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We present a formulation of relativistic self-consistent GW for solids based on the exact two-
component formalism with one-electron approximation (X2C1e) and non-relativistic Coulomb in-
teractions. Our theory allows us to study scalar relativistic effects, spin-orbit coupling, and the
interplay of relativistic effects with electron correlation without adjustable parameters. Our all-
electron implementation is fully ab initio and does not require a pseudopotential constructed from
atomic calculations. We examine the effect of the X2C1e approximation by comparison to the
established four-component formalism and reach excellent agreement. The simplicity of X2C1e en-
ables the construction of higher order theories, such as embedding theories, on top of perturbative
calculations.

I. INTRODUCTION

Relativistic effects, such as spin-orbit coupling (SOC),
are essential for understanding the physics of quantum
materials including correlated topological insulators [1],
topological superconductors [2], quantum spin liquids [3],
and topological semimetals [4].

SOC effects are particularly important in materials
with heavy elements, such as those with partially occu-
pied d− and f−electron shells. They include several new
5d transition metal oxides (iridates, osmates) [5, 6], mul-
tiferroic materials [7], and heterostructures of transition
metal systems [8], where the interplay of relativistic ef-
fects and electron correlation may lead to magnetism and
electron localization. Analyzing SOC effects in these sys-
tems is crucial for understanding the nature of electronic
states. Harnessing and controlling SOC effects may lead
to novel designs for applications and devices.

The computational description of relativistic effects
in molecular and periodic systems has a long history.
Relativistic quantum effects are described by the Dirac,
rather than the Schrödinger, equation [9]. A solution of
the Dirac equation employs the so-called four-component
formalism, where the problem is expanded into Dirac
bispinors, which describe spin as well as electrons and
positrons. In molecular systems, the Dirac equation for
Gaussian-type orbitals (GTOs) has been studied exten-
sively in the context of mean-field and density functional
theory (DFT) yielding numerous mature implementa-
tions [10–13]. Extensions of the four-component the-
ory to configuration interaction (CI) and coupled-cluster
(CC) theory [14, 15] are active fields of research.

Two-component relativistic Hamiltonians, where the
positronic degrees of freedom are eliminated, result in
a useful compromise in terms of computational cost be-
tween the scalar non-relativistic and the four-component
relativistic one-electron Hamiltonians. They typically in-
crease the computational cost by one order of magnitude
in comparison to the scalar relativistic approaches, due

to the transition from real to complex quantities and the
inclusion of two-component matrices.

In molecular chemistry, the two-component formal-
ism resulted in numerous interesting applications, see
Ref. [16, 17] for reviews. In general, two-component
Hamiltonians can be divided into two broad classes. In-
exact two-component Hamiltonians such as Pauli [16, 17],
Douglas-Kroll-Hess (DKH) [18], and ZORA [19, 20]
Hamiltonians are considered inexact due to the approx-
imate decoupling schemes used to transform the four-
component to the two-component theory. In contrast,
exact two-component (X2C) Hamiltonians reproduce the
positive-energy spectrum of the parent four-component
Hamiltonian exactly [16, 17, 21]. The formulation of the
X2C theories generated a lot of excitement in molecular
electronic structure theory due to its transparent nature,
lack of ad hoc approximations, and computational effi-
ciency.

Numerous applications of the relativistic formalism
to periodic systems have been performed. While the
choice of GTOs as one-particle basis functions is over-
whelmingly common for molecular systems, for periodic
systems relativistic calculations were performed for sev-
eral choices of one-particle basis functions including as
plane waves [22], augmented plane waves (APW) [23],
linear-APWs (LAPW) [24, 25], linear muffin-tin or-
bitals (LMTO) [26, 27], projector augmented waves
(PAW) [28], analytic Slater-type orbitals (STOs) [29, 30],
and Gaussian-type orbitals (GTOs) [31]. For a discussion
of these developments see Ref. 31. Note that, while many
of these applications involved inexact two-components
Hamiltonians, the application of the full four-component
formalism in the density functional theory (DFT) frame-
work to periodic systems employing GTOs was only per-
formed in 2019 by Kadek et al. [31].

While DFT, due to its affordable computational scal-
ing, can be applied to many of the one-particle orbital
bases, the situation is more complicated for correlated ab
initio methods with a higher computational scaling. For
those, one would ideally want to employ a compact one-
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particle basis such as GTOs and retain the possibility of
describing both core and valence electrons by the same
type of basis function. Moreover, due to their computa-
tional demand, it is advantageous to avoid the expensive
four-component formalism in favor of a more manageable
two-component formulation.

Motivated by these considerations, we describe here
the application of an exact two-component theory in
the one-electron approximation (X2C1e) to fully self-
consistent GW (scGW ) for periodic problems in the one-
particle GTO basis. We call the method X2C1e-scGW .
The exact two-component methods (X2C) generate an
electron-only two-component Hamiltonian that exactly
reproduces the one-electron energies of the original four-
component Dirac Hamiltonian while approximating some
of the relativistic two-body integrals, which are expected
to be small for atoms that are not extremely heavy
[16, 17, 21, 32].

Two-component methods are particularly appealing
for a numerical implementation in solids for two reasons.
First, the restriction to two components, rather than
four, substantially reduces computation and memory de-
mands. Second, because of the particularly simple form
of the two-body integrals (which are just the regular non-
relativistic two-body Coulomb integrals), two-component
methods open a direct route towards parameter-free em-
bedding calculations with self-energy embedding (SEET)
[33–37] or dynamical mean field theory (DMFT) [38]. For
instance, at present combinations of DFT with DMFT
(DFT+DMFT) for relativistic compounds rely on adding
a phenomenological L ·S spin-orbit coupling term to the
DMFT impurity Hamiltonian, the parameters of which
are unknown and need to be adjusted on a case-by-case
basis [6, 39–42]. Exact two-component theories can be
used to remove this phenomenological parametrization
from DFT+DMFT. In addition, the two-component the-
ory eliminates the need for simultaneous optimization of
positive and negative energy solutions.

For periodic systems, the introduction of relativistic
treatment into the GW approach has a long history.
In Refs. 43 and 44, within the full-potential linearized
augmented-plane-wave (FLAPW) method, a fully spin-
dependent formulation of the quasiparticle GW approxi-
mation was presented, which described many-body renor-
malization effects arising from spin-orbit coupling. This
approach took into account the spin off-diagonal ele-
ments of the Green’s function and the self-energy. The
core, valence, and conduction states of the reference one-
particle system were treated fully relativistically as four-
component spinor wave functions. In Ref. 45, spin-orbit
interactions were included in GW by using Dirac’s form
of the kinetic energy operator and full self-consistency
was performed. Recently, Ref. 22 reported the inclusion
of SOC in a GW code, WEST, with calculations at the
G0W0 level. In this G0W0 calculation, both G and W
were computed at a fully relativistic level without the
use of empty states.

In this paper, we discuss the exact two-component the-

ory in the one-electron approximation (X2C1e) for peri-
odic systems described by a GTO one-particle basis and
demonstrate results from its implementation into a fully
self-consistentGW (scGW ) method. We call this method
X2C1e-scGW . The methodology is designed to preserve
the computational advantages of the two-component for-
malism as well as compactness of the GTO basis when
treating periodic systems. As an example of the X2C1e-
scGW methodology, we discuss the series of silver halides
(AgCl, AgBr, AgI) in which scalar relativistic effects and
SOC becomes gradually more important as the halogen
is changed from Cl to I. We show that, in these systems,
X2C1e-scGW recovers all of the relativistic effects iden-
tified in the four-component DFT while yielding better
experimental agreement than four-component DFT.

The remainder of this paper proceeds as follows. In
Sec. II, we introduce the relativistic theory. Sec. III fo-
cuses on computational details while Sec. IV contains re-
sults for the silver halides. Our conclusions are presented
in Sec. V.

II. RELATIVISTIC THEORY

This section discusses the X2C1e approximation in
solids and the diagrammatic perturbation theory applied
to the relativistic two-component Hamiltonian. Start-
ing form the non-interacting Dirac Hamiltonian Ĥ0 [9,
16, 17, 46] presented in Sec. II A and the kinetic balance
Gaussian type orbitals (KB-GTO) [47–49] presented in

Sec. II B, we show in Sec. II C how expanding Ĥ0 us-
ing the KB-GTO basis will lead to the modified Dirac
equation [50, 51]. The non-interacting X2C1e Hamilto-
nian [52, 53] can then be constructed via the normalized
elimination of the small component (NESC) of the modi-
fied Dirac Hamiltonian [21, 52–56], as shown in Sec. II D.
In Sec. II E, we define the X2C1e-Coulomb Hamiltonian
as a combination of the non-interacting X2C1e Hamilto-
nian with the non-relativistic Coulomb interactions. The
formulation of diagrammatic perturbation theory such
as the scGW approximation using the X2C1e-Coulomb
Hamiltonian is described in Sec. II F.

A. Non-interacting Dirac Hamiltonian

In the absence of electron-electron interactions and ex-
ternal magnetic fields, and within the Born-Oppenheimer
approximation, the Dirac equation with minimal cou-
pling to the attractive nuclear Coulomb potential V (r) [9,

46] can be recast as an eigenvalue problem, Ĥ0Ψ =
EΨ [16, 17], where Ψ = (ΨL,ΨS)T denotes a four-
component spinor written in terms of two ‘large’ and
‘small’-component spinors, and Ĥ0 denotes the 4 × 4
Hamiltonian matrix

Ĥ0 =

(
V (r) cσ · p̂
cσ · p̂ V (r)− 2c2

)
. (1)
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Here, c is the speed of light, σ are Pauli matrices, and
p̂ = −i∇ is the momentum operator. In order to discuss
the exact two-component formalism, we will first discuss
the solution of this non-interacting Hamiltonian.

B. Kinetic balance Gaussian type orbital

In practical calculations, Hamiltonians are expanded
into a finite basis set. We will limit our discussion here to
Bloch waves constructed from a periodic arrangement of
Gaussian orbitals, which are one possible choice of basis
sets for solids.

In the non-relativistic case, the non-relativistic Hamil-
tonian is expanded into scalar Gaussian Bloch orbitals
gki (r) constructed from Gaussian atomic basis functions
gRi (r) as

gki (r) =
∑
R

gRi (r)eik·R, (2)

where k is a wave vector in the first Brillouin zone of the
reciprocal space, and gRi (r) is the i-th Gaussian atomic
orbital centered in unit cell R [57]. The summation over
R extends over the whole lattice. The overlap matrix

Sk
ij =

∫
Ω

drgk∗i (r)gkj (r)δkk′ (3)

is diagonal in reciprocal space indices due to the transla-
tional invariance of the lattice but generally non-diagonal
in the orbital space indices (Ω denotes the unit cell).

In the relativistic case, in order to expand the four-
component relativistic operator of Eq. 1, we define a four-
component Bloch bispinor basis

χk
i (r) =

(
χk,L
i (r)

χk,S
i (r)

)
(4)

where χk,L
i (r) and χk,S

i (r) denote a large (L) and small
(S) component spinor. In the present work, in analogy
to the non-relativistic case, the large component spinor
basis is defined in terms of a scalar Gaussian Bloch orbital

χk,L
i (r) =

(
χk,L
i,↑ (r)

χk,L
i,↓ (r)

)
(5)

where χk,L
i↑ (r) and the χk,L

i↓ (r) are the spin-up and the
spin-down components of the large component spinor ba-
sis which is expressed in terms of the scalar Gaussian
Bloch orbitals gki (r). Rather than using this basis also
for the small component, we define a relativistic small
component basis through the restricted kinetic balance
(RKB) condition [47–49] as

χk,S
i (r) =

1

2c
(σ · p̂)χk,L

i (r). (6)

The RKB condition enforces the exact coupling of large
and small components in the non-relativistic limit [16]

and is essential to achieve variationally stable four-
component solutions in a finite basis set [16, 17, 47–
49, 58]. For a physical single-particle state, the expansion
coefficients for large and small components are allowed to
be different. The same holds for the spin-up and spin-
down parts in Eq. 5 and Eq. 6. In the following, we will
refer to the basis of Eq. 4 as ‘kinetic balance Gaussian-
type orbitals’ (KB-GTO).

C. Modified Dirac Hamiltonian

Expanding Ĥ0 into N basis functions of the KB-
GTO basis per unit cell, we arrive at the modified non-
interacting Dirac Hamiltonian [50, 51]

Hk
0 =

(
Vk Tk

Tk Wk −Tk

)
. (7)

The overlap matrix of the bispinor basis is defined as

Sk =

(
Sk 02N

02N Tk/2c2

)
. (8)

Vk, Tk, Sk, and Wk are matrices of size 2N×2N defined
as

Vk = I2 ⊗ V k =

(
V k 0N
0N V k

)
, (9)

Tk = I2 ⊗ Tk =

(
Tk 0N
0N Tk

)
, (10)

Sk = I2 ⊗ Sk =

(
Sk 0N
0N Sk

)
. (11)

Here V k is a matrix of size N × N and contains the
contributions of the external potential, Tk is the ki-
netic energy matrix, and Sk is the scalar overlap ma-
trix defined in Eq. 3. Wk defines the matrix for the
potential of the small component. Via the Dirac iden-
tity (σ · p̂)V̂ (σ · p̂) = (p̂V̂ · p̂)I2 + iσ · (p̂V̂ × p̂) it can
be separated into a spin-free Wk

SR and a spin-dependent
part [51] Wk

SOC ,

Wk = Wk
SR + Wk

SOC, (12)

Wk
SR =

(
(WSR)k 0

0 (WSR)k

)
, (13)

Wk
SOC =

∑
µ=x,y,z

(
(WSOC)k,µ 0

0 (WSOC)k,µ

)
σ̃µ, (14)

where σ̃µ = IN ⊗ σµ, σµ are Pauli matrices and

(WSR)kij =

∫
Ω

1

4c2
gki (r)∗

[
p̂V (r) · p̂

]
gkj (r)d3r, (15)

(WSOC)k,µij =

∫
Ω

1

4c2
gki (r)∗

[
i(p̂V (r)× p̂)µ

]
gkj (r)d3r.

(16)
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For the case where, V (r) corresponds to the nuclear
potential Z/r, the spin-dependent part Wk

SOC can be
re-expressed as the SOC of the electron spin with the
magnetic field induced by the nucleus of charge Z at the
origin [32]. The spin-free part Wk

SR is referred to as
the scalar relativistic potential and contributes to the
relativistic mass enhancement.

Based on Eqs. 7 and 8, the non-interacting Dirac equa-
tion Ĥ0Ψ = EΨ can then be recast into a generalized
eigenvalue problem

Hk
0Ck = SkCkεk, (17)

where Ck and εk are the coefficient matrix for the corre-
sponding one-particle states and the diagonal matrix for
the one-particle energies. Due to the presence of large
and small-component spinors as well as the electronic
and positronic degrees of freedom, both Ck and εk are
4N × 4N matrices for any given k-point. The resulting
electronic and positronic one-particle states will be sep-
arated by an energy gap of 2c2 [32]. In the following sec-
tions, we will use subscripts + and − to denote electronic
and positronic states, respectively. If one-particle states
are organized in descending order of orbital energies, i.e.

εk =

(
εk+ 02N

02N εk−

)
, (18)

the coefficient matrix Ck can be expressed as

Ck =

(
Ak

+ Ak
−

Bk
+ Bk

−

)
(19)

where Ak
+ and Bk

+ are 2N×2N coefficient matrices of the
large and small-component spinors for electronic states.
The large and small-component positronic states are ex-
pressed in terms of Ak

− and Bk
−.

D. Exact two-component theory with one-electron
approximation

The exact two-component (X2C) theory aims to con-
struct a two-component Hamiltonian that reproduces the
electronic spectrum (εk+) of the parent four-component

Hamiltonian Ĥ0 [16, 17, 21]. Different choices of Ĥ0

lead to different variants of X2C [16]. Common choices
include the free-particle Dirac Hamiltonian, the non-
interacting Dirac Hamiltonian in the presence of nu-
clear Coulomb potential (Eq. 1), the Dirac Hartree-Fock
(DHF) Hamiltonian, and the Dirac Kohn-Sham (DKS)
Hamiltonian [16]. In this work, we will use the non-

interacting Dirac Hamiltonian of Eq. 1 as our Ĥ0 and
refer to this formulation as the X2C with the one-electron
approximation (X2C1e) [52, 53].

The effective two-component Hamiltonian is obtained
via the normalized elimination of the small component
(NESC) [55]. Defining the coupling matrix Xk between

the large (Ak
+) and the small component (Bk

+) coeffi-
cients for the electronic solutions as

Bk
+ = XkAk

+ (20)

and inserting Eq. 20 into the electronic part of Eq. 17,
we obtain

VkAk
+ + TkXkAk

+ = SkAk
+ε

k
+, (21)

TkAk
+ + (Wk −Tk)XkAk

+ =
1

2c2
TkXkAk

+ε
k
+. (22)

By multiplying Eq. 22 on the left by (Xk)† and adding
it to Eq. 21, we obtain an un-normalized effective two-
component equation for the positive-energy solution (Ak

+

and εk+),

L̃k
+Ak

+ = S̃kAk
+ε

k
+, (23)

where

L̃k
+ = Vk + (Xk)†Tk + TkXk + (Xk)†(Wk −Tk)Xk,

(24)

S̃k = Sk +
1

2c2
(Xk)†TkXk. (25)

L̃k
+ is the un-normalized electronic two-component

Hamiltonian with the effective relativistic metric S̃k. In
order to later combine this expression with the non-
relativistic two-body integrals, we aim to rescale L̃k

+ with

respect to the non-relativistic metric Sk (which is just the
overlap matrix within the primitive basis) with the help
of the matrix Rk

+ derived by Liu and Peng [59],

Rk
+ = (Sk)−

1
2 [(Sk)−

1
2 S̃k(Sk)−

1
2 ]−

1
2 (Sk)

1
2 . (26)

Multiplying Eq. 23 on the left by (Rk
+)†, we arrive at a

two-component equation expressed in terms of the non-
relativistic metric Sk,

(HX2C1e
+ )kCk

2c = SkCk
2cε

k
+, (27)

where

(HX2C1e
+ )k = (Rk

+)†L̃k
+Rk

+, (28)

Sk = (Rk
+)†S̃kRk

+, (29)

Ck
2c = (Rk

+)−1Ak
+. (30)

Due to the presence of the spin-dependent Wk
SOC,

(HX2C1e
+ )k contains non-zero off-diagonal spin compo-

nents. While the presence of these terms incorporates
the full SOC effect ab initio at the one-electron level,
it also introduces an extra computational cost compared
to spin-free (scalar) theories such as the ones contain-
ing a non-relativistic Hamiltonian. In cases where SOC
is negligibly weak, an additional approximation can be
made, which we will refer to as the spin-free X2C1e
(sfX2C1e) [52], which consists of approximating Wk ≈
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Wk
SR such that (HsfX2C1e

+ )k becomes diagonal in spin
space.

Note that the Xk matrix in the X2C1e formalism
is constructed only once by solving the non-interacting
Dirac equation, Eq. 17, since no self-consistent loop is re-
quired for a non-interacting Dirac solution. On the other
hand, if the Dirac Hartree-Fock (DHF) Hamiltonian or
the Dirac Kohn-Sham (DKS) Hamiltonian are taken as
the H0, a self-consistent loop between the Xk matrix and
the single-particle solutions is required.

E. X2C1e-Coulomb Hamiltonian

So far, we have not discussed the two-body electron-
electron interactions. Effectively, the NESC procedure
can be rewritten as a block diagonalization using a uni-
tary transformation matrix Uk [16, 21]. Similarly, the
same transformation Uk has to be applied to electron-
electron interactions as well [16, 17, 32]. However,
this procedure would involve the evaluation of two-
body electron-electron integrals at the four-component
level and explicit transformation of different Hamiltonian
blocks, which is expensive. Instead, one may perform
an approximation and use the un-transformed electron-
electron Coulomb integrals [17, 32]. The resulting Hamil-
tonian consists of (HX2C1e

+ )k (Eq. 28) along with the non-

relativistic two-electron Coulomb integrals Uk1k2k3k4

i j k l ,

H =
∑
k

∑
ij

∑
σ,σ′

(HX2C1e
+ )kiσ,jσ′c

k,†
iσ c

k
jσ′

+
1

2Nk

∑
ijkl

∑
kk′q

∑
σσ′

Uk,k−q,k′,k′+q
i j k l ck†iσ c

k′†
kσ′c

k′+q
lσ′ ck−qjσ ,

(31)

where ck†iσ (ckiσ) are the creation (annihilation) operators
for the single-particle spin-orbital state with crystal mo-
mentum k, spin σ, and scalar Gaussian orbital i. The
two-electron Coulomb integrals are defined as

Uk1k2k3k4

i j k l = (32)∫
R3

dr1

∫
R3

dr2g
k1∗
i (r1)gk2

j (r1)
1

|r1 − r2|
gk3∗
k (r2)gk4

l (r2).

Note that translational invariance guarantees k1 + k3 =
k2 + k4. The singularity at q = k1 − k2 = k4 − k3 = 0
is excluded manually.

The Hamiltonian of Eq. 31 is referred to as the X2C1e-
Coulomb Hamiltonian. In the case where the sfX2C1e
Hamiltonian is taken as the one-electron part in Eq. 31,
we refer to it as the sfX2C1e-Coulomb Hamiltonian.
Due to the decoupling in the spin space, existing non-
relativistic many-body methods can be directly applied
to the sfX2C1e-Coulomb Hamiltonian without further
modification.

Due to the use of un-transformed Coulomb interac-
tions, the resulting many-body Hamiltonian will suffer

from the so-called ‘picture-change’ error [17, 21, 32].
In such a case, the missing contribution is the small-
component Coulomb interaction which is responsible for
the spin-same-orbit interactions between electrons [32].
Contributions from the transformed Coulomb term are
important for properties of electrons close to the nu-
cleus but are typically small for valence electrons [17, 21].
Note that all X2C methods, including X2C1e, combined
with un-transformed Coulomb interactions have this is-
sue, and it is not related to the one-electron approxima-
tion or the exclusion of SOC.

The approximation of neglecting the relativistic cor-
rections in the electron-electron interaction can also be
understood in terms of perturbation theory. Beyond the
non-relativistic Coulomb potential, the first-order rela-
tivistic correction to the two-electron interaction is re-
ferred to as the Breit term and is on the order of α2,
where α = e2/(~c) ∼ 1/137 is the fine structure con-
stant [32, 60]. Physically, neglecting this first order cor-
rection corresponds to not including spin-other-orbit and
spin-spin interactions between electrons [32].

F. Diagrammatic perturbation theory for the
X2C1e-Coulomb Hamiltonian

All relativistic contributions in the X2C1e-Coulomb
Hamiltonian are contained in the one-electron term,
while the two-electron integrals stay non-relativistic.
This implies that when diagrammatic perturbation theo-
ries are extended to treat relativistics and use the X2C1e-
Coulomb Hamiltonian, they simply acquire a changed
non-interacting Green’s function. The only complication
consists of the spin-orbit coupling term, which mixes the
two spin species in the one-body term.

Here, we discuss the self-consistent GW (scGW ) the-
ory [61] in more detail, following the description of Ref. 37
with the addition of off-diagonal spin components for the
one-electron quantities. The formulation of scGW based
on the X2C1e-Coulomb Hamiltonian can be understood
as a simplified version of the fully spin-dependent GW
approximation [62, 63] where the Coulomb interactions
remain spin-independent and the positronic degrees of
freedom are frozen at the non-interacting level. We em-
phasize that the generalization to other diagrammatic
methods, such as self-consistent second order perturba-
tion theory (GF2) [64–66], and embedding theories, such
as SEET [33–35] or DMFT [38, 67], is straightforward
when the X2C1e-Coulomb Hamiltonian is employed.

The computational cost of relativistic self-consistent
GW with ab initio Coulomb interactions has so far been
substantial. Existing relativistic implementations in-
clude four-component one-shot G0W0 [43], QSGW [44]
and scGW [45] based on the no-pair approximation for
the Dirac-Coulomb Hamiltonian, and a two-component
one-shot G0W0 implementation constructed from a pseu-
dopotential [22]. Fully self-consistent GW in an ab initio
two-component theory has not yet been explored. The
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full self-consistency guarantees that the method is ther-
modynamically consistent and conserving. Both prop-
erties are essential to prevent ambiguities in embedding
theories such as DMFT or SEET.

We express the general spin-dependent single-particle
Green’s function G for the X2C1e-Coulomb Hamiltonian
via the Dyson equation on the Matsubara frequency axis
as

Gk(iωn) =

(
Gk
↑↑(iωn) Gk

↑↓(iωn)

Gk
↓↑(iωn) Gk

↓↓(iωn)

)
(33)

=
[
(iωn + µ)Sk − (HX2C1e

+ )k −Σk(iωn)
]−1

(34)

where µ is the chemical potential, ωn = (2n + 1)/β the
fermionic Matsubara frequency, β the inverse temper-
ature, and Σk the self-energy. All quantities in bold
fonts, except the Green’s function Gk, are expressed in
the large-component spinor basis (Eq. 5) with the over-
lap matrix Sk (Eq, 11). The Green’s function Gk is ex-
pressed in term of the biorthgonal basis of Eq. 5 due to
the matrix inversion in Eq. 34. In Eq. 33, each spin block
of the Green’s function is an N ×N matrix in which all
occupied and virtual states are included.

In scGW , the spin-dependent self-energy
(ΣGW )k[G](iωn) is a functional of the interacting
single-particle Green’s function G and can be separated
into a static and a dynamic part as

(ΣGW )k[G](iωn) = (ΣGW
∞ )k[G] + (Σ̃GW )k[G](iωn),

(35)

where ΣGW
∞ is the static self-energy, and Σ̃GW (iωn)

corresponds to the frequency-dependent contribution to
the self-energy which is obtained via the summation
of an infinite series of RPA-like ‘bubble’ diagrams [61].
The off-diagonal spin-orbit contributions enter the non-
interacting Green’s function and contribute to the inter-
acting Green’s functions and self-energies through Eq. 34
and Eq. 35.

The static part of the GW self-energy (ΣGW
∞ ) contains

the Hartree- (J) and exchange-like (K) terms,

(ΣGW∞ )kiσ,jσ′ = Jk
iσ,jσ′ +Kk

iσ,jσ′ , (36)

which are

Jk
iσ,jσ′ =

δσσ′

Nk

∑
k′

∑
σ1

∑
ab

Ukkk′k′

i j a b γ
k′

bσ1,aσ1
, (37)

Kk
iσ,jσ′ =

−1

Nk

∑
k′

∑
ab

Ukk′k′k
i b a j γ

k′

bσ,aσ′ , (38)

and γ = −G(τ = β−) is a correlated one-body spin-
density matrix where G(τ) is the Fourier transform of the
Matsubara Green’s function to imaginary time. τ = β−

is referred to as limτ→β− since G(τ) has a discontinuity
at τ = β due to its anti-periodicity.

The dynamic part of the GW self-energy reads

(Σ̃GW )kiσ,jσ′(τ) =

− 1

Nk

∑
q

∑
ab

Gk−q
aσ,bσ′(τ)W̃k,k−q,k−q,k

i a b j (−τ), (39)

where W̃ is the spin-free effective screened interaction
which contains contributions beyond the static bare in-
teraction U and neglects the vertex corrections in the
polarization function. In practice, we employ a density
fitting decomposition for the two-body Coulomb inte-
grals [68, 69]. The decomposition reads

Uk1k2k3k4

i j k l =
∑
Q

V k1k2
i j (Q)V k3k4

k l (Q), (40)

where Q is an auxiliary scalar Gaussian basis index and
V k1k4

i l (Q) is the three-point integral defined in Eq. 14
from Ref. [37]. This decomposition allows us to express

the effective screened interaction W̃ as

W̃k,k−q,k−q,k
i a b j (τ) =∑

Q,Q′

V k,k−q
i a (Q)P̃q

QQ′(τ)V k−q,k
b j (Q′), (41)

P̃q
QQ(τ) =

1

β

∑
n

P̃q
QQ′(iΩn)e−iΩnτ , (42)

where P̃q(iΩn) is a renormalized auxiliary function, an
NQ by NQ matrix for each momentum q and bosonic
Matsubara frequency Ωn = 2nπ/β (n = 0,±1, ...), given
by

P̃q(iΩn) =

∞∑
m=1

[P̃q
0 (iΩn)]m

= [IQ − P̃q
0 (iΩn)]−1P̃q

0 (iΩn) (43)

and

P̃q
0,QQ′(iΩn) =

∫ β

0

dτP̃q
0,QQ′(τ)eiΩnτ , (44)

P̃q
0,QQ′(τ) =

−1

Nk

∑
k

∑
σσ′

∑
abcd

V k,k+q
d a (Q)

×Gk
cσ′,dσ(−τ)Gk+q

aσ bσ′(τ)V k+q,k
b c (Q′). (45)

Note that P̃q
0 is a non-interacting auxiliary function

which differs from a conventional non-interacting polar-
ization function with an additional square root of the
Coulomb integrals multiplied from both sides. The same
holds for the renormalized auxiliary function P̃q. Al-
though P̃q

0 is spin-free, it is affected by SOC effect via
the summation over spin indices σ and σ′ in Eq. 45.

G. Integrable divergence treatment in
two-component scGW

Due to the singularity at the bare Coulomb potential at
q = 0 in Eq. 32, both the HF exchange potential (Eq. 38)
and the dynamic part of the GW self-energy (Eq. 39)
have a integrable divergence when any finite k-point mesh
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is used. A simple workaround is to manually exclude the
G = 0 singularity at q = 0 in the evaluation of two-
electron Coulomb integrals, Eq. 32. However, this will
result in a slow convergence to the thermodynamic limit
with respect to the number of k-points (Nk). In practical
calculations, an additional finite-size correction is crucial
to facilitate the convergence to the thermodynamic limit.

Rewriting the effective screened interaction in the
plane-wave basis, we have

W̃k,k−q,k−q,k
i a b j (τ) =

1

Ω

∑
GG′

ρk−qk∗a i (G)

√
4π

|q + G|

× [εq,−1
GG′ (τ)− δGG′ ]

√
4π

|q + G|
ρk−qkb j(G

′), (46)

where ρk−qka i(G) is the Fourier transform of the pair den-

sity ρk−qka i(r) = gk−q∗a (r)gki (r), and εqGG′(τ) is the dielec-
tric function in the plane-wave basis. Inserting Eq. 46
into Eq. 39, we arrive at

(Σ̃GW )kiσ,jσ′(τ) =
−1

NkΩ

∑
q

∑
ab

∑
GG′

Gk−q
aσ,bσ′(τ)ρk−qk∗a i (G)

×
√

4π

|q + G|
[εq,−1
GG′ (τ)− δGG′ ]

√
4π

|q + G′|
ρk−qkb j(G

′). (47)

Eq. 47 has singularities on the right-hand side at q = 0
whenever G = 0 or G′ = 0. However, these diver-
gences are integrable in the limit of infinite k-points,∑

q →
ΩNk

2π3

∫
dq. For any finite k-point mesh, the sin-

gularities can be circumvented by manually neglecting
the singularity of Coulomb potential ∼ 1/|q + G|2 at
q = G = 0. The resulting leading-order error is typi-
cally referred to as the head correction that comes from
q = G = G′ = 0. Following the procedure proposed by
Ref. 70, the singularity at the q = G = G′ = 0 is elim-
inated by subtracting and adding an auxiliary function
with the same 1/q2 divergence on the right-hand side of
Eq. 47. The subtracted term eliminates the divergence
which makes the right-hand side of Eq. 47 be evaluated
accurately using a finite number of k-points. The singu-
larity is effectively transferred to the added term which
will be evaluated through analytical integration [70–72].
We use the same auxiliary function proposed in Ref. 72.
The head correction of the dynamic part of the GW self-
energy can be be expressed as

(∆GW )kiσ,jσ′(τ) = −χ
∑
ab

Gk−q
aσ,bσ′(τ)ρk−qk∗a i (G)

× [εq,−1
GG′ (−τ)− δGG′ ]ρ

k−qk
b j(G

′)
∣∣∣
q=G=G′=0

(48)

= −χ[ε0,−1
00 (−τ)− 1]

∑
ab

Sk
iaG

k
aσ,bσ′(τ)Sk

bj , (49)

where χ is the supercell Madelung constant [72]. In the

present work, εq=0,−1
G=0,G′=0(τ) is obtained by extrapolating

using a least-square fit from finite q-points around the

Γ-point. Similarly, the static finite-size correction to the
HF exchange potential reads [72]

(∆HF)kiσ,jσ′ = −χ
∑
ab

Sk
ibγ

k
bσ,aσ′S

k
aj , (50)

where γ is a correlated one-body spin-density matrix.

III. COMPUTATIONAL DETAILS

We apply both relativistic and non-relativistic [37]
scGW to the electronic structure of silver halides AgX
(X = Cl,Br, I). Silver halides are semiconductors with
small indirect band gaps that crystallize in a rock salt
structure [30, 31, 73]. They exhibit a large scalar rela-
tivistic effect and an increasing SOC contribution as the
halogen is changed from Cl to I. Several calculations are
available for comparison [30, 31].

The equilibrium lattice constant a0 of the silver halides
are either taken from experiment [74, 75] or from PBE
calculations [30]. Note that the theoretical rock-salt
structure optimized at the level of PBE [30] is adopted
for AgI in order to have a direct comparison with Ref. 30
and 31. All scGW calculations are done at the inverse
temperature β = 700 a.u.−1 (∼ 451 K) with a 6× 6× 6
k-mesh in the first Brillouin zone.

For relativistic calculations, we use the all-electron
triple-ζ bases optimized with respect to X2C Hamilto-
nians (x2c-TZVPall) [76]. The fully uncontracted basis
is employed during the constructions of the Dirac Hamil-
tonian Hk, the coupling matrix Xk, and the X2C1e elec-
tronic Hamiltonian HX2C1e

+ . Once the X2C electronic
Hamiltonian is computed, it is then transformed back to
the contracted basis and combined with the two-electron
Coulomb interactions. For non-relativistic calculations,
the all-electron pob-TZVP bases of triple-ζ quality op-
timized for solid-state calculations [77] are used for Cl
atoms. Since pob-TZVP bases are not available for heavy
elements, we employ the all-electron double-ζ basis sets
of Godbout et al. [78] for Ag, Br, and I. Even-tempered
Gaussian bases are chosen to decompose the two-body
Coulomb integrals using the periodic range-separated
Gaussian density fitting recently developed by Ye and
Berkelbach [69]. The number of even-tempered Gaus-
sian basis is found to be converged for orbital energies
within 0.001 a.u..

Integrals for the periodic X2C1e Hamiltonians and the
density-fitted two-body Coulomb integrals, as well as the
generalized DFT calculations, are evaluated in a modi-
fied version of PySCF [12]. The finite-size effects of HF
and GW exchange diagrams are corrected by a super-
cell Madelung constant using the procedure described in
Ref. [72, 79]. A Gaussian nucleus model proposed by
Visscher and Dyall [80] is employed in relativistic calcu-
lations.

To compute the spectral function, the converged single-
particle Green’s function is analytically continued from
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the imaginary to the real frequency axis using the Nevan-
linna analytical continuation [81] along a high-symmetry
k-path. This continuation method guarantees causality
of the continued function [81, 82]. A broadening param-
eter of η = 0.007 a.u. is used for all calculations. We
found that reducing η to η = 0.005 and η = 0.001 sharp-
ens the quasiparticle structure but does not result in
quantitative differences. For a direct comparison to zero-
temperature DFT results, a constant chemical potential
shift of around 1.0 eV is applied after the analytical con-
tinuation to all finite-temperature spectral function cal-
culations in order to align the highest valence band with
the Fermi energy.

All dynamic quantities such as the Green’s functions,
self-energies, and polarization function are expanded into
the compact intermediate representation (IR) [83] with
sparse sampling on both imaginary-time and Matsubara
frequency axes [84]. Sparse sampling greatly reduces the
memory and computation requirements and accelerates
the Fourier transforms between the imaginary-time and
Matsubara frequency axis.

IV. RESULTS

We choose to analyze the performance of the scGW
based on the relativistic X2C1e Hamiltonian on a series
of silver halides in a periodic code using Gaussian basis.
These systems are difficult since both correlation and rel-
ativistic effects are assumed to play a significant role in
reaching an agreement with experimental values.

Several correlated GW calculations for silver halides
were reported before using different versions of the GW
self-consistency. Quasiparticle GW results for silver
halides based on the one-shot G0W0 or GW0 have been
reported in Refs. [85–88]. In these works, the relativis-
tic effects are treated either using the second variational
approach [87, 89] or the pseudopotential [85, 86]. Both
Ref. 86 and 87 reached a good agreement with experimen-
tal values and the reported bandgaps were only slightly
underestimated. This is possibly due to the error cancel-
lation between the non-self-consistent approximation and
the missing vertex corrections in GW [90, 91]. A more se-
vere underestimation of band gaps is observed in Ref. 85
which could partially be due to choice of pseudopoten-
tial [86, 92]. Since multiple theoretical differences such
as the basis, the level of self-consistency, or the exact
version of GW (real axis vs imaginary axis), or even the
level of inclusion of relativistic effects are present in these
previous works, ultimately we refrain ourselves from com-
paring to their theoretical results and choose to compare
our results to experimental values directly.

A. X2C1e approximation

We start the discussion of the two-component formal-
ism by examining the quality of the X2C1e-Coulomb and

sfX2C1e-Coulomb Hamiltonians (as defined in Sec. II E)
within DFT. This allows us to straightforwardly com-
pare band structure effects to other DFT implementa-
tions. We chose AgI as our test system because, within
the family of silver halides, both the scalar relativistic
effect and the SOC are expected to be the largest for
AgI.

We solve the Kohn-Sham (KS) equation with the
PBE exchange-correlation functional for AgI based on
the X2C1e-Coulomb and the sfX2C1e-Coulomb Hamil-
tonian, and compare these results against the DFT re-
sults with Dirac Kohn-Sham Coulomb (DKS-Coulomb),
the sfX2C-Coulomb, and the X2C-Coulomb Hamiltonian
listed in Refs. 30 and 31. The DKS-Coulomb Hamilto-
nian is solved as a one-electron DKS Hamiltonian whose
external potential V (r) is chosen to be the KS poten-
tial using the PBE exchange-correlation functional [31].
The X2C-Coulomb and sfX2C-Coulomb are the corre-
sponding X2C Hamiltonians with and without the SOC
contribution from the small component potential [30].
Note that all three Hamiltonians approximate the two-
electron Coulomb interaction with the non-relativistic
Coulomb operator, neglecting relativistic corrections to
the electron-electron interaction.

Non-relativistic a0 L− L Γ − Γ X −X L−X
PBE 6.280 4.16 3.10 3.55 1.64

PBE [31] 6.280 3.99 3.11 3.54 1.59
PBE [30] 6.280 3.91 3.14 3.56 1.60

Scalar relativistic
sfX2C1e-Coulomb 6.169 3.48 2.26 3.05 0.75

sfX2C-Coulomb [30] 6.165 3.42 2.27 3.07 0.74
pseudopotential 6.169 3.47 2.24 3.06 0.74
Fully relativistic
X2C1e-Coulomb 6.169 3.22 1.88 2.75 0.51

DKS-Coulomb [31] 6.169 3.25 1.88 2.74 0.49
X2C-Coulomb [30] 6.169 3.17 1.90 2.76 0.49

TABLE I. Lattice constants a0 and energy gaps (eV) of AgI
calculated using the PBE functional with various Hamiltoni-
ans.

Table I shows the band gaps of AgI at the selected
special k-points calculated using the PBE functional with
various Hamiltonians. Shown are non-relativistic, scalar
relativistic, and fully relativistic DFT results.

We first discuss the sfX2C1e-Coulomb results, where
only scalar relativistic effects are included. Compared to
the non-relativistic calculation, the scalar relativistic ef-
fects induce a band-gap narrowing on the order of 1 eV.
Compared to the more precise sfX2C-Coulomb Hamilto-
nian, which additionally includes small component po-
tentials from the non-relativistic Coulomb operator and
the PBE exchange-correlation operator (thereby elimi-
nating the picture-change error), the agreement within
DFT is excellent. This quantitative agreement between
sfX2C-Coulomb and sfX2C1e-Coulomb suggests that the
effect of picture-change error is negligible in the valence
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FIG. 1. The DFT band structure of AgI calculated using the PBE functional with various Hamiltonians. The left panel
is obtained from the non-relativistic Hamiltonian (a0 = 6.280 Å). The middle and the right panel show the result from the
sfX2C1e-Coulomb and the X2C1e-Coulomb Hamiltonian (a0 = 6.169 Å). The coloring of bands is employed to highlight orbitals
close to the Fermi level.

bands of AgI.

We have also conducted a non-relativistic calculation
for AgI in the Gaussian gth-tzvp-molopt-sr basis [93]
and the gth-pbe pseudopotential [94]. The correspond-
ing band gaps (see Table. I) and the band structure (see
Fig. 2) are found to be very similar to the ones from
the sfX2C1e-Coulomb Hamiltonian. Since the gth-pbe
pseudopotential is optimized in relativistic atomic calcu-
lations, it contains the atomic scalar relativistic effects
from the core electrons. The agreement between the re-
sults from the sfX2C1e-Coulomb Hamiltonian and the
non-relativistic pseudopotential calculation confirms that
the scalar relativistic effects in this system are mostly
atomic-like. This agreement justifies the wide usage of
such pseudopotentials in real-material simulations.

Next, we discuss results that include the SOC term in
the X2C1e-Coulomb Hamiltonian. As shown in Table I,
band gaps at the selected special k-points are again in
excellent agreements with results from both the DKS-
Coulomb [31] and the X2C-Coulomb Hamiltonian [30].
Besides the additional band-gap narrowing, the SOC
induces non-negligible spin-orbit splittings around the
Fermi energy along the high-symmetry k path as shown
in the right panel of Fig. 1. Such splittings are found to
be both qualitatively and quantitatively consistent with
the ones from the more sophisticated four-component
DKS-Coulomb Hamiltonian [31]. Similar analysis for
AgCl and AgBr can be found in Appendix B.

Fig. 1 illustrates the changes of the band-structure of
AgI as relativistic effects are considered. The left panel
shows results from a non-relativistic calculation. The
middle panel includes scalar relativistic effects, and the
right panel additionally includes SOC. As alluded to by
Tab. I, scalar relativistic effects lead to large changes in
the band gap, and spin-orbit coupling to an additional
adjustment of the gap and to a remarkable splitting of
the orbital degeneracies at the Γ, X and L points (see

X W K L U W
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4

 (e
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FIG. 2. The DFT band structure of AgI calculated using the
PBE functional in the Gaussian gth-tzvp-molopt-sr basis [93]
and the gth-pbe pseudopotential [94]. a0 = 6.169 Å. The
coloring of bands is employed to highlight orbitals close to
the Fermi level.

colored bands).
Fig. 2, which should be compared to the middle

panel of Fig. 1, further illustrates how results from the
non-relativistic pseudopotential calculation recover the
(scalar relativistic) effects absorbed in the pseudopoten-
tial.

B. Relativistic scGW

Having established the quality of the X2C1e approx-
imation, we now show results from fully self-consistent
finite-temperature GW perturbation theory and compare
them with available experimental data [95–99]. We em-
phasize that our results are fully self-consistent and con-
serving solutions of Hedin’s equations and contain no
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further approximations such as quasi-particle or G0W0

approximations. All GW results reported here include
finite-size corrections in both the HF and GW exchange
diagrams as discussed in Sec. II G. A comparison with
and without the finite-size corrections is discussed in
Appendix C. Table II illustrates band gaps at the se-
lected k-points for the three compounds AgCl (top row),
AgBr (middle row), and AgI (bottom row) calculated
using scGW . In Fig. 3, left panels show non-relativistic
k-resolved spectral function calculations; middle panels
show spin-free calculations; and right panels show the
effects of spin-orbit coupling.

AgCl; a0 = 5.550 L− L Γ − Γ X −X L− Γ
Non-relativistic 8.42 7.42 10.92 5.45

sfX2C1e-Coulomb 7.42 6.23 8.78 4.10
X2C1e-Coulomb 7.42 6.18 8.50 4.09

Expt 5.2 [95] 3.2 [96], 3.0 [97]
AgBr; a0 = 5.774 L− L Γ − Γ X −X L− Γ
Non-relativistic 7.48 6.47 8.94 4.98

sfX2C1e-Coulomb 6.49 5.21 7.50 3.51
X2C1e-Coulomb 6.41 5.01 7.33 3.44

Expt 4.3 [98] 2.7 [99], 2.5 [97]
AgI; a0 = 6.169 L− L Γ − Γ X −X L−X
Non-relativistic 6.53 6.07 6.69 4.42

sfX2C1e-Coulomb 5.60 4.48 5.54 3.22
X2C1e-Coulomb 5.27 4.05 5.18 2.90

TABLE II. Band gaps of AgCl, AgBr, and AgI at special
k-points calculated using scGW for Hamiltonians indicated.

We start our discussion with the non-relativistic scGW
k-resolved spectral functions as shown in the left column
of Fig. 3. scGW correctly predicts the indirect band
gaps between the Γ and the L point for AgCl and AgBr,
and between the L and the X point for AgI. This is
consistent with DFT results [30, 31, 100]. An orbitally-
resolved analysis of the GW spectral functions suggests
that the features around −2 eV are mainly of halogen p
character, while features around −4 eV are dominated by
Ag d orbitals. As the weight of the halogen is increased,
the hybridization between the halogen p orbitals and the
Ag d orbitals gradually decreases. As shown in Table. III,
within DFT, the non-relativistic indirect band gaps of
AgX are almost independent of the halogen. In contrast,
GW results show increasing indirect band gaps from I to
Br, and to Cl. The maximum band-gap widening found
in AgCl is about 3.5 eV compared to the non-relativistic
DFT result. As compared to experiment, non-relativistic
scGW consistently overestimates the band gaps by up to
2 eV [95–97, 99].

Next, we discuss the inclusion of scalar relativistic ef-
fects through the sfX2C1e-Coulomb Hamiltonian. Simi-
lar to what is observed in PBE calculations for AgI, the
scalar relativistic effect induces strong band-gap narrow-
ing in all silver halides, rendering the GW predictions
closer to the experimental data compared to their non-
relativistic counterparts, as shown in Table II and III.

On the other hand, a similar band-gap narrowing effect
pushes the PBE gap values even far away from the exper-
imental values, see Table. III. The band-gap narrowing
is mainly caused by the orbital contraction of the Ag 5s
orbital, which lowers the energy of the lowest conduc-
tion band. If one measures the scalar relativistic effect
in terms of the band-gap narrowing compared to non-
relativistic calculations, a similar magnitude of the scalar
relativistic effect is observed in all silver halides even
though the atomic number of halogens increases from Cl
to Br, and then to I. We suspect that a similar band-gap
narrowing reflects the strong scalar relativistic effect in
the Ag atoms, especially in the conduction bands which
corresponds to the strong Ag 5s orbital contractions.

Finally, using Fig. 3, 4, and Table IV, we discuss the
SOC contribution. As expected, spin-orbit effects in
AgCl are weakest. The largest difference of the band
gaps occurs at the X point, where the spin-orbit split-
ting is caused by the Ag d orbitals. Cl p orbitals, which
dominate the remainder of the states near the Fermi en-
ergy, exhibit much less SOC.

In AgBr and AgI, SOC within the X2C1e-Coulomb ap-
proximation further reduces the band gaps and causes a
substantial spin-orbit splitting around the Fermi energy,
rendering the scGW AgBr band gaps slightly closer to
the experimental values. Table IV shows the spin-orbit
splitting gap calculated from PBE, HF, and scGW at
the Γ point, which we define as the gap between the p3/2

and the p1/2 bands. Also shown are splittings at the X
and the L points, which are defined as the splitting of
the p3/2 bands due to the cubic crystal field. Due to
the thermal broadening in the finite-temperature scGW
and the broadening introduced by the analytical contin-
uation, we are not able to resolve the small GW orbital
splitting of AgBr at the X point. Consistently, HF pre-
dicts the largest spin-orbit splittings while the ones from
PBE are the smallest. The differences between HF and
scGW are exclusively due to the additional electron cor-
relation illustrated at the level of GW and its interplay
with relativistic effects.

Fig. 4 shows the orbital-resolved k-dependent spectral
functions of AgI at the Γ, the X, and the L point, ob-
tained via scGW . The atomic orbital character is defined
in terms of symmetrized atomic orbitals (SAO) [101] con-
structed from Gaussian Bloch orbitals. Orbitals with the
same atomic symmetry are then added up. The height
of such a partial orbital-summed spectral function will
then reflect the corresponding degeneracy. The charac-
ters of the low-lying bands varies in the Brillouin zone
and involves s, p, and d-type orbitals from both Ag and
I. Different types of orbital admixtures are found at dif-
ferent k-points. However, for all the k-points analyzed
here, features between −4 to −6 eV are dominated by
orbitals with Ag d character.

At the Γ point, the highest two valence bands are dom-
inated by the I p orbitals. Their six-fold degeneracy is
broken in the presence of SOC, resulting in two two-fold
degenerate p3/2 bands and one two-fold degenerate p1/2
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FIG. 3. The scGW k-resolved spectral functions of AgCl (top row), AgBr (middle row), and AgI (bottom row) calculating from
the non-relativistic (left), the sfX2C1e-Coulomb (middle), and the X2C1e-Coulomb (right) Hamiltonian (a0 = 5.550, 5.774,
and 6.169 Å respectively).

band. The tallest orange dotted feature corresponds to
the p3/2 bands.

At the X point, besides the spin-orbit splitting, the
cubic crystal field further splits the p3/2 bands into two
eigenstates (mj = ±3/2, ±1/2), resulting in a three-
peak structure where the three peaks have a similar peak
height. In contrast to the Γ point, the I p orbitals hy-
bridize with the Ag p orbitals with the same orbital split-
ting pattern. Additional orbital mixture is also found
between the Ag s and the I d orbitals at the lowest con-

duction band.
At the L point, Ag d orbitals start to contribute to the

highest valence bands and the Ag p orbitals hybridize
with the lowest conduction band. Similar observations
can be made for AgCl and AgBr.

The strong k-dependence of the orbitals involved in
the low-energy physics implies that special care needs to
be taken when low-energy effective model systems are
constructed, such as those needed in DMFT and other
embedding theories.
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Systems PBE PBE PBE scGW scGW scGW Expt
NR sfX2C1e-Coulomb X2C1e-Coulomb NR sfX2c1e-Coulomb X2C1e-Coulomb

AgCl 1.71 0.93 0.88 5.45 4.10 4.09 3.2 [96], 3.0 [97]
AgBr 1.62 0.69 0.61 4.98 3.51 3.44 2.7 [99], 2.5 [97]
AgI 1.56 0.75 0.51 4.42 3.22 2.90

TABLE III. Indirect band gaps of AgCl, AgBr, and AgI calculated using PBE and scGW for the non-relativistic (NR), sfX2C1e-
Coulomb, and X2C1e-Coulomb Hamiltonians. The indirect band gap occurs between the L and Γ point for AgCl, AgBr, and
between the L and X point for the rock-salt AgI. Experimental lattice constants are used for AgCl (5.550 Å) and AgBr (5.774
Å) while an PBE optimized one is taken for AgI (6.169 Å).

AgBr AgI
PBE HF scGW PBE HF scGW

Γ 0.55 0.71 0.60 1.07 1.34 1.15
X 0.11 0.39 - 0.42 0.66 0.56
L 0.13 0.28 0.19 0.45 0.71 0.55

TABLE IV. Spin-orbit splittings of AgBr and AgI at the Γ,
X, and L points.

Overall, we found that relativistic effects result in large
quantitative differences in the electronic band structure
as well as the band gap values. While non-relativistic all-
electron scGW tends to significantly overestimate band
gaps, relativistic all-electron scGW renders the theoret-
ical band gaps closer to the experimental values. Note
that the basis convergence of silver halides has been re-
cently found to be particularly slow due to the Ag d or-
bitals [86, 87]. An analysis of the basis set convergence
of our GTOs basis set, as shown in the Appendix A, sug-
gests a further band-gap narrowing of about 0.1 ∼ 0.2
eV for our theoretical indirect band gaps from a triple-ζ
basis set (x2c-TZVPall) to a quadruple-ζ basis set (x2c-
QZVPall).

V. CONCLUSIONS

In this paper, we present a formulation of relativistic
all-electron scGW for periodic systems where relativis-
tic effects are treated in the X2C1e approximation. The
formulation is able to capture electron correlations, one-
electron relativistic effects, as well as the interplay of
correlations with relativistic effects. It is fully ab ini-
tio, in the sense that no adjustable parameters are used.
For systems with weak SOC, the spin separation in the
X2C theory provides a promising spin-free approxima-
tion whose computational complexity is identical to non-
relativistic calculations.

We present results from the newly implemented
methodology for the silver halides AgCl, AgBr, and AgI.
These materials form a sequence of semiconductors with
small indirect band gaps where relativistic effects are sys-

tematically increasing. To validate the X2C1e-Coulomb
approximation, we test DFT with the X2C1e-Coulomb
and sfX2C1e-Coulomb Hamiltonians against reference 4-
component DFT calculations and obtain excellent agree-
ment with this more sophisticated approximation.

By systematically adding relativistic effects in scGW
calculations, we find that electron correlation, relativis-
tics, and their interplay are essential to describe the
near-Fermi-surface orbitals. For AgCl and AgBr, the
relativistic scGW treatment consistently improves agree-
ment with experimental data (no such data is available
for AgI).

The remaining deviations from the experimental val-
ues are likely due to a combination of correlation effects
(i.e. beyond-GW diagrammatics), basis-set effects, fi-
nite size effects, picture-change errors, and relativistic ap-
proximations on the two-particle level. We believe that,
of those, the correlation effects form the dominant con-
tribution. Embedding theories such as DMFT [38, 67]
or SEET [33–35] provide promising routes to include
some of these correlations, at least where they are lo-
cal. While the ab initio inclusion of these terms within
four-component theories requires major changes to im-
purity solvers and self-consistencies, as well as additional
approximations, we emphasize that one of the main ad-
vances of the X2C1e-Coulomb Hamiltonian is that two-
body terms remain unchanged from the non-relativistic
version. Non-relativistic diagrammatic implementations
of methods such as GW , DMFT, or SEET can therefore
directly be applied to relativistic problems.
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[101] P.-O. Löwdin, On the Nonorthogonality Problem, in
Advances in Quantum Chemistry Volume 5 (Elsevier,
1970) pp. 185–199.

[102] Y. J. Franzke, L. Spiske, P. Pollak, and F. Weigend,
Segmented Contracted Error-Consistent Basis Sets
of Quadruple-ζ Valence Quality for One- and Two-
Component Relativistic All-Electron Calculations,
Journal of Chemical Theory and Computation 16, 5658
(2020), pMID: 32786897.

Appendix A: Basis set convergence

Here, we investigate the basis convergence of the scGW
band gaps. Note that, in the present work, no implicit
orbital truncation is employed which means all the Bloch
GTOs (both occupied and virtual orbitals) are included
in every GW evaluated expression. We adopt a fam-
ily of all-electron Gaussian basis optimized with respect
to X2C Hamiltonian [76, 102]. The basis set is sys-

https://doi.org/10.1103/PhysRevB.75.205126
https://doi.org/10.1103/PhysRevB.80.085114
https://doi.org/10.1103/PhysRevB.80.085114
https://doi.org/10.1063/1.1851973
https://doi.org/10.1063/1.1851973
https://doi.org/10.1103/PhysRev.97.676
https://doi.org/10.1103/PhysRev.97.676
https://doi.org/10.1002/chem.200802327
https://doi.org/10.1002/chem.200802327
https://doi.org/10.1021/acs.jctc.7b00593
https://doi.org/10.1021/acs.jctc.7b00593
https://doi.org/https://doi.org/10.1002/jcc.26013
https://doi.org/10.1139/v92-079
https://doi.org/10.1063/1.1926272
https://doi.org/10.1063/1.1926272
https://doi.org/https://doi.org/10.1006/adnd.1997.0751
https://doi.org/https://doi.org/10.1006/adnd.1997.0751
https://doi.org/10.1103/PhysRevLett.126.056402
https://doi.org/10.1103/PhysRevB.104.165111
https://doi.org/10.1103/PhysRevB.96.035147
https://doi.org/10.1103/PhysRevB.101.035144
https://doi.org/10.1103/PhysRevB.101.035144
https://doi.org/10.1103/PhysRevB.96.155207
https://doi.org/10.1103/PhysRevB.96.155207
https://doi.org/10.1103/PhysRevB.98.045108
https://doi.org/10.1103/PhysRevB.98.045108
https://doi.org/10.1103/PhysRevB.100.205123
https://doi.org/10.1103/PhysRevB.104.235149
https://doi.org/10.1007/978-0-387-29684-5
https://doi.org/10.1007/978-0-387-29684-5
https://doi.org/10.1103/PhysRevLett.112.096401
https://doi.org/10.1103/PhysRevB.95.195120
https://doi.org/10.1103/PhysRevB.95.195120
https://doi.org/10.1021/acs.jctc.7b00952
https://doi.org/10.1021/acs.jctc.7b00952
https://doi.org/10.1063/1.2770708
https://doi.org/10.1063/1.2770708
https://doi.org/10.1103/PhysRevB.54.1703
https://doi.org/10.1103/PhysRevB.54.1703
https://doi.org/10.1007/b71137
https://doi.org/10.1007/b71137
https://doi.org/10.1088/0022-3719/16/34/016
https://doi.org/10.1088/0022-3719/16/34/016
https://doi.org/10.1103/PhysRev.137.A1217
https://doi.org/10.1103/PhysRev.137.A1217
https://doi.org/10.1002/pssb.2221220124
https://doi.org/10.1002/pssb.2221220124
https://doi.org/10.1063/1.1851973
https://doi.org/10.1063/1.1851973
https://doi.org/10.1016/s0065-3276(08)60339-1
https://doi.org/10.1021/acs.jctc.0c00546
https://doi.org/10.1021/acs.jctc.0c00546


17

basis orbitals L− L Γ − Γ X −X L− Γ
x2c-SV(P)all 78 6.86 5.64 8.03 3.94
x2c-SVPall 101 6.66 5.37 7.66 3.69

x2c-TZVPall 111 6.54 5.28 7.54 3.58
x2c-TZVPPall 127 6.55 5.15 7.35 3.54
x2c-QZVPall 185 6.47 5.14 7.29 3.50

TABLE V. scGW band gaps of AgBr calculated employing
the sfX2C1e-Coulomb Hamiltonian in different basis sets [76,
102] at an 4×4×4 Γ-centred k-mesh and inverse temperature
β = 300 Ha−1. The total numbers of GTOs per cell for each
basis set are listed in the second column.

tematically enlarged starting from the double-ζ (called
here x2c-SV(P)all) to triple-ζ (x2c-TZVPall), and to
quadruple-ζ (x2c-QZVPall) level. For the double-ζ and
the triple-ζ basis, more polarized variants are also used
(x2c-SVPall and x2c-TZVPPall, respectively) in which
additional high-lying orbitals are added. A higher tem-
perature is used to circumvent large IR grids on the imag-
inary axes for large basis set such as x2c-QZVPall basis.
It is found, as expected for insulators, that temperature
dependency of band gaps from β = 700 to 300 a.u.−1 is
consistently well below 0.01 eV.

As suggested in Ref. 87, for silver halides similar to the
well-known system ZnO, a slow basis set convergence, is
expected due to the silver d orbitals. In Table V, we
examine such basis set effects and observe a systematic
basis set convergence of the scGW band gaps. From x2c-
SV(P)all to x2c-TZVPall basis, a maximum difference of
∼ 0.5 eV for X − X band gap is observed. All other
bandgaps (L − L, Γ − Γ, L − Γ) result in smaller differ-
ences. Further adding more high-lying localized orbitals,
a maximum difference of ∼ 0.25 eV is observed for the X-
to-X gap when going from x2c-TZVPall to x2c-QZVPall
basis. Even smaller differences are observed for the other
gaps. Note that from x2c-SV(P)all to x2c-TZVPall, and
to x2c-QZVPall basis set, the number of GTO orbitals
in the unit cell increases from 78 to 111, and finally to
185. Consequently, while we cannot attest that our re-
sults are converged completely with the basis set size,
going to the next level x2c-5ZVPall basis set will most
likely result in differences at the level of ∼ 0.1 eV and
we should not expect any major quantitative differences
between x2c-QZVPall and x2c-5ZVPall basis sets.

Enlarging the size of GTO basis sets is similar to
adding high energy local orbitals (HLO) within the
LAPW framework. A similar basis convergence behavior
with respect to HLOs can be found for LAPW calcula-
tions in Ref. 87. In the presence of Ag d orbitals, al-
though a less severe basis set error is found in our GTO
basis compared to the standard LAPW basis set, the x2c-
TZVPall basis set used in the present work still suffers
from the basis set error.

Appendix B: DFT band gaps

Non-relativistic a0 L− L Γ − Γ X −X L−X
PBE 5.692 5.00 3.46 5.55 1.72

PBE [31] 5.692 4.93 3.47 5.47 1.68
PBE [30] 5.692 4.72 3.44 5.29 1.67

Scalar relativistic
sfX2C1e-Coulomb 5.612 4.44 3.09 4.27 0.94

sfX2C-Coulomb [30] 5.613 4.31 3.09 4.23 0.92
Fully relativistic
X2C1e-Coulomb 5.612 4.39 2.98 4.03 0.89

DKS-Coulomb [31] 5.612 4.47 2.93 4.20 0.87
X2C-Coulomb [30] 5.612 4.27 2.99 4.03 0.88

TABLE VI. Lattice constants a0 and energy gaps (eV) of
AgCl.

Non-relativistic a0 L− L Γ − Γ X −X L−X
PBE 5.937 4.54 2.92 4.81 1.60

PBE [31] 5.937 4.36 2.96 4.81 1.59
PBE [30] 5.937 4.31 2.97 4.81 1.57

Scalar relativistic
sfX2C1e-Coulomb 5.843 3.93 2.43 3.89 0.70

sfX2C-Coulomb [30] 5.843 3.87 2.43 3.87 0.68
Fully relativistic
X2C1e-Coulomb 5.843 3.85 2.24 3.65 0.62

DKS-Coulomb [31] 5.843 3.82 2.24 3.68 0.61
X2C-Coulomb [30] 5.843 3.77 2.25 3.67 0.60

TABLE VII. Lattice constants a0 and energy gaps (eV) of
AgBr.

Here we present PBE band gaps calculated using the
non-relativistic and series of relativistic Hamiltonians for
a similar direct comparison as performed in Sec. IV A.
For AgCl and AgBr, the lattice constants optimized
at the PBE level [30] were used. As shown in Ta-
ble. VI and VII, the PBE band gaps calculated using the
sfX2C1e-Coulomb and the X2C1e-Coulomb Hamiltonian
show similar agreement with the more sophisticated rel-
ativistic Hamiltonians, which is consistent to what we
observe for AgI in Sec. IV A.

Appendix C: Finite-size corrections

The finite-size effects in our relativistic scGW are in-
vestigated as shown in Fig. 5. The scGW band gaps
of AgBr with (GW -corr) and without (GW -uncorr) the
head correction to the dynamic part of the GW self-

energy (Eq. 49) as a function of N
−1/3
k . Note that the

finite-size corrections to the HF exchange potential is al-
ways included in both GW -corr and GW -uncorr.

The scGW band gaps without the head correction cal-
culated using both the sfX2C1e-Coulomb and the X2C1e-
Coulomb Hamiltonians show a linear dependence with
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FIG. 5. scGW band gaps of AgBr calculated using the
sfX2C1e-Coulomb (top panel) and the X2C1e-Coulomb (lower

panel) Hamiltonian as a function of N
−1/3
k . Both the scGW

band gaps with (GW -corr) and without (GW -uncorr) the
head corrections to the dynamic part of the GW self-energy
as shown.

respect to N
−1/3
k , as expected. We then fit the scGW

band gap to ∆(Nk) = ∆TDL + aN
−1/3
k and extrapolate

it to the thermodynamic limit (TDL) value ∆TDL which
is shown as the blue dotted lines. In spite of the nice

linear dependence with respect to N
−1/3
k , the slow con-

vergence to TDL values makes the realistic finite size-
uncorrected calculations impractical. The explicit inclu-
sion of the head correction to the integrable divergence
in the dynamic part of the GW self-energy results in a
significantly faster convergence of GW band gaps with
respect to the number of k-points. A similar convergence
pattern is observed for both the sfX2C1e-Coulomb and
the X2C1e-Coulomb Hamiltonians. The band gap is con-
verged within 0.01 eV from 5×5×5 to 6×6×6 k-meshes.
The differences between scGW band gaps with the head
corrections at a 6 × 6 × 6 k-mesh and the extrapolated
TDL values are -0.06 and -0.05 for the sfX2C1e-Coulomb
and the X2C1e-Coulomb Hamiltonian, respectively. The
same convergence pattern is observed in AgCl and AgI
as well, and the differences between the corrected values
at a 6 × 6 × 6 k-mesh and the extrapolated TDL values
are all within 0.1 eV.
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