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The valley degeneracy in Si qubit devices presents problems for their use in quantum information
processing. It is possible to lift this degeneracy by using the Wiggle Well architecture, in which
an oscillatory Ge concentration couples the valleys. This paper presents the basic theory of this
phenomenon together with model calculations using the empirical pseudopotential theory to obtain
the overall magnitude of this effect and its dependence on the wavelength of the concentration
oscillations. We derive an important selection rule which can limit the effectiveness of the Wiggle
Well in certain circumstances.

I. INTRODUCTION

Silicon-based spin qubits enjoy many advantages for
quantum computing devices [1]. They have longer intrin-
sic spin coherence times due to weak spin-orbit coupling.
There is also the possibility of eliminating decoherence
from coupling to nuclear spin because of the existence of
an abundant spin zero isotope. Scaling to many qubits
presents difficulties in all quantum computing platforms,
but for Si there is at least a technological infrastructure
already in existence for related purposes.

One disadvantage of Si is the presence of the valley de-
gree of freedom, a source of leakage of quantum informa-
tion. This creates a degeneracy that is sample-dependent
and notoriously difficult to control. The degeneracy is
split in real devices and the energy difference is referred
to as the valley splitting (VS). The barriers that confine
the electrons to the active Si layer are known to do this,
but the VS is sensitive to the details of the barrier. As a
result, the VS is experimentally highly variable. It ranges
roughly from 30 to 250 µeV in SiGe/Si/SiGe structures
[2–8], while in MOS structures it tends to be considerably
larger but still quite variable, with values ranging from
300 µeV up to nearly 1 meV [9, 10]. Overall, the barrier
effects on the VS are reasonably well understood theo-
retically, a major theme being that a strong electric field
perpendicular to the Si layer can push the wavefunction
up against the interface, which tends to increase the VS
[11, 12].

An important goal of research in this field is to some-
how control the VS so that it is reliably larger than 200
µeV. One recent approach is to insert an ultra-thin layer
of SiGe in a Si/SiGe heterostructure, which increases VS
by about a factor of two [13]. Adding Ge at random
positions in the Si layer is also effective [14]. One may
also add Ge to the Si layer in such a way that the Ge
concentration has an oscillatory profile in the direction
perpendicular to the layer [15]. This is called the Wiggle
Well (WW) architecture. It was shown that the added
Ge lowered the mobility of the structure but that this did
not preclude efficient device operation.

In this paper we describe in detail the basic ideas be-
hind the WW and we present calculations of the VS
under various conditions. The calculations support the

conclusion that splittings can be engineered to lie in the
5−15 meV range, well above the values needed needed to
eliminate leakage during qubit operation. We also derive
a selection rule that strongly affects the VS in the device
used in Ref. [15].

The physical basis of the WW is described in Sec. II,
and the details of our computational method in Sec. III.
The selection rule is proved in Sec. IV. The results are
given in Sec. V. Sec. VI contains further discussion and
a conclusion.

II. WIGGLE WELL

A. Valley Structure

Silicon is an indirect bandgap semiconductor with a
valence band maximum at k = (0, 0, 0), and it has six
degenerate conduction band minima along the (001) and
equivalent directions. This paper concerns the electron
states in the Si layer of a SiGe/Si/SiGe heterostructure
or in a MOS structure. In the Si layer there is strain
or other anisotropies present that reduce the degeneracy
of the conduction band minimum to two [16], at the k-
points ±k = ±(0, 0, k0) with k0 = 0.84(2π/a) where a =
0.543 nm is the lattice constant of Si. The z direction is
perpendicular to the plane of the layer.

B. Hamiltonian

We take the electrons in our model to be confined to
a Si-rich layer. We shall deal with a two-dimensional
electron gas that has translational invariance in the x−y
plane and apply periodic boundary conditions in these
directions. The total Hamiltonian is

Htot = Hcr + Vtot(z) = Hcr + Vstr(z) + Vd(r) + Vosc(z).
(1)

Here Hcr is the unperturbed bulk Si Hamiltonian. Hcr

could also include the effects of strain, particularly if we
are dealing with a SiGe/Si/SiGe system, but for simplic-
ity we assume no strain in this paper. This allows us to
focus on the effects of the oscillatory potential Vosc(z).
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Vd(r) is the atomistic disorder potential produced by the
Ge atoms in the well. We will comment on this below, but
again it is not the main focus. Vstr(z) denotes the device
structure potential, which we take to have the form

Vstr(z) = Vb0[1 + tanh(z/w)]/2− eFz/ε (2)

.

The first term is a sharp step-like barrier potential and
the second represents electric potential from an applied
electric field F and a dielectric constant ε. We use Vb0 =
1eV (a value more typical for MOS structures), w = 1nm,
and ε = 11. The electric field along the z direction keeps
the electrons close to the interface.

Vosc(z) stands for the oscillating potential. In the vir-
tual crystal approximation

Vosc(z) = V0 nGe(1 + cos(qz)) (3)

where nGe is the average fractional concentration of Ge
in the predominantly Si layer. We take V0 = - 0.5 eV.
This is the value that gives the measured change in the
energy of the conduction band minimum in the regime of
low Ge concentration in strained Si1−xGex layers [17].

We give a sketch of the potential Vstr(z) + Vosc(z) for
various Ge concentrations in Fig. 1.

Vosc(z) is the defining feature of the WW. It is created
when the structure is grown by depositing Ge atoms in a
sinusoidal fashion. The effect of Vosc(z) is to enhance the
valley splitting, as will be explained in the next section.
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FIG. 1. The smooth potential V (z) = Vstr(z) + Vosc(z) felt
by an electron in the proposed SiGe heterostructure, shown
for an average Ge concentration in the well of 0%, 10%, and
20%, and an electric field F/ε = 8.5mV/nm. The atomistic
disorder potential Vd(r) is not visible on this relatively coarse
scale. The Si layer with Ge added in a modulated fashion
occupies the half space z < 0. The barrier occupies the z > 0
region. The width of the barrier is 1 nm and its height is 1
eV.

C. Perturbative Picture

In this section we will treat the valley splitting in first-
order perturbation theory. At this order the wavefunc-
tions are calculated by setting Vtot = 0. Then the ener-
gies, including the valley splitting, are computed as ex-
pectation values of the unperturbed wavefunctions. This
neglects the effect of Vtot on the wavefunctions. It will
be seen later that this is not sufficient for accurate cal-
culations. The reason for presenting it here is that it
allows us to illustrate the physical ideas behind the WW
and to determine the best candidate wavelengths for the
modulation of the Ge concentration in the Si layer.

The zero-order Hamiltonian Hcr is that of the pure
bulk material. In the conduction band we have the
Schrdinger equation

Hcrψk(r) = Hcr[uk(r)eik·r] = ε(k)ψk(r), (4)

that is, uk(r)eik·r are the eigenfunctions of Hcr, the
Hamiltonian of the silicon crystal. uk(r) is the lattice-
periodic part of the Bloch function. ε(k) is the band
energy of an electron in the pure bulk system. Our inter-
est is when k is near one of the minima of the conduction
band±k0, so ε(±)(k) = ~2(k2x+k2y)/mt+~2(kz±k0)2/mz.
mt = 0.92me is the transverse mass and mz = 0.19me is
the longitudinal mass, where me is the bare mass. Since
uk(r) is periodic in the direct fcc lattice it has a Fourier
expansion

uk(r) =
∑
K

c(K,k)eiK·r, (5)

where K runs over the bcc reciprocal lattice. c(K,k)
depends on k in general, but we will only need it when
k ≈ ±k0. Thus we define c±(K) = c(K,±k0), and later
assume that c(K) is not a rapidly varying function of
k near ±k0. Note that c±(K) = c∗∓(−K). Saraiva et
al. have used density functional theory to calculate the
c±(K) in pure bulk Si [18] which provides a good bench-
mark for our work. The c±(K) are modified by the pres-
ence of the added Ge in the Si layer. This turns out to be
an important effect, and we will discuss the computation
of the c±(K) in detail below.

The states at the conduction band minima are ψ±k0(r)
and satisfy

Hcrψ±k0
(r) = ε0ψ±k0

(r). (6)

The two wavefunctions ψ±k0
(r) are degenerate.

In first-order perturbation theory the total valley split-
ting ∆ is [18, 19]:

∆ =2 | 〈ψ+k0
(r)|Vtot |ψ−k0

(r)〉 | (7)

=2
∣∣ ∑
K,K′

c∗+(K)c−(K
′
)δKx,K

′
x
δKy,K

′
y
I(Kz −K

′

z)
∣∣
(8)
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where the last factor stands for the integral

I(Kz −K
′

z) =

∫ ∞
−∞

eiQzVtot(z)dz (9)

with Q = Kz −K
′

z − 2k0. Note that the two sublattices
in the reciprocal lattice do not couple due to the delta
functions.

The total valley splitting in the current approximation
is:

∆ = |∆w + ∆b + ∆d|. (10)

Here ∆b is the barrier contribution. ∆d is the disorder
contribution which has been calculated recently [14]. ∆w

is the WW contribution, which is the subject of this pa-
per. It is caused by the oscillatory potential. The differ-
ent contributions come from the 3 terms in the potential
in Eq. 10. They are complex-valued in general so the
magnitudes do not necessarily add directly. We will dis-
cuss the relative contributions of ∆w, ∆b, and ∆d in a
quantitative fashion at the end of the paper in Sec. VI.
Until then we focus on ∆w. Thus

∆w =2
∣∣ 〈ψ+k0

(r)|Vosc |ψ−k0
(r)〉

∣∣ (11)

=2
∣∣ ∑
K,K′

c∗+(K)c−(K
′
)δKx,K

′
x
δKy,K

′
y
Iw(Kz −K

′

z)
∣∣

(12)

with

Iw(Kz −K
′

z) =

∫ ∞
−∞

eiQzVosc(z) dz (13)

and Q = Kz −K
′

z − 2k0.
Eqs. 11 - 13 are familiar from elementary solid-state

physics, specifically from the theory of the formation
of energy gaps at the surfaces of Brillouin zones. Let
the sinusoidal oscillations in Vosc(z) be characterized by

a wavevector ±q and regard I(Kz − K
′

z) and therefore
also ∆w and ∆ as a functions of q. The sum over re-
ciprocal lattice vectors in Eq. 11, together with Eq. 13,
means there are multiple peaks in ∆(q), since I will peak
strongly when

q = ±Q = ±(Kz −K
′

z − 2k0). (14)

This is the key idea for engineering the potential Vosc(z).
In principle Eq. 14 has many solutions for q since K and
K′ run over the reciprocal lattice. However, only a few
represent physical structures, since if q is too large the
oscillation wavelength is less than the atomic spacing.

A relative simple physical picture emerges from these
equations. We may think of the two valley minima as
forming the boundaries of a one-dimensional “Brillouin
zone”. To engineer the maximum band gap, we wish

to have a potential with a wavevector q = ±2k0. This
then corresponds to the term Kz −K

′

z = 0 in the sum.
However, the Fourier transform of the cell-periodic part
of the Bloch function contains all the reciprocal lattice
vectors, so we can also get maxima when q = ±2k0 is
satisfied ”modulo” a reciprocal lattice vector, which then
gives the more general Eq. 14.

Since Kz − K
′

z is an integral multiple of 4π/a, the
two shortest candidate wavevectors for the Ge oscilla-
tions from Eq. 14 are q1 = ±(4π/a − 2k0) and q2 =
±2k0. The corresponding wavelengths are λ1 = 2π/q1 =
1.80 nm = 13.3 monolayers and λ2 = 2π/q2 = 0.32 nm =
2.36 monolayers. They correspond to what we call the
long-wavelength WW and the short-wavelength WW re-
spectively. The former was used in Ref. [15]. Struc-
tures with wavelengths shorter than λ2 would be diffi-
cult to fabricate, and the concept of envelope function
that we use below would no longer be applicable. These
two possibilities are therefore the only ones suggested
by first-order perturbation theory. Below we shall see
that second-order effects give one additional candidate
wavevector.

III. COMPUTATIONAL METHOD

A. Introduction

It is evident that the perturbation theory of the pre-
vious section neglects important physical effects - clearly
the confinement of the electron by the electric field is not
perturbative. Thus the interplay between the localization
in the z direction and the valley splitting is not properly
taken into account. Furthermore, there are three terms
in the potential, and they may not all be of compara-
ble size, so to treat them all on the same footing is not
always realistic. To remedy these defects in the simple
picture, we develop a method in this section that is de-
signed for the purpose of calculating the valley splitting
in the presence of both the oscillating potential and the
structure potential.

The method has two parts: the modification of c±(K),
the Bloch function coefficients, from their bulk values;
and the calculation of the envelope functions.

B. Bloch function coefficients

A chief ingredient in the calculation of the VS in Eq. 7
is the set of the c±(K) defined by Eq. 5. We compute
these coefficients using a pseudopotential method. This is
particularly appropriate for Si-Ge systems since electron
energies and wavefunctions in both Si and Ge are known
to be well described using just a few parameters in this
formalism [20], particularly in the energy range near the
conduction band minimum. We use the local version of
the method for simplicity and high throughput (which
will turn out to be important). The nonlocal version
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gives better bandwidths and optical matrix elements [21]
and might be preferable in future work that needs higher
accuracy. Spin-orbit coupling is also neglected. This is
reasonable since we are interested only in non-magnetic
properties of states near the minima of the conduction
band in Si-rich materials.

The Schrödinger equation for the Fourier components
of the periodic part of the wavefunctions at the conduc-
tion band minimum wavevectors ±k0 in a pure bulk sys-
tem with no perturbing potential is

∑
K′

HK,K′(k0) c±(K′) = ε c±(K) (15)

The sum runs over the bcc reciprocal lattice. In our nu-
merical work we keep 59 terms in the sum, corresponding
to the inequality |K′ | ≤ 2

√
19π/a. Since we are only in-

terested in the solutions at k0, we will drop this argument
in the remainder of this section. ε are the energies of the
different bands at k0, each of which corresponds to an
eigenvector c(K). The Hamiltonian matrix is

HK,K′ = δK,K′
~2

2me
(k0 −K)2 + UK−K′ . (16)

U(r) is the crystal pseudopotential and

UK =
1

ν

∫
cell

U(r)eiK·rd3r (17)

where ν is the volume of a two-atom primitive unit cell
and the integral runs over a unit cell.

In pure Si or Ge the two atoms in the unit cell are
identical at positions (0, 0, 0) and (a/4, a/4, a/4) and we
have

UK = 2 cos(K · r0/2)
1

ν

∫
cell

V (r)eiK·rd3r, (18)

where the first factor is the structure factor, V (r) is the
pseudopotential VSi for a single Si or VGe for a Ge atom,
and r0 = (a/4)(1, 1, 1) is the separation vector of the
atoms in unit cell. We have taken the origin at the center
of inversion midway between the atoms in a unit cell. In
these coordinates the c±(K) are real. We have solved
Eq. 15 for c+(K) using empirical values of the Fourier
coefficients of V (r) from Ref. [20] and these agree with
those calculated using density functional theory [18] on
average to within 0.26%, an accuracy that is more than
enough for our purposes. (We note that Ref. [18] takes
the origin at an atomic position and the resulting c±(K)
are complex.)

To model the system with added Ge, the simplest op-
tion would be to use the standard virtual crystal approx-
imation (VCA):

H = (1− x)HSi + xHGe. (19)

For a unit cell with one Si atom and one Ge atom,
Eq. 18 becomes

UK = 2 cos(K · r0/2)V K ∓ i sin(K · r0/2)δVK, (20)

where V K is the average of the Si and Ge pseudopoten-
tials VSi and VGe and δVK is the difference VSi−VGe. The
relative sign of the two terms in UK is ∓ for the Si atom
at ∓r0/2 in the unit cell. In the disordered system for
each unit cell with exactly one Si atom and exactly one
Ge atom these two configurations are equally probable.

The standard VCA replaces the potential of every
atom with a linear combination of the potentials of a Si
atom and a Ge atom. This has the disadvantage that it
artificially enforces an inversion symmetry (equal atomic
potentials in the unit cell) that is not present in the real
disordered system. This turns out to be insufficient for
the calculation of the VS for the long wavelength WW.
To remedy this deficiency, we sample an ensemble of sys-
tems in which the positions of the Si and Ge atoms in
the unit cell are random. This is done as follows. In a
Si1−xGex system the fraction of unit cells with exactly
one Si atom and one Ge atom is 2x(1 − x) while cells
with two Si atoms have probability (1− x)2 and two Ge
atoms with probability x2. We treat the disordered sys-
tem using an extended VCA Hamiltonian

H(s) = (1− x)2HSi + x2HGe + 2x(1− x)Ha(s). (21)

In this equation, HSi and HGe are the Hamiltonians for
pure silicon (using only VSi) and pure germanium (using
only VGe), respectively. Ha(s) is the alloy Hamiltonian.
The alloy is represented by a density matrix whose classi-
cal probability density comes from the fact that the unit
cells have Si and Ge in different (and random) positions.
Each realization of the atomic disorder is labeled by an
index s. The potential matrix elements in the 59 × 59
matrix Ha(s) have the form of those in Eq. 20. For each
s, half of the elements are given a plus sign and half are
given a minus sign, but the positions of the signs are
chosen uniformly at random. Since we can only sample a
subset of these choices, we take the probability of a given
s be P (s) = 1/N0 and for our calculations we fix N0 =
300. We then compute the density matrix

ρK,K′ =
∑
s

P (s)c∗+(K, s)c−(K′, s)δKx,K
′
x
δKy,K

′
y
, (22)

where c±(K, s) are the coefficients belonging to a wave-
function at the bottom of the conduction band calculated
using the Hamiltonian Eq. 21 at a fixed s. ρK,K′ will be
a key ingredient of the computation of the VS.

C. Envelope Function

The localization of the electron by Vstr(z) changes the
wavefunctions ψ+k0

(r). The widths of the wavefunctions
in position and momentum space are important for com-
puting the VS, an effect that was neglected in the deriva-
tion of Eq. 9. The formalism we use to remedy these
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problems is a modification of the classic envelope method
of Kohn [22].

The ordered part of the potential is

V (z) = Vstr(z) + Vosc(z) (23)

and the total wavefunction Ψ(r) satisfies

HΨ(r) = (Hcr + V )Ψ(r) = EΨ(r). (24)

In this section we neglect the disorder potential. We will
comment on this below.

We seek solutions in the form

Ψ(r) =
∑
k

Akuk(r)eik·r (25)

The envelope function itself is

F (r) =
∑
k

Ake
−ik·r (26)

Substituting Eq. 25 into Eq. 24 and using Eq. 4 we obtain
the Schrödinger equation in momentum space

εkAk +
∑
k′

Vk−k′Ak = EAk. (27)

Vk−k′ is the matrix element of the smooth potential be-
tween Bloch functions:

Vk−k′ =
∑
K,K′

ρK,K′

∫
d3r ei(K

′−K+k′−k)·rV (r) (28)

where Eqs. 5 and 22 have been used.
So far this is quite general. The special feature of our

problem is that the wavefunction in momentum space is
concentrated in the regions near k = ±(0, 0, k0) = ±k0.
So we write

F (r) = F+(r)+F−(r) =
∑
k≈k0

A+
k e
−ik·r+

∑
k≈−k0

A−k e
−ik·r.

(29)
Here A±k represents the function A±k near ±k0. More

precisely, A±k=±k0+p = 0, unless |p| ≈ 1/Zw << 1/a,
where Zw is the width of the envelope function in real
space.

We deal for the moment only with systems that have
translational invariance in the x and y directions, so
V (x) = V (z). Hence we may also write F (r) = F (z).
This excludes the possibility of treating lateral inhomo-
geneities such as steps in the barrier. The current method
is applicable to such problems with certain modifications,
but we do not pursue this direction in this paper.

In the presence of the oscillatory potential Vk−k′ con-
sidered as a function of k and k′ has 2 important regions
in k-space.

Region 1: k ≈ k0 and k′ ≈ −k0. Then

V +−
k−k′ =

∑
K,K′

ρK,K′

∫
d3r ei(K

′−K+k′−k)·rV (Z)

= δ(kx − k′x)δ(ky − k′y)

×
∑
K,K′

ρK,K′

∫
dzei(k

′
z−kz−2k0)zV (z)

(30)

Region 2: k ≈ −k0 and k′ ≈ k0. We have the simpli-
fication

V −+k−k′ = (V +−
k−k′)

∗, (31)

which enables us to write

Vk−k′ = V +−
k−k′ + V −+k−k′ (32)

V +−
k−k′ and V −+k−k′ are the parts of the potential that

govern intervalley coupling and they determine the valley
splitting. They depend on the density matrix ρK,K′ from
Eq. 22.

This procedure now allows us to decompose momen-
tum space into positive and negative kz and separate the
two valleys. Eq. 27 now gives

εkA
+
k +

∑
k′≈−k0

V +−
k−k′A

−
k = EA+

k . (33)

and

εkA
−
k +

∑
k′≈k0

V −+k−k′A
+
k = EA−k . (34)

E is the total energy that includes both the barrier and
the WW contributions to the valley splitting.

Finally, transforming Eqs. 33 and 34 back to real space
using Eq. 26 gives a set of coupled equations for the en-
velope functions:

Henv

(
F+(z)
F−(z)

)
= E

(
F+(z)
F−(z)

)
(35)

with

Henv =

(
− ~2

2mz
∇2 + V (z) Vc(z)

(Vc(z))
∗ − ~2

2mz
∇2 + V (z)

)
. (36)

Here mz is the longitudinal mass. Vc(z) is the inverse
Fourier transform of V ±k−k′ :

Vc(z) =
∑
K,K′

ρK,K′V (z)ei(K
′
z−Kz−2k0)zδKx,K′

x
δKy,K′

y
.

(37)
F± are the envelope functions for the ±k0 valleys.
Eqs. 35 and 36 are the basic results of this section.

The difference in the two lowest eigenvalues is the
valley splitting, which now includes both barrier and
WW effects. The eigenfunction belonging to the lowest
eigenvalue determines the ground state envelope function
F (z) = F+(z) + F−(z).

IV. SELECTION RULES

So far the picture expected is that ∆w(q) should have
peaks of comparable sizes when q = ±(Kz −K ′z − 2k0)
for reciprocal lattice vectors K and K′ and for no other
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values of q. It turns out, however, that this picture needs
to be modified because of a selection rule that suppresses
the peak at q = 3.7nm−1 (the long-wavelength WW).
The suppression is complete if the system is considered
to have the inversion symmetry in each unit cell, as would
be the case in pure Si, pure Ge or the Si1−xGex alloy in
the standard VCA.

This rule is derived in this section.
As we have seen, the WW part of the VS as a function

of q satisfies

∆w(q) ∝
∣∣ ∑
K,K′

c∗+(K)c−(K
′
)δKx,K

′
x
δKy,K

′
y
δKz,K

′
z+2k0+q

∣∣,
(38)

where q is the wavenumber of the Ge concentration os-
cillation.

We first note that for the short wavelength WW there
is no selection rule. It has q = −2k0 so Kz = K ′z and
substituting in Eq. 11 yields

∆w(q = −2k0) ∝
∑
K

|c+(K)|2 > 0. (39)

which is nonzero. We have used the fact that c−(K) =
c+(K).

For the long wavelength WW, we define G = (4π/a)ẑ
so G = 4π/a and we have

∆w(G− 2k0) ∝
∣∣∑

K

c∗+(K)c−(K + G)
∣∣. (40)

The selection rule question boils down to the possible
vanishing of the sum, which after some rearrangement is

S =
∑
K

c∗+(K + G)c+(K) (41)

We now demonstrate that S = 0 for the ordered dia-
mond structure, i.e., for pure Si, pure Ge, or for Si1−xGex
in the standard VCA.

In this section it is more convenient to choose the origin
at the position of an atom, which means that the c(K)
are not necessarily real.

The symmetry group for wavevectors in the direction
from Γ to X in the Brioullin zone is ∆, written in bold
to distinguish it from the valley splitting. The conduc-
tion band belongs to the ∆1 representation. This is the
identity representation for ∆, meaning that the lattice-
periodic part of the Bloch function uk(r) is invariant un-
der all the operations U of ∆. Hence

uk0
(r) = uk0

(Ur), (42)

which in turn implies that

c(UK) = c(K) (43)

The ”+” subscript will be dropped in this section for
brevity, since we are only concerned with the point +k0

and indeed only the conduction band.

U is a product of a rotation (which may be proper or
improper) and a translation. Since there is a glide plane
in Si there are symmetries that involve a translation T
through the vector (a/4)(1, 1, 1) that does not belong to
the fcc Bravais lattice. We define T r = r + (a/4)(1, 1, 1)
and let C4 be the rotation through π/2 about the z-axis.
The eight values of U are the identity E , C2

4 , R and R′,
which are reflections in the x = y and x = −y plane
respectively, T ×R×C4, T ×R′×C4, T ×C4, and T ×C−14 .
The group ∆ is isomorphic to C4v, which is the group of
the wavevectors along the x-axis in a simple cubic lattice,
but the action of the group elements on the coordinates
is specific to the diamond structure.

Let W be a pure point operation. Then in the ∆1

representation we have the simple result that

c(K) = c(WK) (44)

for these operations. For the 4 mixed operations T ×W
and we find

c(K) = exp[i(a/4)(WK) · (1, 1, 1)] c(WK). (45)

These transformation properties mean that once c(K) is
given for a certain value of K = (Kx,Ky,Kz) in the
reciprocal lattice, then c(K′) is determined for all other
values in the orbit of K under the group ∆, which means
all K′ = (K ′x,K

′
y,K

′
z) with K ′z = Kz and K ′2x + K ′2y =

K2
x +K2

y .
An important consequence of these rules is that some

of the c(K) unexpectedly vanish. We choose any U , set
Kx = Ky = 0, and we have that

c((0, 0,Kz)) = eiKza/4c((0, 0,Kz)). (46)

For Kz = 4π/a this is only possible if c((0, 0, 4π/a)) =
−c((0, 0, 4π/a)) = 0. However, if Kz = 8π/a the
equation is an identity and we expect c((0, 0, 8π/a)) 6=
0. These patterns are evident in the results given in
Ref. [18].

We now let G = (0, 0, 4π/a) and compute the sum

S =
∑
K

c∗(K + G)c(K) (47)

The orbits in K-space consist of points with fixed Kz

and fixed K2
x + K2

y . They have either 1 element if the
orbit is the origin, 4 elements if the K points are on the
Kx and Ky axes or on the Kx = Ky and Kx = −Ky

diagonals and 8 elements for all points not on these axes
or diagonals. Since the orbits O exhaust all of K-space,
we can write

S =
∑
O

∑
K∈O

c∗(K + G)c(K), (48)

where the sum over O runs over all orbits. We will show
that in fact ∑

K∈O

c∗(K + G)c(K) = 0 (49)
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for all O, from which the selection rule S = 0 follows.
We can classify the orbits by dividing the bcc recipro-

cal lattice into the A sublattice K = (4π/a)(nx, ny, nz)
with the ni integers and the B sublattice K =
(4π/a)(nx + 1/2, ny + 1/2, nz + 1/2) with the ni inte-
gers. It will save writing henceforth to use only the inte-
gers nx, ny, and nz to label the c coefficients so we take
a = 4π and then c(K) = c(nx, ny, nz) on the A sublat-
tice and c(K) = c(nx + 1/2, ny + 1/2, nz + 1/2) on the B
sublattice.

The point operations of the ∆ group keep Kz fixed,
so they also do not mix A and B. Overall, we find 7
classes of orbits. In A we have A1 with nx = ny = 0
(1 element), A2 with (nx, ny) on the nx and ny axes so
(nx, ny) = (nx, 0) or (nx, ny) = (0, ny) (4 elements), A3
with (nx, ny) on the nx = ±ny diagonals (4 elements),
and finally A4 with (nx, ny) in general position (8 ele-
ments). In B the origin and the axes are missing, and
there are only 3 classes, B1, B2, and B3, with 4, 8, and
8 elements, respectively.

The computation of the orbit sums is somewhat
lengthy, so we give only the simplest example of the A1
orbit sum here and relegate the other six orbit sums to
the appendix.

The A1 class is of the form K = (4π/a)(0, 0, nz) and
the orbit sum is

SA1 =
∑

K∈A1

c∗(0, 0,Kz + 4π/a) c(0, 0,Kz)

=

∞∑
nz=−∞

c∗(0, 0, nz + 1) c(0, 0, nz).

Eq. 46 gives c((0, 0, n)) = eiπnc((0, 0, n)) and so
c((0, 0, n)) = 0 if n is odd. In any term in the sum
either nz or nz + 1 is odd, so we find c∗((0, 0, nz +
1))) c((0, 0, nz)) = 0. Every term in the sum vanishes
so SA1 = 0.

V. RESULTS

The envelope function is computed by discretizing
the 2-component one-dimensional Schrödinger equation,
Eq. 36 and solving it numerically. This gives a non-
perturbative answer for the valley splitting. The results
can be qualitatively understood by noting that the main
consequence of the calculation is to modify the integral
for ∆w, by inserting of the envelope funciton in the inte-
grand so that we have

∆w(q) ∝ Iw(Kz −K
′

z) =

∫ ∞
−∞
|ψ(z)|2 eiQze−iqzdz. (50)

The function |ψ(z)|2 = |F+(z)|2 + |F−(z)|2 has a finite
spatial which then translates to peaks in ∆(q) with cor-
responding widths in wavenumber space.

The results for the envelope function for the long
wavelegnth WW (q = 3.7nm−1) are shown in Fig. 2 for
nGe = 0, 0.1 and 0.2.
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FIG. 2. Envelope functions of the ground state |ψ(z)|2 =
|F+(z)|2 + |F−(z)|2, plotted for nGe =0(a), 0.1(b) and 0.2(c)
at q = 3.7nm−1. These are the solutions of Eq. 36.

The details of the envelope function depend on which
device is under consideration. However, there is a ba-
sic pattern that we expect to be universal, which is that
as nGe increases, the initial single peak in |ψ(z)|2 ex-
periences increasing modulation at the period given by
q = 3.5 nm−1. In this example, by the time nGe hits
the rather high value 0.2, these modulations are strong
enough that there are several peaks in |ψ(z)|2.

The theory we have now developed allows us to plot
∆w versus q = 2π/λ, where λ is the wavelength of the
Ge concentration oscillations, versus nGe, the average
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fractional Ge concentration in the well. The results are
shown in Fig. 3
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FIG. 3. The WW contribution to the valley splitting ∆w,
plotted as a function of the wavevector of the Ge concentra-
tion q = 2π

λ
. nGe = 0.05 (blue curve), 0.10 (yellow curve), 0.15

(green curve), and 0.20 (red curve). The first (3.7nm−1) and
third (19.6nm−1) peaks correspond to the long-wavelength
WW and short-wavelength WW respectively. The intermedi-
ate peak near q = 9.8nm−1 is due to a second order effect in
nGe. The electric field applied is F = 0.1 V/nm.

The peak at small q (long wavelength WW) is the one
expected from the perturbative picture given above. Its
height is far smaller than that of the peak at large q (short
wavelength WW). This is entirely due to the selection
rule. The fact that there is a peak at all at small q is due
to the fact that the disorder violates the selection rule.
The noise in ∆w(q) near q = 3.7nm−1 is due to sampling
error.

In first-order perturbation theory, |ψ(z)|2 has a single
peak and no other structure. Hence the Fourier trans-
form of |ψ(z)|2 in Eq. 50 that yields ∆w(q) should peak
only at q = ±(Kz −K ′z − 2k0) and the peak heights are
proportional to nGe. However, the wavefunction itself
develops oscillatory structure as nGe increases, as shown
in Fig. 2 (b) and (c). Referring to Eq. 50 and the discus-
sion in Sec. II C we see that the envelope wavefunction
oscillations themselves will give subsidiary peaks in ∆(q)
when q is one-half of the short WW value. Thus the peak

at intermediate q is expected in second-order perturba-
tion theory, when the effects of changes in wavefunctions
first manifest themselves in the energy.

To complete the physical picture, we would like to ver-
ify the correctness of our contention that the physics
involved in each of the three peaks shown in Fig. 3 is
significantly different. This can be done by looking at
the peak height as a function of nGe. Every peak has
a linear term in nGe due to the fact that the WW po-
tential itself is proportional to nGe. The small q peak is
disorder-induced, implying a second factor of (nGe)

1/2,
since the disorder potential results from a random walk
in potential space. Hence we expect the peak height to
be proportional to (nGe)

3/2 The intermediate q peak is
proportional to (nGe)

2 because it requires wavefunction
modifications that are also linear in nGe, a standard per-
turbation theory argument. The peak at large q needs no
subsidiary effects for its existence so its height is linear in
nGe. Of course this linearity also accounts for its much
greater height. In Fig. 4 we show the heights for each
peak as a function of nGe in a log-log plot. The slopes of
the lines confirm the overall picture very well.

-3.0 -2.8 -2.6 -2.4 -2.2 -2.0 -1.8 -1.6

3

4
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6

Log[nGe]

Lo
g[
Δ
w
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)]

8

9
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11

12

FIG. 4. The logarithms of the height for each peak plotted
as as a function of nGe. The heights for q = 3.7nm−1, q =
9.8nm−1 and q = 19.6nm−1 are shown by blue circles, blue
squares, and red circles, respectively. The data points are
connected by a guide to the eye. Note that the points for
q = 19.6nm−1 are referred to the vertical scale on the right.
Linear fits to the data give slopes of 1.42, 1.98, and 0.99,
which agrees very well with the expected values 1.5, 2, and 1.

VI. DISCUSSION AND CONCLUSION

The valley splitting has three contributions: the bar-
rier part ∆b, the disorder part ∆d, and the WW part ∆w

adding as in Eq. 10 to give the total valley splitting ∆.
As this equation shows, the total valley splitting ∆ de-
pends not only on the magnitudes but also on the phases
of ∆b, ∆d, and ∆w. The phase of ∆d is intrinsically
random since it comes from disorder. The phase of ∆w

will generally depend on the starting point (in z) of the
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oscillations, a parameter difficult to control. Finally sym-
metry considerations imply that ∆b depends on several
parameters but most importantly on the applied electric
field; it may therefore be tunable [23, 24]. Thus ∆ is

much more likely to be given by ∆ =
√

∆2
d + ∆2

w + ∆2
b

than by ∆ = |∆d|+ |∆w|+ |∆b|.
As we defined it, ∆b includes all structural effects and

is the only nonzero contribution when nGe = 0. It de-
pends on the type of device and is generally sample-
dependent as well. In practice it varies roughly from
a few tens of µeV to nearly 1 meV with the high end
in MOS devices. ∆d has recently been calculated and
measured in Ref. [14]. ∆d ranged from 30 to 200 µeV in
the experiments, with theory indicating that this could
be increased to several hundred µeV by increasing the
Ge concentration, particularly if the Ge atoms are inside
the well. ∆d is of course strongly random, it being a dis-
order effect. Furthermore, since the positions of the Ge
atoms in Vd(r) are random, the Fourier transform of this
function is flat, and any valley splitting from this source
is independent of q.

Comparison with Fig. 3 then shows that ∆w for the
long wavelength WW has a value that is comparable to
but not greater than other contributions for 0 < nGe <
0.2. The second-harmonic peak at q = 10nm−1 is a
little higher and it would be interesting to investigate
devices designed with this wavevector. The most im-
portant result is the large magnitude of the valley split-
ting of the short wavelength WW. The results show that
∆w(q =20nm−1) will dominate the other contributions
even at Ge concentrations at the level of nGe << 0.05.
It does not depend on randomness for its existence and
sample dependence can be expected to be minimal. The
short-wavelength WW architecture is promising for de-
vices in which large valley splitting is important.
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Appendix A: Orbit Sums for Selection Rule

In this appendix we classify the orbits and show that
each orbit sum vanishes.

The classification proceeds by dividing the bcc recip-
rocal lattice into the A sublattice K = (4π/a)(nx, ny, nz)
with the ni integers and the B sublattice K =
(4π/a)(nx + 1/2, ny + 1/2, nz + 1/2) with the ni inte-
gers. It will save writing henceforth to use only the inte-
gers nx, ny, and nz to label the c coefficients so we take
a = 4π and then c(K) = c(nx, ny, nz) on the A sublat-
tice and c(K) = c(nx + 1/2, ny + 1/2, nz + 1/2) on the B
sublattice.

The point operations of the ∆ group keep Kz fixed, so
they also do not mix A and B. Overall, we find 7 classes
of orbits.

In A we have: A1 with nx = ny = 0, (1 element), A2
with (nx, ny) on the nx and ny axes so (nx, ny) = (nx, 0)
or (nx, ny) = (0, ny), (4 elements), A3 with (nx, ny)
on the nx = ±ny diagonals so (nx, ny) = (nx, nx) or
(nx, ny) = (nx,−nx) (4 elements), and finally A4 with
(nx, ny) in general position, (8 elements).

In B the origin and the axes are missing, while the
group operations preserve the parity of nx + ny. There
are only 3 classes: B1 with (nx, ny) on the diagonals,
(4 elements), B2 with |nx| 6= |ny| and nx + ny even, (8
elements) and B3 with |nx| 6= |ny| and nx + ny odd, (8
elements)

Here we give the remaining orbit sums required to de-
rive the selection rule, that is the vanishing of the sum
in Eq. 41. The orbit decomposition of the sum is

S = SA1 + SA2 + SA3 + SA4 + SB1 + SB2 + SB3 (A1)

where

SO =
∑
K∈O

c∗(K + G)c(K)

and O is any of the orbits.

A Sublattice. We have shown that SA1 = 0 in the main text. Now we show that the other 6 vanish as well.
A2. Let A2 be the orbit of a vector K = (4π/a)(0, ny, nz). For a fixed nz this set has 4 elements:

A2 = {(0, ny, nz), (−ny, 0, nz), (0,−ny, nz), (ny, 0, nz)},

where we have a adopted a notation in which a = 4π. For a fixed nz the summands in SA2 have the form

c∗(0, ny, nz+1)c(0, ny, nz)+c∗(−ny, 0, nz+1)c(−ny, 0, nz)+c∗(0,−ny, nz+1)c(0,−ny, nz)+c∗(ny, 0, nz+1)c(ny, 0, nz).
(A2)

We now apply Eqs. 44 and 45. If ny + nz is even, then

c(0, ny, nz) = c(−ny, 0, nz) = c(0,−ny, nz) = c(ny, 0, nz),
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while if ny + nz is odd, then

c(0, ny, nz) = c(−ny, 0, nz) = c(0,−ny, nz) = c(ny, 0, nz) = 0.

Hence in each of the 4 terms in Eq. A2 one of the factors vanishes and hence SA2 = 0.
A3. A3 is the orbit of a vector K = (4π/a)(nx, nx, nz) and consists of K-vectors on the nx = ±ny diagonals at a

fixed nz. Letting n = nx, these sets have 4 elements:

A3 = {(n, n, nz), (−n, n, nz), (−n,−n, nz), (n,−n, nz)}.

The summands in SA3 for a fixed nz have the form

c∗(n, n, nz+1)c(n, n, nz)+c
∗(−n, n, nz+1)c(−n, n, nz)+c∗(−n,−n, nz+1)c(−n,−n, nz)+c∗(n,−n, nz+1)c(n,−n, nz).

(A3)
We now apply Eqs. 44 and 45. If nz is even, then

c(n, n, nz) = c(−n, n, nz) = c(−n,−n, nz) = c(n,−n, nz)

while for nz= odd

c(n, n, nz) = c(−n, n, nz) = c(−n,−n, nz) = c(n,−n, nz) = 0.

Hence in each of the 4 terms in Eq. A3 one of the factors vanishes and hence SA3 = 0.
A4. A4 is the orbit of a general vector K = (4π/a)(nx, ny, nz) with 0 6= nx 6= ±ny 6= 0. It consists of K-vectors

with fixed K2
x +K2

y and fixed nz. These sets have 8 elements:

A4 = {(nx, ny, nz), (−nx, ny, nz), (−nx,−ny, nz), (nx,−ny, nz),
(ny, nx, nz), (−ny, nx, nz), (−ny,−nx, nz), (ny,−nx, nz)}.

The summands in SA4 for a fixed nz have the form

c∗(nx, ny, nz + 1)c(nx, ny, nz) + c∗(−nx, ny, nz + 1)c(−nx, ny, nz)+
c∗(−nx,−ny, nz + 1)c(−nx,−ny, nz) + c∗(nx,−ny, nz + 1)c(nx,−ny, nz)+
c∗(ny, nx, nz + 1)c(ny, nx, nz) + c∗(−ny, nx, nz + 1)c(−ny, nx, nz)+
c∗(−ny,−nx, nz + 1)c(−ny,−nx, nz) + c∗(ny,−nx, nz + 1)c(ny,−nx, nz).

(A4)

For nz even and nx + ny even we have

c(nx, ny, nz) = c(nx,−ny, nz) = c(−nx, ny, nz) = c(ny,−nx, nz) =

c(−ny, nx, nz) = c(−nx,−ny, nz) = c(ny, nx, nz) = c(−ny,−nx, nz).

while for nz odd and nx + ny even we have

c(nx, ny, nz) = −c(nx,−ny, nz) = −c(−nx, ny, nz) = −c(ny,−nx, nz) =

−c(−ny, nx, nz) = c(−nx,−ny, nz) = c(ny, nx, nz) = c(−ny,−nx, nz).

Thus the 8 terms in Eq. A4 will completely cancel. The sum with nx + ny odd is similarly zero so we have SA4 = 0.
B Sublattice. On the B sublattice we need to consider c(K) = c[((4π)/a)(nx + 1/2, ny + 1/2, nz + 1/2)] which we

abbreviate as c′(nx, ny, nz).
B1. This is the orbit of a point with nx = ny. The orbit has 4 elements:

B1 = {(nx, nx, nz), (−nx, nx, nz), (nx,−nx, nz), (−nx,−nx, nz}.

The summands in SB1 have the form

c′∗(nx, nx, nz + 1)c′(nx, nx, nz) + c′∗(−nx,−nx, nz + 1)c′(−nx,−nx, nz)+
c′∗(nx,−nx, nz + 1)c′(nx,−nx, nz) + c′∗(−nx, nx, nz + 1)c′(−nx, nx, nz)

(A5)

If nz is even we have

c′(nx, nx, nz) = c′(−nx,−nx, nz) = −ic′(nx,−nx, nz) = −ic′(−nx, nx, nz)
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while if nz is odd then

c′(nx, nx, nz) = c′(−nx,−nx, nz) = −ic′(nx,−nx, nz) = −ic′(−nx, nx, nz).

Substitution in Eq. A5 then shows that the orbit sum is zero.
B2. This is the orbit of a point with 0 6= nx 6= ±ny 6= 0 and nx + ny even. The orbit has 8 elements:

B2 ={(nx, ny, nz), (nx,−ny, nz), (−nx, ny, nz), (ny,−nx, nz),
(−ny, nx, nz), (−nx,−ny, nz), (ny, nx, nz), (−ny,−nx, nz)}.

The summands in SB2 have the form

c′∗(nx, ny, nz + 1)c′(nx, ny, nz) + c′∗(nx,−ny, nz + 1)c′(nx,−ny, nz)+
c′∗(−nx, ny, nz + 1)c′(−nx, ny, nz) + c′∗(ny,−nx, nz + 1)c′(ny,−nx, nz)+
c′∗(−ny, nx, nz + 1)c′(−ny, nx, nz) + c′∗(−nx,−ny, nz + 1)c′(−nx,−ny, nz)+
c′∗(ny, nx, nz + 1)c′(ny, nx, nz) + c′∗(−ny,−nx, nz + 1)c′(−ny,−nx, nz)

(A6)

If nz is even we have

c′(nx, ny, nz) = c′(nx,−ny, nz) = c′(−nx, ny, nz) = c′(ny,−nx, nz)
= c′(−ny, nx, nz) = c′(−nx,−ny, nz) = c′(ny, nx, nz) = c′(−ny,−nx, nz).

while if nz is odd then

c′(nx, ny, nz) = −c′(nx,−ny, nz) = −c′(−nx, ny, nz) = −c′(ny,−nx, nz)
= −c′(−ny, nx, nz) = c′(−nx,−ny, nz) = c′(ny, nx, nz) = c′(−ny,−nx, nz).

Substitution in Eq. A6 then shows that SB2 = 0.
B3. This is the orbit of a point with 0 6= nx 6= ±ny 6= 0 and nx + ny odd. The orbit has 8 elements. The elements

and the typical term in SB3 are the same as for B2 but the transformation properties are different.
If nz is even we have

c′(nx, ny, nz) = −c′(nx,−ny, nz) = −c′(−nx, ny, nz) = −c′(ny,−nx, nz)
= −c′(−ny, nx, nz) = c′(−nx,−ny, nz) = c′(ny, nx, nz) = c′(−ny,−nx, nz).

while if nz is odd then

c′(nx, ny, nz) = c′(nx,−ny, nz) = c′(−nx, ny, nz) = c′(ny,−nx, nz)
= c′(−ny, nx, nz) = c′(−nx,−ny, nz) = c′(ny, nx, nz) = c′(−ny,−nx, nz).

Also in this case, substitution of these relations into Eq. A6 shows that SB3 = 0.
This completes the proof.
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