ψ1↑(x1)ψ̄1↑(x2)Ψ†xiiσy(Ψ†xj)
T Ψ†xkiσy(Ψ†xl)

T 〉

+
4k−dF
N3/2

N∑
i<j,k<l,i<k

∆4e,ij;kl 〈ψ1↑(x1)ψ̄1↑(x2)ΨT
xliσ

T
y Ψxk ΨT

xjiσ
T
y Ψxi〉, (C16)

where the current is

jµ(x) =

N∑
i=1

∑
σ=↑,↓

(iψ̄iσψiσ,−
i

2m
(ψ̄iσ∂rψiσ − (∂rψ̄iσ)ψiσ)). (C17)

Let’s evaluate the 6-fermion correlation function in Eq. (C16) using that under disorder average
〈∆4e,ij;kl∆4e,i′j′;k′l′〉 = ∆2

4eδii′δjj′δkk′δll′ :

−
4k−dF
N3/2

N∑
i<j,k<l,i<k

∆4e,ij;kl 〈ψ1↑(x1)ψ̄1↑(x2)Ψ†xiiσy(Ψ†xj)
T Ψ†xkiσy(Ψ†xl)

T 〉

=
4k−2d
F

N3
∆2

4e

N∑
i<j,k<l,i<k

〈ψ1↑(x1)ψ̄1↑(x2)Ψ†xiiσy(Ψ†xj)
T Ψ†xkiσy(Ψ†xl)

T

∫
x′

ΨT
x′liσ

T
y Ψx′k ΨT

x′jiσ
T
y Ψx′i〉. (C18)

Applying the Wick’s theorem to the equation above, we notice that in the ith spinor the flavour is fixed to i = 1 and
only the ↑-component of it contributes to the Ward identity. Therefore, the 6-fermion function (C18) becomes

4k−2d
F

N3
∆2

4e

N∑
j,k,l=1

∫
x′
〈ψ1↑(x1)ψ̄1↑(x2)ψ1↑(x

′)ψ̄1↑(x)〉〈ψj↓(x′)ψ̄j↓(x)〉〈ψk↓(x′)ψ̄k↓(x)〉〈ψl↑(x′)ψ̄l↑(x)〉

= 4∆2
4e

∫
x′

Σ∆↑↑(x, x
′)〈ψ1↑(x1)ψ̄1↑(x2)ψ1↑(x

′)ψ̄1↑(x)〉. (C19)

Thus, the Ward identity for our charge-4e superconductor reads

− i∂µ〈jµ(x)ψ1↑(x1)ψ̄1↑(x2)〉 = −[δ(x− x1)− δ(x− x2)]〈ψ1↑(x1)ψ̄1↑(x2)〉

+ 4∆2
4e

∫
x′

Σ∆↑↑(x, x
′)〈ψ1↑(x1)ψ̄1↑(x2)ψ1↑(x

′)ψ̄1↑(x)〉

− 4∆2
4e

∫
x′

Σ∆↑↑(x
′, x)〈ψ1↑(x1)ψ̄1↑(x2)ψ1↑(x)ψ̄1↑(x

′)〉. (C20)

We apply the Fourier transform F̂◦ =
∫
x,x1,x2

e+ipxe+ikx1e−i(k+p)x2◦ to the both sides of Eq. (C20) and take ω → 0

limit: ∫
q

p · (q + p/2)

m
〈ψ1↑(k)ψ̄1↑(q)ψ1↑(q + p)ψ̄1↑(k + p)〉 = −〈ψ1↑(k + p)ψ̄1↑(k + p)〉+ 〈ψ1↑(k)ψ̄1↑(k)〉

− 4∆2
4e

∫
q

Σ∆↑↑(q + p)〈ψ1↑(k)ψ̄1↑(q)ψ1↑(q + p)ψ̄1↑(k + p)〉

+ 4∆2
4e

∫
q

Σ∆↑↑(q)〈ψ1↑(k)ψ̄1↑(q)ψ1↑(q + p)ψ̄1↑(k + p)〉. (C21)

Using the diagrammatic technique in Matsubara time with G(k) = −〈ψ1↑(k)ψ̄1↑(k)〉 and Σ∆4e
≡ Σ∆↑↑, we obtain

Eq. (39) and Fig. 1 in the main text.
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