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We propose a heat current analog of the shift current, “shift heat current”. We study nonlinear heat current
responses to an applied ac electric field by a diagrammatic method and derive a microscopic expression for the
second order dc heat current response. As a result, we find that the shift heat current is related to the shift vector,
a geometric quantity that also appears in the expression for the shift current. The shift heat current directly
depends on and can be controlled through the chemical potential. In addition, we apply the diagrammatic
method to electron-phonon coupled systems, and we find that even if only the phonons are excited by an external
field, the amplitude of the shift heat current is determined by the energy scale of electrons, not of phonons.

I. INTRODUCTION

The nonlinear optical response is a subject of recent inten-
sive research. For example, second order optical responses
such as second harmonic generation have been attracting
much attention and studied both theoretically and experimen-
tally [1–22]. Recently, it is also pointed out that even in non-
linear regime quantum geometry and topological properties
of materials are important to understand the electric/optical
responses [9, 20]. Among them, the bulk photovoltaic effect
is an important issue for both applications and fundamental
physics. The bulk photovoltaic effect, or sometimes called
photogalvanic effect, is the generation of photocurrents that
can occur in noncentrosymmetric materials, and a mechanism
called shift current is proposed and well established [3, 7–
9, 13, 20]. The shift current is characterized by a quantity
called shift vector R, and for two bands systems with the time
reversal symmetry (TRS), the shift current J(shift)

e induced by
an electric field E can be written as [3, 9]

J(shift)
e ∝ E2

∫
dk δ(εv(k) − εc(k) + ~Ω)|vvc(k)|2R(k), (1)

where εc(k) and εv(k) are the dispersion of the conduction
band and the valence band, ~Ω is the energy of the input
photon, vvc(k) is the matrix element of the velocity operator.
Physically, the shift vector R can be interpreted as the spatial
shift of an electron wave packet during the interband transi-
tion due to an excitation by light (Fig. 1(b,c)), and contributes
to the dc electric current. The shift of wave packet can con-
tribute other types of transport. Kim et al. pointed out that
the shift can contribute to spin current and proposed a phe-
nomenon named shift spin current [14]. In the present work,
we propose another current induced by the shift: shift heat
current.

Electrons carry not only charge and spin, but also heat.
Therefore, it is natural to expect that there exists a heat current
analog of shift current. In fact, heat transport phenomena and
thermoelectric responses are closely related to electric/optical
responses. It is well known that several universal relations
between thermal responses and electric responses, such as the
Wiedemann-Franz law and the Mott relation, hold [23]. These
universal relations can be derived theoretically by the semi-

classical Boltzmann theory [23], or quantum linear response
theory [24–27]. Within the linear response regime, the Mott
relation or the Sommerfeld-Bethe relation [27] indicates that
the amplitude of the electric current Je and the heat current JQ
when an electric field is applied can be roughly related to each
other as

JQ ∼
t
e

Je, (2)

where e is the charge of an electron and t is the character-
istic energy scale an electron carries as heat. If we assume
that the relation between Je and JQ in Eq. (2) holds even for
nonlinear responses, there should be nonlinear heat responses
corresponding to the shift current, namely, shift heat current.
One can also expect that the shift heat current are related to the
geometric property of the material as the shift current does.

Although the electric current responses and heat current re-
sponses are closely related, the theoretical investigation on
heat transport and thermoelectric effects has not progressed
compared with that of the electric conductivity or the optical
responses. In particular, thermoelectric responses of macro-
scopic systems in nonlinear regime are rarely discussed in
contrast to aforementioned optical responses. In previous
studies, nonlinear thermoelectric effects were studied mainly
for mesoscopic systems [28–33], where large temperature bias
can be relatively easily applied. Although there are several
studies on nonlinear thermoelectric responses to dc external
fields in macroscopic systems [34–37], heat current responses
to ac external fields including the shift current-like responses
have not been studied so far.

In this work, we study the dc heat current responses to an
ac electric field. We extend the diagrammatic method to cal-
culate nonlinear responses proposed in Ref. [17] to heat cur-
rent responses, and find that the relation in Eq. (2) also holds
for the shift current. In particular, for two-band systems with
TRS, the shift heat current response J(shift)

Q can be written as

J(shift)
Q ∝E2

∫
dk δ(εv(k) − εc(k) + ~Ω)|vvc(k)|2R(k)

×

(
εc(k) + εv(k)

2
− µ

)
. (3)

We also find that the shift heat current directly depends on the
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chemical potential µ and thus we can control the shift heat
current through the chemical potential.

Furthermore, we also discuss the phonon-induced shift heat
current. Recently, the phonon-induced shift current is experi-
mentally observed in BaTiO3 [38]. There, although the energy
of the input photon (∼ 1 meV) is much smaller than the band
gap of BaTiO3 (∼ 1 eV), phonons are excited by photons and
then induce a large electric current of the order of 10 µA. Al-
though the mechanism is different from the usual shift current,
we can also expect the similar relation as Eq. (2). We theoret-
ically derive the expression for such electron-phonon coupled
systems, and find again that the relation (2) holds. It should be
noted that, although photons excite phonons only, the energy
scale t in Eq. (2) is still that of electrons, not of phonons.

This paper is organized as follows. In Sec. II, we describe
the theoretical formalism used to calculate the shift heat cur-
rent. In Sec. III, we present the calculation results for the shift
heat current. In addition to the most general formula of shift
heat current, formulas for systems with TRS and TR symmet-
ric two band systems are also given. In Sec. III D, we apply
our theory to Rice-Mele model as an example. In Sec. IV, we
study the phonon-induced shift heat current. Sec. V is devoted
to discussions.

II. CALCULATION METHOD

In this paper, we calculate the nonlinear responses of the
heat current to an electric field. To this end, we follow the for-
malism adopted in Ref. [17]. We first summarize our notations
regarding the basics of the band theory. We introduce Bloch
Hamiltonian and covariant derivative of k-dependent opera-
tors, which is convenient to expand the Bloch Hamiltonian
with respect to the applied external field. Then we introduce
the electric current operator, the energy current operator, and
the heat current operator.

A. Band theory and covariant derivative

Let us consider a tight binding model of noninteracting
electron systems in a periodic potential, written as

Ĥ0 =
∑
R,R′

ψ̂†
R

HR−R′ ψ̂R′ , (4)

ψ̂R =
(
ψ̂R,1, ψ̂R,2, . . . , ψ̂R,s

)T
, (5)

ψ̂†
R

=
(
ψ̂†
R,1, ψ̂

†

R,2, . . . , ψ̂
†

R,s

)
. (6)

Here, R specifies the position of a unit cell. ψ̂R,i (ψ̂†
R,i) is an

annihilation (creation) operator, which annihilates(creates) an
electron in the i-th orbital of the unit cell at R. HR−R′ is an
s × s matrix. Note that we denote the operator in the Fock
space a symbol with a hat ( ˆ ) while its matrix representation
is denoted by a symbol withoutˆ.

The Hamiltonian in the momentum space representation is

Ĥ0 =
∑
k

ψ̂†
k

H0(k)ψ̂k, (7)

(H0(k))i j =
∑
R

e−ik·(R+ri−r j)(HR)i j, (8)

where ψ̂k,i =
1
√

N

∑
R e−ik·(R+ri)ψ̂R,i, N is the total number

of unit cells and R+ ri is the position of the i-th orbital in the
unit cell at R.

By diagonalizing the Hamiltonian, one obtain the represen-
tation in the energy eigenstate basis:

Ek = U†
k

H0(k)Uk, (9)

where Uk is a unitary matrix and Ek is a diagonal matrix and
its element (Ek)ab = δabεk,a gives the dispersion of the a-th
band. Then the Hamiltonian can be written as

Ĥ0 =
∑
k

ĉ†
k
Ekĉk, (10)

where ψ̂k = Ukĉk.
For convenience, we introduce a covariant derivative. Con-

sider an operator of the following form:

Ô =
∑

k

ψ̂†
k

O(k)ψ̂k =
∑

k

ĉ†
k
Okĉk, (11)

Ok = U†
k

O(k)Uk. (12)

The covariant derivative appears when one considers the k-
derivative of the operator, namely,

D[Ô] :=
∑

k

ψ̂†
k
∇kO(k)ψ̂k. (13)

Substituting ψ̂k = Ukĉk leads to the expression in the energy
eigen basis,

D[Ô] =
∑

k

ĉ†
k
D[Ok]ĉk, (14)

D[Ok] := ∇kOk − i[Ak,Ok], (15)

whereAk is the interband Berry connection defined asAk =

iU†
k
∇kUk. Here, D is the covariant derivative. We note that

the Leibniz rule holds for the covariant derivative:

Dα[O1O2] = (Dα[O1])O2 + O1(Dα[O2]). (16)

B. Electromagnetic interaction

Next, let us consider the Hamiltonian describing the elec-
tromagnetic interaction, and expand it with respect to the ap-
plied electric field.

To express a spatially uniform external electric field E(t),
we use the velocity gauge. In this gauge, the electromagnetic
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FIG. 1. Schematic pictures of shift current and shift heat current. (a) Illuminating light of frequency ω induces dc electric current (shift
current) and dc heat current (shift heat current). (b) In the momentum space, an incident photon excites an electron from the valence band
(with dispersion εv(k)) to the conduction band (with dispersion εc(k)). (c) In the real space, the center of a wave packet is shifted during the
interband transition. This shift of the electron wave packet (indicated by the black arrow) induces an electric current, the shift current, and
simultaneously induces the shift of energy of (εc + εv)/2 − µ (indicated by the red arrow), which results in the shift heat current.

interaction with a spatially uniform electric field does not vi-
olate the translational symmetry and is incorporated by the
minimal substitution as

ĤA(t) =
∑
k

ψ̂†
k

HA(k)ψ̂k, (17)

HA(k) = H0

(
k −

e
~
A(t)

)
, (18)

where e < 0 is the charge of an electron, and A(t) is a vector
potential satisfying ∂A(t)/∂t = −E(t).

To treat the external field perturbatively, we expand the
Hamiltonian with respect to A(t) up to second order,

HA(k) = H0(k) +

(
−

e
~

)
Aα(t)∂αk H0(k)

+
1
2

(
−

e
~

)2
Aα(t)Aβ(t)∂α∂βH0(k). (19)

Here ∂α = ∂/∂kα and αk is a spatial index. (In this paper,
greek indices µ, α, β, . . . always represent the spatial indices
with an implicit summation henceforth). This expression is in
the basis ψ̂k. For analytic calculation, it is convenient to move
to the energy eigenstate basis, ĉk. As already discussed, the
k-derivative in the basis ψ̂k becomes the covariant derivative
D in the basis ĉk. Therefore, up to O

(
A2

)
, the Hamiltonian

reads

ĤA(t) = Ĥ0 + V̂ , (20)

V̂ =
∑
k

ĉ†
k

(V1,k + V2,k)ĉk, (21)

with

V1,k =

(
−

e
~

)
Aα(t)hαk =

∫
dω
2π

ie
~ωk

Eα(ω)e−iωthαk (22)

V2,k =
1
2

(
−

e
~

)2
Aα(t)Aβ(t)hαβ

k

=
1
2

∫
dω1

2π
ie
~ω1

Eα(ω1)e−iω1t
∫

dω2

2π
ie
~ω2

Eβ(ω2)e−iω2thαβ
k

(23)

where hα1...αn is defined as

hα1...αn = Dα1 . . .Dαn [Ek]. (24)

Although hα1...αn depends on k, we omit k from its notation.
(We often omit k-dependencies in other quantities as well in
the following.) Eα(ω) is the Fourier transform of the electric
field and is related to the Fourier transform of the vector po-
tential Aα(ω) as

Eα(ω) =

∫
dt eiωtEα(t) = iωAα(ω). (25)

C. Particle current operator, energy current operator, and
heat current operator

Here we will introduce current operators used in this work.
The current operators defined below change their form in the
presence of an external electric field, and thus we expand them
with respect to the external field, as we did for the Hamilto-
nian in the previous section.

It is well known that the total particle current operator Ĵ is
given by the k-derivative of the Hamiltonian, i.e.,

Ĵ =
1
V

∑
k

ψ̂†
k

1
~
∇kHA(k)ψ̂k, (26)

where V is the volume of the system. Note that the application
of an electric field changes the form of the electric current
operator in this gauge. This can be rewritten in terms of the
covariant derivative and ĉk as

Ĵµ =
∑
k

ĉ†
k
Jµ(k)ĉk =

∑
k

ĉ†
k

(Jµ
0 (k) +J

µ
1 (k) +J

µ
2 (k))ĉk,

(27)



4

with

J
µ
0 (k) =

1
~

hµ, (28)

J
µ
1 (k) =

1
~

∫
dω
2π

ie
~ω

Eα(ω)e−iωthµα, (29)

J
µ
2 (k) =

1
2~

∫
dω1

2π
ie
~ω1

Eα(ω1)e−iω1t

×

∫
dω2

2π
ie
~ω2

Eβ(ω2)e−iω2thµαβ. (30)

(Note again that we omit k from the notation of hα1...αn .)
When we ignore the interaction between electrons, the total

energy current operator in longitudinal responses to an exter-
nal electric field is given by

ĴE =
1
V

∑
k

ψ̂†
k

1
2

(HA(k)J (k) +J (k)HA(k))ψ̂k

=
1
V

∑
k

ψ̂†
k

1
2~
∇k(HA(k)2)ψ̂k. (31)

Equation (31) shows that the application of an electric field
changes the form of the energy current operator in the velocity
gauge. This is similar to the electric current operator, which
also changes its form in the presence of a vector potential.

The energy current operator can be rewritten in terms of the
covariant derivative and ĉk as

ĴµE =
1
V

∑
k

ĉ†
k
J
µ
E ĉk =

1
V

∑
k

ĉ†
k

(Jµ
E0 +J

µ
E1 +J

µ
E2)ĉk, (32)

with

J
µ
E0(k) =

1
~

gµ, (33)

J
µ
E1(k) =

1
~

∫
dω
2π

ie
~ω

Eα(ω)e−iωtgµα, (34)

J
µ
E2(k) =

1
2~

∫
dω1

2π
ie
~ω1

Eα(ω1)e−iω1t

×

∫
dω2

2π
ie
~ω2

Eβ(ω2)e−iω2tgµαβ, (35)

where gµα1...αn is defined as

gα1...αn =
1
2
Dα1 . . .Dαn [E2

k]. (36)

The heat current operator ĴQ is defined as

ĴQ ≡ ĴE − µĴ

=
1
V

∑
k

ψ̂†
k

1
~
∇k

(
1
2

HA(k)2 − µHA(k)
)
ψ̂k

=
1
V

∑
k

ψ̂†
k

1
2~
∇k(HA(k) − µ)2ψ̂k, (37)

where µ is the chemical potential. Therefore, one obtains the
heat current operator by replacing Ek in Eq. (32) with Ek − µ,

which yields

ĴµQ =
1
V

∑
k

ĉ†
k
J
µ
Qĉk =

1
V

∑
k

ĉ†
k

(Jµ
Q0 +J

µ
Q1 +J

µ
Q2)ĉk,

(38)

with

J
µ
Q0(k) =

1
~

g̃µ, (39)

J
µ
Q1(k) =

1
~

∫
dω
2π

ie
~ω

Eα(ω)e−iωtg̃µα, (40)

J
µ
Q2(k) =

1
2~

∫
dω1

2π
ie
~ω1

Eα(ω1)e−iω1t

×

∫
dω2

2π
ie
~ω2

Eβ(ω2)e−iω2tg̃µαβ, (41)

and

g̃α1...αn =
1
2
Dα1 . . .Dαn [(Ek − µ)2]. (42)

Our goal is to calculate the expectation value
〈
ĴµQ(t)

〉
.

The heat current responses are characterized by the tensors
αµα1α2...αn (t; t1, t2, . . . tn) as

〈
ĴµQ(t)

〉
=

∞∑
n=0

1
n!

∫  n∏
k=1

dtk Eαk (tk)

αµα1α2...αn (t; t1, t2, . . . tn).

(43)

By Fourier transformation, we can write〈
ĴµQ(ω)

〉
=

∫
dt eiωt

〈
ĴµQ(t)

〉
=

∞∑
n=0

1
n!

∫  n∏
k=1

dωk

2π
Eαk (ωk)

αµα1α2...αn (ω;ω1, ω2, . . . ωn),

(44)

αµα1α2...αn (ω;ω1, ω2, . . . ωn)

=

∫
dt
2π

eiωt
∫  n∏

k=1

dtk
2π

e−iωk tk

αµα1α2...αn (t; t1, t2, . . . tn).

(45)

In particular, the second order response coefficient
αµαβ(ω;ω1, ω2) can be written with functional derivatives as

αµαβ(ω;ω1, ω2)

=

∫
dt
2π

∫
dt1
2π

∫
dt2
2π

ei(ωt−ω1t1−ω2t2) δ

δEα(t1)
δ

δEβ(t2)

〈
ĴµQ(t)

〉 ∣∣∣∣∣
E=0

.

(46)

Note that we need to take functional derivatives in the time
domain because we are considering nonlinear regime as in the
case of the electric current responses [17].

We notice a formal similarity between the current opera-
tor and the energy/heat current operator. The current oper-
ator (Eq. (26)) is given by the k-derivative of the Hamilto-
nian, while the energy current operator is the k-derivative of
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FIG. 2. The Feynman diagrams which contribute to shift heat current.
Solid lines with an arrow and wavy lines represent propagators of
electrons and photons, respectively, and black dots with n photons
denote vertices for hα1 ...αn and cross dots with n photons are the vertex
for g̃α1 ...αn .

the squared Hamiltonian. By replacing the Hamiltonian H in
the energy current operator with H −µ, we can also obtain the
heat current operator. Because of this similarity, we can cal-
culate the heat current response in the same manner as the one
used for the shift current. Because the rest of the formulation

is almost the same as Ref. [17], we only present the results in
the next section.

III. SHIFT HEAT CURRENT

In this section, we present results for the second order dc
responses of heat current with respect to an electric field with
frequency Ω, which we call “shift heat current”. We derive a
general expression for the shift heat current, and then reduce
the expression to cases for time reversal invariant systems, and
especially, time reversal symmetric two band systems.

A. General expression for shift heat current

We focus on the second order dc responses to an electric
field with the frequency Ω. We also restrict ourselves to lon-
gitudinal responses, namely, αxxx(2iη; Ω + iη,−Ω + iη) where
η is an infinitesimal positive quantity. First we calculate αxxx

within the imaginary time formalism, and then continue the
result to the real time expressions. From now on, we set ~ = 1
for simplicity.

The Feynman diagrams which contribute to the second or-
der heat current responses are shown in Fig. 2. After perform-
ing the Matsubara frequency summation, we obtain

αxxx(2iη; Ω + iη,−Ω + iη)

=
1
V

∑
k

e2

Ω2

∑
a

g̃xxx
aa fa +

∑
a,b

g̃xx
abhx

ba

(
fab

εab + Ω + iη
+

fab

εab −Ω + iη

)
+

∑
a,b

g̃x
abhxx

ba
fab

εab + 2iη

+
∑
a,b,c

g̃x
achx

cbhx
ba

εac + 2iη

(
fab

εab + Ω + iη
+

fcb

εbc −Ω + iη
+ (Ω→ −Ω)

) (47)

=
1
V

∑
k

e2

Ω2

∑
a

g̃xxx
aa fa +

∑
a,b

g̃xx
abhx

ba

(
fab

εab + Ω
+

fab

εab −Ω
− iπ fab(δ(εab −Ω) + δ(εab + Ω))

)
+

∑
a,b

g̃x
abhxx

ba

εab
fab

+
∑
a,b,c

g̃x
achx

cbhx
ba

εac

(
fab

εab + Ω
+

fcb

εbc −Ω

)
− iπ

∑
a,b,c

g̃x
achx

cbhx
ba

εac + 2iη
( fabδ(εab + Ω) + fcbδ(εbc −Ω) + (Ω→ −Ω))

 , (48)

where εa = εk,a is the band dispersion, fa = f (εa), f (ε) =

(exp(β(ε − µ)) + 1)−1, fab = fa − fb, εab = εa − εb and T, µ are
the temperature and the chemical potential. In the last line,
divergences due to terms such as 1/εab with εa = εb should
be interpreted as zero. This is a general expression for shift
heat current in noninteracing electronic systems. By replac-
ing g̃ with h, we can see that the expression for αxxx reduces
to the expression for the electric current response derived in
Ref. [17]. The last term in Eq. (48) diverges as ∝ 1/η if TRS
is broken. This term can be interpreted as the heat current
analog of the injection current [6, 17, 20], and should explic-
itly depend on the scattering rate. We also note that the heat

current observed experimentally should include other contri-
butions. For example, impurities and disorder can affect the
momentum distribution of electrons resulting in finite ballistic
contribution to the dc heat current as in the case of the electric
current [4, 21, 39, 40]. Some of these contribution does not
necessarily depend on the scattering rate explicitly [21, 39]
as in the case of the side-jump contribution to the anomalous
Hall effect [41]. Therefore, it would be difficult to fully distin-
guish the shift heat current contribution and other contribution
due to the scattering in experiments.
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B. Shift heat current under TRS

If the system has TRS, i.e., the Hamiltonian satisfies

H0(k)T = H0(−k), (49)

then the matrix element g̃ and h have the following symmetry:

(g̃(2n+1)
k

)T = −g̃(2n+1)
−k

, (50)

(g̃(2n)
k

)T = g̃(2n)
−k
, (51)

(h(2n+1)
k

)T = −h(2n+1)
−k

, (52)

(h(2n)
k

)T = h(2n)
−k
. (53)

With these symmetry properties, most of the terms in Eq. (48)
cancel and only the terms with a delta-function remain.
Specifically, αxxx(2iη; Ω + iη,−Ω + iη) will be

αxxx(2iη; Ω + iη,−Ω + iη)

=
1
V

∑
k

−iπe2

Ω2

∑
a,b

g̃xx
abhx

ba fab(δ(εab −Ω) + δ(εab + Ω))

+
∑
a,b,c

g̃x
achx

cbhx
ba

1
εac + 2iη

( fabδ(εab + Ω) + fcbδ(εbc −Ω)

+(Ω→ −Ω))] . (54)

Noting that the last term vanishes due to TRS when a = c,
one can remove the 2iη in the denominator of the last term.
By using TRS, this can be rewritten as

αxxx(2iη; Ω + iη,−Ω + iη)

=
1
V

∑
k

πe2

Ω2

∑
a,b

Im[g̃xx
abhx

ba] fab(δ(εab −Ω) + δ(εab + Ω)) +
∑
a,b,c

Im[g̃x
achx

cbhx
ba]

εac
( fabδ(εab + Ω) + fcbδ(εbc −Ω) + (Ω→ −Ω))


=

1
V

∑
k

2πe2

Ω2

∑
a,b

Im[g̃xx
abhx

ba] fabδ(εab −Ω) +
∑
a,b,c

Im[g̃x
achx

cbhx
ba]

fab

εac
(δ(εab + Ω) + δ(εab −Ω))

 . (55)

One can also verify that the last term for a = b or b = c
vanishes in the presence of TRS. It is clear that for a = b the
term vanishes due to fab. For b = c, using the relation between
g̃x and hx,

g̃x
ab =

εa + εb

2
hx

ab, (56)

one can conclude Im[g̃x
abhx

bbhx
ba] ∝ Im[

∣∣∣hx
ab

∣∣∣2hx
bb] = 0, and thus

the b = c terms vanish. Therefore, the last term in Eq. (55)
represents three band contributions. In contrast, the first term
corresponds to two band contributions.

C. Two band systems with TRS

Let us consider a two band model with TRS. Such descrip-
tion is justified when a TR symmetric system is effectively de-
scribed by only two bands near the Fermi level. In this case,
the three band contribution can be neglected, and we obtain

αxxx(2iη; Ω + iη,−Ω + iη)

=
1
V

∑
k

∑
a,b

2πe2

Ω2 Im[g̃xx
abhx

ba] fabδ(εab −Ω). (57)

By using the Leibniz rule for the covariant derivative
(Eq. (16)), one can verify

g̃xx
ab =

1
2

(
DxDx[(Ek − µ)2]

)
ab

=

(
εa + εb

2
− µ

)
hxx

ab + (hxhx)ab. (58)

Because we are considering a two band case, for a , b
Im[g̃xx

abhx
ba] can be rewritten as

Im[g̃xx
abhx

ba] =

(
εa + εb

2
− µ

)
Im[hxx

abhx
ba] +

∑
c

Im[hx
achx

cbhx
ba]

=

(
εa + εb

2
− µ

)
Im[hxx

abhx
ba] + Im[hx

aahx
abhx

ba] + Im[hx
abhx

bbhx
ba]

=

(
εa + εb

2
− µ

)
Im[hxx

abhx
ba] + Im[(hx

aa + hx
bb)

∣∣∣hx
ab

∣∣∣2]

=

(
εa + εb

2
− µ

)
Im[hxx

abhx
ba]. (59)

Therefore, αxxx(2iη; Ω + iη,−Ω + iη) is given by

αxxx(2iη; Ω + iη,−Ω + iη)

=
1
V

∑
k

∑
a,b

2πe2

Ω2

(
εa + εb

2
− µ

)
Im[hxx

abhx
ba] fabδ(εab −Ω).

(60)
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Furthermore, the matrix element Im[hxx
abhx

ba] in a two band sys-
tem can be transformed into [9, 17]

Im[hxx
abhx

ba] = Im
[(
∂kx h

x
ab − i

[
Ax, hx]

ab

)
hx

ba

]
= Im

[∣∣∣hx
ab

∣∣∣2(∂kx log hx
ab − i(Ax

aa −A
x
bb)

)
+ iAabhx

ba(hx
aa − hx

bb)
]

= Im

∣∣∣hx
ab

∣∣∣2(∂kx log hx
ab − i(Ax

aa −A
x
bb)

)
+

∣∣∣hx
ab

∣∣∣2
εab

(hx
aa − hx

bb)


=

∣∣∣hx
ab

∣∣∣2(∂kxφ
x
ab − (Ax

aa −A
x
bb)

)
=

∣∣∣hx
ab

∣∣∣2Rx
ab, (61)

where φx
ab = Im log hx

ab, and Rx
ab = ∂kxφ

x
ab − (Ax

aa −A
x
bb) is the

quantity called shift vector, which also appears in the expres-
sion of the shift current [6]. Therefore, the expression for the
response coefficient is simplified to the following form:

αxxx(2iη; Ω + iη,−Ω + iη)

=
1
V

∑
k

∑
a,b

2πe2

Ω2

(
εa + εb

2
− µ

)∣∣∣hx
ab

∣∣∣2Rx
ab fabδ(εab −Ω). (62)

This is almost the same form as the one for the shift current,
σxxx(2iη; Ω + iη,−Ω + iη):

σxxx(2iη; Ω + iη,−Ω + iη)

=
1
V

∑
k

∑
a,b

2πe3

Ω2

∣∣∣hx
ab

∣∣∣2Rx
ab fabδ(εab −Ω). (63)

They only differ by the factor (εa + εb)/2− µ in α. From these
expressions, one can interpret αxxx(2iη; Ω + iη,−Ω + iη) as
the dc heat current that originates from the difference in the
intracell coordinate between conduction and valence bands.
Since this coordinate difference is represented by the shift
vector Rx

ab, we call this nonlinear thermal response as "shift
heat current". The shift heat current does not explicitly de-
pend on the scattering rate as in the case of the expression for
the shift current Eq. (63). The independence of the scatter-
ing rate of the shift heat current might be useful to distinguish
from other contributions that explicitly depend on the scatter-
ing rate. However, we again note that some contributions due
to impurities and/or disorder do not necessarily depend on the
scattering rate [21, 39] and thus it would be difficult to fully
distinguish the shift heat current contribution from those due
to the scattering in experiments.

D. Shift heat current in Rice-Mele model

In this section, to exemplify our theory, we present a nu-
merical calculation of the shift heat current for Rice-Mele
model [42] which is a representative 1D model with bro-
ken inversion symmetry. The Rice-Mele model can be used
to describe, for example, one dimensional dimerized sys-
tems [42, 43], single-layer monochalcogenides [44], and Per-
ovskite materials [45]. The Hamiltonian for the Rice-Mele

model is given by

Ĥ =
∑

n

(
tABĉ†nBĉ†nA + tBAĉ†n+1,AĉnB + h.c.

)
+

∑
n

(
tAAĉ†n+1,AĉnA + tBBĉ†n+1,Bĉn,B + h.c.

)
+

∑
n

[(
ε0 +

∆

2

)
ĉ†nAĉnA +

(
ε0 −

∆

2

)
ĉ†nBĉnB)

]
. (64)

Here n is the index for unit cells, A and B represent the two
sites in a unit cell, and their positions in the unit cell are given
by rA, rB. The system breaks the inversion symmetry when,
for example, ∆ , 0 and tAB , tBA and thus nonvanishing shift
current and shift heat current appear. The second-nearest-
neighbor hopping is necessary to break particle-hole symme-
try; otherwise heat current becomes zero (see Eq. (62)). We
show a schematic picture of Rice-Mele model in Fig. 3.

We perform the numerical calculation of αxxx(2iη; Ω +

iη,−Ω + iη) by directly applying the expression Eq. (47). The
energy broadening η needs to be large enough compared to the
spacing between adjacent energy levels ∆ε but small enough
compared to the other energy scale. ∆ε can be estimated as
∆ε ∼ t/N with the energy scale of the system t and the num-
ber of unit cell N, and thus the condition for η is t/N � η � t.
We also perform the calculation for σxxx(2iη; Ω + iη,−Ω + iη)
in the same manner.

In Fig. 4, we show the band structure, the response coeffi-
cients αxxx(2iη; Ω + iη,−Ω + iη) and σxxx(2iη; Ω + iη,−Ω + iη)
for a parameter set and several chemical potentials µ shown in
the caption of the Fig. 4. We set the second-nearest neighbor
hopping tAA = tBB = 0.1t, and the other parameters are set
following Ref. [45] where ferroelectric Perovskite BaTiO3 is
discussed with the Rice-Mele model (without second-nearest-
neighbor hopping) and the Hubbard interaction. One can see
from Fig. 4 that both the shift current and the shift heat cur-
rent becomes large at the band gap around ~Ω ∼ t as expected
from Eq. (62) and Eq. (63). When µ is set to zero, i.e., the
middle of the conduction band and the valence band, the shift
heat current is small reflecting the factor of (εa + εb)/2 − µ
in Eq. (55). By varying µ, the shift heat current changes even
its sign. We discuss on the sign and the chemical potential
dependence of the shift heat current in Sec. V B and Sec. V C.

FIG. 3. An illustration of Rice-Mele model (Eq. (64)). In order
to break the particle-hole symmetry, next-nearest-neighbor hoppings
tAA, tBB are included in the model.
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FIG. 4. The shift heat current and the shift current for the Rice-Mele model. We used the parameters: tAB = 0.9t, tBA = 1.1t, tAA = 0.1t, tBB =

0.1t, rA = 0, rB = 0.5a,∆ = 2t, ε0 = −0.20 with lattice constant a and an energy scale t. ε0 is determined so that the middle of the minimum
of the conduction band and the maximum of the valence band is zero. The temperature T is set to be zero (T = 0). The total number of the
unit cells N is set to be 10001, and we set η = 0.01t so that t/N � η � t with the energy scale t. (a) The band structure of the Rice-Mele
model for the given parameters. The black, red and blue dashed lines correspond to the chemical potential µ = 0,−0.1t, 0.1t respectively. (b)
The response coefficients for shift heat current αxxx(2iη; Ω + iη,−Ω + iη) and shift current σxxx(2iη; Ω + iη,−Ω + iη) as a function of the photon
energy ~Ω. αxxx is calculated for µ = 0,−0.1t, 0.1t and σxxx is calculated for µ = 0.

IV. PHONON-INDUCED SHIFT HEAT CURRENT

Based on the diagrammatic method that we established for
calculation of general heat current responses, in this section,
we apply the formalism to electron-phonon coupled systems.
Recently, it is experimentally shown that the optical excita-
tion of phonons in a semiconductor induces large shift current
responses in THz regions [38]. Specifically, a semiconductor
BaTiO3 shows large second order responses to an electric field
with frequency much smaller than its band gap energy. This
can be understood as a phonon-induced shift current [38].

The physical picture for the phonon-induced shift current
is as follows. In general, excitation of phonons in non-
centrosymmetric systems is accompanied by finite electronic
polarization P due to the electron-phonon coupling. When
phonons are excited by illumination of light, the number of
phonons will increase in time, and thus the polarization P also
increases accordingly even at steady state in noncentrosym-
metric systems. Since the polarization P is related to an elec-
tric current J through J = dP/dt, the excitation of phonons
results in a dc electric current. A more detailed theoretical
description is given in Ref. [38]. It should be noted that the
electrons are excited only virtually in this mechanism. This
is in sharp contrast to, for example, a proposal in Ref. [46],
where phonons create real excitations of electrons in a narrow
gap quantum well. If the band gap of the system is sufficiently
large compared to the energy of phonons, the phonon cannot
create real excitations of electrons, in which case the contribu-
tions studied in Ref. [38] and the present paper are dominant.

From the analogy between shift current and shift heat cur-
rent, we can also expect that the shift heat current can be in-
duced by phonon excitations. Namely, we expect "electronic
heat polarization" PQ is induced through electron-phonon
coupling along with P when phonons are excited, and it also

increases in time, resulting in finite dc heat current JQ =

dPQ/dt. Following Ref. [38], let us calculate the phonon-

FIG. 5. The Feynman diagrams which describe the phonon-induced
shift heat current. Here, curly lines are phonon propagators and open
dots are the electron-phonon interaction. Solid lines represent prop-
agators of electrons. Black dots and crossdots represent vertices for
h and g̃ as in Fig. 2.

induced shift heat current. We consider only one mode of
phonon with wavevector q = 0 for simplicity. The Hamilto-
nian for the phonon is

Ĥph = εphâ†â, (65)

where â (â†) is the annihilation (creation) operator of the
phonon, and εph is the energy of the phonon. The electron-
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phonon interaction is described by the following Hamiltonian:

Ĥel−ph =
∑
k

ĉ†
k

λk
√

V
ĉk(â† + â), (66)

where λk is an s × s hermitian matrix (k in λk is often
suppressed below). The diagrams corresponding to phonon-
induced shift heat current are shown in Fig. 5. By calculating
these diagrams, αxxx

ph (iω; iω1, iω2) is obtained as

αxxx
ph (iω; iω1, iω2) = A(iω1)D(iω1)B1(iω1, iω2)

+ A(iω1)D(iω1)B2(iω1, iω2)
+ (iω1 ↔ iω2), (67)

with

A(iω1) =
1
V

∑
k

∑
a,b,εn

ie
iω1

hx
abGa(iεn + iω1)Gb(iεn)λba

=
1
V

∑
k

∑
a,b

ie
iω1

λbahx
abIba

2 (iω1), (68)

B1(iω1, iω2) =
1
V

∑
k

∑
a,b,εn

λabGa(iεn + iω1)
ie

iω2
g̃xx

baGb(iεn)

=
1
V

∑
k

∑
a,b,εn

ie
iω2

λabg̃xx
baIba

2 (iω1), (69)

B2(iω1, iω2)

=
1
V

∑
k

∑
a,b,c,εn

ie
iω2

Ga(iεn)g̃x
acGc(iεn + iω)λcbGb(iεn + iω2)hx

ba

+
1
V

∑
k

∑
a,b,c,εn

ie
iω2

Ga(iεn)g̃x
caGc(iεn − iω)λbcGb(iεn − iω2)hx

ab

=
1
V

∑
k

∑
a,b,c

ie
iω2

[g̃x
acλcbhx

baIabc
3 (iω2, iω1)

+ g̃x
caλbchx

abIabc
3 (−iω2,−iω1)], (70)

and D(iω) is the propagator of the phonon,

D(iω) =
1

iω − εph
−

1
iω + εph

. (71)

By analytic continuation iω1 → Ω + iη, iω2 → −Ω + iη, iω→
2iη, we obtain the phonon-induced shift heat current. In the
following, we assume that Ω(> 0) is much smaller than the
band gap and of the order of the phonon energy, εph.

In the presence of TRS, λk satisfies

λT
k = λ−k. (72)

After the analytic continuation, the following relations hold:

A(Ω) = A(Ω + iη) = A(−Ω + iη) = A(−Ω), (73)
Bi(Ω,−Ω) = Bi(Ω + iη,−Ω + iη) = −Bi(−Ω + iη,Ω + iη)

= −Bi(−Ω,Ω) (i = 1, 2), (74)

for inifinitesimal η. Therefore, the expression for αxxx
ph after

the analytic continuation reduces to

αxxx
ph (2iη; Ω + iη,−Ω + iη)

= −2πiδ(Ω − εph)A(Ω)(B1(Ω,−Ω) + B2(Ω,−Ω)). (75)

For simplicity, we consider a two-band case with TRS be-
low. By straightforward calculation, we obtain

A(Ω) =
e
V

∑
k

∑
a,b

Im[λbahx
ab]

fba

ε2
ba −Ω2

, (76)

B1(Ω) =
−ie
VΩ

∑
k

∑
a,b

Re[λabg̃xx
ba]

fbaεba

ε2
ba −Ω2

, (77)

B2(Ω) =
2ie
VΩ

∑
k

∑
a<b

fab

 1
ε2

ab −Ω2
Re[g̃x

abλba](hx
aa − hx

bb)

+
1

ε2
ab −Ω2

Re[g̃x
bahx

ab](λaa − λbb)

+
ε2

ab + Ω2

(ε2
ab −Ω2)2

Re[λabhx
ba](g̃x

aa − g̃x
bb)

 . (78)

This is almost of the same form as the phonon-induced
shift current. One can obtain the expression for the phonon-
induced shift current by replacing g̃ by h.

V. DISCUSSIONS

A. Symmetry condition to observe shift heat current

In order to observe shift heat current, the system needs to
break the spatial inversion symmetry. This is obvious from
symmetry consideration of the nonlinear response tensor, but
we can also confirm explicitly that the response coefficient
αxxx vanishes in centrosymmetric systems as follows. If the
system preserves the spatial inversion symmetry, the Hamil-
tonian satisfies

H0(−k) = P†H0(k)P, (79)

where P is the unitary matrix which expresses the spatial in-
version. For example, in the case of Rice-Mele model in
Sec. III C, P = σx where σx is the Pauli matrix.

Under the inversion symmetry, the matrix element g̃ and h
have the following symmetry:

g̃(2n+1)
k

= −g̃(2n+1)
−k

, (80)

g̃(2n)
k

= g̃(2n)
−k
, (81)

h(2n+1)
k

= −h(2n+1)
−k

, (82)

h(2n)
k

= h(2n)
−k
, (83)

where g̃(m)
k

denotes (1/2)(Dx)m[E2
k] and similar for h(m)

k
. We

also explicitly show the k-dependence of g̃ and h. Therefore,
all the terms in Eq. (48) are odd in k and vanish after the k-
summation. This means that the spatial inversion symmetry
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breaking is necessary to induce the second order response of
the heat current, as in the case of the electric current.

One can also verify that the phonon-induced shift heat cur-
rent vanishes under the inversion symmetry by using λk =

λ−k.

B. Sign of shift heat current

The sign of shift heat current is determined by two factors.
One is the shift vector or equivalently the polarity of the sys-
tem, and the other is the factor of (εa + εb)/2 − µ appearing in
Eq. (62). The shift vector represents the inversion symmetry
breaking of the system, and it also determines the direction of
shift current. If the polarity of the system is reversed, the shift
vector will be also reversed, hence shift heat current changes
its sign. In noncentrosymmetric systems, the inversion sym-
metry breaking often results in finite polarization. In that case,
the polarity of the system and the direction of shift heat current
can be reversed by applying an electric field. This property is
the same as shift current.

The other factor, (εa + εb)/2 − µ, is characteristic to heat
transport and its sign is determined in a similar way to the
Seebeck coefficient. Let us consider the case of insulators
with finite band gap. If (εa + εb)/2 − µ < 0 where εa rep-
resents a conduction band while εb represents a valence band,
the chemical potential is closer to the conduction band. There-
fore, the situation is quite similar to a Seebeck effect where
the dominant carrier is electron and the Seebeck coefficient is
negative. However, we note that we are considering insulators
here and thus there is almost no carriers nor the concept of the
dominant carrier itself. A more appropriate interpretation may
be the following: in the shift heat current, a pair of an electron
and a hole excited by an incident photon carries the heat of
(εa + εb)/2 − µ in total. In this case, the number of excited
electrons and holes are the same, but the net heat carried by
them is finite.

C. Chemical potential and temperature dependence of shift
heat current

As seen from the definition of the heat current Eq. (37), the
heat current explicitly depends on the chemical potential µ. In
the case of linear dc responses in metals or doped semicon-
ductors, only the carriers in levels near µ contributes to the
transport and the change of µ results in change of both the
electric current and the heat current. In contrast, shift current
and shift heat current occur in insulators. In this case, as long
as the change of Fermi distribution function due to the change
of chemical potential is negligible, the shift current is almost
independent of µ while the shift heat current does depend on
µ, as seen from Eq. (63) and Eq. (62). Therefore, if the chem-
ical potential is shifted by ∆µ because of, for example, impu-
rities, the shift heat current changes by ∼ (∆µ/e)J(shift)

e with
shift current J(shift)

e . (Here we neglect the change of the shift
current.) In other words, one can control the shift heat cur-
rent by varying the chemical potential. Since the chemical

potential in insulators strongly depends on the existence of
impurities, we can also expect that a small amount of impu-
rities induces a large shift of the chemical potential and thus
drastically changes the magnitude of the shift heat current.

The temperature dependence of the shift heat current in in-
sulators is determined almost only by the temperature depen-
dence of the chemical potential. If the change of temperature
∆T satisfies kB∆T � EG, then the shift heat current Eq. (62)
changes by ∼ (∆µ/e)J(shift)

e , where ∆µ is the change due to the
temperature variation.

For example, if the density of states of conduction band and
that of valence band are respectively given by Dc(ε + εc0) =

Acε
sc and Dv(εv0 − ε) = Avε

sv where εc0(v0) is the bottom
(top) of the conduction (valence) band and Ac, Av, sc, sv are
constants. If one further assumes that εc0 − µ � kBT ,
µ − εv0 � kBT and the charge neutrality condition∫ ∞

εc0

f (ε)Dc(ε) dε =

∫ εv0

−∞

(1 − f (ε))Dv(ε) dε , (84)

then the temperature dependence of chemical potential is

µ '
εv0 + εc0

2
+

kBT
2

[
log

(
Av

Ac

Γ(sv + 1)
Γ(sc + 1)

)
+ (sv − sc) log kBT

]
.

(85)

Here, Γ(x) =
∫ ∞

0 e−ttx−1 dt is the Gamma function. In particu-
lar, if both the conduction and valence band are parabolic with
effective mass mc, mv, then sc = sv = (d−2)/2 with the spatial
dimension d and

µ '
εv0 + εc0

2
+

d
4

kBT log
mv

mc
. (86)

Therefore, ∆µ ∝ ∆T and thus the shift heat current is linearly
dependent on the temperature in this case.

D. Candidate materials and order estimation

Materials that break inversion symmetry can support
nonzero shift heat current responses. Because of the simi-
larity between shift heat current (Eq. (62)) and shift current
(Eq. (63)), one can expect that materials which exhibits large
shift current responses also shows large shift heat current re-
sponses. Namely,

J(shift)
Q ∼

t
e

J(shift)
e , (87)

where J(shift)
Q and J(shift) are the shift heat current and the shift

current, and t is the characteristic energy scale corresponding
to the factor (εa + εb)/2 − µ in Eq. (62). As mentioned at
the end of Sec. V B, the factor t can be interpreted as a net
heat carried by the excited electron and hole, and Eq. (87) is a
generalization of Eq. (2) to the second order response. We can
expect that the relation (87) holds also for general multiband
systems with an appropriate modification of an expression for
t, because the general expression for αxxx (Eq. (48)) differs
from σxxx only by g̃ in place of h.
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One representative material which shows the shift current
response is SbSI [16, 19]. SbSI exhibits shift current of the
order of 0.1 nA when illuminated by a cw laser with ~ω =

1.95 eV, and 10 µA at peak when irradiated by a pulsed laser
with ~ω = 2.05 eV and the power 0.6 µJ [16]. In this case, as
the energy scale t is estimated as t ∼ 1 eV, the expected shift
heat current is J(shift)

Q ∼ 0.1 nW for the cw excitation, while

J(shift)
Q ∼ 10 µW at peak is expected when the laser pulse is

applied.

Another promising candidate is TaAs. TaAs is a Weyl
semimetal with broken inversion symmetry that shows large
shift current responses [18]. It is experimentally observed that
a photocurrent ∼ 1 µA can be induced by a laser with wave-
length 10.6 µm (117 meV) and power ∼ 100 mW. If we as-
sume that the Weyl semimetal TaAs has Hamiltonian of the
form H = v0k + vµνkµσν where µ, ν run over x, y, z, then t for
photon with energy ~ω can be estimated as t ∼ (v0/2v)~ω−µ.
Furthermore we estimate v

2v0
∼ 0.2 and µ ∼ 10 meV [47], then

t ∼ 10 meV and one obtains from Eq. (87),

J(shift)
Q ∼ 10 nW. (88)

As for the phonon-induced shift heat current, a material
which exhibits a large shift current is promising as well. Since
the expressions for the phonon-induced shift heat current is
different from that of the electric current only by the factor g̃ in
the place of h, Eq. (87) also holds for the phonon-induced cur-
rents. We emphasize that t is determined by the energy scale
of electrons even for the phonon-induced currents. In an ex-
periment, it is observed that BaTiO3 shows a phonon-induced
shift current as large as ∼ 10 µA [38]. Assuming t ∼ 1 eV for

BaTiO3, the phonon-induced shift heat current is estimated as

J(shift,ph)
Q ∼ 10 µW, (89)

which is quite large compared to the response of TaAs.
We also note that by varying chemical potential, the shift

heat current in the above materials can be changed by ∼
(∆µ/e)J(shift)

e as discussed in Sec. V C.
In conclusion, we have established a diagrammatic formu-

lation of the nonlinear heat current response to an ac elec-
tric field, and calculated the second order response, which we
call shift heat current. We have derived the microscopic ex-
pression for the shift heat current and confirmed that the shift
heat current is determined by the shift vector, as in the case of
the shift current. The amplitude of shift heat current J(shift)

Q

is roughly estimated as J(shift)
Q ∼ (t/e)J(shift)

e where t is the
characteristic energy scale of electrons, and can be controlled
by changing the chemical potential. We have also calculated
the phonon-induced shift heat current and found that even for
phonon-induced cases, J(shift,ph)

Q ∼ (t/e)J(shift,ph)
e still holds and

the amplitude of J(shift)
Q is determined by the energy scale of

electrons, not that of phonons.
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