This is the accepted manuscript made available via CHORUS. The article has been published as:

Workhorse minimally empirical dispersion-corrected density functional with tests for weakly bound systems: math xmlns="http://www.w3.org/1998/Math/MathML">mrow>ms up $>$ mrow $>$ mi mathvariant $=$ "normal" $>\mathrm{r} / \mathrm{mi}>/ \mathrm{mrow}>$ $m n>2 / m n>/ m s u p>m i>S C A N / m i>m o>+/ m o>m r o w>m i>r V$ $\mathrm{V} / \mathrm{mi}>\mathrm{mn}>10 / \mathrm{mn}>/ \mathrm{mrow}>/ \mathrm{mrow}>/$ math $>$
Jinliang Ning, Manish Kothakonda, James W. Furness, Aaron D. Kaplan, Sebastian Ehlert, Jan Gerit Brandenburg, John P. Perdew, and Jianwei Sun Phys. Rev. B 106, 075422 - Published 23 August 2022

DOI: 10.1103/PhysRevB.106.075422

Jinliang Ning, ${ }^{1}$ Manish Kothakonda, ${ }^{1}$ James W. Furness, ${ }^{1}$ Aaron D. Kaplan, ${ }^{2}$ Sebastian Ehlert, ${ }^{3}$ Jan Gerit Brandenburg, ${ }^{4}$ John P. Perdew, ${ }^{2,5}$ and Jianwei Sun ${ }^{1, *}$
${ }^{1}$ Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States
${ }^{2}$ Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, United States
${ }^{3}$ Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115 Bonn, Germany
${ }^{4}$ Chief Science and Technology Office, Merck KGaA,
Frankfurter Str. 250, 64293 Darmstadt, Germany
${ }^{5}$ Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States

(Dated: July 25, 2022)

Abstract

SCAN +rVV 10 has been demonstrated to be a versatile van der Waals (vdW) density functional that delivers good predictions of both energetic and structural properties for many types of bonding. Recently, the r^{2} SCAN functional has been devised as a revised form of SCAN with improved numerical stability. In this work, we refit the rVV10 functional to optimize the r^{2} SCAN +rVV 10 vdW density functional, and test its performance for molecular interactions and layered materials. Our molecular tests demonstrate that r^{2} SCAN +rVV 10 outperforms its predecessor SCAN +rVV 10 in both efficiency (numerical stability) and accuracy. This good performance is also found in latticeconstant predictions. In comparison with benchmark results from higher-level theories or experiments, r^{2} SCAN + rVV10 yields excellent interlayer binding energies and phonon dispersions for layered materials.

I. INTRODUCTION

Quantum fluctuations in the electronic density give rise (vdW) or London dispersion interactions ubiquitous in electronic matter. Despite its relative small strength, the ubiquitous vdW force plays a fundamental role in diverse fields of both science and industry: from structural biology and polymer science, to nanotechnology and surface science. It participates in the structural evolution of DNA 1, proteins ${ }^{2}$, and many other complex molecules and their interactions ${ }^{3}$, and hence the origination ${ }^{4}$ and physical activities of living beings. The vdW forces are also crucial for the surface and interfacial reactions controlling artificial and natural catalytic ${ }^{5-7}$ and corrosion reactions on alloy surfaces ${ }^{8}$. The vdW interactions are even found to be necessary for accurate descriptions of some densely packed systems, suggesting that vdW forces are not as negligible for normal solids as commonly thought ${ }^{9-11}$.
While vdW interactions are fully captured in the exact density functional theory (DFT) ${ }^{12}$, their non-local nature means they (or at least their most long-ranged parts) are missed by semi-local exchange-correlation (XC) density functional approximations (DFAs) like the local density approximation (LDA), generalized gradient approximation (GGA), or meta-GGA. Despite this limitation, semi-local DFAs are the mainstay of modern first-principles electronic structure modelling, achieving useful accuracy at reasonable cost. While higher-level methods that fully account for vdW forces, such as quantum Monte Carlo $(\mathrm{QMC})^{13}$, coupled-cluster singles and doubles with perturbative triples $\operatorname{CCSD}(\mathrm{T})^{14}$, and the adiabatic-connection fluctuation-dissipation theorem within the random-phase approximation $(\mathrm{RPA})^{15}$, can
${ }_{46}$ provide benchmark references, their poor scaling with ${ }_{47}$ system size prohibits large-scale applications. Instead, a ${ }_{48}$ practical choice for improving accuracy is to include vdW 49 interactions in the DFT framework as a modification or so correction to a semi-local XC approximation. Common 51 approaches include the DFT + D series ${ }^{16-19}$, Tkatchenko52 Scheffler (TS) methods ${ }^{20-22}$, the Rutgers-Chalmers vdW${ }_{53}$ DF family ${ }^{23}$, Vydrov-van Voorhis (VV10) ${ }^{24}$, rVV10 ${ }^{25}$ 54 density functionals, and the Becke-Johnson exchange 55 hole model ${ }^{26,27}$. We should also mention the damped${ }_{56}$ Zaremba-Kohn $(\mathrm{dZK})^{28,29}$ correction, which requires

Despite these successes, SCAN exhibits undesirable numerical problems ${ }^{33,34}$ that harm its computational efficiency and can prevent the self-consistent field process

112 These shortcomings are remedied by the r^{2} SCAN 113 meta-GGA ${ }^{48}$, which modifies the rSCAN regulariza114 tions to obey almost every exact constraint SCAN does. 115 (A higher-order density-gradient expansion for exchange ${ }_{116}$ is recovered by SCAN^{49}.) The satisfaction of exact ${ }_{117}$ constraints and greater smoothness of r^{2} SCAN pre118 serves the accuracy of SCAN and numerical efficiency of
$119 \operatorname{rSCAN}^{19,42,48,50}$, permitting construction of meta-GGA ${ }_{120}$ pseudopotentials ${ }^{51}$. Therefore, we expect r^{2} SCAN to be 121 a better candidate for the rVV10 correction.
122 It should be noted that a variant of r^{2} SCAN 123 with a long range $\mathrm{D} 4^{18}$ dispersion correction was re124 cently published. ${ }^{19} \mathrm{r}^{2}$ SCAN + D4 more realistically de125 scribes non-covalent and hydrogen-bound systems than 126 SCAN + D4 ${ }^{19}$, suggesting that r^{2} SCAN includes less of ${ }_{127}$ the intermediate vdW interaction than SCAN. Reference ${ }_{128} 19$ presented a fitted value $b=12.3$ for $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{VV} 10$ 129 (not rVV10). rVV10 was designed to perform like VV10, 130 but at a lower computational cost in plane-wave basis ${ }_{131}$ set codes. We now motivate why an $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ is ${ }_{132}$ needed when a highly-accurate r^{2} SCAN + D4 exists.
${ }_{133}$ The D and VV10 series of vdW corrections are com${ }_{134}$ plementary approaches for describing long-range vdW in${ }_{135}$ teractions in real systems. Both corrections have empir${ }_{136}$ ical parts, with the VV10 series requiring two material${ }_{137}$ independent empirical parameters, and D4 requiring
${ }_{138}$ three parameters in its damping function. The D4 disper-
${ }_{139}$ sion coefficients are computed on-the-fly from tabulated ${ }_{140}$ material-dependent data like the atomic polarizabilities 141 and Mulliken partial charges ${ }^{18}$. rVV10 is conceptually 142 simpler than D4 and its reliance on fewer empirical pa${ }_{143}$ rameters makes it an appealing alternative to D4 for 144 solid-state physics, though both methods find common 145 use. In a comparison ${ }^{52}$ of 243 non-covalent cluster inter146 actions, SCAN-D3 and SCAN+rVV10 had comparable ${ }_{147}$ root mean square deviations from reference values.

The original VV1 0^{24} and subsequent rVV10 ${ }^{25} \mathrm{vdW}$ 149 corrections differ in subtle ways. The VV10 kernel is a 150 two-point function, and its evaluation requires a double 151 integral over real space. Such a correction is challenging 152 to implement in plane-wave codes because of the high 153 numeric cost of this double integral. The rVV10 kernel 154 approximates the VV10 kernel by interpolation over a 155 set of grid points, drastically reducing the computational 156 overhead in plane-wave basis set codes.
${ }_{157}$ When rVV10 is a good approximation to VV10, the ${ }_{158} b$ parameters should not differ substantially. We con${ }_{159}$ firm this interpretation here. However, a VV10-corrected 160 DFA which tends to overbind molecules is expected ${ }^{53}$ to 161 further overbind when combined with rVV10 using the ${ }_{162}$ same b parameter. When using the same b parameter, the 163 most pronounced differences between VV10 and rVV10 164 occur in low-density regions ${ }^{54}$. However, the dispersion 165 correction to a meta-GGA like SCAN or r^{2} SCAN should 166 be most meaningful in these low-density regions.

A limitation of the VV10 and rVV10 long-range dis${ }_{168}$ persion corrections is that they can describe only two169 body interactions between volume elements, ignoring the ${ }_{170}$ three-body Axilrod-Teller ${ }^{55}$ effects. Here we fit the b pa${ }_{171}$ rameters in those corrections to the binding energy curve 172 of the Ar dimer, in which the conventional many-body ${ }_{173}$ expansion stops at the two-body term.

The vdW interactions are crucial in shaping the struc175 ture and properties of 2D/layered materials. Such mate-
176 rials have seen renewed interest since the exfoliation of ${ }_{177}$ graphene in 2004^{56}, and have nurtured new applications ${ }_{178}$ promising the next generation of information technology ${ }^{179}$ devices ${ }^{57}$. As such, we test the newly determined b pa${ }_{180}$ rameter for r^{2} SCAN +rVV 10 on standard sets, with a ${ }_{181}$ focus on layered materials properties.

II. METHODS

A. Parameters in $\mathbf{r}^{2} \mathbf{S C A N}+\mathbf{r V V} 10$

The rVV10 $0^{24,25}$ non-local correlation functional is similar in construction to the Rutgers-Chalmers vdW-DF family ${ }^{23}$,

$$
\begin{equation*}
E_{\mathrm{c}}^{\mathrm{nl}}=\int d \mathbf{r} n(\mathbf{r})\left[\frac{\hbar}{2} \int d \mathbf{r}^{\prime} \phi\left(\mathbf{r}, \mathbf{r}^{\prime}\right) n\left(\mathbf{r}^{\prime}\right)+\beta\right] . \tag{1}
\end{equation*}
$$

${ }_{187} \beta$ vanishes for the Rutgers-Chalmers vdW-DFs, and the 188 XC functional reads as

$$
\begin{equation*}
E_{\mathrm{xc}}=E_{\mathrm{xc}}^{0}+E_{\mathrm{c}}^{\mathrm{nl}} \tag{2}
\end{equation*}
$$

B. Computational details

The DFT calculations in this work were performed us-
tions within the finite displacement method $(0.015 \AA)$. For solid poly (p-phenylene terephthalamide) (PPTA), \boldsymbol{k}-point spacing of $0.15 \AA^{-1}$ (yielding a $6 \times 9 \times 4 \boldsymbol{k}$-grid), and a plane-wave cutoff of 900 eV were used.

To evaluate the performance of $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ with the newly fit $b=11.95$, we tested it on both molecular systems (S22 data set) and layered materials. We are especially interested in the efficiency and accuracy of r^{2} SCAN $+\mathrm{rVV10}$, in comparison with its predecessor SCAN+rVV10.

We assessed the accuracy of SCAN $+\mathrm{rVV10}$ and r^{2} SCAN +rVV 10 predicted interaction energies for the S22 molecular complexes data set. The S22 set includes seven hydrogen-bonded, eight dispersion-bound, and seven mixed-binding complexes. Table I presents the error statistics of SCAN +rVV 10 and $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ for the S 22 set, relative to $\mathrm{CCSD}(\mathrm{T})$ benchmarks ${ }^{69}$. Table VII of the Appendix complements Table I, presenting values for each molecule in the S22 set, and comparing our SCAN+rVV10 and r^{2} SCAN +rVV 10 results with Perdew-Burke-Ernzerhof (PBE) ${ }^{58}$, SCAN, and vdW-DF2 ${ }^{74}$ predictions.

To further demonstrate the improved numeric stabil-

TABLE I. Mean errors (ME, kcal/mol) and mean absolute errors (MAE, kcal/mol) in the unsigned interaction energies of the S22 data set, taken with respect to $\operatorname{CCSD}(\mathrm{T})$ results ${ }^{69}$. Different (ENCUT, ENAUG) settings (described in Section III A) are tested for $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ and SCAN+rVV10; both values are in eV . Users who need less accuracy can use lower settings. Table VI in the Appendix presents S22 data for another (ENCUT, ENAUG) setting intermediate to those shown here, as well as percentage errors. Table VII in the Appendix presents interaction energies for each molecule in the S22 set, the $\operatorname{CCSD}(\mathrm{T})$ reference values, as well as values for other density functional approximations.

${ }^{293}$
ity of r^{2} SCAN over SCAN, we also present results using 4 smaller grid sizes in these tables. Two parameters, EN-

With the refit $b=11.95, \mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV10}$ outperforms ${ }_{317}$ SCAN + rVV10 in all three subgroups and overall for the ${ }_{318}$ S22 binding energy database, and has an accuracy com${ }^{319}$ petitive with the original rVV10 functional. When com320 pared to its excellent performance for dispersion-bound 321 and mixed complexes, though improvement is notewor322 thy, r^{2} SCAN +rVV 10 still tends to over-bind hydrogen${ }_{323}$ bonded systems. This is rationalized as a density-driven 324 error, rather than an error inherent to rVV10. For ex325 ample, the hydrogen-bonded water dimer is over-bound 326 by $0.44 \mathrm{kcal} / \mathrm{mol}$ or 9% in SCAN, and this error is re${ }_{327}$ duced to $0.13 \mathrm{kcal} / \mathrm{mol}$ when SCAN is applied to the ${ }_{328}$ more accurate Hartree-Fock electron density, and not to ${ }_{329}$ its own self-consistent density ${ }^{76}$. That fact speaks for ${ }_{330}$ fitting the b parameter of rVV10 to the binding energy ${ }_{331}$ curve of the Ar dimer (as done here) or to the eight 332 dispersion-bound complexes in S22, and not to the whole ${ }_{33} \mathrm{~S} 22$ set. For the eight dispersion-bound complexes of ${ }^{334} \mathrm{~S} 22, \mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ is quite accurate (see Table I). ${ }_{335}$ The superior numerical performance of $r^{2} S C A N$ over 336 SCAN is consistent with other works studying molecu${ }_{337}$ lar systems ${ }^{48}$, lattice dynamics of solid-state systems ${ }^{77}$, ${ }_{338}$ and in combination with the D 4 vdW functional ${ }^{19}$.

Column (d) of Table I presents the S22 error scores 340 of $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ with the VV10 value $b=12.3$. The ${ }_{341} 0.0-0.04 \mathrm{kcal} / \mathrm{mol}$ differences in the converged S 22 mean 342 absolute errors (MAEs) using both b parameters are com${ }_{343}$ parable to the error in the reference $\operatorname{CCSD}(\mathrm{T})$ values, 344 which used ${ }^{69}$ small triple- ζ grids. Thus we cannot defini345 tively say that one value of b is better for describing com${ }_{346}$ mon noncovalent interactions. The method ${ }^{18}$ that fitted ${ }_{347} b=12.3$ used larger sets of dispersion-bound dimers as ${ }_{348}$ a function of the inter-monomer separation, yet yields ${ }_{349}$ essentially the same average errors as $b=11.95$, fitted 350 to the Ar dimer. As explicated in Ref. 53, we advo-

FIG. 2. The binding energy curves (solid lines) and forces (dashed lines) for the T configuration of benzene dimer from (a) r^{2} SCAN + rVV10 and (b) SCAN + rVV10 compared to the $\operatorname{CCSD}(\mathrm{T})$ results ${ }^{78}$ as the reference, as a function of their separation R in \AA. As in Ref. 75 , forces are computed using a spline interpolation of the binding energy data.

B. Layered materials

We also tested the predictions of SCAN+rVV10 and ${ }_{374} \mathrm{r}^{2}$ SCAN +rVV 10 for geometry and inter-layer binding 375 properties for 28 layered materials (L28). As shown in ${ }_{376}$ Tables II and III, r^{2} SCAN +rVV 10 more accurately pre377 dicts lattice constants than SCAN +rVV 10 for this test 378 set, and converges quicker with respect to plane-wave ba-

TABLE II. Unsigned layer-layer binding energy E_{b} in meV / \AA^{2}, lattice constants c and a in \AA, for 28 layered materials (L28) from SCAN +rVV 10 and r^{2} SCAN $+\mathrm{rVV10}$. Mean deviations (MDs) and mean absolute deviations (MADs) are taken with respect to the RPA^{72} (an uncertain reference; see Table IV) for E_{b}, and experiment ${ }^{70}$ for the lattice constants c and a. Table VIII in the Appendix presents values for each material in the set, the reference values, and values for other density functional approximations.

	SCAN+rVV10			r^{2} SCAN+rVV10		
	E_{b}	c	a	E_{b}	c	a
MAD	1.527	0.167	0.019	2.786	0.139	0.018
MD	0.476	0.132	-0.007	2.670	0.108	0.009

TABLE III. Convergence of lattice constants c and a in \AA for 28 layered materials from SCAN +rVV 10 and r^{2} SCAN +rVV 10 . Different (ENCUT, ENAUG) settings are presented; both values are in eV. Mean deviations (MDs) and mean absolute deviations (MADs) are taken with respect to the largest ENCUT, 800 eV , and ENAUG, 2000 eV , setting. r^{2} SCAN +rVV 10 approaches its converged values more rapidly than does SCAN + rVV10. For the lattice parameters of each solid in the set, refer to Table IX in the Appendix.

	SCAN+rVV10				$\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$			
	$(500,600)$		($500,1 \mathrm{k}$)		$(500,600)$		(500,1k)	
	c	a	c	a	c	a	c	a
MAD	0.024	0.002	0.010	0.001	0.009	0.000	0.008	0.000
MD	0.006	-0.001	-0.008	0.000	-0.007	0.000	-0.006	0.000

FIG. 3. Phonon dispersion in (a) graphite, (b) MoS_{2}, highlighting the improvements on the phonon branches along Γ-A (along the c-axis, or interlayer direction) from vdW corrections, compared with available experimental data from Refs. 79-81 for graphite and Refs. 82-85 for MoS_{2}. Calculations were performed at the relaxed lattice parameters. For an analogous figure using PBE and PBE-D4, see Fig. 5 of the Appendix.

TABLE IV. Unsigned layer-layer binding energy E_{b} in meV / \AA^{2} of graphite, hexagonal boron nitride (h- BN), $\mathrm{MoS}_{2}, \mathrm{TiS}_{2}$ and black phosphorous, calculated from SCAN +rVV 10 and $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ compared with available data from experiments and other computational methods. A high-level, finite cluster $\operatorname{CCSD}(\mathrm{T})$ calculation ${ }^{86}$ for bulk black phosphorous found its exfoliation energy to be $25.81 \mathrm{meV} / \AA^{2}$. We also report values for the rev-vdW-DF2 ${ }^{87} \mathrm{vdW}$-corrected GGA when available.

		Expt.	QMC	RPA	rev-vdW-DF2	SCAN + rVV10	r${ }^{2}$ SCAN + rVV10
Graphite	Bulk	23.28 ± 1.91^{88}	22.91 ± 1.91^{89}	18.32^{90}	23.45^{32}	20.01	22.85
	Bilayer		13.51 ± 0.69^{91}			17.64	20.13
h-BN	Bulk			14.49^{72}	21.15^{32}	20.62	22.55
	Bilayer		15.02 ± 0.46^{92}			17.03	19.70
MoS_{2}	Bulk	34.33 ± 8.11^{93}		20.53^{72}	23.53^{32}	20.15	23.07
TiS_{2}	Bulk		27.2 ± 0.8^{94}	18.88^{72}	24.8^{94}	18.97	21.49
	Bilayer		24.9 ± 1.6^{94}		23.8^{94}	17.71	20.06
Black P	Bulk		22.4 ± 1.6^{95}			22.59	25.46
	Bilayer	16.6 ± 2.2^{95}			21.28	23.97	

sis truncation and the size of the real space integration 420 accuracy QMC calculations would be beneficial.
grid, the ENCUT and ENAUG settings in VASP respectively.

This is clearly shown by the c lattice constants in Tables II and III. For values of the individual solids in the L28 set, refer to Tables VIII and IX of the Appendix.

SCAN+rVV10 and r^{2} SCAN +rVV 10 predict much 42 longer c lattice constants for $\mathrm{PtSe}_{2}, \mathrm{WSe}_{2}, \mathrm{MoTe}_{2}, \mathrm{NbS}_{2},{ }_{42}$ NbSe_{2}, and NbTe_{2} than those found experimentally ${ }^{70}$. ${ }^{42}$ We expect this may be due to the complicated electronic ${ }^{42}$ ground states of these materials, featuring charge den- ${ }^{427}$ sity wave or superconductive phases ${ }^{96-98}$, which were not ${ }^{42}$ considered in the present calculations. The effect of vdW ${ }^{420}$ functional corrections on these properties warrants fur- ${ }^{43}$ ther examination, but is beyond the scope of the current 4 work.
To assess inter-layer binding energies for the L28 set in Table II, we must use RPA reference values ${ }^{70}$, as those from more sophisticated methods [like the $\operatorname{CCSD}(\mathrm{T})$ references ${ }^{60,61,69}$ for S22] are unavailable. Select exceptions will be discussed further. While the RPA includes ${ }^{43}$ long-range vdW interactions ${ }^{99}$, it lacks an accurate de- ${ }^{43}$ scription of short-range correlation ${ }^{100}$ and tends to underestimate C_{6} vdW coefficients ${ }^{101}$. RPA may tend to underbind layered materials.

Table IV presents inter-layer binding energies for a few solids where high-level $\mathrm{QMC}^{89,91,92,94,95}$ and silverstandard RPA values are available. No gold-standard correlated wavefunction calculations [such as $\operatorname{CCSD}(\mathrm{T})$] for these solids have been undertaken at the time of writing. The QMC and experimental benchmarks show that RPA underbinds bulk graphite, MoS_{2}, and TiS_{2} by 5 $10 \mathrm{meV} / \AA^{2} . \quad \mathrm{SCAN}+\mathrm{rVV} 10$ and $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ are slightly more accurate than RPA for these three bulk materials, but overestimate the bilayer binding energies of graphite and MoS_{2}. SCAN+rVV10 often predicts larger binding energies than the RPA, and r^{2} SCAN +rVV 10 often predicts larger binding energies than SCAN+rVV10.
With these findings, we may tentatively say that r^{2} SCAN+rVV10 is more accurate than RPA and SCAN + rVV10 for layered materials, though further benchmark studies with expanded comparison to high

421 Alongside accurate static structural properties, dy422 namical lattice properties are also essential for materi3 als design applications. We have recently shown that 24 while SCAN gives accurate static structural properties,
425 its accuracy for dynamical properties is limited by its
${ }_{426}$ numerical sensitivity, while r^{2} SCAN maintains good per-
${ }_{427}$ formance for both static and dynamical properties ${ }^{77}$.
${ }_{428}$ With this in mind, phonon dispersion in graphite and
${ }_{429} \mathrm{MoS}_{2}$ are presented in Fig. 3. For both systems, our r^{2} SCAN +rVV 10 results are in excellent agreement with
${ }_{43}$ the experimental data, especially for the lowest longi-
432 tudinal acoustic (LA), longitudinal optical (LO), trans-
${ }^{433}$ verse acoustic (TA), and transverse optical (TO) phonon 434 branches along the $\Gamma-A$ (interlayer or c-axis) direction. ${ }_{35}$ The calculated strengths of these branches are dominated ${ }^{436}$ by the inter-layer binding forces, and are thus sensitive to ${ }^{437}$ vdW corrections. Without the rVV10 correction, the un-
${ }^{438}$ corrected r^{2} SCAN severely underestimates these phonon 39 branches.

TABLE V. Equilibrium lattice constants of PPTA, found by stress minimization within the VASP code. Computed and experimental values from Ref. 35 are included for comparison. Unlike other layered materials, the inter-layer or vdW direction in PPTA is the a axis.

	Methods	$a(\AA)$	$b(\AA)$	$c(\AA)$	$\alpha(\mathrm{deg})$
Ref. 35	Expt.	7.87	5.18	12.9	90
	SCAN	7.75	5.10	12.96	90.2
	SCAN+rVV10	7.21	5.08	12.95	90
This Work	SCAN	7.86	5.09	12.96	90.3
	SCAN+rVV10	7.43	5.10	12.96	90.1
	r 2 SCAN	7.99	5.14	12.96	90.2
	r2 SCAN+rVV10	7.35	5.15	12.99	90.1

FIG. 4. PPTA crystal structure in view of the ab plane and ac plane. Carbon, nitrogen, oxygen, and hydrogen atoms are rendered in brown, gray, red, and white, respectively.
C. Complex materials: PPTA

Last, we present calculations for $\operatorname{poly}(p$-phenylene terephthalamide) (PPTA), a layered material that is challenging for standard DFAs. PPTA, as shown in Fig. 4 , is primarily vdW-bonded along its a-axis, hydrogenbonded along its b-axis, and covalently bonded along its c-axis ${ }^{35}$ - a robust test for general-purpose DFAs. Table V presents the equilibrium structure of PPTA determined by SCAN, r^{2} SCAN, and their rVV10 variants. The SCAN+rVV10 lattice parameters computed in Ref. 35 (and included in Table V) used an older version of VASP where the rVV10 stress tensor elements were not correctly computed ${ }^{68}$. The calculations performed here use a corrected version of VASP and different computational parameters than those of Ref. 35. We used a $6 \times 9 \times 4 \boldsymbol{k}$-point grid (corresponding to \boldsymbol{k}-point spacing of $0.15 \AA^{-1}$) and a plane-wave cutoff of 900 eV , whereas Ref. 35 used a $6 \times 6 \times 6 \boldsymbol{k}$-point grid and plane-wave cutoff of 520 eV . The number of grid points along \boldsymbol{c} is well-converged at 4 points.

The effects of incorrect stress tensor elements are pronounced: the minima in the energy curves as a function of strained lattice parameters in Fig. 2 of Ref. 35 do not coincide with the values in their Table 1. As their re- ${ }^{50}$ laxed values of b and c for SCAN and SCAN +rVV 10 are 50 similar to ours, we refit their energy data as a function of a at fixed $b=5.10 \AA$ and $c=12.96 \AA$ for SCAN, and $b=5.08 \AA$ and $c=12.95 \AA$ for SCAN +rVV 10 . We find $a=7.92 \AA$ for SCAN, and $a=7.42 \AA$ for SCAN+rVV10, more comparable to our values in Table V.

Although the a axis is the vdW-bonded axis in PPTA, the uncorrected SCAN provides the most correct description of inter-layer binding in PPTA. SCAN+rVV10 and r^{2} SCAN +rVV 10 severely overbind along the a axis, and do not provide substantive corrections to the parent meta-GGA along the b and c axes.

IV. CONCLUSIONS

477 We have optimized the r^{2} SCAN +rVV 10 vdW density 478 functional and tested its performance against both molec479 ular (S22) and layered material databases. The global b 480 parameter is adjusted to 11.95 by fitting to the Ar dimer ${ }_{481}$ binding energy curve. This is somewhat smaller than the ${ }_{482}$ VV10 $b=12.3$ parameter in Ref. 19, and considerably 483 smaller than the 15.7 used in SCAN+rVV10, suggesting 484 that r^{2} SCAN requires more vdW correction than SCAN. ${ }_{485}$ With $b=11.95, \mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ is more accurate than 486 SCAN+rVV10 for the S22 binding energy database, and 487 is competitive with the original rVV10 functional.
488 For the L28 layered material data set, r^{2} SCAN+rVV10 489 also outperforms SCAN+rVV10 in accuracy and effi490 ciency for lattice constants predictions. For inter-layer 491 binding energies, $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ shows stronger bind492 ing than SCAN + rVV10, which suggests over-binding 493 when compared with RPA and available QMC bench494 marks. In extended systems like layered bulk mate5 rials and bilayers, important many-atom/screening ef496 fects may be present in QMC that are missing in ${ }_{97} \mathrm{r}^{2}$ SCAN $+\mathrm{rVV10}$. However, r^{2} SCAN $+\mathrm{rVV10}$ accurately 498 accounts for phonon dispersion in layered bulk materi499 als, improving substantially over r^{2} SCAN. The study of 500 PPTA demonstrates that care must be taken when us${ }^{501}$ ing vdW-corrected DFAs. The uncorrected parent DFA 502 may sufficiently describe intermediate vdW interactions, 503 leading to overbinding when the rVV10 correction is in504 cluded. We also highlight that $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ inherits sos the good numerical stability of r^{2} SCAN, and recommend $506 \mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ as a versatile vdW XC functional.

ACKNOWLEDGMENTS

J.N. and M.K. acknowledge the support of the U.S. 509 Department of Energy (DOE), Office of Science (OS), 510 Basic Energy Sciences (BES), Grant No. DE-SC0014208. 511 J.S. acknowledges the support of the U.S. National Sci512 ence Foundation (NSF) under Grant No. DMR-2042618. 513 J.W.F. acknowledges support from DOE grant DE514 SC0019350. A.D.K. acknowledges the support of the U.S. 515 DOE, Office of Science, BES, through Grant No. DE516 SC0012575 to the Energy Frontier Research Center: Cen517 ter for Complex Materials from First Principles, and also 518 support from Temple University. J.P.P. acknowledges the 519 support of the US NSF under Grant No. DMR-1939528. ${ }_{520}$ We thank J. Yu for discussions on PPTA.

[^0]${ }^{2}$ C. M. Roth, B. L. Neal, and A. M. Lenhoff, Biophys. J. 70, 977 (1996).
${ }^{3}$ J. N. Israelachvili, Q. Rev. Biophys. 6, 341 (1973).
${ }^{4}$ S. J. Sowerby, C. A. Cohn, W. M. Heckl, and N. G. Holm, 591 Proc. Natl. Acad. Sci. U.S.A. 98, 820 (2001).
${ }^{5}$ P. E. Siegbahn, M. R. Blomberg, and S.-L. Chen, J. ${ }^{593}$ Chem. Theory Comput. 6, 2040 (2010). 6 J. C. F. Rodriguez-Reyes, C. G. Siler, W. Liu, 595 A. Tkatchenko, C. M. Friend, and R. J. Madix, J. Am. ${ }_{596}$ Chem. Soc. 136, 13333 (2014).
${ }^{7}$ C. Nilofer, A. Sukhwal, A. Mohanapriya, and 598 P. Kangueane, Bioinformation 13, 164 (2017). 599
${ }^{8}$ C. Gattinoni and A. Michaelides, Faraday discussions 600 180, 439 (2015).
${ }^{9}$ H. Peng and J. P. Perdew, Phys. Rev. B 96, 100101602 (2017).

10 J. Tao, J. P. Perdew, and A. Ruzsinszky, Phys. Rev. B ${ }_{604}^{603}$ 81, 233102 (2010).
11 J. Klimeš, D. R. Bowler, and A. Michaelides, Phys Rev B 83, 195131 (2011).
${ }^{607}$
${ }^{12}$ W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 608
${ }^{13}$ W. Foulkes, L. Mitas, R. Needs, and G. Rajagopal, Rev. 609 Mod. Phys. 73, 33 (2001).
${ }^{14}$ K. Raghavachari, G. W. Trucks, J. A. Pople, and ${ }_{611}$ M. Head-Gordon, Chem. Phys. Lett. 157, 479 (1989). ${ }_{612}$
${ }^{15}$ H. Eshuis, J. E. Bates, and F. Furche, Theoret. Chem. ${ }^{61}$ Acc. 131, 1 (2012).
1_{16} S. Grimme, J. Comput. Chem. 27, 1787 (2006). J. Chem. 6 Phys. 132, 154104 (2010).
${ }^{18}$ E. Caldeweyher, S. Ehlert, A. Hansen, H. Neugebauer, 61 S. Spicher, C. Bannwarth, and S. Grimme, J. Chem. ${ }^{619}$ Phys. 150, 154122 (2019).
19 S. Ehlert U Huniar J Ning J W Furness, J Sun A.D. ${ }_{620}$ Kaplan, J. P. Pra, J. ang, J. W. Furs, J. Sun, A. D. ${ }^{221}$ Phys. 154, 061101 (2021).
20 A Tkatchenko and M. Schefler 073005 (2009).
21 A. Th A. DiSt . Jr, Rar, M. Sc ${ }_{626}$. Tkatchenko, R. A. DiStasio Jr., R. Car, and M. Schef- 626 fler, Phys. Rev. Lett. 108, 236402 (2012). 627
${ }^{22}$ W. Liu, F. Maaß, M. Willenbockel, C. Bronner, ${ }^{628}$ M. Schulze, S. Soubatch, F. S. Tautz, P. Tegeder, and 629 A. Tkatchenko, Phys. Rev. Lett. 115, 036104 (2015).
${ }^{23}$ K. Berland, V. R. Cooper, K. Lee, E. Schröder, T. Thon- ${ }_{63}$ hauser, P. Hyldgaard, and B. I. Lundqvist, Rep. Prog. ${ }_{632}$ Phys. 78, 066501 (2015).
${ }^{24}$ O. A. Vydrov and T. Van Voorhis, J. Chem. Phys. 133, ${ }^{63}$ 244103 (2010).
${ }^{25}$ R. Sabatini, T. Gorni, and S. De Gironcoli, Phys. Rev. ${ }^{636}$ B 87, 041108 (2013).
${ }^{26}$ A. D. Becke and E. R. Johnson, J. Chem. Phys. 122, ${ }^{63}$ 154104 (2005).
27 A. D. Becke and E. R. Johnson, J. Chem Phys $127{ }^{63}$ 124108 (2007).
${ }^{28}$ H. Tang, S. T. u. R. Chowdhury, J. Tao, and J. P. Perdew, 642 Phys. Rev. B 101, 195426 (2020).
29 S. T. u. R. Chowdhury, H. Tang, and J. P. Perdew, Phys. Rev. B 103, 195410 (2021).
${ }_{30}$ J. Sun, A. Ruzsinszky, and J. P. Perdew, Phys. Rev. Lett. 115, 036402 (2015).
${ }^{31}$ J. Sun, R. C. Remsing, Y. Zhang, Z. Sun, A. Ruzsinszky, 64 H. Peng, Z. Yang, A. Paul, U. Waghmare, X. Wu, et al., 64 Nature Chem. 8, 831 (2016).
${ }^{32}$ H. Peng, Z.-H. Yang, J. P. Perdew, and J. Sun, Phys. 651 Rev. X 6, 041005 (2016).
${ }^{33}$ J. W. Furness and J. Sun, Phys. Rev. B 99, 041119 (2019). ${ }_{653}{ }^{652}$
${ }^{34}$ A. P. Bartók and J. R. Yates, J. Chem. Phys. 150, 16110165
(2019).
${ }^{35}$ J. Yu, G. Fiorin, H. Peng, M. L. Klein, and J. P. Perdew, Phys. Rev. Materials 4, 055601 (2020).
${ }^{36}$ J. G. Brandenburg, J. E. Bates, J. Sun, and J. P. Perdew, Phys. Rev. B 94, 115144 (2016).
${ }^{37}$ J. Wiktor, F. Ambrosio, and A. Pasquarello, J. Chem. Phys. 147, 216101 (2017).
${ }^{38}$ J. Hermann and A. Tkatchenko, J. Chem. Theory Comput. 14, 1361 (2018).
${ }^{39}$ S. Dasgupta, E. Lambros, J. Perdew, and F. Paesani, Nature Commun. 12, 6359 (2021).
${ }^{40}$ D. Mejía-Rodríguez and S. B. Trickey, J. Chem. Phys. 151, 207101 (2019).
${ }^{41}$ A. P. Bartók and J. R. Yates, J. Chem. Phys. 151, 207102 (2019).
${ }^{42}$ D. Mejía-Rodríguez and S. B. Trickey, J. Phys. Chem. A 124, 9889 (2020).
${ }^{43}$ M. Levy and J. P. Perdew, Phys. Rev. A 32, 2010 (1985).
${ }^{44}$ A. Görling and M. Levy, Phys. Rev. B 47, 13105 (1993).
${ }^{45}$ L. Pollack and J. P. Perdew, J. Phys. Condens. Matter 12, 1239 (2000).
${ }^{46}$ P. Svendsen and U. von Barth, Phys. Rev. B 54, 17402 (1996).

47 J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).
${ }^{48}$ J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, J. Phys. Chem. Lett. 11, 8208 (2020), ibid. 11, 9248 (2020).
49 J. W. Furness, A. D. Kaplan, J. Ning, J. P. Perdew, and J. Sun, J. Chem. Phys. 156, 034109 (2022).
${ }^{50}$ S. Grimme, A. Hansen, S. Ehlert, and J.-M. Mewes, J. Chem. Phys. 154, 064103 (2021).
${ }^{51}$ N. A. W. Holzwarth, M. Torrent, J.-B. Charraud, and M. Côté, Phys. Rev. B 105, 125144 (2022).
${ }^{52}$ N. Mardirossian and M. Head-Gordon, Mol. Phys. 115, 2315 (2017).
${ }^{53}$ N. Mardirossian, L. Ruiz Pestana, J. C. Womack, C.-K. Skylaris, T. Head-Gordon, and M. Head-Gordon, J. Phys. Chem. Lett. 8, 35 (2017).
${ }^{54}$ A. V. Terentjev, L. A. Constantin, E. Artacho, and J. M. Pitarke, Phys. Rev. B 100, 235439 (2019).
55 B. M. Axilrod and E. Teller, J. Chem. Phys. 11, 299 (1943).
${ }^{56}$ K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
${ }^{57}$ K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto, Science 353 (2016).
58 J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
59 É. D. Murray, K. Lee, and D. C. Langreth, J. Chem. Theory Comput. 5, 2754 (2009).
${ }^{60}$ R. Podeszwa, K. Patkowski, and K. Szalewicz, Phys. Chem. Chem. Phys. 12, 5974 (2010).
${ }^{61}$ T. Takatani, E. G. Hohenstein, M. Malagoli, M. S. Marshall, and C. D. Sherrill, J. Chem. Phys. 132, 144104 (2010).
${ }^{62}$ D. Hankins, J. W. Moskowitz, and F. H. Stillinger, J. Chem. Phys. 53, 4544 (1970).
${ }^{63}$ J. F. Dobson, Int. J. Quantum Chem. 114, 1157 (2014).
${ }^{64}$ K. Patkowski, G. Murdachaew, C.-M. Fou, and K. Szalewicz*, Mol. Phys. 103, 2031 (2005).
${ }^{65}$ P. Slavíýček, R. Kalus, P. Paška, I. Odvárková, P. Hobza, and A. Malijevský, J. Chem. Phys. 119, 2102 (2003).
${ }^{66}$ (2022), see Table S22x5 of the r^{2} SCAN-D4 code reposi-
tory: https://github.com/awvwgk/r2scan-d4-paper. 719 67 G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169720 (1996).

68 (2022) the rVV10 correlation stress tensor ele ments in VASP versions 6.2 .0 and below were in- 72 correctly coded, see https://www.vasp.at/wiki/index. 724 php/Nonlocal_vdW-DF_functionals.
69 M. S. Marshall, L. A. Burns, and C. D. Sherrill, J. Chem. Phys. 135, 194102 (2011).
${ }^{70}$ T. Björkman, J. Chem. Phys. 141, 074708 (2014).
71 J. Ning, M. Kothakonda, J. W. Furness, A. D. Ka- 72 plan, S. Ehlert, J. G. Brandenburg, J. P. Perdew, 7_{30} and J. Sun, "Data for "Workhorse minimally-empirical 731 dispersion-corrected density functional, with tests for weakly-bound systems: r2 SCAN + rVV10"," (2022), DOI: 10.5281/zenodo.6871949.
7^{7} T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, Phys. Rev. Lett. 108, 235502 (2012).
${ }^{73}$ A. Togo and I. Tanaka, Scripta Materialia 108, 1 (2015).
${ }^{74}$ K. Lee, E. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, Phys. Rev. B 82, 081101 (2010).
${ }^{75}$ T. Gould, E. R. Johnson, and S. A. Tawfik, Beilstein J. Org. Chem. 14, 1181-1191 (2018).
${ }^{76}$ S. Dasgupta, S. Shahi, P. Bhetwal, J. Perdew, and F. Paesani, "How good is the density-corrected scan functional for neutral and ionic aqueous systems, and what is so right about the hartree-fock density?" (2022), submitted to J. Chem. Theory Comput.
77 J. Ning, J. W. Furness, and J. Sun, Chem. Mater. 34, 2562 (2022).
${ }^{78}$ M. O. Sinnokrot and C. D. Sherrill, The Journal of Physical Chemistry A 108, 10200 (2004).
79 J. Maultzsch, S. Reich, C. Thomsen, H. Requardt, and P. Ordejón, Phys. Rev. Lett. 92, 075501 (2004).

80 M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, and C. Thomsen, Phys. Rev. B 76, 035439 (2007).
81 R. Nicklow, N. Wakabayashi, and H. Smith, Phys. Rev. B 5, 4951 (1972).
82 H. Tornatzky, R. Gillen, H. Uchiyama, and J. Maultzsch, Phys. Rev. B 99, 144309 (2019).
83 N. Scheuschner, R. Gillen, M. Staiger, and J. Maultzsch, Phys. Rev. B 91, 235409 (2015).
${ }^{84}$ T. J. Wieting and J. L. Verble, Phys. Rev. B 3, 4286 (1971).

85 J. Chen and C. Wang, Solid State Commun. 14, 857 (1974).

86 M. Schütz, L. Maschio, A. J. Karttunen, and D. Usvyat, J. Phys. Chem. Lett. 8, 1290 (2017).

87 I. Hamada, Phys. Rev. B 89, 121103 (2014).
88 R. Zacharia, H. Ulbricht, and T. Hertel, Phys. Rev. B 69, 155406 (2004).
${ }^{89}$ L. Spanu, S. Sorella, and G. Galli, Phys. Rev. Lett. 103, 196401 (2009).
90 S. Lebègue, J. Harl, T. Gould, J. G. Ángyán, G. Kresse, and J. F. Dobson, Phys. Rev. Lett. 105, 196401 (2010).
91 E. Mostaani, N. D. Drummond, and V. I. Fal'ko, Phys. Rev. Lett. 115, 115501 (2015).
${ }^{92}$ C.-R. Hsing, C. Cheng, J.-P. Chou, C.-M. Chang, and C.-M. Wei, New J. Phys. 16, 113015 (2014).

93 Z. Fang, X. Li, W. Shi, Z. Li, Y. Guo, Q. Chen, L. Peng, and X. Wei, J. Phys. Chem. C 124, 23419 (2020).
94 J. T. Krogel, S. F. Yuk, P. R. Kent, and V. R. Cooper, J. Phys. Chem. A 124, 9867 (2020).

95 L. Shulenburger, A. D. Baczewski, Z. Zhu, J. Guan, and D. Tomanek, Nano Lett. 15, 8170 (2015).
${ }^{96}$ I. Guillamón, H. Suderow, S. Vieira, L. Cario, P. Diener, and P. Rodiere, Phys. Rev. Lett. 101, 166407 (2008).
97 M. Johannes, I. Mazin, and C. Howells, Phys. Rev. B 73, 205102 (2006).
98 C. Battaglia, H. Cercellier, F. Clerc, L. Despont, M. G. Garnier, C. Koitzsch, P. Aebi, H. Berger, L. Forró, and C. Ambrosch-Draxl, Phys. Rev. B 72, 195114 (2005).

99 J. F. Dobson and J. Wang, Phys. Rev. Lett. 82, 2123 (1999).

100 S. Kurth and J. P. Perdew, Phys. Rev. B 59, 10461 (1999).
101 T. Gould, J. Chem. Phys. 137, 111101 (2012).

Appendix: Additional data sets and figures

TABLE VI. Mean errors (ME, kcal/mol), mean absolute errors (MAE, kcal/mol), mean percentage errors (MPE), and mean absolute percentage errors (MAPE) in the unsigned interaction energies of the S22 data set, taken with respect to CCSD (T) results ${ }^{69}$. Different (ENCUT, ENAUG) settings (described in Section III A) are tested for r^{2} SCAN +rVV 10 and SCAN +rVV 10 ; both values are in eV. Users who need less accuracy can use lower settings. For a concise presentation of this data, refer to Table I. Table VII in the Appendix presents interaction energies for each molecule in the S22 set, the CCSD(T) reference values, as well as values for other density functional approximations.

TABLE VII. Positive interaction energy errors (approximate minus the $\operatorname{CCSD}(\mathrm{T})$ reference), in $\mathrm{kcal} / \mathrm{mol}$, for the molecular dimers in the S22 data set from PBE, rVV10, vdW-DF2 (numerical results from Ref. 24), SCAN results from Ref. 32, SCAN +rVV 10 and r^{2} SCAN +rVV 10 with respect to the $\operatorname{CCSD}(\mathrm{T})$ results ${ }^{69}$. Different (ENCUT, ENAUG) settings are tested for r^{2} SCAN +rVV 10 and SCAN+rVV10; both values are in eV . Absolute errors that are greater than twice the corresponding MAD are bold-faced.

	$\operatorname{CCSD}(\mathrm{T})$	PBE	rVV10	vdW-DF2	SCAN	$\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$			SCAN+rVV10		
						$(600,600)$	$(600,1000)$	$(900,2000)$	$(600,600)$	$(600,1000)$	$(900,2000)$
7 hydrogen-bound complexes											
NH_{3} dimer (C2h)	3.13	-0.32	0.28	-0.16	-0.01	0.04	0.05	0.03	0.28	0.29	0.15
$\mathrm{H}_{2} \mathrm{O}$ dimer (Cs)	4.99	-0.05	0.52	-0.21	0.44	0.34	0.35	0.39	0.55	0.56	0.56
Formic acid dimer (C2h)	18.75	-0.51	1.22	-1.98	2.18	1.84	1.87	2.07	3.00	2.86	2.77
Formamide dimer (C2h)	16.06	-1.28	0.66	-1.63	0.48	0.35	0.39	0.60	0.93	0.92	0.99
Uracil dimer (C2h)	20.64	-2.10	0.48	-1.95	-0.15	0.27	0.32	0.36	0.24	0.64	0.62
2-pyridone-2-aminopyridine (C 1)	16.93	-1.56	1.13	-1.56	-0.08	0.66	0.68	0.68	0.58	0.88	0.88
Adenine-thymine WC (C1)	16.66	-2.31	0.76	-1.92	-0.67	0.30	0.26	0.21	1.37	0.51	0.25
MAE [REF CCSD (T)]		1.16	0.72	1.35	0.57	0.54	0.56	0.62	0.99	0.95	0.89
ME [REF CCSD (T)]		-1.16	0.72	-1.35	0.31	0.54	0.56	0.62	0.99	0.95	0.89
STD DEV [REF CCSD (T)]		0.82	0.32	0.75	0.84	0.56	0.56	0.63	0.90	0.80	0.82
MAE [REF $(900,2000)$]						0.09	0.07	0.00	0.16	0.05	0.00
8 dispersion-bound complexes											
CH_{4} dimer (D3d)	0.53	-0.43	-0.04	0.15	-0.18	-0.02	-0.01	-0.00	-0.14	-0.03	-0.01
$\mathrm{C}_{2} \mathrm{H}_{4}$ dimer (D2d)	1.47	-1.14	-0.06	-0.15	-0.45	-0.06	-0.06	-0.11	-0.34	-0.16	-0.09
Benzene- CH_{4} (C3)	1.45	-1.40	-0.01	-0.16	-0.58	-0.00	-0.03	-0.09	0.23	0.21	-0.22
Benzene dimer (C2h)	2.65	-4.50	0.07	-0.50	-1.58	0.12	0.05	0.02	-0.10	0.05	-0.24
Pyrazine dimer (Cs)	4.25	-4.93	-0.22	-0.96	-1.60	-0.11	-0.10	-0.02	1.03	-0.30	-0.22
Uracil dimer (C2)	9.80	-7.07	-0.08	-1.04	-1.84	0.45	0.50	0.62	-1.32	-0.26	0.25
Indole-benzene (C1)	4.52	-6.69	0.01	-1.08	-2.40	0.05	0.00	-0.18	-0.22	-0.29	-0.56
Adenine-thymine (C1)	11.73	-10.31	-0.31	-2.15	-3.08	0.31	0.31	0.36	-0.01	-0.07	-0.16
MAE [REF CCSD (T)]		4.56	0.10	0.78	1.47	0.14	0.13	0.18	0.42	0.17	0.22
ME [REF CCSD (T)]		-4.56	-0.08	-0.74	-1.47	0.09	0.08	0.08	-0.11	-0.11	-0.16
STD DEV [REF CCSD (T)]		3.22	0.12	0.69	0.94	0.18	0.20	0.26	0.61	0.17	0.21
MAE [REF $(900,2000)]$						0.09	0.07	0.00	0.52	0.21	0.00
7 mixed complexes											
$\mathrm{C}_{2} \mathrm{H}_{4}-\mathrm{C}_{2} \mathrm{H}_{2}$ (C2v)	1.50	-0.32	0.17	0.03	-0.16	0.07	0.06	0.05	0.24	0.06	0.06
Benzene- $\mathrm{H}_{2} \mathrm{O}$ (Cs)	3.27	-1.25	0.04	-0.48	0.00	0.43	0.40	0.39	0.58	0.54	0.34
Benzene- NH_{3} (Cs)	2.31	-1.38	-0.04	-0.32	-0.32	0.21	0.20	0.13	0.14	0.26	0.05
Benzene-HCN (Cs)	4.54	-1.71	-0.27	-0.99	-0.48	0.07	0.06	-0.00	-0.07	0.09	0.04
Benzene dimer (C2v)	2.72	-2.59	-0.17	-0.66	-1.24	-0.17	-0.19	-0.24	-0.30	-0.26	-0.33
Indole-benzene (Cs)	5.63	-3.57	-0.35	-1.43	-1.56	-0.19	-0.19	-0.25	-0.94	-0.46	-0.47
MAE [REF CCSD (T)]		1.80	0.17	0.65	0.63	0.19	0.18	0.18	0.38	0.28	0.22
ME [REF CCSD (T)]		-1.80	-0.10	-0.64	-0.62	0.07	0.06	0.01	-0.06	0.04	-0.05
STD DEV [REF CCSD (T)]		1.03	0.18	0.47	0.57	0.21	0.21	0.22	0.48	0.33	0.27
MAE [REF (900,2000)]						0.05	0.03	0.00	0.11	0.09	0.00
Total											
MAE [REF CCSD (T)]		2.67	0.32	0.94	0.94	0.30	0.30	0.32	0.58	0.46	0.43
ME [REF CCSD (T)]		-2.67	0.17	-0.92	-0.66	0.20	0.20	0.22	0.27	0.25	0.21
STD DEV [REF CCSD (T)]		2.55	0.43	0.71	1.09	0.44	0.45	0.49	0.84	0.70	0.68
MAE [REF $(900,2000)]$						0.10	0.08	0.00	0.36	0.15	0.00

TABLE VIII. Positive layer-layer binding energy E_{b} in meV / \AA^{2}, lattice constants c and a in \AA for 28 layered materials (L28 test set) from SCAN +rVV 10 and r^{2} SCAN +rVV 10 . The reference values are E_{b} from RPA calculations ${ }^{72}$ and lattice constants c and a from experiment ${ }^{70} . \Delta E_{b}, \Delta a$, and Δc are the deviations in the interlayer binding energy, a lattice parameter, and c lattice parameter, respectively. The mean deviations (MDs), mean absolute deviations (MADs), and standard deviations (STD DEVs) are also presented. Absolute errors that are greater than twice the corresponding MAD are bold-faced.

	RPA	Expt.		rev-vdW-DF2			SCAN			$\mathrm{SCAN}+\mathrm{rVV} 10$			$\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV10}$		
	E_{b}	c	a	ΔE_{b}	Δc	Δa	ΔE_{b}	Δc	Δa	ΔE_{b}	Δc	Δa	ΔE_{b}	Δc	Δa
h-BN	14.49	6.54	2.51	6.66	0.00	0.00	-7.20	0.30	-0.01	4.96	0.00	-0.01	8.00	-0.04	-0.01
Graphite	18.32	6.70	2.46	5.13	-0.11	0.00	-10.40	0.16	-0.01	1.63	-0.05	-0.01	4.53	-0.07	-0.00
HfS_{2}	16.13	5.84	3.63	3.77	-0.01	-0.02	-10.94	0.20	0.00	-0.09	0.04	-0.02	2.09	0.04	-0.01
HfSe_{2}	17.09	6.16	3.75	3.33	0.02	-0.01	-11.66	0.24	0.00	-0.82	0.06	-0.01	1.30	0.05	-0.00
HfTe_{2}	18.68	6.65	3.96	4.48	0.04	-0.03	-11.68	0.28	0.01	-0.50	0.13	-0.01	1.37	0.13	0.02
MoS_{2}	20.53	12.30	3.16	3.00	0.04	0.01	-14.86	0.52	0.01	-0.32	0.18	0.01	2.71	0.13	0.02
MoSe_{2}	19.63	12.93	3.29	3.45	0.12	0.01	-14.01	0.61	0.02	0.08	0.24	0.01	2.91	0.19	0.02
MoTe_{2}	20.80	13.97	3.52	3.30	0.11	0.01	-13.95	0.66	0.00	-0.18	0.30	-0.01	2.22	0.25	0.03
NbS_{2}	17.58	17.91	3.33	7.58	0.24	-0.01	-10.65	0.93	0.01	2.94	0.46	0.00	5.65	0.40	0.01
NbSe_{2}	19.57	12.55	3.44	7.82	-0.06	0.01	-11.93	0.50	0.03	0.45	0.49	0.02	3.04	0.44	0.02
NbTe_{2}	23.03	6.61	3.68	4.14	0.20	-0.01	-14.37	0.57	-0.02	-1.24	0.33	-0.03	1.03	0.27	0.02
PbO	20.25	5.00	3.96	-3.30	0.05	0.07	-8.43	0.10	0.03	3.08	-0.07	0.03	1.40	0.01	0.03
PdTe_{2}	40.17	5.11	4.02	3.44	0.05	0.05	-14.98	-0.07	0.03	2.25	-0.08	0.02	-0.25	0.06	0.04
PtS_{2}	20.55	5.04	3.54	2.85	-0.13	0.05	-15.14	0.50	-0.01	-1.39	0.17	-0.01	1.46	0.09	0.01
PtSe_{2}	19.05	5.11	3.73	5.86	-0.13	0.06	-13.14	0.62	-0.04	0.34	0.29	-0.03	3.06	0.20	0.00
TaS_{2}	17.68	5.90	3.36	8.29	0.00	-0.01	-10.30	0.24	0.00	3.74	0.06	-0.01	6.43	0.05	0.01
TaSe_{2}	19.44	6.27	3.48	6.37	0.02	-0.01	-12.12	0.25	0.00	2.69	0.06	-0.01	5.24	0.04	0.01
TiS_{2}	18.88	5.90	3.41	5.47	-0.25	-0.02	-11.98	-0.02	0.01	0.14	-0.14	0.00	2.66	-0.16	0.00
TiSe_{2}	17.39	6.27	3.54	7.38	-0.29	-0.02	-10.50	0.01	0.01	1.42	-0.16	0.00	3.86	-0.17	0.01
TiTe_{2}	19.76	6.50	3.78	7.11	0.02	-0.03	-12.06	0.32	-0.01	0.19	0.15	-0.02	2.35	0.11	0.01
VS_{2}	25.61	5.75	3.22	1.17	0.06	-0.05	-18.40	0.32	-0.03	-4.30	0.01	0.03	-1.37	-0.00	0.04
VSe_{2}	22.26	6.11	3.36	3.26	0.05	-0.04	-15.62	0.38	-0.03	-2.64	0.08	0.04	0.14	0.03	0.05
VTe_{2}	20.39	6.58	3.64	6.27	0.01	-0.05	-12.89	0.55	-0.09	-0.56	0.10	0.02	1.35	0.01	0.06
WS_{2}	20.24	12.32	3.15	3.69	0.09	0.02	-12.15	0.32	0.03	0.56	0.21	0.01	3.60	0.16	0.02
WSe_{2}	19.98	12.96	3.28	3.45	0.13	0.02	-13.29	0.44	0.03	0.25	0.25	0.01	3.06	0.22	0.03
ZrS 2	16.98	5.81	3.66	3.09	0.02	-0.01	-11.55	0.21	0.03	-0.85	0.06	0.02	1.35	0.05	0.01
ZrSe_{2}	18.53	6.13	3.77	2.55	0.02	0.00	-12.66	0.24	0.03	-1.84	0.08	0.02	0.34	0.06	0.02
ZrTe_{2}	16.34	6.66	3.95	8.84	0.01	-0.02	-8.33	0.26	0.05	3.33	0.08	0.03	5.23	0.07	0.05
MD				4.59	0.01	-0.00	-12.33	0.34	0.00	0.48	0.12	0.00	2.67	0.09	0.02
MAD				4.82	0.08	0.02	12.33	0.35	0.02	1.53	0.15	0.02	2.79	0.13	0.02
STD DEV				2.50	0.11	0.03	2.36	0.22	0.03	2.01	0.16	0.02	2.08	0.14	0.02

TABLE IX. Lattice constants c and a in \AA for 28 layered materials (L28 data set) from SCAN+rVV10 and r${ }^{2}$ SCAN+rVV10. Deviations are reported under Δc and Δa columns. Different (ENCUT, ENAUG) settings are presented; both values are in eV . The experimental values of c and a are included for comparison ${ }^{70}$. Mean deviations (MDs) and mean absolute deviations (MADs) are taken with respect to the largest ENCUT, 800 eV , and ENAUG, 2000 eV , setting. r${ }^{2}$ SCAN+rVV10 approaches its converged values more rapidly than does SCAN+rVV10.

E			SCAN+rVV10						$\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$					
			$(500,600)$		$(500,1000)$		$(800,2000)$		$(500,600)$		$(500,1000)$		$(800,2000)$	
			Δc	Δa	Δc	Δa	c	a	Δc	Δa	Δc	Δa	c	a
h-BN	6.54	2.51	-0.08	-0.00	-0.07	-0.00	6.54	2.50	-0.07	-0.00	-0.06	-0.00	6.50	2.50
Graphite	6.70	2.46	0.04	0.00	0.02	0.00	6.65	2.45	0.03	0.00	0.03	0.00	6.63	2.46
HfS_{2}	5.84	3.63	0.04	0.00	-0.01	-0.00	5.87	3.61	-0.00	-0.00	-0.00	-0.00	5.88	3.62
HfSe_{2}	6.16	3.75	-0.01	-0.00	0.00	0.00	6.22	3.74	0.00	0.00	-0.00	-0.00	6.21	3.75
HfTe_{2}	6.65	3.96	-0.01	-0.00	0.00	0.00	6.79	3.95	-0.00	0.00	-0.00	-0.00	6.78	3.98
MoS_{2}	12.30	3.16	0.02	-0.00	-0.00	-0.00	12.47	3.17	-0.01	-0.01	-0.01	-0.00	12.43	3.18
MoSe_{2}	12.93	3.29	0.02	-0.00	0.00	-0.00	13.17	3.30	0.00	-0.00	0.00	-0.00	13.12	3.31
MoTe_{2}	13.97	3.52	0.04	-0.00	0.00	-0.00	14.26	3.51	-0.01	0.00	-0.01	-0.00	14.22	3.55
NbS_{2}	17.91	3.33	-0.01	-0.00	-0.03	-0.00	18.34	3.33	-0.02	0.00	-0.02	-0.00	18.31	3.34
$\mathrm{NbSe}{ }_{2}$	12.55	3.44	0.00	-0.00	-0.01	-0.00	13.01	3.46	-0.01	-0.00	-0.01	-0.00	12.99	3.46
NbTe_{2}	6.61	3.68	0.00	-0.00	0.00	-0.00	6.95	3.65	-0.00	0.00	-0.00	-0.00	6.88	3.70
PbO	5.00	3.96	-0.04	0.01	-0.02	-0.00	4.94	3.99	-0.02	-0.00	-0.02	-0.00	5.01	3.99
PdTe_{2}	5.11	4.02	0.00	-0.00	0.00	-0.00	5.03	4.04	-0.00	0.00	-0.00	-0.00	5.17	4.06
PtS_{2}	5.04	3.54	0.06	-0.00	-0.01	0.00	5.19	3.53	-0.01	-0.00	-0.01	-0.00	5.13	3.55
PtSe_{2}	5.11	3.73	-0.01	0.00	-0.01	0.00	5.40	3.70	-0.00	-0.00	-0.01	0.00	5.31	3.73
TaS_{2}	5.90	3.36	-0.03	-0.00	-0.01	-0.00	5.96	3.35	-0.00	0.00	-0.00	-0.00	5.95	3.37
TaSe_{2}	6.27	3.48	-0.01	-0.00	0.00	-0.00	6.34	3.47	0.00	-0.00	0.00	0.00	6.31	3.49
TiS_{2}	5.90	3.41	0.00	0.00	-0.01	-0.00	5.77	3.41	-0.00	-0.00	-0.01	-0.00	5.74	3.41
TiSe_{2}	6.27	3.54	0.02	-0.01	-0.01	0.00	6.12	3.55	-0.01	0.00	-0.01	-0.00	6.10	3.55
TiTe_{2}	6.50	3.78	0.01	-0.00	0.00	-0.00	6.64	3.77	-0.01	-0.00	-0.00	-0.00	6.61	3.79
VS_{2}	5.75	3.22	0.05	-0.00	-0.01	-0.00	5.76	3.25	0.00	0.00	-0.01	-0.00	5.75	3.26
VSe_{2}	6.11	3.36	-0.02	-0.00	0.00	-0.00	6.19	3.40	0.00	-0.00	0.00	-0.00	6.14	3.41
VTe_{2}	6.58	3.64	0.07	-0.01	-0.05	0.02	6.68	3.66	-0.02	-0.00	-0.01	0.00	6.59	3.70
WS_{2}	12.32	3.15	0.01	-0.00	-0.01	-0.00	12.51	3.16	-0.01	-0.00	-0.01	-0.00	12.48	3.17
WSe_{2}	12.96	3.28	-0.02	0.00	-0.01	-0.00	13.22	3.29	-0.00	0.00	-0.01	-0.00	13.18	3.31
ZrS_{2}	5.81	3.66	0.01	-0.00	-0.01	-0.00	5.88	3.68	-0.00	-0.00	-0.00	-0.00	5.86	3.67
ZrSe_{2}	6.13	3.77	-0.01	-0.00	0.00	0.00	6.21	3.79	0.00	-0.00	0.00	0.00	6.19	3.79
ZrTe_{2}	6.66	3.95	0.02	0.00	0.00	0.00	6.74	3.98	-0.00	0.00	-0.00	-0.00	6.73	4.00
MAD			0.024	0.002	0.010	0.001	0.000	0.000	0.009	0.003	0.008	0.000	0.000	0.000
MD			0.006	-0.001	-0.008	0.000	0.000	0.000	-0.007	-0.001	-0.006	-0.000	0.000	0.000
STD DEV			0.032	0.003	0.017	0.003	0.000	0.000	0.015	0.003	0.013	0.000	0.000	0.000

FIG. 5. Phonon dispersion in graphite and MoS_{2} analogous to Fig. 3, but using PBE^{58} and PBE-D4 ${ }^{18}$ instead of r^{2} SCAN. Just as for r^{2} SCAN, adding a dispersion correction to PBE produces a more realistic phonon dispersion, especially along the inter-layer direction $\mathrm{A}-\Gamma$. In MoS_{2}, PBE-D4 is in good accord with available experimental phonon dispersion data, however r^{2} SCAN+rVV10 provides a more realistic description of phonons in graphite along the inter-layer direction.

FIG. 6. Box and whisker plot of the S22 errors ($\mathrm{kcal} / \mathrm{mol}$) for $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ with the presently-fitted value $b=11.95$, with the VV10-fitted $b=12.3$, and SCAN+rVV10. See Tables I and VII for tabulated errors.

FIG. 7. Box and whisker plot of the L28 set binding energy E_{b} errors $\left(\mathrm{meV} / \AA^{2}\right)$ for rev-vdW-DF2, $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ with the presently-fitted value $b=11.95$, and SCAN+rVV10. See Tables II and VIII for tabulated errors.

FIG. 8. Box and whisker plot of the L28 set out-of-plane lattice constant c errors (\AA) for rev-vdW-DF2, $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ with the presently-fitted value $b=11.95$, and SCAN +rVV 10 . See Tables II and VIII for tabulated errors.

FIG. 9. Box and whisker plot of the L28 set in-plane lattice constant a errors (\AA) for rev-vdW-DF2, $\mathrm{r}^{2} \mathrm{SCAN}+\mathrm{rVV} 10$ with the presently-fitted value $b=11.95$, and SCAN +rVV 10 . See Tables II and VIII for tabulated errors.

[^0]: * jsun@tulane.edu
 ${ }^{1}$ R. A. DiStasio, O. A. von Lilienfeld, and A. Tkatchenko, Proc. Natl. Acad. Sci. U.S.A. 109, 14791 (2012).

