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The recent “honeycomb code” is a fault-tolerant quantum memory defined by a sequence of checks
which implements a nontrivial automorphism of the toric code. We argue that a general framework
to understand this code is to consider continuous adiabatic paths of gapped Hamiltonians and we give
a conjectured description of the fundamental group and second and third homotopy groups of this
space in two spatial dimensions. A single cycle of such a path can implement some automorphism
of the topological order of that Hamiltonian. We construct such paths for arbitrary automorphisms
of two-dimensional doubled topological order. Then, realizing this in the case of the toric code, we
turn this path back into a sequence of checks, constructing an automorphism code closely related
to the honeycomb code.
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I. INTRODUCTION

The honeycomb code [1] is a recently developed fault-
tolerant quantum error correcting code. Beyond its pos-
sible practical application to Majorana hardware [2–5],

this code has several interesting theoretical features. Al-
though it is defined by a sequence of measurements of
products of Paulis, it is not a stabilizer or subsystem
code. Rather, the logical qubits are “dynamically gener-
ated”, being protected only because of the particular se-
quence of measurements chosen. Moreover, while at any
instant the system is in a stabilizer state which is equiv-
alent to the toric code (up to a local quantum circuit),
the measurements implement an automorphism e ↔ m
of the toric code: the checks are done in a repeating se-
quence, but after one period the electric and magnetic
logical operators of the code are interchanged so that a
state storing quantum information may be only invariant
with twice the period.

In this paper we clarify and generalize this behav-
ior. While the checks of the honeycomb code are im-
plemented in a discrete sequence, we construct a path of
gapped Hamiltonians which interpolates between differ-
ent rounds. We then turn to the classification of paths of
gapped Hamiltonians supporting topological order. Here,
and throughout this paper, when we refer to a path,
we mean a continuous closed path, i.e., a continuous
map from S1 to a target space. When we refer to a
path of gapped Hamiltonians, the evolution along the
path is considered to be adiabatic (i.e., slow compared
to the gap). Following Kitaev [6–8], the classification
of paths of short-range entangled invertible states [9] in
a d-dimensional quantum system is the product of the
classification of short-range entangled states in d dimen-
sions, which classifies the connected component contain-
ing the path, with the classification of short-range en-
tangled states in d − 1 dimensions, which classifies the
“pumping” of lower-dimensional invertible states in a
given path. Here, a “pump” refers to a path in which
a lower dimensional invertible state traverses the system
as we cycle through the path. The classification of paths
of gapped Hamiltonians with invertible ground states is
expected to be the same as that of invertible states. We
argue that for paths of a gapped Hamiltonian support-
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ing topological order, the classification also includes all
possible invertible domain walls; in two dimensions, such
domain walls correspond to automorphisms of the topo-
logical order but may be more general in higher dimen-
sions [10]. We show, for arbitrary doubled topological
order in two-dimensions, how to realize all elements of
this classification by pumping invertible domain walls.

We briefly comment on connections with several re-
lated works and ideas. Paths of gapped Hamiltonians
have also been considered in [11–13]. However, the fo-
cus and scope are different: our interest is in the space
of gapped Hamiltonians that realize a given topological
order as an invariant of the topological order. Homotopy
and homology groups of the space of gapped Hamilto-
nians, which can be represented by parameterized fam-
ilies of Hamiltonians, are invariants derived from this
space. Moreover, our focus is on non-invertible topo-
logical phases, in contrast to the invertible phases con-
sidered in [11–13]. Non-invertible topological phases and
their homotopy groups were also discussed in Ref. [14].
If the space of gapped Hamiltonians we consider is iden-
tified with the space of systems whose low energy limit is
a topological quantum field theory discussed in Ref. [14],
then our conjectured homotopy groups overlap with some
of their expectations. Another related topic is the Flo-
quet evolution (i.e., evolution under some time-periodic
Hamiltonian) of many-body localized states that are in-
variant under a Floquet cycle; non-trivial cycles of this
evolution have been classified in Ref. [15]. This topic
is related: many-body localized states have many of the
properties of ground states of gapped Hamiltonians, and
given a ground state of a gapped Hamiltonian which is in-
variant under some Floquet evolution one can conjugate
the Hamiltonian by the unitary giving a (not-necessarily-
closed) path of Hamiltonians with the Floquet evolution
of this state as its ground state; if needed, this path can
be closed by linear interpolation at the end. We empha-
size that we do not consider Floquet evolution in this
paper, but just focus on paths of gapped Hamiltonians,
though it is interesting that a similar e ↔ m automor-
phism has been observed in a Floquet system [16, 17].

We implement our general construction in the specific
case of the automorphism e ↔ m in the toric code, and
find that there is a natural way to construct a discrete se-
quence of checks which implements that path, with each
check acting on one or two qubits.

Thus, we come full circle: we began with a specific
example of the honeycomb code, we argued for a gen-
eral framework to understand this code using paths of
gapped Hamiltonians and we constructed this for ar-
bitrary automorphisms of arbitrary doubled topological
order, but then implementing this general framework
for the toric code we arrive at a code very similar to
the honeycomb code, implementing the automorphism
e ↔ m using one- and two-qubit checks. The honey-
comb code is an instance of what are termed “Floquet
codes”, codes where checks are applied in a time-varying,
periodic sequence. The code we construct, called the

“e↔ m automorphism code”, is a different example of a
Floquet code.

Our general conjecture (supported by specific cases
and by some general arguments given later):

Conjecture 1. In a given connected component of the
space of two-dimensional gapped Hamiltonians realizing
some given topological order, the fundamental group is
isomorphic to the product of the group of invertible states
(taking tensor product of states as the group operation
and modding out by equivalence under quantum circuits
and stabilization by trivial states) with the group of au-
tomorphisms of the topological order. Maps from S2 to
this space, with given basepoint for the map, are classi-
fied by a pair consisting of (i) an invertible state in zero
dimension (nontrivial zero-dimensional invertible states
can also exist with symmetry) and (ii) an abelian anyon
of that theory. Maps from S3 to this space, with given
basepoint, are classified by a modification in that theory.
Higher homotopy groups are all trivial modulo invertible
states.

Evidence for the conjectured description of the funda-
mental group is given in Section II. We discuss the second
homotopy group in Section V A.

Remark: defining the connected component of the
space of gapped Hamiltonians requires some care. In
Section II C we discuss some difficulties and possible res-
olutions. We do not give a precise definition.

II. HAMILTONIAN PATHS AND DOMAIN
WALL PUMPING

A. The honeycomb code as a continuous path

The honeycomb code has qubits in a geometry as
shown in Fig. 1. Remark: in fact, the code can be defined
on more general geometries, using any trivalent graph for
which the faces can be three-colored, but we do not con-
sider that here.

Qubits are located at vertices. We label each plaquette
by some label in {0, 1, 2}, according to a three-coloring.
Edges are also of type 0, 1, 2, where a type r edge, for
r ∈ {0, 1, 2} is such that if you slightly extended the
edge, the endpoints would lie in a plaquette of type r, as
shown in the figure.

For each edge, we define some check, which is a product
of two Pauli operators, one on each qubit in that edge.
The checks are chosen so that the three checks acting
on a given qubit use the three different Pauli operators
on that qubit, i.e., X,Y, Z on that qubit each appear in
one check. For example, the checks may be chosen to be
XX,Y Y,ZZ depending on the orientation of the edge.

Then, the checks are measured in a sequence of discrete
rounds, measuring checks of type r mod 3 on round r.
Let the plaquette stabilizers be the product of checks
around each plaquette; these operators commute with all
checks and are preserved by this evolution (and indeed
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FIG. 1. The honeycomb code. Qubits are on vertices. Pla-
quettes are labelled 0, 1, 2. Edges of types 0, 1, 2 are labelled
with red, green, and blue, respectively.

are measured by this sequence of measurements). One in-
teresting feature of this code is the existence of dynam-
ically generated logical qubits which require measuring
checks in a particular sequence; see [1].

While this is a discrete sequence of measurements, we
now describe a continuous evolution. It is useful to intro-
duce a Majorana representation of the qubits. See [18]
for necessary background on this representation and the
quadratic Hamiltonian described below. Introduce Majo-
rana operators γ0, γX , γY , γZ on each vertex, subject to
the gauge constraint γ0γXγY γZ = +1. Define a “gauge
field” tjk = iγaj γ

a
k on each edge (j, k) where a ∈ X,Y, Z

depending on the check on that edge. Then, each plaque-
tte stabilizer is the product of gauge fields around that
plaquette.

If we restrict to the eigenspace where the plaquette
stabilizers have some given eigenvalues, then any Hamil-
tonian which is a weighted sum of checks on edges can be
transformed by a gauge fixing to a quadratic Hamiltonian
for the Majoranas γ0. Let us restrict to the eigenspace
where all plaquette stabilizers have eigenvalue +1, which
we describe by saying that there is “no vortex” in any
plaquette.

Note that the product of the measurements of the six
checks on some plaquette in two subsequent rounds is
constrained to equal +1 since it equals the plaquette
stabilizers, but otherwise the measurement outcomes are
independent random variables. For simplicity, let us as-
sume that in considering the honeycomb code, every time
we measure a check the result is +1. Indeed, if some of
the measurements instead equal −1, we can correct it to
a state where the measurements are all +1 by applying
single qubit Pauli operators.

With this simplification, measuring checks of type r ∈
{0, 1, 2} projects (with this gauge fixing) onto a state
which is the ground state of the Hamiltonian Hquad

r =

i
∑

(j,k) of type r γ
0
j γ

0
k, where the sum is over edges (j, k) of

the given type.

Now consider instead the following continuous path of
Hamiltonians Hquad(t). The path has period 3. We let

Hquad(0) = Hquad(3) = Hquad
0 , and Hquad(1) = Hquad

1 ,

and Hquad(2) = Hquad
2 . Then, otherwise we define

Hquad(t) by linear interpolation, i.e., for t ∈ (r, r + 1),
Hquad(t) is defined by linear interpolation between Hquad

r

and Hquad
r+1 mod 3.

One may verify that this gives a gapped path of
quadratic Hamiltonians. Indeed, to do this one needs
to just compute the spectrum of a quadratic Hamilto-
nian on a ring of six sites and verify that the gap does
not close. In general, the gap will not close if there is
no vortex and the number of sites in the ring is equal to
2 mod 4. On the other hand, if the number of sites is
equal to 0 mod 4, then the gap will not close if there is
a vortex.

In what sense does this continuous gapped path of
quadratic Hamiltonians give “the same” evolution as the
honeycomb code? To answer this, we consider the evolu-
tion of the qubits on a boundary of a plaquette of type
r directly after measuring the r-type checks. As noted
above, we may assume that all measurements give +1
in a given plaquette stabilizer eigenspace. The subse-
quent measurements of the type r+ 1 mod 3, and r+ 2
mod 3 checks only affect the type r plaquettes. Focus-
ing on a single r-type plaquette, the action of these two
measurements can be regarded as a linear operator sup-
ported on that plaquette which maps the ground state
of Hquad(r + 1) on that plaquette to the ground state
of Hquad(r + 2) on the same plaquette. Similarly, the
adiabatic evolution of Hquad from t = r + 1 to t = r + 2
involves only terms on that plaquette and maps the state
on that plaquette in the same way. Does this define a
gapped path of Hamiltonians which is in some sense “the
same” as the honeycomb code? This is not quite true.
For example, at any given t, Hquad(t) involves only terms
on a subset of plaquettes, and so is not sensitive to the
value of the plaquette stabilizers on other plaquettes. So,
at any t, the gap vanishes if we consider sectors with dif-
ferent values of those plaquette stabilizers. This is not a
serious problem: this is a gapped path for a given choice
of plaquette stabilizers, and we can choose to add a term
proportional to the plaquette stabilizers to the Hamilto-
nian to give a gapped path in general. Alternatively, we
can slightly deform the quadratic Hamiltonian by adding
a small term on every edge so that the ground state en-
ergy depends on all plaquette stabilizers.

One may explicitly verify that this path of quadratic
Hamiltonians is nontrivial (see next section for a pictorial
way to calculate this). Indeed, gapped paths of two-
dimensional quadratic Hamiltonians with no symmetry
are classifiedby Z2 [19]. However, our interest here is not
to consider quadratic Hamiltonians arising from gauge
fixing but rather to generalize to more general topological
order.
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B. The Kekulé-Kitaev model and a non-trivial
path of toric codes

The Kitaev honeycomb model is well known to realize a
gapped Z2 spin liquid with toric code topological order, a
gapless Majorana Dirac cone, and a gapped non-Abelian
spin liquid in the presence of a magnetic field [18]. The
Kekulé-Kitaev model introduced in Ref. [20] is a relative
of the Kitaev honeycomb model realizing similar physics.
The model was further studied in Ref. [21]. Unlike the
Kitaev honeycomb model, the Kekulé-Kitaev model has
a connected region of parameter space realizing the toric
code topological order with non-trivial topology. We ex-
plain how every non-trivial path in the parameter space
of this Hamiltonian leads to a non-trivial path of gapped
hamiltonians in the following sense: adiabatic evolution
along this path of gapped Hamiltonians realizes the non-
trivial automorphism of toric code. Moreover, we ex-
plain that by unrolling this family of Hamiltonians into
a position-dependent Hamiltonian, we localize a non-
Abelian defect.

The Hamiltonian we consider lives on a hexagonal lat-
tice with one spin per site. We three color the plaquettes
of the lattice as in Fig. 1. The Hamiltonian is given by

H = −
∑

α∈{x,y,z}

∑
(j,k) of typeα

Jασ
α
j σ

α
k , (1)

where we have identified α = x, y, z with edges of type
0, 1, 2 in the second sum. The Hamiltonian has three
types of edge terms, and they are identified with the col-
oring of the edges in Fig. 1. Here we restrict our attention
to the quadrant with Jx,y,z > 0. Thus, up to an over-
all energy scale, we only have two free parameters, and
so we can restrict our attention to couplings satisfying
Jx +Jy +Jz = 1. When Jx = Jy = Jz the model realizes
a gapless spin liquid described by a Majorana Dirac cone.
When Jx = Jy = Jz the model directly maps onto the
usual Kitaev-model with isotropic couplings via an onsite
unitary transformation. Breaking time reversal symme-
try at the Jx = Jy = Jz point gaps out the Majorana-
Dirac cone into a non-Abelian spin liquid. Tuning away
from the isotropic point Jx = Jy = Jz results in a 2-
parameter family of gapped Abelian Z2 spin liquids each
realizing the toric code topological order.

One can show the Hamiltonian in Eq. (1) is exactly
solvable. The transformation described in Ref. [18] allows
us to replace each spin with four Majorana fermions along
with a local fermion parity constraint. The result is a free
fermion Hamiltonian in the presence of a Z2 gauge field.
One can directly solve the free fermion Hamiltonian. In
the regime Jx,y,z > 0 the spectral gap is

∆ = 2
√
J2
x + J2

y + J2
z − JxJy − JyJz − JzJx. (2)

We see the gap closes only when Jx = Jy = Jz, and is
otherwise open. This model provides an example of an
isolated gapless point in parameter space, referred to as

a diabolical point in Ref. [14]. In Fig. 2 we have dis-
played the phase diagram along with a non-trivial family
of gapped Hamiltonians.

FIG. 2. Phase diagram corresponding to the Hamiltonian
Eq. (1). In the diagram Jx + Jy + Jz = 1. The Hamiltonian
has two phases, a gapless spin liquid phase when Jx = Jy = Jz
at the center of the triangle, and a gapped Abelian Z2 spin
liquid realizing the toric code topological order everywhere
else (exlcuding the boundary of the triangle). The vector J(θ)
demonstrates a non-trivial path of gapped Hamiltonians, and
as described in the main text can be unrolled into a Kekulé
vortex binding a non-Abelian defect.

We have a non-trivial 1-parameter family of gapped
Hamiltonians given by any path which encloses the Jx =
Jy = Jz point. In Fig. 2 we have shown one non-trivial
path

J(θ) = (Jx(θ), Jy(θ), Jz(θ)), (3)

= (
1

3
,

1

3
,

1

3
) + λ(cos θ, cos(θ − 2π/3), cos(θ + 2π/3)).

Adiabatic evolution along this path indeed implements a
non-trivial automorphism of the toric code, up to a finite
depth circuit. This can be argued by smoothly deform-
ing the path toward the boundary of the phase diagram.
Near the boundary we can access the Hamiltonian per-
turbatively, and connect the resulting 1-parameter family
of Hamiltonians to the one described toward the end of
the previous section.

We can unroll the 1-parameter family of gapped Hamil-
tonians into a position-dependent Hamiltonian binding a
non-Abelian defect. In particular, we can write a vortex
in the Kekulé distortion via,

H =
∑
r

Hr(J(θ)). (4)

where r is a position coordinate labeling the unit cell and
Hr(J) is the Hamiltonian density with couplings given by
J = (Jx, Jy, Jz). We identify the polar coordinate of r
through r = (r cos θ, r sin θ) to determine the position
dependent Hamiltonian in Eq. (4). Labeling the exci-
tations as {1, e,m, f}, one would find that e turns into
an m upon traveling around the defect (localized at the
origin). This implies that the defect is invariant under
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fusion with f , and is therefore non-Abelian. Indeed, it
is the well known non-Abelian defect of the toric code
topological order [22], now realized as a smoothly vary-
ing position dependent Hamiltonian.

C. Remarks on the definition of a path of
topologically ordered Hamiltonians

Although the focus of this paper is paths of topologi-
cally ordered Hamiltonians, giving a precise definition of
this encounters a couple difficulties. A naive attempt at
defining it would be to consider some fixed lattice (say
a square lattice), with some fixed Hilbert space on each
site, and consider paths of Hamiltonians which obey some
conditions of bounded strength and range (each term in
the Hamiltonian is supported on some set of bounded di-
ameter R and has bounded operator norm J) and which
have some lower bound on the spectral gap (the spectral
gap bounded below by some fixed constant ∆E).

This definition has two problems. The first is techni-
cal, and the same difficulty is encountered when consider-
ing paths of invertible Hamiltonians or of free fermions.
This is that the definition might depend too much on
microscopic details. For example, if we have two paths
which cannot be deformed into each other if we have
∆E/J ≥ 0.1, but which can be deformed into each other
if we have ∆E/J ≥ 0.01. Should we regard them as dif-
ferent paths? To resolve this dependence on microscopic
details it is useful to do several things. We avoid giving
a precise definition but simply mention one approach.
We should stabilize, by considering Hamiltonians equiv-
alent if we tensor in additional local degrees of freedom
which have some trivial Hamiltonian. We should also
consider families of Hamiltonians, defined on a family
of lattices of increasing size, and we should consider the
space of Hamiltonians where the gap is uniformly lower
bounded by some positive constant for all Hamiltonians
in the family. Further, we should impose some “coher-
ence condition” for the family, similar to the notion of
“coherent families” in [23], requiring that a Hamiltonian
on a system of size L can be deformed to one on a system
of size 2L by stabilization (this is to avoid silly examples
where for example some of the Hamiltonians in the infi-
nite family are in one phase and some are in another).

The second difficulty is specific to the case of topolog-
ically ordered Hamiltonians. Many topologically ordered
Hamiltonians, such as the toric code, admit a gapped
boundary to the vacuum. So, if we work on the sphere,
which seems desirable since then there is a unique ground
state, one can construct a path of gapped Hamiltonians
from a trivial Hamiltonian to the toric code Hamilto-
nian: start with the trivial Hamiltonian and create a
small “bubble” of toric code near the north pole. Then,
slowly expand the bubble until it fills the entire sphere.
We want to exclude paths of Hamiltonians of this type.
There are a few possible ways to resolve this. First, note
that the length of this path (if we impose some uniform

bound on the derivative of terms in the Hamiltonian) is
proportional the linear size of the sphere. Thus, one res-
olution might be to restrict to paths which have a small
length compared to the system size. Note that it is not
possible to make this path from the trivial Hamiltonian
to the toric code Hamiltonian have constant length. One
could try to do this by using something similar to the
“pumping” approach described above. For example, we
could consider growing many bubbles of toric code on the
sphere, merging the nearby toric code bubbles, and then
annihilating the remaining trivial regions. However, at
intermediate times, when we have bubbles of trivial re-
gion, the system will not have a unique ground state, and
in the large system limit, there will be an exponentially
large degeneracy.

Another possible resolution without requiring a bound
on path length might be to consider a family of Hamilto-
nians on a torus or other topologically nontrivial mani-
fold, requiring a lower bound on the gap from the ground
state subspace (which now has dimension > 1) and the
rest of the spectrum.

D. Paths of invertible and topologically ordered
states

We now review the basic idea of classification of paths
of invertible states due to Kitaev, based on pumping
lower dimensional states, and discuss an extension to
paths of topologically ordered states, based on pumping
invertible domain walls (some similar extension appears
in unpublished work of Kitaev). An invertible domain
wall corresponds to some automorphism of the topologi-
cal order for a two dimensional theory, but may be more
general in higher dimensions.

The presentation is fairly loose here. We make some
assumptions without specifying them in too much detail.
Indeed, part of our later work will be to make some of
these assumptions precise in the case of doubled topolog-
ical order and to make an explicit construction.

Consider a d-dimensional system which is the ground
state of some gapped local Hamiltonian. It may be in
either some product (or other trivial) state or in some
state with topological order.

We assume, first, that given a sufficiently smooth, ori-
ented (d−1)-dimensional submanifold and given a choice
of (d− 1)-dimensional invertible state or domain wall, it
is possible to modify the Hamiltonian near that subman-
ifold so that the resulting Hamiltonian supports the de-
sired invertible state or domain wall near that subman-
ifold while still being gapped and local. Here, “near”
means within distance O(1), and if necessary we stabi-
lize by tensoring in extra degrees of freedom in product
states to allow the construction of the given state.

We will assume that the modified Hamiltonian is
uniquely specified by the choice of invertible state (or
domain wall) and submanifold. Remark: in the case of
creating an invertible state, there should be a unitary



6

supported near the submanifold that maps the ground
state of the original Hamiltonian (without the invertible
state) to the modified Hamiltonian (with the invertible
state). However, this is certainly not possible if we wish
to create an invertible domain wall. Further, this choice
of unitary is not unique.

Second, we assume that given any two choices of sub-
manifold M1,M2 which differ only on some local region
R, and given any choice of (d− 1)-dimensional invertible
state or invertible domain wall, and given some unitary
UM1

which creates the (d−1)-dimensional invertible state
(or domain wall) near M1, then there is some unitary V
supported within distance O(1) of R such that V UM1

creates the invertible state (or domain wall) correspond-
ing to M2, meaning that it maps the ground state of the
Hamiltonian corresponding to M1 to that corresponding
to M2.

Given these assumptions, it follows that given any two
such M1,M2 which differ on some region R, and given
corresponding Hamiltonians HM1 , HM2 , we may define
an path of gapped Hamiltonians which interpolates be-
tween HM1 and HM2 , with the Hamiltonians along the
path differing only within distance O(1) of region R. In-
deed, since V is supported within distance O(1) of R,
there is some (not closed) path Vs of unitaries where V0
equals the identity and V1 = V , with all Vs supported
within distance O(1) of R. Then, the path of Hamilto-
nians VsHM1

V †s for s ∈ [0, 1] is a path of gapped local
Hamiltonians whose final ground state is the same as
HM2

and we may then follow this path with linear inter-
polation from V HM1

V † to HM2
to give the desired path

of gapped Hamiltonians from HM1
to HM2

.

Using these assumptions, we may define, for any choice
of (d−1)-dimensional invertible state (or domain wall), a
corresponding path of d-dimensional Hamiltonians. The
ground state of this path of Hamiltonians gives a path of
invertible states (or topologically ordered states). The
idea is to consider a sequence of submanifolds which
starts and ends with the empty submanifold but proceeds
via a sequence of Morse transitions.

To illustrate the idea, and for definiteness, let us take
d = 2. Consider a geometry similar to Fig. 1. However,
we now imagine that the scale of the plaquettes is large
compared to the lattice spacing, though still O(1) size,
i.e., each plaquette contains a large number of degrees of
freedom.

Then, first “create” invertible states (or domain walls)
around all type 0 plaquettes, which, if the plaquette size
is sufficiently large, can be done (by the assumptions
above) with a product of unitaries supported near each
plaquette, with the support of the unitaries disjoint from
each other. Here, by creating the invertible states, we
mean simply to consider the path defined above from the
Hamiltonian HM1

to HM2
where M1 is empty and M2 is

the union of boundaries of type 0 plaquettes.

On the next step, we wish to create an invertible state
(or domain wall) supported around the boundary of the
union of plaquettes of type 0 and type 1. Finally, we cre-

ate an invertible state (or domain wall) supported around
the union of all the plaquettes, of type 0, 1, 2, i.e., we cre-
ate a state with no (d − 1)-dimensional invertible state
(or domain wall).

This gives a path of invertible (or topologically or-
dered) Hamiltonians in d = 2 dimensions. We say that
such a path pumps the given (d− 1)-dimensional invert-
ible state (or domain wall). A similar construction may
be done in any dimension. One should find a cellulation
of the ambient space which can be (d + 1)-colored and
then implement a similar sequence of Morse transitions.

Thus, in general, this construction gives a mapping
from (d − 1)-dimensional invertible states to paths of d-
dimensional Hamiltonians with trivial ground states and
gives a mapping from a pair consisting of a (d − 1)-
dimensional invertible state and a (d − 1)-dimensional
invertible domain wall to a path of d-dimensional Hamil-
tonians with topologically ordered ground states.

Let F denote the mapping from invertible states and
domain walls to paths. One may also construct a
mapping G in the inverse direction from paths of d-
dimensional Hamiltonians to the product of (d − 1)-
dimensional domain walls with invertible states. To
do this, parameterize the ambient space as a product
Rd−1 ⊗ R. Let the path parameter s of the Hamiltonian
Hs vary as a function of the last coordinate, which we call
z, i.e., we are considering a position dependent Hamilto-
nian. We choose the path parameter to be at the start
of the path for sufficiently negative z and to be at the
end of the path for sufficiently positive z, with the pa-
rameter increasing monotonically in some strip of width
` = O(1) near z = 0. Colloquially, we can think of this
as “unrolling” the path in some spatial region.

This gives some Hamiltonian supporting the given
topological order away from z = 0 with some nontriv-
ial behavior near z = 0. We expect that when the width
` becomes large, the Hamiltonian has a unique gapped
ground state and hence this describes some domain wall
near z = 0. We conjecture that these two mappings
(from paths in d dimensions to Hamiltonians in (d− 1)-
dimensions and from invertible states and domain walls
in (d − 1)-dimensions to paths in d dimensions) are ho-
motopy inverses to each other, in some sense that we
do not make precise, i.e., we conjecture that given some
invertible state and some domain wall, the composition
G ◦ F will give the given state and domain wall sup-
ported near z = 0, and conversely given some path Hs

in d-dimensions, the composition F ◦ G will give a path
of Hamiltonians H ′s which is homotopic (in the space of
gapped local Hamiltonians, which we do not make pre-
cise) to Hs.

These conjectures are a natural generalization of re-
sults of Kitaev in the case of invertible states.

Remark: we can use the map from paths of d-
dimensional Hamiltonians to (d− 1)-dimensional Hamil-
tonians to give a very simple way to verify that the path
of quadratic Hamiltonians described in the previous sec-
tion is nontrivial. See Fig. 3.
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FIG. 3. Turning a path of quadratic Hamiltonians in 2 dimensions into a nontrivial one-dimensional quadratic Hamiltonian.
There is one Majorana mode γj on each vertex j. Dimers (thick bonds) containing a pair of vertices j, k indicate that the
expectation value of iγjγk is equal to ±1. At the top of the left figure, and continuing further above, all type 0 edges are in a
dimer. Then, further down all type 1 edges are in a dimer, then even further down all type 2 edges are in a dimer. Finally, on
the bottom of the figure, we return to having all type 0 edges in a dimer. Counting the number of edges that cross a vertical
line (shown as a zig-zag pink line), it differs by an odd number from the “trivial path”, where all type 0 edges everywhere in
the figure are in a dimer as shown on the right.

III. EXPLICIT PATHS OF HAMILTONIANS

This section constructs explicit examples of 1-
parameter families of gapped Hamiltonians with fixed
topological order. The Hamiltonian is periodic in that
parameter and realizes a non-trivial automorphism of the
topological order under adiabatic evolution. In the lan-
guage of Conjecture 1, we provide explicit realizations of
elements in the fundamental group of gapped Hamilto-
nians with a fixed topological order. Unlike the Kekulé-
Kitaev realization of the toric code topological order dis-
cussed in Section II B, the families we look at here will
be commuting projector models. We give a non-trivial
and explicit construction of a 1-parameter family of toric
code Hamiltonians. We then outline a string-net con-
struction for a non-trivial 1-parameter family of Hamil-
tonians which generalizes the toric code construction.

A. One parameter family of Hamiltonians with
toric code topological order

In this subsection we provide an explicit construction
for a non-trivial 1-parameter family of Hamiltonians re-
alizing the toric code topological order. The family of

Hamiltonians is defined on the triangular lattice with
qubits at the vertices, see Fig. 4(a). We will 3-color the
“upward” triangles with integers r ∈ {0, 1, 2}, such that
all three colors meet at every corner of the upward tri-
angles. The 1-parameter family can be recognized as a
triangular lattice toric code at three special points. The
Hamiltonian at those three special points is given by,

H(r) = −
∑

p∈P (r)

−
∑

p∈P (r+1)∪P (r+2)

.

(5)

We have defined P (r) as the set of type r mod 3 pla-
quettes. Both terms are represented diagrammatically in
Fig. 4(b). To see that H(r) in Eq. (5) realizes the trian-
gular lattice toric code, replace every r-type plaquette by
a vertex, and every downward facing triangle by a line
connecting the adjacent vertices on the r-type plaquettes.

We now describe the 1-parameter family of unitary ma-
trices which rotate H(r) into H(r+1). The workhorse of
this unitary transformation will be the Kramers-Wannier
circuit shown in Fig. 4(c). Recall that CNOT(X ⊗ 1) =
X⊗X, CNOT(1⊗X) = 1⊗X, CNOT(Z⊗1) = Z⊗1,
and CNOT(1⊗Z) = Z⊗Z, where we are conjugating the
operator in braces with a CNOT gate with the first and
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FIG. 4. (a) A triangular lattice with qubits at the vertices shown on the left. The “upward” triangles are three-colored
according to r ∈ {0, 1, 2}. The lattice hosts a 1-parameter family of toric codes H(t). (b) At integer times t the the terms
appearing in the Hamiltonian are shown in the middle and are parameterized by r = t mod 3. We have denoted plaquettes
of type r mod 3 by pr. The unitary matrix in Eq. (10) continuously relates the three special points of the Hamiltonian. (c)
The circuit implementing Kramers-Wannier duality on three sites. We have labeled the corners of a triangle below the circuit
indicating how the circuit is applied to a given plaquette.

second qubits as control and target respectively. One can
check that DXj = ZjZj+1D and DZjZj+1 = Xj+1D.
We then define the following unitary matrix

J =
1√
2

(D + Z1DZ1) = MΛM†. (6)

The choice of conjugating D by Z1 is arbitrary, any other
choice of Zj would work equally well. For later con-
venience, we also write J as MΛM† for some unitary
matrix M and diagonal matrix [Λ]ij = δije

αj . We note
that D†D = DD† = 1 + X1X2X3, and X1X2X3D =
DX1X2X3 = D. One can check that D is unitary on
the subspace which has X1X2X3 = +1, and Z1DZ1 is
unitary on the subspace with X1X2X3 = −1. Putting
these together, it is straightforward to check that J
is unitary on the full Hilbert space. Lastly we have,
J†(X1X2X3)J = X1X2X3.

We can now construct a continuous path of unitary ma-
trices which rotate the three special Hamiltonians H(r)

for r ∈ {0, 1, 2} into each other. First we realize J as
a 1-parameter family of unitary matrices. Using the de-
composition J = MΛM† we can write a 1-parameter
family as

J̃(t) = M Λ̃(t)M†, (7)

with

[Λ̃(t)]ij =


δij if t < 0,

δije
itαj if 0 ≤ t ≤ 1,

δije
iαj if 1 < t.

(8)

Clearly J̃(t ≤ 0) = 1 and J̃(1 ≤ t) = J, and we contin-
uously interpolate between the identity and J as t goes
from 0 to 1. Denote J(p) as the unitary operator J on pla-

quette p, and similarly for J̃(p)(t) as indicated in Fig. 4.
Now define

U(t) =
∏

r∈{0,1,2}

∏
pr∈P (r)

J̃(pr)(t− r). (9)

The product runs over all upward facing triangles in
Fig. 4(a). As t goes from 0 to 3, we will have applied
the operator J to every upward plaquette. Starting with
the type 0 plaquettes, then the type 1 plaquettes, and
finishing with the type 2 plaquettes. We now define,

Ũ(t) = U([t]) [U(3)]
(t−[t])/3

(10)

where [t] denotes t mod 3. Note that Ũ(6) is a natural
isomorphism. We now define,

H(t) = Ũ(t)H(2)Ũ†(t). (11)

One can explicitly verify that at integer times t = r the
Hamiltonian is given by H(r+2 mod 3) using the relations
provided in the sentence leading up to Eq. (6). Note that
H(t) has period 3 while, up to a natural isomorphism,

Ũ(t) has period 6. Similarly, one can check that the
electric and magnetic string operators are interchanged
when t→ t+ 3.

B. String-net models

The construction we describe here takes a unitary ten-
sor category C and an invertible C −C bimodule category
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M as an input. The output is a 1-parameter family of
gapped Hamiltonians with topological order charector-
ized by Z(C), the Drinfeld center of C. The 1-parameter
family of gapped Hamiltonians describes a non-trivial
loop in the space of all gapped Hamiltonians realizing the
topological order described by Z(C). Similar to the model
described in Subsection. III A the Hamiltonian takes a fa-
miliar form at integer times. Indeed, at integer times, the
Hamiltonian is given by a string a string net model [24],
in a fixed background of invertible defects, described by
the invertible C − C bimodule M. We then adiabatically
move these invertible defects so that once per period, ev-
ery region of space has had an invertible domain wall pass
over it. In effect, an invertible domain wall is pumped to
the boundary once per period. There are many ways one
could realize this path of unitaries; we choose one that is
convenient for realizing the e ↔ m automorphism code
described in the next section. The technology needed
for this construction has been described in Ref. [25] and
Ref. [26]. We therefore will only review the essentials
needed from those papers and describe the new ideas
presented here.

Similar to Subsection. III A we first describe a sequence
of local unitaries which realize an automorphism of Z(C)
associated with M, and then explain how to write the
transformation as a 1-parameter family. It was proven in
Ref. [10] that every automorphism of Z(C) can be real-
ized by some invertible C−C domain wall. For simplicity
we will assume that both C and M are multiplicity free,
this is not essential for the construction but does simplify
the model. We start with the extended string-net model
described in Ref. [25], now in a background of invertible
defects. The model lives on the Hexagon lattice. The ex-
tended string net model is similar to the usual string net
model, with one modification, we add “dangling” degrees
of freedom to every plaquette as shown in Fig. 5. For ev-
ery vertex of the hexagon lattice, the extended string-net
construction places two additional string degrees of free-
dom which extend into and terminates on a given pla-
quette, again see Fig. 5. We follow the conventions of
Ref. [25], which we review below. The advantage of the
extended string-net, is that it allows us push the vertex
violations in the usual string-net onto the plaquettes.

Let us begin by describing the Hilbert space which the
Hamiltonian acts on. We have one degree of freedom per
edge:

He = HC ⊕HM, HC =
⊕
a∈C

Ca, HM =
⊕
α∈M

Cα.

(12)

The total Hilbert space is given by,

H =
⊗

e∈edges

He. (13)

Sitting inside H are three important subspaces which we
denote

V (r) ⊂ H (14)

FIG. 5. The extended string net model lives on a hexagonal
lattice with dangling edges terminating on each plaquette. An
element of the Hilbert space is specified by a labeling of the
graph as described in the main text. The thick blue lines
are labeled by bimodule degrees of freedom, while the thin-
ner black lines are labeled C degrees of freedom. A diagram
satisfying the fusion constraints will provide a vector in V (0).

for r ∈ {0, 1, 2}. The subspace V (r) is the subspace of
all edge configurations that (1) satisfy the fusion rules
at every vertex, and (2) have only bimodule degrees of
freedom on the edges surrounding the r-type plaquettes.
In Fig. 5, the thick blue lines carry bimodule degrees
of freedom, while the thinner black lines host C degrees
of freedom. In the subspace V (r), the “dangling” edges
entering the plaquettes will always be valued in C. We
remark that V (r) is the low energy Hilbert space of a lo-
cal commuting projector Hamiltonian. Indeed, the usual
vertex terms of the string-net model, now modified to in-
clude the bimodule degrees of freedom, project onto the
subspace V (r).

The Hilbert space V (r) forms a representation of the
tube category for each plaquette. For a review of the
tube category, see [27]. Irreducible representations of the
tube category are in one to one correspondence with sim-
ple objects of the Drinfeld center of C. Moreover, one can
define a full modular tensor category from the tube cate-
gory, with fusion and braiding defined diagrammatically
using a pair of pants. The corresponding modular tensor
category characterizes the excitations of the string net
model.

Here, the relevant subcategory of the tube category
consists of elements of the form,

∈ Tube(C). (15)

The picture on the left is viewed as a morphism in the
tube category from a circle with label x7 ⊗ x8 to a circle
with label x1⊗x2. Any valid labeling of the picture on the
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left gives an element of Tube(C). We now form the finite
dimensional algebra whose elements are given by complex
linear combinations of diagrams of the form (15), with
multiplication given by composition of tubes. Minimal
idempotents ei of this algebra correspond to irreducible
representations of Tube(C). Of particular importance are
the set of minimal idempotents which correspond to the
trivial particle in the associated modular tensor category.
We will pick one representative minimal idempotent of
the trivial particle and call it e0. Note, the isomorphism
class of e0 is unique, but the minimal idempotent e0 we
use to represent this isomorphism class is not unique.
With this, we can define our Hamiltonian as,

H = −
∑
p

∑
e
(p)
i :e

(p)
i
∼=e(p)0

e
(p)
i (16)

where e
(p)
0 is the distinguished minimal idempotent

mentioned above, now acting on plaquette p. And

e
(p)
i
∼= e

(p)
0 means e

(p)
i is isomorphic to e

(p)
0 , equivalently,

morTube(C)(e
(p)
0 → e

(p)
i ) ∼= C. All excited states can be

labeled by minimal idempotents ei ∈ Tube(C). In partic-
ular, we say plaquette p and eigenfunction |ψ〉 of H has

excitation ei localized to it if ei � e0 and e
(p)
i |ψ〉 = |ψ〉.

Finally, we construct isomorphisms between V (r) and
V (r+1 mod 3), which we use to define a 1-parameter fam-
ily of Hamiltonians that realize an automorphism of
Z(C). An invertible bimodule category provides an iso-
morphism of tube categories. The explicit isomorphism
and its matrix elements were computed in Ref. [26]. We
can use this isomorphism to construct a unitary trans-
formation on any given plaquette. Denote the corre-

sponding unitary operator U
(p)
M . Again, U

(p)
M is acting

on a finite dimensional vector space, the subspace of H
on which it is supported, and therefore we can write a
continuous 1-parameter family of unitary matrices which

starts at the identity and ends with U
(p)
M . One can now

use the same construction described in the last two para-
graphs of Subsection III A to arrive at a 1-parameter fam-
ily of Hamiltonians whose topological order realizes Z(C).

After one period of H(t), the invertible bimodule M
will have passed over the entire system. Consequently,
the automorphism corresponding to M will be imple-
mented once per period.

One important example to consider is when C = VecZ2

andM has one object. As a fusion category, C
⊕
M will

be equivalent to the Ising fusion category. The Drinfeld
center Z(C) is the toric code theory. In this very special
case, the dangling edges can be left out of the construc-
tion, and the resulting model and 1-parameter family of
Hamiltonians will be exactly that provided in Subsec-
tion III A. The next section shows how this 1-parameter
family of Hamiltonians can be realized by a sequence of
measurements and results in a non-trivial quantum code,
the e↔ m automorphism code. This leaves the potential
for generating more general automorphism codes using
the tools and techniques of fusion categories, which we

leave to future work.

IV. FROM PATHS TO CODES

This section presents a measurement-based quantum
code: the e ↔ m automorphism code. The e ↔
m automorphism code is defined by a periodic sequence
of measurements on a hexagonal lattice with qubits on
the edges. The instantaneous stabilizer group of the
e ↔ m automorphism code is equivalent to the stabi-
lizer group of a triangular super-lattice toric code with
additional decoupled degrees of freedom. The triangular
super-lattice varies from round to round, similar to the
honeycomb code. Following [1], the instantaneous stabi-
lizer group is defined to be the stabilizer group after some
given number of rounds of the circuit. Similar to the hon-
eycomb code, the e↔ m automorphism code implements
a non-trivial automorphism of the super-lattice toric code
once per period. Up to measurement-dependent signs,
the e ↔ m automorphism code implements the adia-
batic path discussed in the previous section. The pri-
mary tool we use for defining this code is a measurement-
based realization of Krammers-Wannier duality, which
ultimately comes from the non-trivial invertible bimodule
over VecZ2 mentioned at the end of the previous section.
The Krammers-Wannier duality can also be implemented
using the method of Ref. [28]. We remark that the trivial
invertible domain wall will also result in a Floquet code
with instantaneous stabilizer group given by the usual
toric code stabilizers. As one might expect, because the
automorphism labeling this automorphism code is trivial,
the resulting Floquet code simply measures different sub-
sets of the usual toric code stabilizers at different times.
We also comment that a straightforward generalization
of the e ↔ m automorphism code can be implemented
on any 3-colorable graph.

The e↔ m automorphism code has one qubit per edge
of the hexagonal lattice and period three. On the left side
of Fig. 6 we have displayed the geometry and one instance
of the code. The thick blue edges correspond to “dead”
qubits, while the thinner black edges correspond to “ac-
tive” qubits. At any given time-step, 2/3 of the qubits are
decoupled from the system (thick blue edges of Fig. 6).
At time step r mod 3 we run the Kramers-Wannier cir-
cuit shown on the right of Fig. 6 on the type r plaquettes.
During the Kramers-Wannier measurement sequence, the
dead qubits are transferred from the boundary of the
type r+1 mod 3 plaquettes to the boundary of the type
r + 2 mod 3 plaquettes. The measurement outcomes of
the Kramers-Wannier circuit at time step r determine
the vertex stabilizers of a toric code living on a trian-
gular super-lattice whose vertices are identified with the
r + 2 mod 3 plaquettes. After implementing the first
three rounds of the Kramers-Wannier circuit, all super-
lattice toric code stabilizers are measured.

The rest of this section is devoted to studying the e↔
m automorphism code described above in more detail.
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We first look at the Kramers-Wannier circuit. We then
compute the instantaneous stabilizer group of the e ↔
m automorphism code. We show that at any fixed time,
it is generated by the stabilizers of the toric code on a
triangular super-lattice.

A. The Kramers-Wannier Circuit

The Kramers-Wannier circuit presented on the
right of Fig. 6 plays a critical role in the e ↔
m automorphism code. This subsection analyzes
the Kramers-Wannier on 2N qubits, for the e ↔
m automorphism code on a hexagonal lattice N = 3
is the relevant case. More generally, a 3-colorable lat-
tice may have plaquette dependent N . We first apply a
Hadamard transformation on all qubits. The Hadamard
transformation on a qubit can be discarded if one inter-
changes all subsequent X and Z measurements on that
qubit. Thus the Kramers-Wannier circuit is equivalent
to one with only X and Z measurements; see Fig. 7 for
an example. The initial measurements in the Kramers-
Wannier circuit disentangle the odd qubits from the even
qubits through the single-qubit Z measurements. Hence,
without loss of generality, we may assume the incoming
wavefunction is not entangled with the odd qubits. Sim-
ilarly, the single-qubit X measurements at the end of the
circuit disentangle the even qubits. As the name sug-
gests, we will see the circuit takes a generic state on the
incoming odd qubits and outputs the Kramers–Wannier
dual on the outgoing even qubits. There is one caveat:
the Kramers-Wannier dual will depend on the measure-
ment outcomes. If all measurement outcomes are +1, we
get the standard Kramers-Wannier duality.

The evolution of a state through the Kramers-Wannier
circuit can be found by direct computation. We do so
by computing the matrix elements of the measurement-
based Kramers-Wannier circuit. Here we only display the
matrix elements between the even and odd qubits, as the
remaining degrees of freedom are decoupled and deter-
mined by the single-qubit X and Z measurements on the
odd and even qubits, respectively. Up to normalization,
the matrix elements are given by,

〈{a2j}|KWr,m|{a2j+1}〉 = (17)∏
j

(−1)(a2j+1+r2j+1)(a2j+a2j+2+m2j+r2j+2)

(−1)a2j(m2j−1+r2j−1)+r2j−1r2j .

Where r = (r1, · · · , r2N ) and m = (m1, · · · ,m2N ) are
the list of measurement outcomes and take values in F2N2 .
The r measurements determine the values of the incom-
ing and outgoing ancillas, as mentioned above. Notice
that KW0,0 is the standard Kramers–Wannier transfor-
mation.

It is helpful to analyze the commutation relations of

KWr,m with the operators ZZ and X. We have,

KWr,mX2j+1 = (−1)m2j+r2j+2Z2jZ2j+2KWr,m,
(18)

KWr,mZ2j−1Z2j+1 = (−1)m2j−1+r2j+1X2jKWr,m.
(19)

In particular we see that,

KWr,m

∏
j

X2j+1

 = KWr,m

∏
j

(−1)m2j+r2j

 ,

(20)∏
j

X2j

KWr,m =

∏
j

(−1)m2j−1+r2j−1

KWr,m.

(21)

Therefore we have four kinds of Kramers–Wannier du-
ality, determined by the mod 2 value of

∑
jm2j +

r2j and
∑
jm2j−1 + r2j−1. Equivalently, Eqns. (20)

and (21) show that the Kramers-Wannier circuit
measures X1X3 · · ·X2N−1 on the initial state, with

measurement outcome (−1)
∑

j m2j+r2j and prepares a
given X2X4 · · ·X2N in the final state, with eigenvalue
(−1)

∑
j m2j−1+r2j−1 .

B. The e↔ m automorphism code and its
instantaneous stabilizer group

The following measurement schedule defines the e ↔
m automorphism code: At time r run the Kramers-
Wannier circuit on all type r mod 3 plaquettes of the
hexagon lattice shown in Fig. 6, starting with r = 0.
We compute the instantaneous stabilizer group in the re-
maining part of this subsection and show it is equivalent
to a triangular lattice toric code along with a set of de-
coupled qubits at any given instant.

Before continuing it is helpful to introduce some no-
tation. Let P (r) be the set of plaquettes of type r, and
E(r) be the set of edges of type r. An edge e ∈ E(r)

necessarily terminates on two type r plaquettes. We will
also refer to the edges at the boundary of a plaquette p
by ∂p. Similarly, we will denote e 3 pr to label all edges
terminating on a plaquette pr ∈ P (r).

Let us start with the maximally mixed state. At time
step r we implement the Kramers-Wannier circuit on all
type r mod 3 plaquettes starting with r = 0. We begin
by running the Krammers-Wannier circuit on all type 0
plaquettes. The type 0 plaquettes have type 1 and 2
edges at there boundaries. After running the Kramers-
Wannier circuit on the type 0 plaquettes, the type 1 edges
will be dead, and the type 2 edges will be active. The
type 0 edges will be unmodified. Equation (21) tells us
that the value of

∏
e∈∂p0∩E(2) Xe for each p0 ∈ P (0) is

determined by the measurements done on the boundary
of plaquette p0. Thus, the instantaneous stabilizer group
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FIG. 6. On the left we have shown the geometry used in the e↔ m automorphism code. Each edge has one qubit. The thick
blue lines denote “dead” qubits which are decoupled from the system in the X-basis. The thinner black lines denote “active”
qubits. The active qubits form a triangular-super lattice with vertices identified with the 0-type plaquettes. On the right
we have drawn the Kramers-Wannier circuit and identified the qubits which it acts on for a particular plaquette on the left.
The measurement-based Kramers-Wannier circuit takes the odd denoted a1, a3 and a5 to their Kramers-Wannier dual denoted
a2, a4, and a6. The qubits b1, b3, and b5 are decoupled from the system into the X-basis by the first round of measurements.
The qubits associated with measurements r1, · · · , r6 play the role of ancilla qubits. Depending on the measurement outcomes
{rj} and {mj} the circuit will implement one of four types of Kramers-Wannier duality as described in the main text.

FIG. 7. An example of the Kramers-Wannier circuit without
the Hadamard gates as described in the main text.

is given by ISG0 = 〈
∏
e∈∂p0∩E(2) Xe, Xe′ : p0 ∈ P (0), e′ ∈

E(1)〉.

Next we measure the Kramers-Wannier circuit on the
plaquettes of type 1. Initially, all type 2 qubits are ac-
tive and all type 1 qubits are dead. After the Kramers-
Wannier circuit on the type 1 plaquettes, the type 1 and
2 edges will be dead, and the type 0 edges will be active.
The circuit will measure a new set of stabilizers associ-
ated with the type 1 plaquettes given by

∏
e∈∂p1∩E(0) Xe

for p1 ∈ P (1). As before, the stabilizer eigenvalue can

be inferred by the measurement outcomes via Eq. (21).
The circuit will also transfer the stabilizer associated
with the type 0 plaquettes in ISG0, from the product
of three X operators, to a product of six Z operators
due to the relation given in Eq. (18). Specifically, the
stabilizer

∏
e∈∂p0∩E(2) Xe ∈ ISG0 becomes ±

∏
e3∂p0 Ze,

where e 3 ∂p0 denotes a type 0 edge e that terminates on
a plaquette p0. Again, the overall ± sign of the stabilizer
can be inferred from the measurement outcomes. Thus
we have ISG1 = 〈

∏
e∈∂p1∩E(0) Xe,

∏
e3∂p0 Ze, Xe′ : p1 ∈

P (1), p0 ∈ P (0), e′ ∈ E(1) t E(2)〉.
Finally, we run the Kramers-Wannier circuit on the

type 2 plaquettes. The circuit measures a new X
type stabilizer associated with the type 2 plaquettes
given by ±

∏
e∈∂p2∩E(1) Xe for p2 ∈ P (2). The sign

of the stabilizer can be inferred from the measure-
ment outcomes. The circuit also transforms the X
stabilizer associated with the type 1 plaquettes to a
Z type stabilizer associated with the 6 edges ter-
minating on the type 1 plaquette. Thus ISG2 =
〈
∏
e3p1 Ze,

∏
e∈∂p2∩E(1) Xe,

∏
e∈∂p0∩E(1) Xe, Xe′ : p0 ∈

P (0), p1 ∈ P (1), p2 ∈ P (2), e′ ∈ E(0) t E(2)〉. We see
that ISG2 is simply the stabilizers of a triangular lattice
toric code whose vertices are identified with the type 2
plaquettes. All subsequent steps can be analyzed very
similarly.

In summary, the instantaneous stabilizer groups for
the e ↔ m automorphism code after implementing

KW(r mod 3) are given by,
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FIG. 8. Diagrammatic description of the instantaneous stabilizer group for the e ↔ m automorphism code. Thick blue edges
denote “dead” qubits, decoupled from the system in the X basis. Thinner black edges denote “active” qubits participating in
the toric code existing on the triangular super-lattice with vertices given by the r = 1, 2, 0 plaquettes as we follow the diagrams
from left to right. Associated with each plaquette that is surrounded by a thick blue line is a stabilizer given by the product of
six Z operators on the edges terminating on the plaquette. Associated to all other plaquettes are stabilizers given by a product
of three X operators on the thinner black edges surrounding the plaquette.

ISG0 = 〈
∏

e∈∂p0∩E(2)

Xe, Xe′ : p0 ∈ P (0), e′ ∈ E(1)〉 (22)

ISG1 = 〈
∏

e∈∂p1∩E(0)

Xe,
∏
e3∂p0

Ze, Xe′ : p1 ∈ P (1), p0 ∈ P (0), e′ ∈ E(1) t E(2)〉 (23)

ISGr≥2 = 〈
∏

e3pr−1

Ze,
∏

e∈∂pr∩E(r+2)

Xe,
∏

e∈∂pr+1∩E(r+2)

Xe, Xe′ : pr ∈ P (r), e′ ∈ E(r) t E(r+1)〉. (24)

We have provided a diagrammatic description of ISGr≥2
in Fig. 9. When r ≥ 2 the stabilizers are exactly those of
a triangular super-lattice toric code with vertices identi-
fied with r + 2 mod 3 plaquettes.

Let us consider one detail. For a superlattice toric code
on a closed manifold, the product of all plaquette stabiliz-
ers is equal to +1 and the product of all vertex stabilizers
is also equal to +1. How does this constraint get passed
between rounds of measurement? The new plaquette sta-
bilizers inferred after each round of measurement can be
±1, and so it is not obvious why the product of the su-
perlattice vertex or plaquette stabilizers should be fixed.

Suppose we have a state which is stabilized by ISGr−1,

with each stabilzer’s expectation value given by s
(r−1)
p .

Where p runs over every plaquette of the hexagonal lat-
tice. Note that (r − 1) mod 3 does not necessarily co-
incide with plaquette type in the subscript of the quan-

tity s
(r−1)
p . We now run the Kramers-Wannier circuit

KW(r mod 3) on every p ∈ P (r mod 3). Denote the mea-
surement outcomes of the Kramers-Wannier circuit on
plaquettes p ∈ P (r mod 3) as rp = (rp,1, · · · , rp,6) and
mp = (mp,1, · · · ,mp,6). From (18) and (19) we learn
that

s(r−1)p = (−1)
∑

j mp,2j+rp,2j (25)

s(r)p = (−1)
∑

j mp,2j+1+rp,2j+1 (26)

where p ∈ P (r). That is, we measure s
(r−1)
p and prepare

fixed s
(r)
p for each p ∈ P (r mod 3). We also learn how our

stabilizers on plaquettes p ∈ P (r−1 mod 3)tP (r+1 mod 3)

are updated, we have,

s(r)p = (−1)
∑

p′3p∩P (r mod 3) fp′ (rp′ ,mp′ )s(r−1)p , (27)

with p ∈ P (r−1 mod 3), and,

s(r)p = (−1)
∑

p′3p∩P (r mod 3) gp′ (rp′ ,mp′ )s(r−1)p , (28)

with p ∈ P (r+1 mod 3). We have used p′ 3 p∩P (r mod 3)

to denote a plaquette p′ ∈ P (r mod 3) which is neighbour-
ing p. The function fp′ and gp′ can be determined using
Eqns. (18) and (19). Thus we can infer the evolution
of the plaquette stabilizers from ISGr−1 to ISGr under

the Kramers-Wannier circuit KW(r). Note, that we only
measure the r mod 3 plaquette stabilizers at this step.

We can now compute how the product of the superlat-

tice toric code stabilizers evolve under KW(r). We have
the updated products of plaquette stabilizers given by,
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FIG. 9. Graphical depiction of the ISGr. Each plaquette is associated with one stabilizer, either given by a product of six Z
operators or three X operators. Each thick blue edge denotes a dead qubit, and correspondingly contributes one single site X
stabilize per thick blue edge, shown on the right.

∏
p∈P (r−1 mod 3)

s(r)p =

 ∏
p∈P (r mod 3)

(−1)
∑

j mp,2j+rp,2j

 ∏
p∈P (r−1 mod 3)

s(r−1)p (29)

∏
p∈P (r+1 mod 3)

s(r)p =

 ∏
p∈P (r mod 3)

(−1)
∑

j mp,2j+1+rp,2j+1

 ∏
p∈P (r+1 mod 3)

s(r−1)p (30)

Where we have used that
∑
p∈P (r mod 3) fp(rp,mp) =

∑
p∈P (r mod 3)

∑
jmp,2j + rp,2j mod 2, in the first line, and a

very similar expression in the second line. We have,

∏
p∈P (r−1 mod 3)

s(r)p =

 ∏
p∈P (r mod 3)

(−1)
∑

j mp,2j+rp,2j

 ∏
p∈P (r−1 mod 3)

s(r−1)p (31)

=

 ∏
p∈P (r mod 3)

s(r−1)p

 ∏
p∈P (r−1 mod 3)

s(r−1)p (32)

The left side of the equation is the product over all vertex stabilizers of the triangular superlattice toric code at time
step r, while the right side is the product over all plaquette stabilizers of the triangular superlattice time step r − 1.
Similarly, we have∏

p∈P (r mod 3)

s(r)p
∏

p∈P (r+1 mod 3)

s(r)p =
∏

p∈P (r mod 3)

(−1)
∑

j mp,2j+1+rp,2j+1

×

 ∏
p∈P (r mod 3)

(−1)
∑

j mp,2j+1+rp,2j+1

 ∏
p∈P (r+1 mod 3)

s(r−1)p (33)

=
∏

p∈P (r+1 mod 3)

s(r−1)p (34)

The left side is the product of all plaquette stabilizers of the triangular superlattice toric code at time step r, which
is equal to the product of all vertex stabilizers of the triangular superlattice toric code at time step r − 1.

C. Logical Operators

The superlattice toric code has well-known logical op-
erators: a product of Pauli X operators on a homologi-
cally nontrivial loop on the lattice or a product of Pauli Z
operators on a homologically nontrivial loop on the dual
lattice. Arbitrarily, one of these may be called electric
and the other may be called magnetic.

If we measure some logical operator of the superlattice

toric code, we claim that this maps to some other logical
operator of the toric code after applying the KW circuit.
To see this, note that we have verified that the ISG is that
of the superlattice toric code. If we measure some logical
operator of the superlattice toric code, this increases the
rank of the ISG by one, and the increase in rank must
be maintained from one round to the next since the rank
of the ISG cannot reduce under measurement. So, the
result after any number of further rounds must also be
a superlattice toric code with one additional stabilizer,
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and that additional stabilizer must be a logical operator.
Without doing any calculation, we can infer that the

electric and magnetic operators interchange every round.
Indeed, the KW circuit maps a product of X operators
to a product of Z operators and vice-versa. Of course,
the stabilizer group of the superlattice toric code changes
every round, but it is periodic mod 3; since 3 is odd, the
electric and magnetic operator interchange every period.

V. SPACE OF HAMILTONIANS OF A
TOPOLOGICAL ORDER

A. Paths of paths

We now consider the second homotopy group: maps
from S2 to the space of gapped Hamiltonians. Colloqui-
ally, we refer to this as “paths of paths”.

Given any such map from S2 to the space of gapped
Hamiltonians, we can follow a similar “unrolling” proce-
dure to that we used to construct maps from paths to
domain walls. Restricting to the case of paths of Hamil-
tonians in two dimensions, we consider a two-dimensional
Hamiltonian where the Hamiltonian varies as a function
of position. Define a map from the plane to S2 as fol-
lows. Map the origin to the north pole, and map all
points outside some disc of radius ` to the south pole,
with the latitude increasing monotonically and continu-
ously as a function of radius. The longitude on S2 will
be equal to the angular coordinate on the plane.

Then, consider a spatially varying Hamiltonian, where
the Hamiltonian in some location on the plane is given by
mapping that location on the plane to S2 and then map-
ping that to some gapped Hamiltonian. We expect that
if ` is taken large, so that the Hamiltonian varies slowly
as a function of position, the resulting Hamiltonian will
be gapped with a unique ground state.

If indeed it is gapped with a unique ground state, then
it describes the given topological order far from the ori-
gin, but the state near the origin may be different. Thus,
we expect that the ground state of this spatially varying
Hamiltonian corresponds to some anyon in the original
topological order. (Remark: of course on S2 we cannot
have a single anyon in the ground state; instead we con-
sider the system on an infinite plane or we may insert
an additional anyon far away to compensate that added
near the origin.)

If the ground state is unique for any such smoothly
varying Hamiltonian, the anyon should be an abelian
anyon: if it were not, we could create two such anyons
using a smoothly varying Hamiltonian and there would
be more than one fusion channel, which we expect corre-
sponds to a degenerate ground state. (Remark: as in the
paragraph above, two anyons on S2 have a unique ground
state because they must fuse to the vacuum. However,
on an infinite plane, there is no such constraint. Alter-
natively, we could have more than two such anyons.)

Thus, we conjecture that this unrolling process gives

a map from “paths to paths” to abelian anyons. One
may ask whether this map is surjective. Further, it
is of interest to construct the inverse map: a path of
paths corresponding to any given abelian anyon. We
will construct this inverse in the specific case of the two-
dimensional toric code by constructing a lattice Hamil-
tonian that “varies smoothly” with position, that is in
the same phase as the toric code Hamiltonian, and that
describes an anyon: e,m, or f .

Precisely, we want a family of gapped local Hamilto-
nians on an infinite square lattice, with the family de-
pending on some control parameter, `. We write this
Hamiltonian as H =

∑
i hi, where the sum is over sites

i, where there is an implicit dependence on `, and where
each hi is supported within distance O(1) of site i. Out-
side a disc of radius `, hi should be independent of i, and
should be a Hamiltonian which is in the same phase as
the toric code Hamiltonian, which for us means that up
to a local quantum circuit its ground state is the same
as the toric code Hamiltonian up to stabilization by ad-
ditional ancilla degrees of freedom in a product state.
Further, for all i, we should have ‖hi − hi+x̂‖ = O(1/`)
and ‖hi−hi+ŷ‖ = O(1/`) as `→∞, where x̂, ŷ are lattice
basis vectors; this is what is meant by the requirement
that the Hamiltonian vary smoothly. Finally, this Hamil-
tonian should describe a configuration with an e particle
in that in the ground state, expectation values of loop
operators which encircle the disc will be the same as in
the toric code with an e particle in the disc. Of course,
if we drop the requirement that the Hamiltonian vary
smoothly, this is easy: simply flip the sign of one vertex
term.

In the construction below, our Hamiltonian will be
gapped and indeed it will be a commuting projector
Hamiltonian with frustration-free ground state.

Remark: without doing any explicit calculation, we
know that we can construct this for a fermionic de-
fect f . For any quadratic Majorana Hamiltonian with
short-range couplings, we can describe some correspond-
ing honeycomb model which describes that Majorana
Hamiltonian coupled to a Z2 gauge field (if the Majorana
Hamiltonian is nearest neighbor, then the correspond-
ing honeycomb model has quadratic spin interactions,
while if the Hamiltonian is not nearest neighbor, then
there are longer range interactions). Take the Majorana
Hamiltonian to be in the trivial phase (so that the cor-
responding honeycomb model is in the toric code phase)
but construct it so that the ground state has odd fermion
parity. This is possible since π2 of quadratic Majorana
Hamiltonians in two dimensions is Z2 by the K-theory
classification[19].

However, this calculation is not as explicit as we would
like, and further it only gives us a way to construct f .
We would like a way to construct e (and, dually, m, and
hence, by combining them, f). We now give this.

Our Hamiltonian will be a toric code Hamiltonian on
a square lattice, with qubits on edges, and with some
modifications to the terms inside the disc of radius `.
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FIG. 10. Toric code. Qubits are on edges, both those shown
in solid and in dashed lines. The Hamiltonian will be ap-
proximately periodic with period 4. Vertex term on center
vertex is flipped and the terms are conjugated by unitaries as
described in text. Symbols x, x∗ are explained in text.

However, the translational invariance will be by distance
four in either direction, rather than one; i.e. thus, the
translational invariance is on a coarse lattice and the ba-
sis vectors x̂, ŷ in the definition above will be the vectors
(4, 0) and (0, 4) in this fine lattice. That is, each unit
cell of the lattice will contain 32 rather than two qubits.
Note that a local quantum circuit will disentangle each
unit cell to a toric code on a coarser lattice, with two
qubits in the toric code in each cell and thirty ancilla
qubits.

We use the convention that qubits are on edges, that
vertex terms are products of Pauli Z on the edges inci-
dent to that vertex, and that plaquette terms are prod-
ucts of Pauli X on the edges in that plaquette. We asso-
ciate e particles with vertex defects and m particles with
plaquette defects.

We modify the Hamiltonian by flipping the vertex term
located in the center of Fig. 10, shown as a solid dot. We
also unitarily conjugate the Hamiltonian by a product of
unitaries; these unitaries all have support with diameter
O(1). Thus, indeed this describes an e particle (regard-
less of the choice of unitaries) as the unitary conjugation
does not change the anyon type. What remains is to
construct the unitaries so that the Hamiltonian varies
smoothly.

Introduce coordinates (x, y) for the vertices. For every
solid edge on the x and y axis, there is a unitary, given
below. Also, for every square (formed by 4 ∗ 2 = 8 solid
edges), there is a unitary (also given below) supported
on all edges within that square and within distance 1 of
that square.

We only show part of the solid edges in the figure. One
should extend them by period-4 translation invariance on
the positive x axis and on the negative x axis; note: the

edges are not period-4 translation invariant near the ori-
gin, as shown. Similarly, extend them by period-4 trans-
lation invariance on the positive y axis and on the neg-
ative y axis, and also extend by period-4 translation in-
variance in each of the four quadrants of the plane formed
by the axes.

The solid edges can be understood as follows: a hori-
zontal edge is solid if it connects (x, y) to (x+ 1, y where
y = 0 mod 2 and where either x > 0 and x ∈ {2, 3}
mod 4 or x < 0 and x ∈ {0, 1} mod 4. Similarly, a ver-
tical edge is solid if it connects (x, y) to (x, y + 1) where
x = 0 mod 2 and where either y > 0 and y ∈ {2, 3}
mod 4 or y < 0 and y ∈ {0, 1} mod 4.

For any given solid edge j on the x- or y-axis, the
unitary on that edge will be equal to exp(iθjXj) where
Xj is the Pauli X operator on that qubit. Let rj be the
distance of that edge from the origin. Let the angle θj
be some fixed (independent of `) function of rj/`, with
that function equal to π/2 for small rj/` and equal to 0
for rj/` = 1. Thus, close to the origin (i.e., small rj/`)
the effect of this unitary is to flip the vertex terms on
the vertices which are in one solid edge (i.e., those at
the ends of a segment of two solid edges, which are those
with an x or x∗ in the figure). We emphasize that we use
the same rule for the positive and negative x-axis and for
positive and negative y-axis: rj is the absolute value of
the x-coordinate for edges on the x-axis and the absolute
value of the y-coordinate for edges on the y-axis.

To describe the unitaries on the squares, first consider
the squares which are closest to an axis. These are the
squares immediately above or below the x-axis, or im-
mediately to the left or right of the y-axis. On the four
squares which are closest to the origin (which are equally
close to both x- and y-axis), we flip the vertex terms on
the four corners of the square; this can be accomplished
by a unitary rotation, where we either apply exp(iπ2X)
on both vertical solid edges or on both horizontal solid
edges. On the remaining squares which are immediately
above or below the x-axis, we apply unitaries on the hor-
izontal solid edges, following the same rules as in the
above paragraph. On the remaining squares which are
immediately to the left or right of the y-axis, we apply
unitaries on the vertical solid edges, again following the
same rules as in the above paragraph. Note then that
for all squares sufficiently close to the origin, we flip all
vertex terms at the four corners of the square (i.e., where
the x, x∗ are in the figure).

One may verify that the Hamiltonian as defined varies
smoothly near both axes, including near the origin, as
the vertices of the squares have period-4 translation in-
variance (even though the solid edges do not have this
invariance near the origin). That is, at least so far as
we have defined the Hamiltonian, it varies smoothly, but
we have not yet defined the Hamiltonian on most of the
squares.

Before defining the rule for the remaining squares, we
need a general property of commuting projector Hamil-
tonians: the Hilbert space of edges outside the square
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but within distance 1 of the square can be written as a
sum of tensor products of Hilbert spaces:

H = ⊕αHαbdry→int ⊗Hαbdry→ext, (35)

so that the following holds. (Here the terminology
Hαbdry→int is intended to imply that this is a Hilbert space
supported on the boundary of the square but coupled to
the interior.) Let Πα project onto space α; these gener-
ate the algebra of central elements[29]. Different choices
of α will be called “superselection sectors”. Call the
Hilbert space of edges inside such a square Hint. Then,
the Hamiltonian terms with support on a square can be
written as

Hsquare =
∑
α

ΠαOαint;bdry→int, (36)

where Oαint;bdry→int acts on Hint ⊗ Hαbdry→int, so that
it acts trivially on Hαbdry→ext. Note that all squares
have the same geometry up to translation, so dif-
ferent choices of squares will have isomorphic spaces
Hbdry→ext,Hbdry→int,Hint. Let us define a Hamiltonian
on a square to be a Hamiltonian which can be written as
in Eq. (36). Thus, such a Hamiltonian is defined by four
Hermitian matrices, corresponding to the four different
choices of superselection sector.

Now we define a rule for the remaining squares. We
will first define the terms in the Hamiltonian, and then
show that they can be obtained by unitarily conjugating
the original Hamiltonian. The x- and y-axes divide the
plane into four quadrants. Consider any one of these four
quadrants (we follow the same rule for all of them). For
example, choose the quadrant with x, y > 0. The rules
for the squares immediately above the x-axis and imme-
diately to the right of the y-axis define a Hamiltonian on
a square for a discrete set of points along a continuous
path which starts at x = `, y = O(1/`), moves horizon-
tally close to the origin to x = O(1/`), y = O(1/`), and
then moves vertically to x = O(1/`), y = `. Call this
path P . We can extend this in any obvious way (for ex-
ample by interpolating the unitaries which conjugate the
Hamiltonian) to a continuous function from path P to the
space of Hamiltonians on a square with all Hamiltonians
in the image being isospectral in each superselection sec-
tor, meaning that for each choice of α, all Hamiltonians
in the image have the same eigenvalues and multiplici-
ties. Note that at the endpoints of P , the Hamiltonian
on the square is the same as in the original toric code
Hamiltonian, and so the image of this map is a closed
path Q.

For any given spectrum of eigenvalues and multiplici-
ties, the space of Hermitian matrices with that spectrum
has trivial fundamental group[30], so this path Q can be
deformed to a constant path, keeping the endpoints fixed.
So, we use any such deformation to define the Hamilto-
nian terms in the rest of the quadrant: deform the given
path P to a circular arc at fixed distance from the origin
and with the same endpoints. As we deform the path P ,

also deform the path Q to a constant path. This defines
a continuous mapping from the plane to Hamiltonians on
a square. Then, to define the Hamiltonians terms in the
plane, for each square in the plane use the image of the
midpoint of the square under this mapping, giving a dis-
crete set of points on the plane. Since these Hamiltonians
are isospectral in each superselection sector, this choice
of Hamiltonian terms can be described by some unitary
conjugation supported within distance 1 of the square.

Remark: the period-4 translation invariance makes it
evident that the Hilbert spaces Hαbdry,int for different
choices of square are supported on different sets of edges.
A smaller period could have been used.

Remark: to generalize this construction beyond the
toric code, suppose we wish to create some abelian anyon
x. Let x∗ denote the dual anyon. We sketch how this
is possible, under certain assumptions on local Hamilto-
nians which expect can be satisfied in general for any
quantum double. Modify the vertex term to create x on
the center vertex. Modify terms in the Hamiltonian sup-
ported near each pair of solid edges on the axes to create
pairs x, x∗ near the origin as shown in Fig. 10; in general,
this may require a single unitary which is supported near
that pair of solid edges, rather than a product of uni-
taries on each solid edge. Deform this Hamiltonian along
the axis until at distance ` it has returned to the original
Hamiltonian. For squares immediately below the x-axis,
create x, x∗ as shown by modifying the Hamiltonian the
near the horizontal solid edges: note that the order of
x, x∗ is reversed on the pair of horizontal edges closest to
the axis. Do this modification using period-4 translation
invariance, so at distance 4 below the x-axis the modi-
fication of the Hamiltonian is the same as that on the
x-axis, while at distance 2 the Hamiltonian is reflected
about the y-axis. Make a similar construction for squares
near the y-axis. The crucial requirement is that for the
four squares closest to the origin, it is possible to create
the anyon pattern as shown while preserving translation
invariance by distance 4 moving towards either x or y
axis, and using an isospectral Hamiltonian. We expect
that this can be satisfied in general for an abelian anyon
x; however if x is non-abelian then this will not be pos-
sible as there is more than one fusion channel so it will
not be possible to have an isospectral Hamiltonian. Then
once the Hamiltonian is defined on these squares, use the
same deformation argument to define it in each quadrant.

Remark: we have constructed a spatially slowly vary-
ing Hamiltonian with a gap that describes an e anyon.
We could instead use a “path of paths” to construct a
path of one-dimensional trivial domain walls[31] in a two-
dimensional Hamiltonian; we expect that in this case the
path of paths acts as an e-type logical operator, pumping
an e particle along the domain wall.
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B. Topology of spaces of Hamiltonians

Given a topological order T , we are interested in the
space ST of all gapped Hamiltonians that realize T .[32]
Obviously the whole space ST (and any invariant that is
derived from this space) is an invariant of the topological
order T . In this section, we will focus on two-dimensional
topological order and the homotopy groups of such spaces
of Hamiltonians.

In two spatial dimensions, it is widely believed that a
topological order is encoded by a genus of an anyon model
B.[33] Given a 2-dimensional topological order (B, c), we
will denote the space of gapped Hamiltonians that real-
ize (B, c) by SB. We expect the space SB is connected,
however, we will fix a connected component ScB of SB if
it is not.

Conventional group symmetries of a topological order
(B, c) are given by automorphisms of the anyon model

B, which is denoted as Autbr⊗ (B). For the toric code,

Autbr⊗ (B) is Z2 and generated by the exchange of e,m
anyons. It is a fundamental mathematical result that
the group Autbr⊗ (B) is isomorphic to the group Pic(B)
of invertible domain walls of B [10], which is a mathe-
matical manifestation of the symmetry-defect correspon-
dence. The Picard group Pic(B) can be lifted to a cate-
gorical 2-group Pic(B). Our Conjecture 1 in Section I is

related to the following properties of the space of gapped
Hamiltonians ScB.

A symmetry of the topological order (B, c) acts on
the space ScB, not necessarily fixing each Hamiltonian,
but sending each Hamiltonian to one that realizes the
same topological order. Since ScB is not necessarily con-
tractible, so the space ScB could not be in general the
total space EG of a fibration EG → BG for a group G.
Instead we believe it is related to the classifying space
BG for G = Autbr⊗ (B). More precisely we conjecture
that the space ScB is closely related to some version of
the classifying space BPic(B) of the categorical 2-group

Pic(B): there is a continuous map from ScB to BPic(B)

that induces surjective maps on all homotopy groups.

Given a fixed Hamiltonian in ScB, the differences of
other Hamiltonians with respect to this one should real-
ize some invertible topological orders (possibly only the
trivial one). It follows that there could be a fibration
S−1B → ScB → SIntB with fiber S−1B , where S−1B is the
space of Hamiltonians that realize only invertible topo-
logical orders and SIntB the space of Hamiltonians realiz-
ing the intrinsic topological order (B, c) up to invertible
ones. We conjecture that the homotopy groups of SIntB
are the same as that of BPic(B) (the same should hold

for the fermionic version).
The conjectured relation between ScB and BPic(B) is

supported by the following calculation of the homotopy
groups of BPic(B) [Prop. 7.3 of [10]]. The fundamental

group of BPic(B) is the Picard group Pic(B). There-

fore, a closed loop of gapped Hamiltonians in ScB gives
rise to an automorphism of the anyon model B. The
second homotopy group of BPic(B) is the same as the

group of abelian anyons of B. Hence, a second homotopy
class of the space of gapped Hamiltonians ScB should be
sent to an abelian anyon of B. The abelian anyons of an
anyon model B are in one-one correspondence with natu-
ral transformations of the identity functor of B. It follows
that a path between two second homotopy classes of ScB
should be the categorical morphism between two natural
transformations, which is called a modification. So we
conjecture that a third homotopy class of the Hamilto-
nian space ScB should be mapped to a modification in the
theory. All our results in this paper are consitent with
Conjecture 1.

VI. DISCUSSION

In this paper, we have developed a connection be-
tween automorphism codes and the fundamental group
of the space of gapped Hamiltonians. This development
has shed new light on the recently developed honeycomb
code. In Sec. II A we explained how the honeycomb code
could be understood as an automorphism code, which is
most easily seen with fermionic variables. In Sec. II B
we further study the physics of the honeycomb code
in fermionic variables finding a phase diagram with a
non-trivial fundamental group. Sec. III provides an ex-
plicit construction for non-trivial paths of topologically
ordered Hamiltonians, each realizing a Drinfeld center.
We further investigated one such path of Hamiltonians
and turned it back into a non-trivial automorphism code
in Sec. IV. Lastly, in Sec. V A we demonstrated the exis-
tence of explicit elements of the second homotopy group
of gapped phases of matter. These calculations sup-
port the conjectured fundamental and second homotopy
groups in Conjecture 1.
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