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We introduce a many-body topological invariant, called the topological disorder parameter (TDP),
to characterize gapped quantum phases with global internal symmetry in (2+1)d. TDP is defined
as the constant correction that appears in the ground state expectation value of a partial symmetry
transformation applied to a connected spatial regionM , the absolute value of which scales generically
as exp(−αl+γ) where l is the perimeter of M and γ is the TDP. Motivated by a topological quantum
field theory interpretation of the operator, we show that eγ can be related to the quantum dimension
of the symmetry defect, and provide a general formula for γ when the entanglement Hamiltonian of
the topological phase can be described by a (1+1)d conformal field theory (CFT). A special case of
TDP is equivalent to the topological Rényi entanglement entropy when the symmetry is the cyclic
permutation of the replica of the gapped phase. We then investigate several examples of lattice
models of topological phases, both analytically and numerically, in particular when the assumption
of having a CFT edge theory is not satisfied. We also consider an example of partial translation
symmetry in Wen’s plaquette model and show that the result can be understood using the edge
CFT. Our results establish a new tool to detect quantum topological order.

I. INTRODUCTION

Spontaneous symmetry breaking in many-body sys-
tems is characterized by long-range correlation of a lo-
cal order parameter. On the other hand, in symmetric
phases, order parameters usually have only short-range
or algebraic correlations. In order to characterize the
symmetric phases, it has been proven fruitful to instead
consider a family of non-local observables called the dis-
order operator [1–4], which is the symmetry transfor-
mation applied only to a certain region M of the sys-
tem. The ground state expectation value of the disor-
der operator, which will be called the disorder param-
eter, decays exponentially with the volume of ∂M , the
boundary of M . Such a scaling behavior is characteristic
of a symmetry-preserving ground state and the scaling
coefficient is controlled by non-universal, short-distance
details of the ground state. The subleading corrections
are however often more interesting and can give rise to
new universal quantities [5]. For instance, recently it
was observed that at (2+1)d quantum critical points, the
disorder parameter can exhibit a logarithmic subleading
correction [6–11], whose coefficient is a universal func-
tion of opening angles of corners on the boundary of the
region, generalizing similar results for entanglement en-
tropy [12–14]. Thus the disorder parameter can provide
new ways to probe the nature of a many-body wavefunc-
tion. Moreover, along with the entanglement entropy, the
subleading corrections of disorder operator also provide
new insights in exotic deconfined quantum critical points
beyond unitary CFT [9, 15].
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In contrast, when the ground state is gapped and only
contains short-range correlations, there are no sublead-
ing logarithmic corrections. In this case, the expectation
is that the remaining subleading correction is a univer-
sal constant, analogous to the topological correction to
the entanglement area law [16–21]. The major question
we will address in this work is the physical meaning of
this universal constant. More concretely, for an element
g of the symmetry group G, denote the corresponding
disorder operator in the region M by UM (g). Then we
expect

ln |〈UM (g)〉| = −α|∂M |+ γg + · · · . (1)

Here 〈·〉 is the ground state expectation value. α is a non-
universal constant, and γg ≥ 0 is the universal term that
we are interested in, which will be called as the topolog-
ical disorder parameter (TDP). Similar observables have
been studied for point-group symmetry in fermionic topo-
logical insulators and superconductors [22]. Our main
result in this paper is that the subleading correction γg
is related to the quantum dimension of the symmetry de-
fects. As will be demonstrated below for a large class of
topological phases with CFT entanglement Hamiltonian
(e.g. chiral topological phase) we have γg = ln dg where
dg is the quantum dimensions of defects. Intuitively, the
appearance of quantum dimension can be understood as
follows: one can think of the disorder operator UM (g)
as the process of creating a pair of g and g−1 symmetry
defects, moving the g defect along the boundary ∂M and
then annihilating the pair. In a pure topological theory,
the amplitude of such a process is given by the quantum
dimension of the defect [23]. Here we show that this in-
tuition is basically correct in the more generic situation,
with an important subtlety that there are in general mul-
tiple distinct types of defects, which can all contribute to
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the disorder parameter. We further demonstrate through
examples that similar relations hold even when the entan-
glement Hamiltonian can not be approximated by CFTs.

The form Eq. (1) is clearly reminiscent of the area law
for quantum entanglement. This is not a coincidence.
The n-th Rényi entropy of a quantum many-body sys-
tem can be regarded as basically the disorder parameter
for the cyclic permutation symmetry in the replicated
system [10, 13, 24]. In (2+1)d gapped phases, we will
show below that γg in this case is equal to the well-known
topological Rényi entanglement entropy [16, 17, 25].

The paper is organized in the following structure. To
set the stage, we first provide a short review of symmetry
defects in topological phases in Sec. II. Then in Sec. III,
derivations of Eq. (1) for topological phases with CFT
entanglement spectra are given. In Sec. IV, both analyt-
ical and numerical results for chiral and non-chiral topo-
logical phases are presented. Using large-scale density
matrix renormalization group (DMRG) [26] we compute
TDPs in lattice models including the ZN toric code and
Wen’s plaquette models both with transverse and lon-
gitudinal fields so the model is away from the exactly
solvable limit. The obtained finite-size scaling results of
TDP are consistent with the prediction of quantum di-
mension of the symmetry defect. Finally, Sec. V presents
the discussion of few immediate directions.

II. SYMMETRY DEFECTS IN TOPOLOGICAL
PHASES

First we briefly review the general theory of anyons
and defects in (2+1)d gapped phases, following Ref. [23]
(see also [27] and [28] for related discussions).

In a gapped phase, quasi-particle excitations can
be classified into different superselection sectors, called
anyon types and labeled by a, b, c, . . . . We will sometimes
denote the full set of labels by C. The anyons have non-
trivial exchange and braiding statistics, which completely
characterize the topological order in the bulk. In particu-
lar, for each anyon type a we denote by θa the topological
twist factor, or the self exchange statistics. For a pair of
anyons a and b, the S matrix element Sab characterizes
the mutual braiding statistics. Note that a local exci-
tation (i.e. which can be created by a local operator)
corresponds to the trivial anyon type 0, with θ0 = 1 and
S0a = Sa0 = da

D . Here da ≥ 1 is the quantum dimension
of the anyon type a. If there are well-separated n anyons
all of type a in the system, then there are asymptotically
∼ dna number of degenerate states. D =

√∑
a∈C d

2
a is

called the total quantum dimension. The data Sab and
θa satisfy a number of compatibility conditions, and can
be considered as a set of topological invariants that char-
acterize the topological order.

Now suppose that the underlying system has a global
symmetry g. The symmetry can act on anyons, trans-
forming an excitation of type a into one of type ϕ(a),
which may be different from a. It has proven to be ex-

M

ag ag

FIG. 1. Left: the disorder operator for g transformation on
the region M . Right: the boundary of the disorder operator
can be “cut” to create a pair of g defects, denoted by ag and
ag.

tremely useful in the theory of symmetry-enriched topo-
logical phase to introduce symmetry defects that carry g
fluxes. To explain this concept, first we define a disorder
operator for g: as shown in the left panel in Fig. 1, for
a given region M , UM (g) is the g transformation applied
only to the region M . In a lattice model, suppose that
U(g) is an on-site symmetry of the form

U(g) =
∏
r

Ur(g), (2)

where Ur(g) is a unitary transformation acting on the
degrees of freedom at site r. Then UM (g) is given by

UM (g) =
∏
r∈M

Ur(g). (3)

Under the partial symmetry transformation the Hamilto-

nian becomes H ′ = UM (g)HU†M (g). Hamiltonian terms
that are entirely supported on M or the complement of
M do not change under the UM (g) action. Thus H ′ only
differ from H along the boundary ∂M , where UM (g)
can modify the Hamiltonian terms near the boundary
nontrivially. We say that H ′ has a g defect line along
∂M . Equivalently, we can say that the disorder operator
UM (g) creates a defect loop in the system.

Now imagine that the defect loop is cut open, i.e. there
are two end points joint by a defect line. We call the end
points symmetry defects labeled by g and g−1. Such a
configuration can not be created by applications of disor-
der operators, but one can still modify the Hamiltonian
along the defect line in the same way that a disorder op-
erator would do to create open defect lines. The defining
feature of a symmetry defect is that when a particle is
transported around the defect, a g symmetry transfor-
mation is enacted on the particle, a generalization of the
Aharonov-Bohm effect.

An important remark is in order: fixing the symme-
try transformation g, there is a well-defined prescription
for creating the defect line as explained in the previous
paragraph. However, the prescription becomes ambigu-
ous near the end points. As a result, there are actually
distinct “superselection sectors” of g defects, which only
differ in the local profile at the defect point but with the
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same defect line and g action. We denote these different
types of g defects by ag, as shown in the right panel in
Fig. 1. The collection of all the types of g defects will
be denoted by Cg. These different types of defects corre-
spond to different ways to modify the disorder operator
along the boundary.

It turns out that the symmetry defects, while being
extrinsic objects, behave in many ways like anyons. In
particular, one can fuse defects to create new defects.
Each type of g defect ag is associated with a quantum di-
mension dag , which characterizes the possible exponential
growth of the ground state degeneracy when multiple ag
defects are present in the system. We refer the interested
readers to Ref. [23] for a more comprehensive treatment
of the algebraic theory of symmetry defects.

As shown in Ref. [23], if the symmetry g does not
change anyon types, i.e. ϕ(a) = a for all a ∈ C, then
there is at least one defect, which will be called 0g, with
quantum dimension d0g = 1. In other words, it is an
Abelian defect. In this case, all other defects can be
obtained by fusing 0g with anyons: ag = 0g × a with
a ∈ C, and dag = da. If, however, the symmetry permutes
anyon types, then all defects must be non-Abelian, i.e.
dag > 1 for all ag. In this case, sometimes it is said
that the symmetry defects carry non-Abelian zero modes
(even when the topological order itself is Abelian).

Without proofs we list three useful properties for quan-
tum dimensions of symmetry defects:

• First, define the total dimension of g defects as

Dg =

√ ∑
ag∈Cg

d2
ag . (4)

Then one can prove that Dg = D.

• Second, the number of g defect types is the same
as the number of g-invariant anyons, i.e. those a’s
that obey a = ϕ(a).

• Lastly, if all anyons are Abelian, then all g defects
must have the same quantum dimensions.

Intuitively, a defect loop can be thought of as the tra-
jectory of a symmetry defect. That is, if one first creates
a pair of defects g and g−1, then moves the g defect along
the defect loop, all the way until it is annihilated together
with the g−1 defect. An important subtlety is that in
general we do not know what is the type of the defect
loop created by UM (g). Most generally, the type of the
defect can be represented as a “superposition” (direct
sum to be more precise) of the “irreducible” types:⊕

ag∈Cg

nagag. (5)

Here nag are non-negative integers, called the multiplic-
ity of the ag type. These integers, while quantized, are
not completely universal. Namely, they are not uniquely

fixed by the underlying symmetry-enriched phase of mat-
ter. We will determine them for a large class of systems
from microscopic considerations in Sec. III.

In the diagrammatic formalism for anyons (see Refs.
[29] and [23] for an introduction), the process of creating
a g defect loop of the type Eq. (5) is associated with an
amplitude

dg ≡
∑
ag∈Cg

nagdag , (6)

which is also the quantum dimension of this defect.
It is then natural to postulate that the expectation

value of UM (g), which also creates the same defect loop
with the given defect type, is given by dag up to non-
universal scaling factors. More precisely,

|〈UM (g)〉| ≈ dge−α|∂M |, (7)

for a large, simply-connected region M , which naturally
leads to Eq. (1). Here α is a non-universal constant. We
will show below that this is indeed the case in a broad
class of examples.

We illustrate the general theory outlined in this sec-
tion with an example, which also makes connection with
Rényi entropy. More examples will be given in Sec. IV.

Suppose the topological phase consists of n identical
layers, each of which is described by an anyon theory
C. The anyon theory of the n layers is denoted by C�n.
Anyons are labeled by n-tuples (a1, a2, . . . , an) where
ai ∈ C. Since all the layers are identical, the system
is invariant under any permutation of the layers, hence
the symmetry group is the group of permutations Sn.
Denote by R the cyclic permutation:

R : (a1, a2, . . . , an)→ (a2, a3, . . . , a1). (8)

The theory of R defects has been well-understood, which
we briefly review.

Among all R defects, there exists a“bare” defect, 0R,
that satisfies the following fusion rule [30, 31]:

0R × 0R =
∑

a1,...,an∈C
N0
a1a2···an(a1, a2, . . . , an). (9)

Here N0
a1a2···an is the multiplicity of the vacuum 0 in the

tensor product a1 × a2 × · · · × an. This fusion rule can
be understood intuitively as follows: in the presence of
a 0R − 0R defect line, an anyon (a1, a2, . . . , an) can be
transformed into (a1 × a2 × · · · × an, 0, . . . , 0) by mov-
ing the anyons around the 0R defect and permute all of
them to the same layer. If N0

a1a2···an > 0, then it means
(a1, a2, . . . , an) can be created out of the vacuum in the
presence of a 0R defect, which then implies the fusion
rule.

Other defects can be obtained by

aR = (a, 0, · · · , 0)× 0R, (10)
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whose quantum dimension is daR = d0Rda. Then we find

D2
R =

∑
a∈C

d2
aR = d2

0R

∑
a∈C

d2
a = d2

0RD
2. (11)

Since DR = Dn, we must have d0R = Dn−1. One can also
directly evaluate d0R from the fusion rule, the details of
which can be found in Appendix. B. Defects of such layer
permutation symmetry have been studied in the context
of quantum Hall systems, known as “genons” [32, 33].

Theoretically, the significance of cyclic permutation de-
fects lies in the connection with Rényi entanglement en-
tropy. It is well-known that the Rényi entanglement en-
tropy can be computed using a replica trick [10, 13, 15,
21, 24, 34]. That is, for a quantum state |ψ〉, to com-
pute the n-th Rényi entropy of a region M , one creates
n identical copies of the system, and define RM to be
the cyclic permutation operator within M among the n
copies. Then

S(n)(M) =
1

1− n
ln〈RM 〉, (12)

where the expectation value is taken over the state |ψ〉⊗n.
We recognize that the Rényi entropy is essentially the
logarithm of the disorder parameter of the replica sym-
metry [10, 13, 34]. According to our general formula, for
a topological phase we expect that

S(n)(M) =
α

n− 1
|∂M | − 1

n− 1
ln dR, (13)

where dR is the quantum dimension of a certain R-defect.
Now suppose that the disorder operator RM indeed

corresponds to the bare defect, which is supported by
the CFT calculations below, according to the proposed
formula Eq. (7) the topological Rényi entropy is given
by

γ =
1

n− 1
ln d0R = lnD, (14)

a well-known result [25].
We will now proceed to calculate the disorder parame-

ter. We will first consider topological phases with gapless
CFT boundary (more precisely, entanglement spectrum),
and establish Eq. (7) (with important corrections). Then
we analyze several microscopic models to demonstrate
the validity of the result even when the assumption of
having CFT boundary does not hold.

III. TOPOLOGICAL PHASE WITH CFT
ENTANGLEMENT SPECTRUM

We now present a derivation of Eq. (1) for topological
phases whose entanglement spectrum can be described
by a (1+1)d CFT. More precisely, the reduced density
matrix of the ground state on a disk-like region D is
given by

ρD =
e−HE

Tr e−HE
, (15)

where HE is the entanglement (modular) Hamiltonian.
It has been conjectured and widely believed that HE

belongs to the same universality class as the boundary
theory of the topological phase [16, 35]. In many cases,
the lower part of the entanglement spectra can be exactly
matched with the low-energy spectrum of a physical edge
up to overall rescaling [35]. Ref. [36] established the
validity of the correspondence for general chiral phases
under certain assumptions. We will thus assume for the
remaining of this section that the entanglement Hamil-
tonian describes a CFT at low energy, which takes the
same form as the edge one up to an overall scale.

For our derivation, the bulk-boundary correspondence
plays a crucial role. Thus we first review how it works for
chiral topological phase. We assume that the boundary
theory is a rational CFT, with the following Hamiltonian

Hedge =
2πv

l

(
L0 −

c

24

)
. (16)

Here c is the chiral central charge and l is the perime-
ter of the boundary. The Hilbert space of the boundary
theory decomposes into a direct sum of superselection
sectors Ha, labeled by chiral primaries a. They are in
one-to-one correspondence with anyon types in the bulk.
When the system is a disk with no excitations in the
bulk, the boundary CFT must be in the vacuum sector
H0. To allow other superselection sectors, e.g. Ha on the
boundary, there must be anyonic excitations whose total
charge has type a in the bulk.

For each chiral primary a, we define the character [37]

χa(τ) = TrHa e
2πiτ(L0− c

24 ). (17)

χa is essentially the Euclidean partition function over the
superselection sector Ha. Notably, there is not a single
modular-invariant partition function of the theory. The
characters χa transform under the modular transforma-
tions as

χa(τ) =
∑
b

Sabχb(−1/τ),

χa(τ) =
∑
b

Tabχb(τ + 1)
(18)

where S and T are the S and T matrices of the bulk
anyon theory.

We now generalize this discussion to boundary theories
that are not necessarily fully chiral [38, 39]. Again we
assume that the boundary is described by a CFT, which
could be chiral or non-chiral. The Hamiltonian of the
boundary theory is Hedge = 2πv

l H, where

H = L0 + L0 −
c+ c

24
(19)

is the dimensionless Hamiltonian of the CFT. Note that
here we do not need to assume the left and right moving
fields have the same chiral algebra. For example, the
fully chiral case corresponds to L0 = 0, c = 0. We also
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define the momentum P = L0−L0. The Hilbert space of
the boundary theory splits into multiple superselection
sectors, labeled by anyon types in the bulk [38]. For
a superselection sector labeled by a, we can define the
Euclidean partition function Za(τ):

Za(τ) = TrHa e
2π(iτ1P−τ2H), (20)

where τ = τ1 + iτ2. We remark that in general, there
are no direct correspondence between the superselection
sectors and the primary fields in the CFT. The partition
functions Za also satisfy the relations Eq. (18) under
modular transformations.

Based on the assumptions laid out in the beginning of
the section, we postulate that the entanglement Hamil-
tonian is given by

HE =
ξ

l
H, (21)

where ξ is the correlation length of the bulk, and l is the
length of the disk. H is again the dimensionless Hamilto-
nian of the CFT. Note that if the disk D does not contain
any nontrivial excitations, then we must keep only the
states in the vacuum superselection sector in the CFT.
We will also assume that the system is bosonic, so we do
not have to worry about subtleties related to spin struc-
ture.

Now consider a symmetry transformation g of the bulk.
In the reduced density operator, suppose the symmetry
transformation is represented by a unitary Ug. The dis-
order parameter can be evaluated as

〈Ug〉 = TrUgρD =
TrH0

Uge
− ξlH

TrH0
e−

ξ
lH

. (22)

Roughly speaking, the numerator is the CFT partition
function with symmetry defect line inserted in the time
direction. By a modular transformation, it can be related
to the partition function over the g-twisted Hilbert space.
It is therefore necessary to study the CFT in the defect
sector. We denote by Hg the CFT Hilbert space on a
spatial circle twisted by the g symmetry. In general, Hg
may also split into multiple superselection sectors, de-
noted by Hag , where ag are precisely the defect types.
We then define partition function with both spatial and
temporal symmetry twists:

Z(g,h)
ag (τ) = TrHag Uhe

2π(iτ1P−τ2H). (23)

Namely, the partition function is the trace over the Hag
defect sector and with Uh inserted. Note that Z(1,1)

a is
nothing but Za defined in Eq. (20). Here and in the
following we use 1 for the identity element of the group.
In terms of these twisted partition functions, the disorder
parameter is given by

〈Ug〉 =
Z(1,g)

0 ( iξl )

Z(1,1)
0 ( iξl )

. (24)

Similar to the Za’s, the transformation properties of

Z(g,h)
ag under modular group are entirely determined by

the bulk. For our purpose, we need the following special
case of S transformation:

Z(1,g)
0 (τ) =

∑
ag∈Cg

S(1,g)
1,ag
Z(g,1)
ag (−1/τ). (25)

Here S(g,h)
ag,bh

is the extended S transformation between

(g, h) and (h, g−1) defect sectors of the (2+1)d topolog-
ical phase on a torus [23]. Notice that S(1,1) reduces

to the S matrix of the bulk anyons: S(1,1)
ab = Sab.

According to [23], we have

S(1,g)
1ag

=
dag
D
. (26)

Since τ = iξ
l and we are interested in Eq. (24) in

the limit ξ � l (i.e. the high temperature limit for the
reduced density operator), then −1/τ = il

ξ is effectively

in the low temperature limit. Therefore we can expand

Z(g,1)
ag ( ilξ ) as a series of e2πiτ = e−

2πl
ξ :

Z(g,1)
ag

( il
ξ

)
=

∞∑
m=0

∑
h

ph(m)e−
2πl
ξ (h+m− c+c̄24 )

≈
∑
h

ph(0)e−
2πl
ξ (h− c+c̄24 )

≈ phag (0)e−
2πl
ξ (hag−

c+c̄
24 ).

(27)

Here
∑
h means summing over primary fields in the in

the defect sector Hag with conformal dimension h [40],
and ph(m) is the degeneracy of the level h + m. The
degeneracy may come from different primaries having the
same h, or a certain primary h being a multiplet. In the
last step we only keep the one with the lowest conformal
dimension, i.e. the highest weight state, which is denoted
by hag . We have thus found

Z(1,g)
0

( iξ
l

)
≈
∑
ag∈Cg

dag
D
page

− 2πl
ξ (hag−

c+c̄
24 ). (28)

Define Λg as the set of defect sectors ag with the minimal
hag , among the entire Cg, the corresponding value of the
conformal dimension will be denoted by hg. Define

dg =
∑
ag∈Λg

dagpag . (29)

Compared to Eq. (6), we find that the multiplicity

nag =

{
pag ag ∈ Λg
0 otherwise

. (30)

We can similarly evaluate the denominator:

Z0

(
iξ

l

)
=
∑
a∈C

da
D
Za
(
il

ξ

)
≈
∑
a∈C

da
D
pa(0)e−

2πl
ξ (ha− c+c̄24 ).

(31)



6

In the untwisted sector, the unique vacuum state with
h = 0 dominates the sum, so we obtain Z0( iξl ) ≈ 1

D .
Putting the results together, the disorder parameter is
given by

〈Ug〉 =
Z(1,g)

0 ( iξl )

Z(1,1)
0 ( iξl )

≈ dge−
2πhg
ξ l, (32)

plus exponentially small corrections. We thus find the
topological disorder parameter is γg = ln dg. Compared
with the proposed formula Eq. (7), dg accounts for the
possibility that multiple defects could be “degenerate”.

So far we have focused on the case of a disk-like region
in the ground state. Practically it is often necessary to
study systems on a cylinder or a torus, and the region
may not be simply connected. We generalize the result
to these situations in Appendix A.

We conclude this section with the example of topo-
logical Rényi entropy discussed near the end of Sec. II.
Suppose that the topological phase C is fully chiral, thus
having a chiral CFT boundary. The cyclic permutation
orbifold of a chiral CFT has been studied in mathemati-
cal literature (e.g. [30]), and the conformal dimension of
the highest weight state in the R-twisted sector HaR is
given by haR = ha

n +(n− 1
n ) c24 . Therefore the bare defect

h0R indeed has the lowest conformal dimension, without
any additional degeneracy.

IV. EXAMPLES

In this section we present detailed analysis of several
examples. The motivation is two-folded: to demonstrate
the result in concrete examples, and perhaps more im-
portantly, to study TDP when the boundary theory (or
the entanglement spectrum) is not a CFT. This is partic-
ularly relevant for non-chiral topological phases, as the
low-energy dynamics can be significantly different from
a gapless CFT.

We will first investigate TDP in ZN toric code mod-
els (Sec. IV A) and quantum double models (Sec. IV B),
which represent important examples of non-chiral topo-
logical phases. In the exactly solvable limit, we com-
pute analytically the TDP and show that the results
agree with the general formula Eq. (1). We then em-
ployed DMRG simulations on finite cylinders to numer-
ically study the models under external magnetic fields,
which are no longer exactly solvable, and still find con-
sistent results. Lastly, we study interesting examples of
the TDP in Spin(ν)1 topological phases with microscopic
O(ν) symmetry (Sec. IV C) and the TDP for translation
symmetry in Wen’s plaquette model (Sec. IV D) both
analytically and numerically, where translation acts as
electro-magnetic duality.

1

1

1

2 3

2

3

x

y
X

X

X

X

X

X

FIG. 2. The ZN toric code model with the plaquette terms
A� = X1X2X3X4, B� = Z1Z

†
2Z3Z

†
4 , and the edge terms

he = X2j−1X2j , hm = Z†2jZ2j+1. Here every site is labeled
by its column index x and row index y with periodic condition
y + Ly ∼ y.

A. Charge-conjugation symmetry in ZN toric code

In this section we compute TDP for charge-conjugation
symmetry in a ZN toric code model. The model is de-
fined on a checkerboard lattice in Fig. 2, where each site
has a ZN spin. For one site, given an orthonormal ba-
sis |n〉, n = 0, 1, · · · , N − 1, we define the clock and shift
operators:

Z|n〉 = ωn|n〉, X|n〉 = |[n+ 1]N 〉, (33)

where ω = e
2πi
N and [·]N means · mod N . They obey the

algebra

ZNr = XN
r = 1, ZrXr = ωXrZr, (34)

and commute on different sites. The Hamiltonian in the
bulk takes the following form:

H =−
∑
�

(A� + h.c.)−
∑
�

(B� + h.c.)

−
∑
r

(hxXr + hzZr + h.c.),
(35)

where A� = X1X2X3X4 and B� = Z1Z
†
2Z3Z

†
4 as shown

in Fig. 2. Notice that when hx = hz = 0, the Hamilto-
nian consists of commuting terms and thus can be exactly
solved. The ground state has all A� = B� = 1 for all
squares. There are two types of elementary excitations:
an e excitation corresponds to A� = ω for a certain �,
and a m excitation corresponds to B� = ω. All other
excitations can be generated by forming bound states of
multiple e’s and m’s. Since AN = BN = 1, both e and m
obey ZN fusion rules. So there are altogether N2 topo-
logically distinct types of excitations, of the form eamb,
where a, b ∈ {0, 1, · · · , N − 1}.

The Hamiltonian defined in Eq. (35) enjoys a charge-
conjugation symmetry U =

∏
r Ur, which acts on the ZN

spin as

C|n〉 = |N − n〉. (36)
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Notice that U is the identity for N = 2, so we will as-
sume N > 2 in the following. It is easy to see that

C2 = 1, CXrC
† = X†r , CZrC

† = Z†r , so CA�C
† = A†� =

AN−1
� , and similar for B�’s. Thus under the action of U ,

the excitations transform as

C : eamb → eN−amN−b. (37)

In other words, U acts as charge conjugation.
Let us study the symmetry defects of C for N > 2.

For odd N , there are no anyons that are invariant under
C. Thus by the general results in Sec. II, there is only
one type of symmetry defect, denoted by σC . Since the
total quantum dimensions of the defects must be equal
to that of the anyons, we find dσC = N . One can show
that σC satisfies the following fusion rule:

σC × σC =

N−1∑
a,b=0

eamb. (38)

For even N , there are four C-invariant anyons:
1, eN/2,mN/2, eN/2mN/2, so there should be four distinct
types of defects. Since the total dimension of defects
must be N , one finds all defects have quantum dimen-
sion N

2 .
To summarize, we find that the C symmetry defects

have quantum dimension

daC =

{
N N odd
N
2 N even

. (39)

We now compute the TDP in the model. First we
will present analytical calculations in the exactly solvable
limit hx = hz = 0, and then use DMRG to study the
model with the fields on.

1. Exactly solvable limit

We place the system on a finite cylinder of circum-
ference Ly. Lattice sites are labeled by x, y where x =
1, 2, · · · , Lx and y = 1, 2, · · · , Ly, with periodic bound-
ary condition y ∼ y + Ly. As will be shown below, the
Hamiltonian actually has degenerate edge states, which
complicates the calculation. We can add additional terms
on the boundary to lift these degeneracy, and there are
actually two distinct choices for the boundary Hamilto-
nian

He = −
∑
y odd

(XyXy+1 + h.c.),

Hm = −
∑
y even

(Z†yZy+1 + h.c.).
(40)

Here we suppress the x coordinates. See Fig. 2 for illus-
trations of the boundary terms. Physically, He/m con-
denses e/m anyons on the boundary. In the following we
turn on He on the left boundary and Hm on the right

boundary, which has the additional effect of leaving only
a unique ground state with a trivial anyon flux threading
the cylinder.

First we determine the reduced density matrix corre-
sponding to an entanglement cut along the y direction.
While the result is fairly well-known, we provide a deriva-
tion to be self-contained. Following Ref. [41], the Hamil-
tonian can be written as

H = Hl +Hr +Hlr, (41)

where Hl/r are the Hamiltonian terms restricted entirely
to the left and right halves of the cylinder, and Hlr con-
tains those defined on the plaquettes along the cut. Here
we define l to be all sites with x ≤ Lx/2, and r to
be the half with x > Lx/2. We then characterize the
ground-state subspace Vl/r of Hl/r, which can be defined
from the algebra of observables commuting with Hl/r.
In the following we consider the right half only. Such
low-energy observables are necessarily localized on the
two boundaries of the half cylinder. For the boundary at
x = Lx/2 + 1, we find the algebra is generated by

XyXy+1, for all odd y’s

ZyZ
†
y+1, for all even y’s .

(42)

However, since we have fixed the cylinder ground state
to be in the vacuum sector, the following two constraints
must be imposed:

X1X2 · · ·XL = Z2Z
†
3Z4Z

†
5 · · ·ZLZ

†
1 = 1. (43)

Physically these two operators are the Wilson loops of m
and e excitations wrapping around the cylinder, respec-
tively. We can think of the relations Eq. (43) as con-
straints that define the low-energy Hilbert space, which
forbids operators like Xy or Zy, but the products defined
in Eq. (42) commute with the constraints and are thus
allowed operators in the theory.

Now we define new ZN spin operators X̃j and Z̃j for
j = 1, 2, · · · , Ly/2:

X̃j ≡ X2j−1X2j , Z̃jZ̃
†
j+1 ≡ Z2jZ

†
2j+1. (44)

These new spin operators satisfy

X̃N
j = Z̃Nj = 1,

[X̃i, X̃j ] = [Z̃i, Z̃j ] = 0, i 6= j

X̃jZ̃j = ωZ̃jX̃j ,

[X̃i, Z̃j ] = 0, i 6= j

(45)

so they describe a chain of ZN spins. It is straightforward

to verify that the constraint Z2Z
†
3Z4Z

†
5 · · ·ZLyZ

†
1 = 1

is automatically satisfied, and the other constraint be-
comes:

Ly/2∏
j=1

X̃j = 1. (46)
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We thus conclude that the boundary Hilbert space is
given by a ZN spin chain subject to the global constraint
Eq. (46). The dimension of the Hilbert space is NLy/2−1.
A similar analysis can be carried out for the left half of
the cylinder. In the following we will denote by X̃ηj

and Z̃ηj , η = l/r for the observables corresponding to the
left/right halves of the cylinder.

Now we couple the left and right halves by Hlr, which
after projection to the ground state subspace of Hl and
Hr becomes

Hlr = −
Ly/2∑
j=1

(X̃ljX̃rj + Z̃ljZ̃
†
l,j+1Z̃

†
rjZ̃r,j+1 + h.c.). (47)

Thus the ground state must have X̃lj = X̃†rj , Z̃ljZ̃
†
l,j+1 =

Z̃rjZ̃
†
r,j+1. In the eigenbasis of X̃lj and X̃rj , one can

show that the (normalized) wavefunction is given by

1

N
Ly−2

4

∑
{τj}

|{τj}〉l ⊗ |{τ∗j }〉r, (48)

where τj is the eigenvalue of X̃j and the sum is restricted

to those configurations with
∏Ly/2
j=1 τj = 1.

Tracing out half of the cylinder, say the left half, one
finds that

ρl =
1

NLy/2−1
1. (49)

Thus we reproduce a well-known result, that the reduced
density operator in a stabilizer model describes a max-
imally mixed state with a completely flat entanglement
spectrum.

Now we turn to the disorder operator Cl, which is C
restricted to the left cylinder. It is clear that Cl is pro-
jected to the charge conjugation on the boundary Hilbert
space:

ClX̃ljC
†
l = X̃†lj , ClZ̃ljC

†
l = Z̃†lj . (50)

In the X̃lj eigenbasis, we have Cl|{τj}〉 = |{τ∗j }〉. The
average of Cl is given by

Tr(Clρl) =
1

NLy/2−1
TrCl. (51)

At this point we need to distinguish odd and even N .
For N odd, only the state with τj = 1 is invariant under
Cl, so TrCl = 1. Thus we find

Tr(Clρl) =
1

NLy/2−1
. (52)

In other words

− ln〈Cl〉 =
lnN

2
Ly − lnN, (53)

which gives γ = lnN .

For even N , there are 2Ly/2−1 basis invariant under Cl
where τj = ±1, again subject to the constraint

∏
j τj = 1.

Therefore

Tr(Clρl) =
1

(N/2)Ly/2−1
. (54)

And the TDP is γ = ln N
2 .

We find that in both cases, eγ agrees with the quantum
dimension of a single charge conjugation defect.

So far we have considered the exactly solvable limit.
Once the external fields are turned on, the model is no
longer exactly solvable. However, by adiabatic continu-
ity, we expect that the boundary Hilbert space, defined
by the algebra of “low-energy” observables, should re-
main the same. On the other hand, the density operator
in general becomes a Gibbs state of a local entanglement
Hamiltonian:

ρl ∝ e−HE , (55)

subject to the global constraint Eq. (46). In other words,
HE is a local Hamiltonian that commutes with the global
constraint (46). Below we consider two examples.

First we assume HE = β
∑
j(X̃j + h.c.), which may be

a reasonable approximation for the model with a small
hx and hz = 0. First we compute the partition function
Zl = TrP0e

−HE , where P0 is the projector to the space
with

∏
j X̃j = 1. We write the projector as

P0 =
1

N

N−1∑
k=0

∏
j

X̃k
j . (56)

The partition function is

Zl =
1

N

N−1∑
k=0

∏
j

Tr(X̃k
j e
−β(X̃j+h.c.))

=
1

N

N−1∑
k=0

[
N−1∑
p=0

e
2πipk
N e−2β cos 2πp

N

]Ly (57)

Then we can evaluate

Tr(P0Ce
−HE ) = e−2βLy . (58)

We numerically evaluate 〈C〉 for various values of β, and
in all cases obtain the same TDP as the β = 0.

As a second example, we consider what happens when
both hx and hz magnetic fields are turned on. In this
case the dynamics becomes more complicated. One pos-
sibility is that the entanglement Hamiltonian is tuned to
a critical point described by a Z3 parafermion CFT. More
concretely, suppose that the entanglement Hamiltonian
can take the following form:

HE = −β
∑
j

(Z̃†j Z̃j+1 + X̃j + h.c.), β > 0, (59)
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which is the critical point of the Z3 Potts model. Suppose
that we restrict ourselves to the CFT Hilbert space. We
will write the partition functions in terms of the charac-
ters χh of the minimal modelM(6, 5), where h labels the
conformal dimension of the primary. In fact,M(6, 5) can
be obtained from the Z3 parafermion CFT by orbifold-
ing the Z2 charge conjugation symmetry. The partition
function of the boundary CFT in the vacuum sector is
given by [39]

Z0 = |χ0 + χ3|2 + |χ 2
5

+ χ 7
5
|2. (60)

Note that it is different from the modular-invariant par-
tition function of a genuine (1+1)d Z3 parafermion CFT.
χ3 can be understood as the Z2 charge sector. Then the
partition function with Z2 symmetry operator inserted
in the time direction can be easily written down:

Z(1,C)
0 = |χ0 − χ3|2 + |χ 2

5
− χ 7

5
|2. (61)

Ref. [39] showed that there is a single defect sector with
the following partition function

Z(C,1)
σC = |χ 1

8
+ χ 13

8
|2 + |χ 1

40
+ χ 21

40
|2. (62)

So the field with smallest conformal dimension is non-
degenerate, with h = ( 1

40 ,
1
40 ). In other words, pσC = 1.

Using Eq. (29), we conclude that dC = 3 in this case.

2. DMRG results

For systems away from exactly solvable limit and
perturbative regime, we employ the DMRG algorithm
to compute the TDP of the Z3 toric code with both
transverse and longitudinal fields for the Hamiltonian in
Eq. (35). The cylinder geometry for the DMRG compu-
tations is illustrated in the left panel in Fig. 2, and we
have studied cylinders with Lx = 16 and Ly = 4, 6, 8.
Boundary terms are introduced to lift the degeneracy as
discussed in Sec. IV A 1, shown in Fig. 2 right panels.
We have retained up to D = 512 bond states in the sim-
ulations which ensure the discarded weight is at most
O(10−5).

In Fig. 3 (a), we show the ground-state energy density
eg = 1

LxLy
〈ψgs|H|ψgs〉 versus the fields hx = hz = h,

where |ψgs〉 is the DMRG ground state. The derivative
of eg with respect to h changes abruptly around hx =
hz = hc ' 0.4, indicating a first-order phase transition
from the topologically ordered phase to the trivial phase
around hc, in good agreement with the previous study
[42].

To verify the topological features of both phases,
we calculate the bipartite (von Neumann) entangle-
ment entropy (EE), SvN = −tr(ρA ln ρA), where ρA =
trĀ(|ψgs〉〈ψgs|) is the reduced density matrix of subsys-
tem A and the bipartition is taken such that the cylinder
is cut vertically into two shorter cylinders A (the left

2.6

2.4

2.2

2.0

e g

(a)

Ly = 4
Ly = 6
Ly = 8

1

0

1

2

3

S v
N

/l
n3

(b)

Ly 0

0.0 0.1 0.2 0.3 0.4 0.5 0.6
h

1

0

1

2

3

ln
U

A
/l

n3

(c)

FIG. 3. DMRG results for the Z3 toric code model with cylin-
der geometry, (a) ground-state energy eg, (b) entanglement
entropy (EE) SvN, and (c) the negative logarithmic value of
disorder operator − ln |〈UA〉| of subsystem A are shown versus
the fields hx = hz = h. The black dots denote the Ly → 0 ex-
trapolated values showing finite value − ln 3 in Z3 topological
ordered phase.

half) and Ā (the right half) with length Lx/2 each. As
shown in Fig. 3(b), the EE data show clear area-law be-
haviour with a constant correction, i.e., SvN = αLy − γ,
with topological EE γ being ln 3 in small-h topological
phase and 0 in large-h trivial phase.

We now calculate the TDP for the charge conjugation
symmetry. The disorder parameter is the ground-state
expectation value of the corresponding disorder opera-
tor UA = Πr∈ACr [c.f. Eq. (36)], which should scale
as − ln |〈UA〉| = α′Ly − ln 3 [c.f. Eq. (53)] in the topo-
logically ordered phase and approach zero in the trivial
phase. In Fig. 3(c), we explicitly show such behaviour in
the small-h phase. As h increases, the non-universal co-
efficient α′ deviates away from the h = 0 value ln 3

2 , the
constant correction remains robustly − ln 3 throughout
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the topological phase. In the topologically trivial large-h
phase, DP indeed extrapolates to zero.

B. Quantum double model

In this section we study the quantum double model of
a finite group G, which can be regarded as a G lattice
gauge theory. The model has a G spin on each edge of
the lattice, which can be thought of as a regular represen-
tation of G. We will not give details of the Hamiltonian,
which can be found in e.g. Ref. [43]. It is essentially a
microscopic realization of a G gauge theory, where the
G spins play the role of G gauge fields. When G = ZN ,
the model reduces to the ZN toric code as discussed in
the previous section. For a non-Abelian group G, the
quantum double model describes a non-Abelian topolog-
ical phase. The topological order of the quantum double
model is denoted as D(G), mathematically described by
the Drinfeld center of the fusion category VecG (or the
Morita equivalent one Rep(G)) [44]. Physically, D(G)
describes anyons carrying electric and magnetic charges
of the gauge group G.

We shall consider the following symmetry transforma-
tion:

U |g〉 = |ϕ(g)〉, (63)

where ϕ is an automorphism of the group G. It can
be shown that U is a symmetry of the quantum double
model. The symmetry action of U on the anyons is natu-
rally induced from the group automorphism ϕ. For later
use we define

Gϕ = {g ∈ G|ϕ(g) = g}, (64)

and nϕ = |Gϕ|.
We now proceed to calculate the disorder parameter

for the U symmetry. Following a procedure similar to the
derivation in the ZN case, one can show that the bound-
ary Hilbert space is a one-dimensional G spin chain, re-
stricted to the G-invariant subspace [45]. More specifi-
cally, each site of the spin chain forms a regular repre-
sentation of G, with basis {|{gj}〉}gj∈G. For each g ∈ G,
define a g global symmetry in the spin chain as

Lg|{gj}〉 = |{ggj}〉. (65)

We then demand that Lg ≡ 1 in the Hilbert space. It is
useful to define a G-invariant basis as follows:

|g1, g2, · · · , gL−1〉′ ≡
1

|G|
∑
h∈G

|{hg1, · · · , hgL−1, h}〉.

(66)
Here we only keep g1 to gL−1, as gL is redundant once
summing over the entire G orbit. Put it in another way,
we pick a representative in the orbit with gL = 1. We
will refer to |{g1, g2, · · · , gL−1}〉 as the G-invariant basis.

In the fixed-point ground state wavefunction, the re-
duced density matrix is the maximally mixed state ρ =

1
|G|L−11.

The symmetry transformation U naturally restricts to
essentially the same transformation on the spin chain:

UM |{gj}〉 = |{ϕ(gj)}〉. (67)

On the G-invariant basis we find

UM |{gj}〉′ =
1

|G|
∑
g∈G
|{ϕ(g)ϕ(gj)}〉

=
1

|G|
∑
g∈G
|{gϕ(gj)}〉

= |{ϕ(gj)}〉′.

(68)

Tracing over ρ, only states invariant under ϕ can con-
tribute, which adds up to nL−1

ϕ . Thus

〈UM 〉 =

(
nϕ
|G|

)L−1

, (69)

and we find

γ = ln
|G|
nϕ

. (70)

Note that |G|/nϕ is always an integer.
Now let us compute the quantum dimensions of the U

symmetry defects. To this end, suppose that ϕ is an order
r element in Aut(G). Then we view U as the generator
of a Zr group, and consider gauging the Zr symmetry.
Because of the nontrivial action of U on the gauge group
G, we end up with a new gauge theory with a larger
gauge group Goϕ Zr. In other words, the gauged topo-
logical order is identified as D(Goϕ Zr). The U defects
are promoted to gauge fluxes once the global symmetry
is gauged. Since an Abelian symmetry is gauged, the
quantum dimension of the gauge flux is the same as that
of the defect.

We now need to analyze the anyon content of D(Goϕ
Zr). Recall that for a general finite group H, anyon types
in D(H) are labeled by a pair ([h], πh), where [h] is a
conjugacy class with h being a representative element,
and πh is an irreducible representation of ths centralizer
group Ch. Physically, [h] labels the gauge flux and πh
is the gauge charge attached to the flux. The quantum
dimension of this anyon is |[h]| ·dimπh, where |[h]| is the
size of the conjugacy class.

Label the group elements of G oϕ Zr by (g, a) where
g ∈ G, a ∈ Z/rZ. Then the multiplication in g oϕ Zr
becomes

(g, a) · (h, b) = (gϕa(h), [a+ b]r). (71)

We have (g, a)
−1

= (ϕa(g−1), [−a]r). Thus

(g, a) · (1, 1) · (g, a)
−1

= (gϕ(g)−1, 1). (72)

The conjugacy class of (1, 1) is then the quotient of G
by the subgroup Gϕ. We also need to attach represen-
tations to the conjugacy class [(1, 1)]. Choose (1, 1) as
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the representative, the stabilizer group is isomorphic to
Gϕ × Zr, whose representations can be obtained from
those of Gϕ and of Zr. The Zr representations are just
the Zr gauge charges. We thus conclude that U defects
are in one-to-one correspondent with irreducible repre-
sentations of Gϕ. For an irreducible representation π, the
corresponding symmetry defect has quantum dimension
|G|
nϕ
· dimπ. In particular, if we choose π = 1 the identity

representation, the quantum dimension is |G|nϕ , which is

the minimum among all defects. The total dimension of
the defects is

|G|2

n2
ϕ

∑
π∈Rep(Gϕ)

(dimπ)2 = |G|2, (73)

as expected. Therefore we find that eγ is equal to the
minimal quantum dimension of the U defects in D(G).

C. Spin(2n)1

In this section we study TDP of a Z2 anyon-permuting
symmetry in Spin(2n)1 topological phase. There are four
types of Abelian anyons, denoted by 1, ψ, v+ and v− with
topological twist factors θψ = −1, θv± = ei

πn
4 . The the-

ory can be obtained from coupling fermionic topological
superconductors with Chern number 2n to a Z2 gauge
field, where v± correspond to fermion parity fluxes [29].
Here we will take the n = 0 theory to be the Z2 toric code.
It is easy to see that there is a Z2 symmetry that swaps
the v± anyons. Physically, the symmetry can be real-
ized as follows for n > 0: a topological superconductor
with C = 2n is equivalent to 2n identical copies of p+ ip
superconductors, which has a SO(2n) symmetry that ro-
tates the layers. A fermion parity flux through this sys-
tem binds 2n Majorana zero modes ηk, k = 1, 2, · · · , 2n.
Fixing the local fermion parity inη1η2 . . . η2n, there is
a 2n−1-dimensional zero-energy subspace, that forms a
spinor representation of SO(2n) group. The total fermion
parity of the Majorana zero modes can be even or odd,
corresponding to the two types of fluxes v±. Thus swap-
ping the two types of fluxes is equivalent to flipping the
fermion parity of the flux, which can be achieved with
the symmetry transformation (−1)N1 where N1 is the
fermion number in the first layer. Under this transfor-
mation, η1 → −η1 while the other Majoranas do not
transform, so the fermion parity changes sign. This addi-
tional Z2 symmetry generated by (−1)N1 combines with
SO(2n) to form O(2n) group. Recently, a family of ex-
actly solvable generalizations of Kitaev’s Z2 spin liquid
was introduced [46, 47], that realizes all Spin(ν)1 topo-
logical phases for any integer ν ≥ 1, and notably the
O(ν) symmetry is realized exactly in the lattice model.

For n = 0, it is customary to rename v± as e and m,
which can be thought of as the (bosonic) electric charge
and magnetic charge of a Z2 gauge theory. The symmetry
e↔ m is often called the electromagnetic duality (EDM).
Analogous to the construction for Spin(2n)1 with n > 0,

the EDM can be realized as follows: consider two layers,
one forms a p+ ip superconductor and the other p− ip.
Together the total Chern number is 0, so coupling to a
Z2 gauge field results in a Z2 toric code. Through an
almost identical analysis, one can see that the symmetry
(−1)N1 permutes the two types e and m of fermion parity
fluxes. This construction also suggests the Ising CFT as
a possible symmetry-preserving edge theory. In fact, the
construction still works if we replace the p+ ip supercon-
ductor with one that has an odd Chern number 2r + 1
(and the other layer in the mirror image). In that case,
the edge theory is the non-chiral Spin(2r + 1)1 CFT.

In all these cases, both 1 and ψ anyons are invariant
under the permutation. Thus there are two types of sym-
metry defects σ±, which satisfy the Ising-like fusion rules:

σ± × σ± = 1 + ψ, σ+ × v± = σ−. (74)

Their quantum dimensions are dσ± =
√

2.
We proceed to compute the disorder parameter for the

v+ ↔ v− symmetry. For n > 0, the boundary theory
models are chiral Spin(ν)1 Wess-Zumino-Witten CFTs,
which can be equivalently described as ν chiral Majorana
fermions coupled to a Z2 gauge field [29, 48]. We calcu-
late the disorder parameter directly using the chiral CFT
and find

γ =

{
ln 2
√

2 n = 1

ln
√

2 n > 1
. (75)

Details of the calculation can be found in Appendix D.
To understand why n = 1 is special, notice that the CFT
Spin(2)1 is equivalent to U(1)4, whose Z2 orbifold is two
copies of Ising CFT. Thus there are two defect primaries
with the same conformal dimension 1/16, contributing
the extra factor of 2 according to the general formula.
For n > 1 no such degeneracy of operator spectrum is
present.

We can perform a similar calculation for the Z2 toric
code. When the edge theory is the (non-chiral) Spin(2r+
1)1, we show in Appendix D that the TDP

γ = ln 2r+1
√

2. (76)

Note that the value of γ is different for different edge
theories. The factor 2r arises because the defect carries
a spinor representation of SO(2r+ 1), which begs for the
question that whether the result is robust against pertur-
bations that break the exact SO(2r+1) symmetry of the
CFT. In Appendix D we introduce velocity anisotropy to
the Spin(2r + 1)1 CFT (i.e. different modes have differ-
ent velocities), and show that such anisotropy does not
affect the value of γ. In fact, even with such anisotropy,
the spinor degeneracy of the defect still remains, which
explains the robustness of γ.

For illustration, let us consider the r = 0 case, where
the edge theory is the Ising CFT. The character in the
vacuum sector reads

Z0 = |χ1|2 + |χψ|2. (77)
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(a)

(b)

FIG. 4. (a) Wen’s plaquette model with the plaquette term

O� = X†1Z2X3Z
†
4 + H.c., and the edge term S = XZ. The

blue-shaded line denotes the DMRG snake-like path in com-
putation. (b) Illustration of the partial translation operation⊗Lx/2

i=1 T
[i]
y as a disorder operator.

For the definitions of the Ising characters see Appendix
D. The defect sector partition functions have been ob-
tained in Ref. [39]. There are two defect types, which
will be denoted as σ±, with the following partition func-
tions:

Z(1,0)
σ+

= χσ(χ1 + χψ),

Z(1,0)
σ−

= (χ1 + χψ)χσ.
(78)

So the lowest conformal dimension 1/16 is two-fold de-
generate, contributing an additional factor of 2. More
details can be found in Appendix D.

D. Partial translation in Wen’s plaquette model

So far we have only considered on-site symmetries in
our examples. We now demonstrate that the same idea
can be applied to spatial symmetry.

The example we will consider is Wen’s plaquette model
[49, 50], which is a slight variation of the ZN toric code
model discussed in Sec. IV A. Consider ZN spins on a
square lattice with the following Hamiltonian:

H = −
∑
�

(O� + H.c.)− h
∑
i

(Xi + Zi + H.c.), , (79)

where O� = X†1Z2X3Z
†
4 as denoted in Fig. 4(a). We can

see that the model is in fact unitarily equivalent to the
one defined in Eq. (35), but now is completely invariant
under translations on the square lattice. The e and m
excitations are supported on the two types of plaquettes,
thus transformed into each other by unit translations of
the lattice. Since e and m can be viewed as electric and

magnetic charges of an emergent ZN gauge theory, such
a symmetry is called the electromagnetic duality (EMD).

A lattice dislocation can be thought of as a defect for
translation symmetry [51]. It was shown in Ref. [51] for
N = 2 and further in Ref. [50] that dislocations in the

plaquette model have quantum dimensions
√
N . There

are N topologically distinct types of dislocations, labeled
by σp, which satisfy the fusion rule

σ0 × σ0 =

N−1∑
n=0

e−nmn, σ0 × ep = σ0 ×mp = σp. (80)

In a planar geometry it is not clear how to apply trans-
lation to a finite region, since no finite region can be in-
variant under translation. Instead we consider the cylin-
drical geometry, where one can naturally apply trans-
lation along the periodic direction to only half of the
cylinder. Below we will investigate the TDP associated
with such partial translations in Wen’s plaquette model.
We first consider the N = 2 case where the algebra is
relatively simple and then generalize to other N .

1. Exactly solvable limit

We start from the exactly solvable point without any
external fields. We use the same method as Sec. IV A 1 to
calculate the disorder parameter. In fact, the derivation
of the boundary Hilbert space and the reduced density
operator can be rather straightforwardly adopted here.
We find that the boundary Hilbert space is determined
by the following observables:

Sj = XjZj+1, j = 1, 2, · · · , Ly, (81)

with the following constraint imposed:

Ly/2∏
j=1

S2j =

Ly/2∏
j=1

S2j−1 = 1. (82)

Again we suppress the x coordinate.
The Sj ’s satisfy the algebra S2

j = 1, SjSj+1 =
−Sj+1Sj (and otherwise commute). The translation
symmetry acts in the obvious way:

TySjT
−1
y = Sj+1. (83)

This boundary Hilbert space can be mapped to the Z2

symmetric sector of an Ising spin chain:

S2j ≡ τxj , S2j+1 ≡ τzj τzj+1, (84)

with the global constraint
∏Ly/2
j=1 τxj = 1. However, now

the translation symmetry acts as the Kramers-Wannier
duality, which is difficult to handle in the spin represen-
tation.

To proceed, it is most convenient to “fermionize” this
Hilbert space as a chain of Majorana operators. In the
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following we define L ≡ Ly. The fermionization map is
basically the Jordan-Wigner transformation:

Sj ≡ iψjψj+1, 1 ≤ j < L,

SL ≡ −iψLψ1.
(85)

Here the Majorana operators satisfy {ψi, ψj} = 2δij . The
global constraints after fermionization become

iL/2ψ1ψ2 · · ·ψLy = 1. (86)

The minus sign in SL is necessary in order to satisfy both
constraints. The dimension of the Hilbert space is D =
2L/2−1. Following essentially the same steps as those
in Sec. IV A 1, one can show that the reduced density
matrix is the maximally mixed state.

The translation symmetry Ty acts on the Majoranas
as:

ψj → ψj+1, 1 ≤ j < L,

ψL → −ψ1.
(87)

This transformation can be implemented by the following
unitary operator:

Ty = B1,2 · · ·BL−1,L, (88)

where Bij is the exchange operator [52]:

Bij =
1− ψiψj√

2
= e−

π
4 ψiψj , (89)

which acts as BijψiB
†
ij = ψj , BijψjB

†
ij = −ψi. Notice

that the overall phase of Ty is ambiguous.
We now evaluate the trace of Ty in the maximally

mixed state. Expanding the product of B’s, only two
terms contribute: the identity, and the total fermion par-
ity, which is from B23, B45, · · · , BL1:

(−1)L/2−1ψ2ψ3 · · ·ψLψ1 = (−1)L/2ψ1ψ2 · · ·ψL = iL/2.
(90)

Therefore

|〈Ty〉| =
1

D
|TrTy|

=
1

D

1
√

2
L−1
|Tr(1 + iL/2)|

=
1

√
2
L−1
|1 + iL/2|

=
1

√
2
L−1

2
∣∣∣ cos

πL

8

∣∣∣
=

1
√

2
L−1


0 L = 4(2k + 1)

2 L = 8k√
2 L = 2(2k + 1)

.

(91)

Next we consider adding nontrivial dynamics to the
boundary theory. The simplest choice is just turning on

−
∑
j Sj on the boundary, which after fermionization be-

comes the free Majorana chain:

H = −
L−1∑
j=1

iψjψj+1 + iψLψ1. (92)

Note that the translation action automatically puts
the Majorana chain in the sector with an anti-periodic
boundary condition. Equivalently, the boundary is de-
scribed by an Ising CFT projected to the Z2 symmetric
sector. We can directly evaluate the disorder parame-
ter of the translation operator in the continuum limit
(see Appendix D for details), which remarkably gives the
same L dependence |2 cos πL8 | in Eq. (91) from the max-
imally mixed state. However, we notice that the con-
tinuum calculation does not capture the additional

√
2

(from
√

2
L−1

in the denominator in Eq. (91)).
Notice that if the region M is a half of a cylinder, we

also need to take into acount the physical edge of the
cylinder. To lift degeneracy we can turn on a Hamilto-
nian −

∑
j Sj on the edge. Assuming Ty is not sponta-

neously broken, it does not have any nontrivial contribu-
tion to the disorder parameter.

2. ZN plaquette model

Let us now generalize the result from Z2 plaquette to
ZN plaquette model. We will focus on the case with N
an odd integer. As already shown earlier, the boundary
Hilbert space is a ZN spin chain of length L/2, projected
to the ZN -invariant subspace. We will denote the (effec-
tive) ZN spin operators on the boundary by Xj and Zj ,

and the ZN symmetry is generated by P =
∏L
j=1Xj . The

translation symmetry becomes the Kramers-Wannier du-
ality of the ZN spin chain.

Generalizing the derivation in the N = 2 case, it will
be convenient to represent the ZN chain in terms of
parafermion operators [53]:

α2j−1 = Zj

j−1∏
k=1

Xk, α2j = Zj

j∏
k=1

Xk. (93)

It is easy to show that αNj = 1. More importantly, they
obey non-local commutation relations:

αiαj = ωαjαi, 1 ≤ i < j ≤ L. (94)

We also have

α†2j−1α2j = Xj . (95)

Thus the total ZN charge is given by

P =

L/2∏
j=1

α†2j−1α2j . (96)
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The Kramers-Wannier duality of the spin chain becomes
the translation symmetry of the parafermions:

Ty : αj → αj+1. (97)

To write down an explicit form for T , we define the
exchange operator for a pair of parafermion operators.
For i < j, define a unitary Bij such that [54, 55]

Bij : αi → αj , αj → ωα†iα
2
j . (98)

An explicit expression for Bij is given by

Bij =
1√
N

N−1∑
n=0

ω−m(n2−n)Pnij . (99)

Here m = N+1
2 . One can check that Bij preserves the

total ZN charge P . We provide a derivation of Bij in
Appendix C.

With the exchange operator, we can represent the
translation Ty as follows:

Ty = B12 · · ·BL−2,L−1BL−1,L, (100)

under which

αj → αj+1, 1 ≤ j < L,

αL → ω2α1P
2.

(101)

So with a fixed P , the unitary Eq. (100) indeed acts as
translation.

Now we are ready to calculate the disorder operator:

|〈Ty〉| =
1

√
N
L−1

1

D

∣∣Tr

N−1∑
n=0

Pnω−m(n2−n)L/2
∣∣

=
1

√
N
L−1

∣∣N−1∑
n=0

ω−m(n2−n)L/2
∣∣

=
1

√
N
L−1

∣∣N−1∑
n=0

ω−mn
2L/2

∣∣
=

1
√
N
L−1

√
N · gcd

(
mL

2
, N

)
.

(102)

For N an odd prime, we find

|〈Ty〉| =
1

√
N
L−1

{
N L ≡ 0 (mod N)√
N otherwise

. (103)

3. DMRG results

Similar as in Sec. IV A 2, for the system away from
exactly solvable limit and perturbative regime, we per-
form DMRG simulations to compute the TDP of Wen’s
plaquette model with both transverse and longitudinal
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FIG. 5. For Wen’s plaquette model on cylinder of various cir-
cumference Ly, (a) ground-state energy eg, (b) von Neumann
entanglement entropy (EE) SvN and (c) negative logarithmic
partial translation expectation value − ln |〈TA〉|, are shown
versus the magnetic field h. Panel (d) shows the topologi-
cal entanglement entropy (TEE), and the topological disor-
der parameter extrapolated from − ln |〈TA〉| for Ly = 6, 10, 14
(denoted as TDP1) and the one for Ly = 8, 16 (denoted as
TDP2), in units of ln 2.

fields in the Hamiltonian in Eq. (79). In the DMRG cal-
culations, we fix the length of the cylinder to Lx = 16,
and vary the circumference from Ly = 4 to Ly = 16,
with maximal D = 2048 bond states kept which ensures
sufficiently small truncation errors ε ∼ 10−5.

The numerical results are shown in Fig. 5 and Fig. 6.
The ground-state energy eg, entanglement entropy (EE)
SvN, the disorder operator 〈TA〉 for partial translation,
and their extrapolated values are shown in Fig. 5 (a-d),
respectively. To examine the topological order in the
small-h cases, we consider the finite size scaling of en-
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FIG. 6. For Wen’s plaquette model on cylinder with three
different fields h = 0, 0.1, 0.5, (a) entanglement entropy (EE)
is shown versus circumferences Ly. For the unperturbed case
h = 0, EE’s are well extrapolated to − ln 2 (− ln

√
2) for even

(odd) circumferences, as Ly → 0. For h = 0.1 and h = 0.5,
only even Ly is considered and the corresponding EE’s are
extrapolated to − ln 2 and 0. (b) The negative logarithmic
value of DP, − ln |〈TA〉|, is shown versus circumferences Ly.
For h = 0, it are extrapolated to − ln 2 for Ly = 6, 10, 14, and
to − 3

2
ln 2 for Ly = 8, 16. For h = 0.5, DP extrapolates to 0.

tanglement entropy (EE) data in Fig. 5 (b) and Fig. 6.
In Fig. 6(a), EE’s versus Ly are shown for h = 0 and
h = 0.1, and the data are well extrapolated to − ln 2
(− ln

√
2) for even (odd) circumference as Ly → 0. That

is, the system possesses a finite topological entanglement
entropy (TEE) for those h’s, confirming their topolog-
ical ordered nature. On the other hand, the EE data
for h = 0.5 are extrapolated to 0, as expected for the
topologically trivial phase. In Fig. 5(d), we have per-
formed such extrapolation for all the h’s concerned and
for the even circumference cases. It shows that at around
h ' hc TEE undergoes a change from − ln 2 to 0. We
also note that, when performing the EE calculations on
odd-circumference cylinders for small h, the EE data are
extrapolated to − ln

√
2 instead of − ln 2. Physically, this

is because an odd-circumference cylinder is in the EMD
defect sector, so the TEE increases by ln

√
2.

The results of DP and TDP for partial translation are
more intricate. For TDP, we find that it clearly van-

ishes in the trivial phase [c.f. Fig. 6(b)]. However, inside
the topological phase, one needs to classify {Ly} into 3
classes, Ly = 4(2k + 1), 8k, 2(2k + 1) with k ∈ Z. For
the first class of Ly = 4(2k+ 1), i.e. circumference being
odd multiples of 4, we always get zero values for TDP
in the vicinity of h = 0. For the second (third) cases,
TDPs have finite values, which are extrapolated to 3

2 ln 2
(ln 2) as Ly → 0 as shown in Fig. 6(b). These results
are fully consistent with the discussion in Sec. IV D 1,
in particular, Eq. (91), as well as that in Appendix. D.
In Fig. 5(d), we show the extrapolated values of TDP
(TDP1 for Ly = 2(2k + 1) and TDP2 for Ly = 8k) as
a function of h. It is clearly seen that, γ ' ln 2 for the
TDP1 cases and γ ' 3

2 ln 2 for the TDP2 cases in the
vicinity of h = 0. In Fig. 5 (c), we also note that as a
function of h the (logarithmic) disorder parameters al-
ways show peaks around the transition point hc.

V. CONCLUSION AND DISCUSSION

In this work we introduce a new topological invariant
for (2+1)d gapped phases with global symmetry. We
show that the ground state expectation value of the dis-
order operator for a connected region M exhibits the fol-
lowing scaling form:

|〈UM (g)〉| ≈ dge−α|∂M |, (104)

where dg is a quantized invariant determined by both the
quantum dimensions of U(g) symmetry defects as well as
their local degeneracy. When the entanglement Hamilto-
nian can be approximated by a (1+1)d CFT, we derive
a precise formula for dg. We also study a wide range of
examples, in particular in lattice models such as ZN toric
code and Wen’s plaquette models, with both CFT and
non-CFT entanglement Hamiltonian, to demonstrate the
validity of Eq. (104) and the relation between dg with
quantum dimensions of Ug defects.

In all our calculations we have reduced the disorder
parameter to the thermal expectation value of a global
symmetry transformation in a (1+1)d system in the high
temperature limit. Therefore, our result can also be in-
terpreted as a universal invariant of the (1+1)d system
with global symmetry. It is an interesting question to es-
tablish the result directly in a (1+1)d theory, especially
beyond CFT.

In this work we focus on (2+1)d gapped phases as the
symmetry defects are well-understood. It will be inter-
esting to understand what happens in higher dimensions.
For instance, the quantum double model studied in can
be easily generalized to arbitrary dimensions and in fact
the result does not really depend on spatial dimension.
There are also generalizations of electromagnetic dual-
ity symmetry in higher dimensions, such as the duality
group of U(1) gauge theory in (3+1)d or ZN 2-form gauge
theory in (4+1)d [56]. Disorder parameters in these ex-
amples should also reveal topological corrections related
to quantum dimensions of defects. Like the (2+1)d case,
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the disorder parameter can be expressed as a thermal
average of the global symmetry transformation in the
entanglement Hamiltonian. Assuming that the entangle-
ment Hamiltonian is qualitatively similar to the bound-
ary Hamiltonian, similar questions can be raised for “du-
ality” symmetry in the boundary theory, when there is
self duality.
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Appendix A: TDP on a cylinder

In this Appendix we calculate TDP when the region is
a half of the cylinder, with boundary along the periodic
direction. We will also assume that there is an anyon flux
a through the cylinder. Apparently a has to be invariant
under the symmetry, otherwise the disorder parameter
vanishes. The reduced density operator is given by

ρ =
1

Za
e−

ξl
l Hle−

ξr
l Hr . (A1)

Here ξl and ξr are the effective correlation length on the
left and right edges. Importantly, the left (physical) edge
has ξl = ∞, while the right edge, which is the entangle-
ment cut, is at a finite but high temperature ξr [57].
We note a similar geometry has been used in the com-
putation of entanglement spectrum in (2+1)d quantum
many-body systems [58]. The disorder parameter is then
given by

〈Ug(M)〉 =
TrHā Uge

− ξll Hl TrHa Uge
− ξrl Hr

TrHā e
− ξll Hl TrHa e

− ξrl Hr
. (A2)

The left edge, being at the zero temperature, is domi-
nated by the ground state contribution in the sector ā.

Since the sectorHā is invariant under the transformation,
we may assume that the symmetry acts on the highest
weight states as a unitary matrix, whose trace is χā(g):

TrHā Uge
− βll Hl

TrHā e
− ξll Hl

≈ χā(g)

pā(0)
, (A3)

Here pa(0) is the degeneracy of the highest weight space.
For the right entanglement edge, we again use modular

transformation to evaluate the partition function:

Z(1,g)
a

(
iξr
l

)
= TrHa Uge

− ξrl Hr

=
∑
bg

S(1,g)
a,bg
Z(g,0)
bg

( il
ξr

)

≈

 ∑
bg∈Λg

S(1,g)
a,bg

pbg

 e−
2πhg
ξr

l,

(A4)

and the denominator

TrHa e
− ξrl Hr =

∑
b

SabZb
( il
βr

)
≈ Sa0 (A5)

We thus find

〈Ug(M)〉 =
χā(g)

pā(0)

 ∑
bg∈Λg

S(1,g)
a,bg

Sa0
pbg

 e−
2πhg
ξr

l. (A6)

Appendix B: Quantum dimension of genons

We compute the dimension of 0R directly from the fu-
sion rule using Verlinde formula:

d2
0R =

∑
a1,··· ,an

N0
a1a2···anda1da2 · · · dan

=
∑

a1,··· ,an

∑
x

Sa1xSa2x · · ·Sanx
Sn−2

0x

da1da2 · · · dan

=
∑
x

S2−n
0x

(∑
a

daSax

)n

=
∑
x

S2−n
0x Dn

(∑
a

S0aSax

)n
= S2−n

00 Dn

= D2n−2.

(B1)

Appendix C: Exchange operator for parafermions

For two ZN parafermions α1 and α2, suppose they sat-
isfy α1α2 = ωα2α1. Assume N is an odd integer. Define
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the ZN charge P12 = α†1α2, and consider unitary opera-
tors of the form [55]

B12 =
1√
N

N−1∑
n=0

ω−mn
2+qnPn12. (C1)

First we prove B12 is a unitary. We can work in the
eigenbasis of P12, setting P12 = ωk,

B12 =
1√
N

N−1∑
n=0

ω−mn
2+(k+q)n

=
1√
N

N−1∑
n=0

ω−m[n2−m−1(k+q)n]

=
1√
N

N−1∑
n=0

ω−m[n−2−1m−1(k+q)]2

= ωa(k+q)2 1√
N

N−1∑
n=0

ω−mn
2

(C2)

Since a = (4m)−1, i.e. 4ma ≡ 1 (modN). The remaining
Gauss sum can be evaluated in closed form:

gm ≡
1√
N

N−1∑
n=0

ω−mn
2

= εN

(m
N

)
. (C3)

where

εN =

{
1 N ≡ 1 mod 4

i N ≡ 3 mod 4
. (C4)

It is sufficient for our purpose to know that the Gauss
sum evaluates to a phase factor. Thus we have shown
that B12 is a unitary.

Now we compute B12α1B
†
12. First we notice

P12α1 = α†1α2α1 = ω−1α1P12. (C5)

Therefore we have

B12α1B
†
12 =

1√
N

N−1∑
n=0

ω−mn
2+qnPn12α1B

†
12

= α1
1√
N

N−1∑
n=0

ω−mn
2+qnω−nPn12B

†
12

= α1
1√
N

N−1∑
n=0

ω−mn
2+qnω(k−1)nB†12

= α1|gm|2ωa(k+q−1)2

ω−a(k+q)2

= α1ω
a[2(k+q)−1]

= ωa(2q−1)α1P
2a
12

(C6)

Set q = m = 2−1 = N+1
2 , we obtain

B12α1B
†
12 = α1P12 = α2. (C7)

Appendix D: CFT analysis

1. Ising and Spin(ν)1 CFTs

In the following τ denotes the complex parameter of a 2D torus, and q = e2πiτ . First define the partition functions
for a free Majorana fermion

ZAA(τ) = TrNS q
L0− 1

48 = q−1/48
∞∏
n=0

(1 + qn+1/2),

ZAP(τ) = TrNS(−1)Nf qL0− 1
48 = q−1/48

∞∏
n=0

(1− qn+1/2),

ZPA(τ) =
1√
2

TrR q
L0− 1

48 =
q1/24

√
2

∞∏
n=0

(1 + qn).

(D1)

Here P/A means periodic/anti-periodic boundary condition in the spatial or temporal direction.
The chiral Majorana theory is closely related to the Ising CFT. In fact, the latter can be obtained from coupling

the Majorana fermion to a Z2 gauge field [59]. More generally, by coupling ν copies of chiral Majorana fermions one
obtains the Spin(ν)1 CFT.

When ν is odd, Spin(ν)1 has three primaries, which will be labeled as 1, ψ and σ. The corresponding characters are

χ
(ν)
1 =

1

2
(ZνAA + ZνAP), χ

(ν)
ψ =

1

2
(ZνAA − ZνAP), χ(ν)

σ =
1√
2
ZνPA. (D2)
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Note that the ν = 1 case is actually the Ising CFT. We will suppress the superscript in this case, i.e χ
(1)
a ≡ χa for

a = 1, ψ, σ.
The corresponding conformal dimensions are h1 = 0, hψ = 1

2 , hσ = ν
16 . The modular S and T matrices of the theory

read:

S =
1

2

 1 1
√

2

1 1 −
√

2√
2 −
√

2 0

 , Tab = δabe
2πi(ha− c

24 ). (D3)

For ν even, Spin(ν)1 has four primaries, labeled as 1, ψ, v+, v−, with conformal dimensions h1 = 0, hψ = 1
2 , hv± = ν

8 .
The characters are

χ
(ν)
1 =

1

2
(ZνAA + ZνAP), χ

(ν)
ψ =

1

2
(ZνAA − ZνAP), χ(ν)

v± =
1

2
ZνPA. (D4)

2. EDM disorder parameter

At the level of bulk topological order, Spin(ν)1 can be viewed as a Z2 gauge theory coupled to fermionic matter.
For even ν, the two fermion parity vortices v± are completely symmetric and there is a Z2 symmetry that swaps the
two. In the chiral CFT, such a symmetry can be realized as the fermion parity of one of the chiral Majorana fermion.
Without loss of generality, let us choose it to be (−1)N1 . We now calculate the disorder parameter for this symmetry.

〈(−1)N1〉 =
1

Z
TrNS

1 + (−1)Nf

2
(−1)N1qL0− c

24

=
1
2 [ZAA(τ)ZAP(τ)ν−1 + ZAP(τ)ZAA(τ)ν−1]

χ1(τ)

=
χ1(τ)χ

(ν−1)
1 (τ)− χψ(τ)χ

(ν−1)
ψ (τ)

χ
(ν)
1 (τ)

(D5)

Now for a purely imaginary τ = iβ
l , we use modular transformations to find the asymptotic forms of the characters

for small β � l:

χa

(
iβ

l

)
=
∑
b

Sabχb

(
il

β

)
. (D6)

Then we can expand the character

χb

(
il

β

)
=

∞∑
m=0

pb(m)e−
2πl
β (hb+m− c

24 ) ≈ pb(0)e−
2πl
β (hb− c

24 ). (D7)

Applying the approximation to Eq. (D5) and keeping only the most relevant terms, we find

〈(−1)N1〉 ≈
√

2
χσ( ilβ )χ

(ν−1)
1 ( ilβ ) + χ

(ν−1)
σ ( ilβ )χ1( ilβ )

χ
(ν)
1 ( ilβ )

≈

{
2
√

2e−
πl
8β ν = 2√

2e−
πl
8β ν > 2

.

(D8)

We now turn to a different but closely related example, that is an internal EDM symmetry in a Z2 toric code. When
the symmetry is present, the boundary of the Z2 toric code must be gapless. One family of possible boundary theories
is the Spin(2n + 1)1 CFTs, and the n = 0 case is the Ising CFT. These CFTs can all be represented as (non-chiral)
Majorana fermions coupled to a Z2 gauge field. The EDM is realized as “chiral” fermion parity, say (−1)NR .

First let us write down the vacuum character for the CFT, from GSO projection of the Majorana fermions:

Z1 = TrNS
1 + (−1)NL+NR

2
qL0− 1

48 qL0− 1
48 =

1

2
(|χ(ν)

1 (τ)|2 + |χ(ν)
ψ (τ)|2). (D9)
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To calculate the disorder parameter for (−1)NR , we need

TrNS
1 + (−1)NL+NR

2
(−1)NRqL0− 1

48 qL0− 1
48 =

1

2
(|χ(ν)

1 (τ)|2 − |χ(ν)
ψ (τ)|2). (D10)

Putting together we have

〈(−1)NR〉 =
|χ(ν)

1 ( iβl )|2 − |χ(ν)
ψ ( iβl )|2

|χ(ν)
1 ( iβl )|2 + |χ(ν)

ψ ( iβl )|2

≈
√

2
χ

(ν)
1 ( ilβ )χ

(ν)
σ ( ilβ ) + c.c.

|χ(ν)
1 ( ilβ )|2

≈ 2n+1
√

2e−
πl
8β .

(D11)

Here we used the fact that pσ(0) = 2n (i.e. the dimension of the spinor representation) for Spin(2n+ 1)1 CFT.
Next we consider what happens if velocity anisotropy between the 2n+ 1 Majorana fermions is introduced, so the

boundary theory is no longer a CFT. In the following denote ν = 2n + 1. The entanglement Hamiltonian is now
assumed to be

HE =

ν∑
i=1

βi

(
L

(i)
0 + L

(i)

0 −
1

24

)
, (D12)

where L
(i)
0 is the Hamiltonian for the i-th chiral Majorana fermion.

〈(−1)N1〉 =

∏ν
i=1 ZAA(τi)

∏ν
i=1 ZAP(τi) +

∏ν
i=1 ZAP(τi)

∏ν
i=1 ZAA(τi)∏ν

i=1 |ZAP(τi)|2 +
∏ν
i=1 |ZAA(τi)|2

(D13)

Under modular S transformation,

ZAA(τ) = ZAA(−1/τ), ZAP(τ) = ZPA(−1/τ). (D14)

Plug in τi = iβi
l , we have

〈(−1)NR〉 =

∏ν
i=1 ZAA( ilβi )

∏ν
i=1 ZPA( ilβi ) +

∏ν
i=1 ZPA( ilβi )

∏ν
i=1 ZAA( ilβi )∏ν

i=1 |ZPA( ilβi )|
2 +

∏ν
i=1 |ZAA( ilβi )|

2
(D15)

Use ZAA = χ0 + χψ, ZPA =
√

2χσ and the expansion Eq. (D7), we find

〈(−1)NR〉 ≈ 2n+1
√

2e
−πl8

∑ν
i=1

1
βi . (D16)

So the TDP is not affected.

3. Partial translation

We now calculate the disorder parameter for partial translation in Z2 toric code, assuming that the boundary theory
is an Ising CFT. First we need to understand how the lattice translation is represented in the field theory. After
fermionization, the Hamiltonian of a critical Majorana chain of length L reads

H =
∑
k

sin kψ†kψk − E0, (D17)

where k = 2n+1
L π for n = 0, 1, . . . , L2 −1 for NS boundary condition, and E0 = 1

2 sin π
L

. We now define ψLk ' ψk, ψRk '
ψπ−k for small k, then at low energy the Majorana fermion theory can be approximated by

H =
∑
k

k(ψ†LkψLk + ψ†RkψRk)− E0, (D18)
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where the constant E0 = L
2π + π

12L +O( 1
L3 ).

The translation operator T acts on the lattice Majorana operators as T : ψj → ψj+1. In the momentum space, T
becomes

ψLk → eikψLk, ψRk → −e−ikψRk. (D19)

which can be more compactly written as

T = (−1)NRei
P
L . (D20)

Here P = L0 − L0 is the CFT momentum.
Thus we have

〈T 〉 =
1

Z
TrNS

1 + (−1)NL+NR

2
Te2π(iτ1P−τ2H) =

|χ1

(
τ + 1

L

)
|2 − |χψ

(
τ + 1

L

)
|2

|χ1(τ)|2 + |χψ(τ)|2
. (D21)

Now for a purely imaginary τ with Im τ > 0, we use modular transformations to find the asymptotic forms of the
characters for small β [22]:

χa

(
τ +

1

L

)
=
∑
b

Sabχb

(
− 1

τ + 1
L

)
=
∑
b

(STL)abχb

(
τL

τ + 1
L

)
=
∑
b

(STLS)abχb

(
− 1

L
− 1

L2τ

)
(D22)

Therefore

χa

(
iβ

L
+

1

L

)
=
∑
b

(STLS)abχb

(
− 1

L
+

i

βL

)
, (D23)

and then after expanding the character we have

χb

(
i

βL
− 1

L

)
' e 2πi

L (hb− c
24 )e−

2π
βL (hb− c

24 ). (D24)

Note that the expansion is only valid for βL� 1.
We have a similar estimate for the denominator:

χa

(
iβ

L

)
=
∑
b

Sabχb

(
iL

β

)
≈
∑
b

Sabe
− 2πL

β (hb− c
24 ), (D25)

for L/β � 1, which is obviously satisfied if βL� 1.
In each case, the leading term is b = 1 with h1 = 0, so we finally obtain

〈T 〉 =
|(STLS)11|2 − |(STLS)ψ1|2

|S11|2 + |Sψ1|2
e−

π
12β (L− 1

L ). (D26)

The modular transformation STnS takes the following form:

STnS = e−
πin
24

1

4

1 + (−1)n + 2e
πin
8 1 + (−1)n − 2e

πin
8

√
2[1− (−1)n]

1 + (−1)n − 2e
πin
8 1 + (−1)n + 2e

πin
8

√
2[1− (−1)n]√

2[1− (−1)n]
√

2[1− (−1)n] 2[1 + (−1)n]

 . (D27)

The prefactor then evaluates to
∣∣2 cos πL8

∣∣, showing the same L dependence as the lattice model calculation.
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