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Singlet-triplet qubits typically require large magnetic field gradients on the order of militeslas
to achieve high-fidelity electrically-controlled qubit operations. However, such large magnetic field
gradients in quantum dot systems also increase charge noise and provide a relaxation pathway from
the triplet to singlet qubit state, making high-fidelity readout challenging. Recently, shelving and
latched readout have been employed in gate-defined quantum dots and donor-dot systems to achieve
readout fidelities of 80% and 99.86%, respectively. In this paper, we theoretically examine shelving
and latched singlet-triplet readout techniques for multi-donor-based qubits in silicon where the
large phosphorus hyperfine interaction of the order of 100 MHz gives rise to large effective magnetic
field gradients (equivalent to tens of mT) but where it can change in time due to the presence
of nuclear spin flips. Using numerical simulations, we show that shelving readout does not work
giving a zero average visibility for muti-donor quantum dots, due to the time-varying nuclear spin
polarization. To remedy this we propose adding a calibration step, in which we derive the nuclear
spin polarization from a single shelving readout of a singlet state, before every qubit operation.
The derived information can then be used via a feed-forward protocol to apply correct readout
mapping, greatly improving the overall readout fidelity from 0% to >99%. We also simulate the
latched readout mechanism, which is resistant to nuclear polarization changes and is thus promising
for achieving high visibility readout. Here we observe a non-zero readout visibility irrespective of
the nuclear spin flipping. Finally, we discuss how to optimize the readout visibility in the presence
of strong hyperfine interactions and show that for both readout methods we can obtain readout
fidelity >99%. These results demonstrate that singlet-triplet qubits based on multi-donor quantum
dots are a promising route for future electrically controlled qubits in silicon.

I. INTRODUCTION

Spin qubits based on phosphorus donors in silicon [1]
have demonstrated excellent coherence and relaxation
times [2, 3]. Those long coherence times, together
with atomistic fabrication technologies based on scan-
ning tunneling microscopy (STM) [4], make donor qubits
a promising semiconductor platform for scalable quan-
tum information processing. While the implementation
of magnetic control of single electron qubits in Si:P is well
established [5, 6], there is still high interest in alternative
qubit systems which can be controlled by purely elec-
trical means simplifying the task of scaling up quantum
computers [7, 8]. One of the proposals of an electrically-
controlled system is the singlet-triplet qubit [9–11] com-
prised of two electrons localized within a double quantum
dot (QD) and coupled by the exchange interaction. Mul-
tiple realizations of singlet-triplet qubits have been imple-
mented in double QD [10, 12–15] and quantum dot-donor
systems [16]. Crucially, for large-scale implementations,
singlet-triplet qubits can be measured dispersively via a
single gate [17]. This dispersive readout allows for mini-
mal gate densities [18] and the possibility for frequency-
multiplexed qubit measurements [19] extremely useful for
large quantum systems.

To realize purely electrical control of the singlet-triplet
qubit, the two quantum dots of the system need to be

characterized by different spin Zeeman splittings. The
Zeeman energy difference, ∆Ez, allows coupling between
the singlet and triplet states and therefore the ability
to perform qubit rotations. In electrostatically-defined
quantum dots ∆Ez can be produced by a surrounding
nuclear spin bath [10, 12], a micromagnet [15] or a dif-
ference in g-factors in the two quantum dots [20, 21]. In
donor-based devices the same coupling can be achieved
using the hyperfine interaction between the electron and
nuclear spins inherently present in the system. The
electron-nuclear hyperfine interaction can be described as
an effective magnetic field experienced by the electrons.
This field is homogeneous if the hyperfine interaction is
the same for both dots, or treated as a magnetic field gra-
dient causing a difference in the Zeeman splitting ∆Ez if
the interaction differs between the dots. Although large
∆Ez is desirable as it is necessary for fast singlet-triplet
qubit operation, it is also a source of fast triplet relax-
ation. This fast relaxation [11] is most prominent in con-
text of singlet-triplet qubit readout, significantly limiting
the visibility of the standard Pauli spin-blockade readout
(PSBR). Additionally, in donor-based devices ∆Ez can
change with time as nuclear spins can undergo uncon-
trolled flips [22]. These additional processes need to be
accounted for when designing and interpreting readout
outcomes for singlet-triplet qubit in donor-based devices.

Pauli spin-blockade readout is one of the most standard
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FIG. 1. A comparison of shelving and latched readout in multi-donor-based qubits. (a) A schematic of the modelled
system: two donor-based quantum dots (left 1P, right 2P), surrounded by GL, GM , GR gates and tunnel-coupled to a SET,
each dot occupied by a single electron. Nuclear (electron) spins are represented by orange (black) arrows. t0 and tL (tR) are
tunneling between the dots and between left (right) dot and SET, respectively. (b) A charge stability diagram with respect to
the detuning between the dots, ε with the γ parameter controlling the total number of electrons in the system. Green (blue)
arrows represent shelving (latching) readout protocols, with numbers indicating the order or readout steps. The dashed line
shows the end of Pauli-blocked region. (c) Schematic representation of the energy levels of (1,2), (0,2) and (1,1) states as a
function of γ (left part of the plot) and ε (right). (d,e) Scheme of the shelving and latching readout procedure, with the relevant
state ladders and transitions indicated by arrows with the numbers corresponding to plot (b).

and widely used singlet-triplet readout techniques [23,
24]. In PSBR the system is pulsed from the (1,1) charge
region to the Pauli-blocked (0,2) charge configuration re-
gion (where (nL, nR) corresponds to nL electrons in left
and nR in right dot). There, the singlet state is mapped
to the (0,2) charge configuration while the triplet state
stays blocked in (1,1) due to the high single-dot exchange
energy making the triplet (0,2) state inaccessible. This
method has a relatively small contrast in the signal be-
tween singlet and triplet states and suffers from fast
triplet relaxation when singlet-triplet mixing is present
in the system. Alternative singlet-triplet readout meth-
ods have been developed [16, 25–32] to address the short-
comings of PSBR and adjust the readout process to the
needs of specific quantum dot architectures. The im-
proved visibility of the new readout methods proposed,
as compared to PSBR, is achieved via either mapping the
triplet to some metastable state which minimizes relax-
ation, or mapping the (1,1) and (0,2) charge configura-
tions to states with different total number of electrons in
the system, which increases signal contrast. Those im-
provements are especially important in cases when the
system is subject to large magnetic field gradients [31] or
when distinguishing (1,1) and (0,2) charge configurations
is challenging [28].

In this paper, we focus on two types of singlet-triplet

readout methods which have proven to give considerable
advantages as compared to PSBR. The first is shelv-
ing readout, recently demonstrated in GaAs gate-defined
quantum dots [31], which performs best for systems sub-
ject to high magnetic field gradients. Although this
method gives similar signal contrast to Pauli blockade
readout, as it measures (1,1) and (0,2) charge configu-
rations, it minimizes the triplet to singlet relaxation by
mapping one of electron spin configurations | ↑↓〉 or | ↓↑〉
to a metastable, spin-polarized triplet state. The second
technique, latched readout, demonstrated in dot-donor
system [30], increases the contrast between singlet and
triplet states by mapping them to charge configurations
differing by 1 electron, i.e. (0,2) and (1,2). We discuss
the applicability of both those methods for multi-donor
qubits, where we show the impact of the nuclear spin
flips present and how to optimise for these. We find that
the standard shelving method gives near zero visibility
due to the averaging over different possible ∆Ez values
that occur due to the time-dependent nuclear spin con-
figurations. We show this can be improved by adding a
calibration step before each qubit operation. The cali-
bration step performs a single shelving readout protocol
on a prepared initial singlet state, from which informa-
tion about the current nuclear spin polarization can be
extracted. This information is used to map the readout
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correctly in the following qubit operation, which leads to
an improvement of readout fidelity from 0 to >99%. We
find that latched readout works better for donor qubits,
as it is insensitive to the sign of ∆Ez. However, in latched
readout we have to take care to design the tunneling rates
and timescales of the process, since these are sensitive to
the specific atomistic arrangement of donors within the
device and need to be carefully optimized for a given
arrangement. We discuss the optimization procedure in
detail, indicating what kind of requirements need to be
fulfilled to reach a readout fidelity of >99%.

II. MODEL

We consider two quantum dots of phosphorus donors in
silicon – see Fig. 1(a), each dot consisting of at least one
P donor (red arrows) and occupied by a single electron
(black arrows). The two dots are tunnel-coupled allow-
ing the electrons to form singlet and triplet states across
both quantum dots. In general each dot can be occupied
by any odd number of electrons, in such cases only the
behavior of the outer unpaired, highest-energy electron
in each dot are investigated. The single electron transis-
tor (SET) serves as an electron reservoir for the donor
dots and is used for the readout. The surrounding gates
(GL, GM , GR) control the electrostatic environment of
the QDs.

Both shelving and latched readout – or more precisely
the reverse enhanced version of the latched readout [30]
– operate in the charge occupation subspace comprising
(1,1), (0,2) and (1,2) configurations – see Fig. 1(b). The
electron distribution between the dots is controlled with
detuning ε, while loading of additional electrons from the
SET is determined with a parameter γ, which represents
a global energy shift of both QDs. Both ε and γ can be
controlled by the control gates surrounding the double-
dot system.

We simulate the readout protocols calculating the two
dot system subject to the γ pulses, using an extended ver-
sion of the model presented in Ref. [31] (see Appendix).
The basis for time-dependent calculations spans over the
seven system eigenstates, schematically depicted in Fig.
1(c): two (1,2) states, i.e. the ↓ S and ↑ S, singlet S(0, 2)
and four (1,1) states, i.e. the spin-polarized T− and
T+ and the non-spin-polarized G (ground) and E (ex-
cited) state. In the absence of a magnetic field gradient,
∆Ez = 0, the states G and E are split by the exchange
interaction J and form singlet S(1, 1) and triplet T0(1, 1)
states, respectively. ∆Ez mixes singlet and triplet states
and in the limit of ∆Ez � J it sets |G〉 = | ↑↓〉 and
|E〉 = | ↓↑〉 (or the opposite for ∆Ez < 0). In the inter-
mediate regime, where J and ∆Ez are comparable, the
mixing of S and T0 (or ↓↑ and ↑↓) strongly depends on
the relative amplitudes of exchange J and ∆Ez. As the
exchange J is controllable with the detuning ε between
the S(1, 1)-S(0, 2) states, the singlet-triplet mixing can
be modulated with ε. This effect is shown symbolically

with the Bloch spheres at the bottom of Fig. 1(c) – close
to ε = 0 where J � |∆Ez|, the qubit eigenstates align
approximately with the S − T0 axis and for higher de-
tuning where J � |∆Ez|, they align closely with the
↓↑ − ↑↓ axis. The transition rates between (1,2) and
(1,1)/(0,2) states are calculated using the Fermi golden
rule, with ΓL and ΓR specifying tunneling rate between
SET and left and right QD, respectively (more details in
the Appendix).

III. SHELVING

A. Shelved readout protocol

We first discuss the shelving readout method [31],
which is particularly useful for systems with large mag-
netic field gradients ∆Ez as it maps | ↑↓〉 and | ↓↑〉 states
to different charge configurations – (0,2) and (1,1). The
procedure is schematically shown in Fig. 1 (b) (green
arrows) and (d).

The protocol starts in the (1,1) charge configuration
region, preferably at high detuning ε, where exchange is
negligible and ∆Ez sets the eigenstates to approximately
|G〉 = | ↑↓〉 and |E〉 = | ↓↑〉. We ramp non-adiabatically
along the γ-axis in a time tin to γmax in the (1,2) region,
and we stay there for a time twait to allow an electron
to tunnel between SET and the dots. If we set γmax so
that the | ↓ S〉 energy level lies between the | ↓↑〉 and
| ↓↓〉 states (see Fig. 1(d)), the subsequent transition
| ↓↑〉 → | ↓ S〉 → | ↓↓〉 becomes available, mapping the
| ↓↑〉 state to a metastable triplet |T−〉. The transition
takes place due to electron ↓ tunneling from the SET to
the right dot and then electron ↑ tunneling back to the
SET. At the same time, the | ↑↓〉 energy level does not
undergo any transition as the | ↑ S〉 state is energetically
inaccessible and no electron can tunnel from the SET to
the right dot. Next, the system is brought back to point
1 in the (1,1) region and then, by an adiabatic change of
detuning, to point 3 in the Pauli-blocked (0,2) region. As
a result of this process the ground qubit state |G〉 ≈ | ↑↓〉
maps to the singlet (0,2) state while the excited state
|E〉 ≈ | ↓↑〉 maps to the blocked triplet |T−〉 of charge
configuration (1,1).

The shelved readout method solves the problem of fast
|T0〉 → |S(0, 2)〉 relaxation which limits the PSBR fi-
delity. Due to the long relaxation time of the |T−〉 state
compared to |T0〉 [33], the different (0,2) and (1,1) charge
configurations can now be measured with better visibil-
ities compared to the standard PSBR method. Also,
the shelving process alone does not introduce any addi-
tional relaxation channels as the operation takes place in
(1,1)-(1,2) region where the singlet (0,2) is energetically
inaccessible. The mapping we obtain via the shelving
procedure can also be conveniently used with dispersive
readout [17], using just a single gate thus minimizing the
device complexity.

In practice, even for large detuning ε, the | ↓↑〉 and | ↑↓〉
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states are mixed due to the non-zero exchange J . The
admixtures of the opposite states can cause leakage, low-
ering the total readout visibility. Previous experiments
performed with gate-defined quantum dots showed shelv-
ing readout fidelity of approximately 80% [31]. In the
next Section we discuss in detail the shelving readout
visibility for realistic donor-based devices and show how
it can be maximized.

B. Simulations of shelved readout

Here we perform numerical simulations of shelving
readout in order to estimate the maximum readout vis-
ibility achievable in donor-based qubits. We investigate
how the operation parameters of the protocol influence
the final singlet-triplet visibility and describe how the
varying nuclear spin polarization affects the readout re-
sults.

In Fig. 2(a) we present the energy spectra of the sys-
tem as a function of γ′ where γ′ = γ − ε/2. The param-
eter γ′ is introduced to describe the QDs energy shift
with respect to the (1,1)-(1,2) transition, i.e. for every ε
we have γ′ = 0 exactly at the (1,1)-(1,2) transition line.
Here we use detuning ε=100 GHz – far enough in (1,1)
region so that the S(0,2) state lies above all (1,1) levels.
We simulate the (1) → (2) → (1) process of shelving
readout (see Fig. 1(b)) in the following way: i) we start
at γ′min = −100 GHz, ii) we increase γ′ up to γ′max value
within a tin time, iii) we stay at the γ′max point for a twait
time and, iv) we decrease γ′ back to -100 GHz within tout.
In Fig. 2(b-g) we present the final probability of each of
the system eigenstates as a function of γ′max. Thus, each
point on those plots represent full (1)→ (2)→ (1) shelv-
ing simulation (with point (2) specified by γ′max) and only
final probabilities are plotted. Plots (b,d,f) and (c,e,g)
correspond to simulations starting from the ground |G〉
and excited |E〉 state of the singlet-triplet qubit, respec-
tively. We use ΓL = ΓR = 106s−1, however the exact
value of ΓL does not play a significant role in the simula-
tion as the (1,1)-(1,2) tunneling affects only the right dot.
We set tin = 100 ns and twait = 10µs – much longer than
tunneling time 1/ΓR. All of these values are experimen-
tally realistic [34]. The detuning ε = 100 GHz used in
the simulations is equivalent to the exchange interaction
J ≈ 40 MHz (calculated as the energy difference between
|E〉 and |G〉 states for ∆Ez=0). The parameters which
we vary in Fig. 2(b-g) are the Zeeman energy difference
∆Ez and shelving-out time tout.

In Fig. 2(b-c) we show simulations for ∆Ez=300 MHz
(realistic in multi-donor quantum dots) and tout = 1µs.
Here, as ∆Ez is several times larger than the exchange
interaction, the |G〉 and |E〉 states exist predominantly
in | ↑↓〉 and | ↓↑〉 spin configurations, respectively. The
admixtures of different basis states (↓↑ in |G〉 and ↑↓ in

|E〉) are of about (1−∆Ez/
√

∆E2
z + J2)/2 ≈ 0.004. We

can distinguish three different regions within γ′max range,
in which we can observe distinct outcomes of shelving
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FIG. 2. Simulation of the shelved readout protocol. (a)
System energy levels as a function of γ′ = γ− ε/2 for ε = 100
GHz. Here, the ground |G〉 and excited |E〉 qubit states nearly
overlap within the energy scale adapted. For ∆Ez > 0 the
|G〉 and |E〉 states can be described approximately as ↑↓ and
↓↑, respectively (as identified in the scheme of Fig. 1(d)).
(b-g) Final eigenstates probability of shelving (1) → (2) →
(1) process (see Fig. 1(b)) as a function of γ′max, i.e. the
maximal value of γ′ that the system is brought to during
the shelving (green point (2) in Fig. 1(b)). Simulations of
(b,d,f) and (c,e,g) start from initial state set to |G〉 and |E〉,
respectively. Plots (b,c) show results for ∆Ez = 300 MHz
and tout = 1µs, plots (d,e) present simulations for longer tout
time of 10 µs and (f,g) of a Zeeman energy difference of the
opposite sign ∆Ez = −300 MHz. The shaded region in all
the plots indicates the −γeB/2 < γ′ < γeB/2 regime, where
the shelving readout is the most efficient.

readout.

• First, we can see that in γ′max � 0 region, we do
not observe any tunneling irrespective of what is
the initial qubit state. That is reflected by the con-
stant ≈ 1 probability of |G〉 and |E〉 states on the
left sides of Fig. 2(b) and (c), respectively. That
is because here we shelve only within (1,1) charge
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configuration region – far from the (1,1)-(1,2) cross-
ing – where (1,2) states are not available for the
transitions.

• As we approach the (1,1)-(1,2) crossing at γ′max =
0, we start to observe tunneling between the |E〉
and |T−〉 states – visible as the blue peak in Fig.
2(c). That transition happens as a sequential
|E〉 → | ↓ S〉 → |T−〉 tunneling using | ↓ S〉 as
an intermediate state. The most efficient shelving
is taking place for −γeB/2 < γ′max < γeB/2 (grey
region in Fig. 2), as in this region the | ↓ S〉 state
is exactly between |E〉 and | ↓↓〉 energy levels (see
Fig. 2(a)). However, due to the thermal broaden-
ing of the energy levels, we can also observe some
non-zero tunneling for γ′max < −γeB/2. While the
excited state |E〉maps to |T−〉, the ground |G〉 state
does not undergo any tunneling around γ′max = 0,
apart from a minimal leakage to |T−〉 state (small
blue peak in Fig. 2(b)) due to the admixture of ↓↑
spin configuration in |G〉.

• If we further increase γ′max, reaching γ′max > γeB/2
region, we start to observe additional tunneling ef-
fects. In Fig. 2(b) we can observe the probability
of |G〉 state decreasing and | ↑ S〉 and |T+〉 states
increasing for larger γ′max values. That happens
because for γ′max > γeB/2 the | ↑ S〉 energy level
falls below the |G〉 state, opening the |G〉 → | ↑ S〉
tunneling path. Then, when we return to (1,1) re-
gion in the shelving procedure, the | ↑ S〉 state can
tunnel back to the |G〉 or | ↑↑〉 state. Hence the
non-zero probability of those three states on the
right side of Fig. 2(b). Similarly for the initial |E〉
state in Fig. 2(c), in the γ′max > γeB/2 region we
can observe additional tunneling processes mani-
festing themselves as different final shelving prob-
abilities compared to the shaded region. Here the
| ↓ S〉 level falls below all the (1,1) states at γ′max
(see right side of Fig. 2(a)). At this point only
|E〉 → | ↓ S〉 transition is possible. Upon shelving
back to (1,1) region the | ↓ S〉 state partially tun-
nels back to |E〉 and |T−〉 states, resulting in a final
mixture of those three states.

The shaded region of plots Fig. 2(b) and (c) gives the
best readout visibility, as there the |G〉 and |E〉 states are
being ultimately mapped to the (0,2) and (1,1) charge
configurations, respectively. In the γ′max > γeB/2 re-
gion the readout visibility will be harmed by all the ad-
ditional tunneling effects discussed above. This problem
for large γ′max can be minimized by increasing tout – see
Fig. 2(d,e) where the shelving-out time has been ex-
tended to 10 µs. A slower return to the (1,1) region al-
lows the (1,2) states to tunnel back predominantly to the
states which preserve correct readout mapping, i.e. the
| ↑ S〉 state tunnels back to the |G〉 state before reaching
|T+〉 and the | ↓ S〉 state tunnels back to the |T−〉 state
before reaching |E〉. Increasing tout for large γ′max would
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FIG. 3. Impact of nuclear spins on shelving readout
visibility. (a) Final probability of blocked triplet states T−
and T+ after shelving as a function of detuning ε and Zeeman
energy difference ∆Ez. Left (right) plot corresponds to simu-
lations starting from the ground |G〉 (excited |E〉) eigenstates.
These results highlight the reverse mapping of |G〉 singlet-like
and |E〉 triplet-like states for positive and negative ∆Ez. (b)
Visibility of shelving readout as a function of ε and ∆Ez. (c)
Visibility of shelving readout for all possible nuclear configu-
rations for an example of 1P-2P system at ε=50 GHz. Due to
the reverse readout mapping for positive and negative ∆Ez,
the visibility averaged over all nuclear configurations comes
to approx. 0.

possibly allow us to reach a similar shelving efficiency
as shown for γ′max ≈ 0. At the same time, however, it
increases the total readout time, which results in longer
qubit exposure to noise. Thus, it is still more beneficial
to perform shelving within the −γeB/2 < γ′max < γeB/2
region and keep tout short. Other methods to improve
the readout efficiency are to use a larger external mag-
netic field B, which increases the Zeeman splitting be-
tween |E〉 and |T−〉 states (resulting in wider peaks in
Fig. 2(c)), or lower electron temperatures, that can im-
prove the readout by limiting the thermal broadening,
making the transition sharper even if the energy levels
are very close to each other.

In QDs using a micromagnet or a deterministically po-
larized nuclear bath, the magnetic field gradient, and
thus ∆Ez, can be set at the beginning of the measure-
ments and kept relatively constant throughout the exper-
iment. In donor-based devices, however, ∆Ez originates
from the different hyperfine interaction of the electron
spins to each donor dot nuclei. As a consequence, due to
the presence of nuclear spin flips [22], ∆Ez can change
both value and sign which can result in a reversed map-
ping of the |G〉 and |E〉 states. In Fig. 2(f,g) we show
shelving readout for ∆Ez=-300 MHz, with an opposite
sign of ∆Ez compared to plots (b,c). Now it is the ground
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state |G〉 which is predominantly in the | ↓↑〉 state and
is thus mapped to T− after shelving. At the same time,
the |E〉 state is blocked during the (1)→ (2)→ (1) pro-
cess. After (1)→ (3) step, the |E〉 state will be mapped
to |T0〉 and, due to fast relaxation, ultimately to S(0,2).
This step requires staying in point (3) for a time longer
than T0 but shorter than T− relaxation time, which is
experimentally feasible [33]. The reverse mapping there-
fore randomizes the readout process, lowering the overall
visibility.

To clarify the impact of the nuclear spin flips, in Fig.
3(a) we show the final probability of blocked triplet
states T± for simulations with initial states |G〉 (left) and
|E〉 (right) as a function of ε and ∆Ez. Here we used
γ′max = 0 and both positive and negative values of ∆Ez.
As explained above, for positive ∆Ez it is the excited
qubit state |E〉 which is mapped to |T−〉 and eventually
to the (1,1) charge configuration, while for negative ∆Ez
it is the |G〉 state. In Fig. 3(b) we plot the readout visi-
bility using the mapping of ∆Ez > 0, thus the visibility of
the lower part of the plot is negative (more details on visi-
bility calculations in Appendix). We can see the absolute
value of the visibility increases with |∆Ez| – that is due
to smaller ↓↑ and ↑↓ mixing and hence less leakage. The
visibility reaches 0 for ∆Ez = 0 because both |G〉 and
|E〉 states, now corresponding to singlet (1,1) and triplet
T0 states, respectively, can transfer to | ↓ S〉 state equally
fast. The visibility is also reduced for small detuning ε,
as in this region the exchange interaction dominates over
∆Ez (the x-axis limits ε = 0 and 100 GHz correspond to
exchange J values of 2 GHz and 40 MHz, respectively).

We assume quasistatic nuclear polarization, which
means that the nuclear spins are not flipping during sin-
gle qubit operations and shelving readout. However, as
the full experiment time usually reaches minutes or even
hours, the nuclear spins will likely flip multiple times. In
the system of two donor quantum dots we can express all
possible values of ∆Ez as:

∆Ez =

NR∑
j=1

AjRI
j
Rz −

NL∑
i=1

AiLI
i
Lz (1)

where i and j enumerate nuclear spins in left and right
dots, with total donor numbers NL and NR, respectively.
AiL (AjR) is the hyperfine constant of the i-th (j-th) donor
in left (right) dot and IiLz (IiRz) is the i-th left-dot (right-
dot) nuclear spin polarization in z direction and can take
values of ±1/2. The number of possible ∆Ez values
therefore increases with the number of donors as 2NL+NR .

In Fig. 3(c) we show the impact of the dynamic nu-
clear spins in an example of a 1P-2P system with hy-
perfine constants AL = 96.5 MHz and AjR ∈ [274, 254]
MHz, as observed in a recent device of Ref. [35]. The
1P-2P system allows 8 different values of ∆Ez within the
range between -312.25 and 312.25 MHz. We plot the
visibility for all the different possible nuclear spin config-
urations which after averaging over all the nuclear spin
states goes to approximately zero. Although these results
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from measured charge conf.
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FIG. 4. Scheme of the calibration step protocol. The
calibration step includes initializing the qubit in |G〉 state,
performing shelving readout and using the final measured
charge configuration to obtain information about current ∆Ez

sign. The information can be further used in subsequent qubit
operation to determine the correct mapping for shelving read-
out.

show one specific example of a multi-donor dot, the av-
erage zero visibility will be common to all quantum dots
with multiple donors (with any values of hyperfine con-
stants) due to the inherent symmetry of the system. This
is because for any particular nuclear configuration with
a given ∆Ez it is possible to get the opposite value of
∆Ez just by flipping all the nuclear spins. Additionally,
even if nuclear polarization is changing slower than the
total experiment time, it is important to know the sign
of ∆Ez to ensure a proper mapping of |G〉 and |E〉 to
(0,2) and (1,1) charge configurations. Until now only the
absolute value of ∆Ez has been considered in relevant
experiments in donor-based devices [36].

C. Calibration step of a shelved readout

The zero visibility of shelving readout in donor-based
systems can be mitigated if the nuclear spins are de-
terministically initialized at each shot, setting ∆Ez the
same for every measurement using either Nuclear Mag-
netic Resonance (NMR) or Dynamic Nuclear Polarisation
(DNP) [37, 38]. Here we propose a method to greatly in-
crease shelving readout visibility for donor-based devices
through the addition of an extra calibration step before
every qubit measurement – shown schematically in Fig.
4. The step consists of initializing the system in the (1,1)
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ground state |G〉 (by an adiabatic sweep from negative
to positive ε starting from the S(0,2) state) and then
conducting shelving readout with such a prepared initial
state. The result of the shelving readout – (1,1) or (0,2)
signal – determines if the ground state is predominantly
in ↑↓ or ↓↑ state and thus specifies the sign of ∆Ez. The
following qubit operation can then use this information
via a feed-forward protocol to map the final readout re-
sults. This proposal requires that nuclear spin polariza-
tion is changing considerably slower than the qubit oper-
ation time. Due to seconds long nuclear spin coherence
times [2, 3], this is a reasonable assumption for systems
based on phosphorus donors in silicon. In practice it can
differ depending on number of donors and electrons in the
system due to ionization shock [22]. For the 1P-2P case
shown in Fig. 3(c) the calibration step would increase the
visibility at detuning ε=50 GHz from 0 to 44% – equiva-
lent to fidelity of 72% (see Appendix). Readout fidelity of
over 99% can be achieved when we increase detuning ε to
800 GHz. Such values of detuning are experimentally fea-
sible [28], however they can still be minimized if needed,
by using lower temperatures or higher magnetic fields. In
the limit of very high detuning only nuclear spin configu-
rations with ∆Ez ≈ 0 would give zero visibility, harming
the total efficiency of shelving readout. Those configura-
tions can be avoided by fabricating multi-donor quantum
dots with hyperfine constants AiL, AjR which can never
add up to give ∆Ez = 0, such as A1

L = A1
R = A2

R for the
1P-2P system.

IV. LATCHING

A. Latching readout protocol

Latching readout [30] provides an alternative means
to greatly increase the signal contrast between singlet
and triplet states, compared to either PSBR or shelving,
as the final charge states that are measured – (0,2) and
(1,2) – now differ by one electron. This difference creates
a much larger charge signal for a charge sensor in com-
parison to that achievable for the (1,1)-(0,2) dipole. In
addition, latching is insensitive to the sign of the mag-
netic field gradient as it always maps the ground, singlet-
like state to the (0,2) and excited, triplet-like state to the
(1,2) charge configuration. While latched readout gives
an improved readout signal contrast, its efficiency can
still be compromised by the triplet relaxation process.
Here we investigate this relaxation process in which the
excited, triplet-like |E〉 state is subject both to the stan-
dard T0 − S relaxation, as well as fast charge relaxation
via S(1, 1)− S(0, 2), since ∆Ez introduces an admixture
of the singlet state in |E〉 [11]. Latching is therefore more
efficient at small magnetic field gradients and requires a
large differential tunneling between each of the dots and
the reservoir, so that electron tunneling to and from the
SET for one of the QDs is enabled and for the other QD
is suppressed.

The latched readout protocol is schematically shown
in Fig. 1 (b) (blue arrows) and (e). First the system
is detuned from (1,1) to the Pauli blocked (0,2) region
during the (1) → (2) process. This transition needs to
be adiabatic to allow |G〉 to tunnel to S(0,2), but fast
enough to avoid triplet relaxation, tramp < Trelax. Next,
γ is very quickly increased to point (3) in the (1,2) re-
gion. The system is kept there for a twait time where
the charge state of the quantum dots is measured. At
point (3) the |E〉 state maps to the (1,2) charge config-
uration due to electron tunneling from the SET to the
right dot. To preserve the contrast between (1,2) and
(0,2) states tunneling from the SET to the left dot needs
to be suppressed. This means that the twait time needs to
be considerably larger than 1/ΓR but smaller than 1/ΓL.

B. Triplet state relaxation

Latching readout is still subject to similar relaxation
mechanisms which affect Pauli blockade readout [11].
However, with the latching protocol this relaxation only
happens until an electron tunnels from the SET to the
right dot, mapping |E〉 to some (1,2) state. This tun-
neling time can be minimized to limit the harming ef-
fect of the relaxation compared to PSBR. Since ∆Ez
mixes singlet and triplet states, the relaxation rate of
|E〉 → S(0, 2) can be expressed as

ΓE = ΓT |〈E|T0〉|2 + ΓS |〈E|S(1, 1)〉|2 (2)

where ΓT and ΓS are T0 and S(1, 1) relaxation rates, re-
spectively. Because ΓT � ΓS , due to spin conservation,
the relaxation becomes much faster when there is a con-
siderable admixture of S(1,1) in |E〉 state which typically
occurs for large Zeeman energy difference ∆Ez.

The relaxation in donor system originates from the de-
formation potential of the crystal lattice [39, 40]. The
S(1,1)-S(0,2) energy difference in our calculations is of
the order of 1-100 GHz hence only acoustic phonons are
emitted during relaxation. Charge relaxation due to the
deformation potential sis proportional to εD−2 where D
is 2 for 2D and 3 for 3D phonons [41]. Considering the
large size (on the order of 100 nm in each direction) of
the silicon crystal hosting the donor QDs, we can as-
sume 3D phonons will dominate in our devices and we
therefore adopt a relaxation rate proportional to |ε|. The
predicted singlet and triplet relaxation rates will take the
form ΓT = Γ0

TC|ε| and ΓS = Γ0
SC|ε|, with C being coef-

ficient determining relaxation dependency on detuning.
The exact values of Γ0

T , Γ0
S and C are dependent on the

specific device under consideration, hence here we treat
them as free parameters to optimise the readout visibility
in the next section. We investigate the qualitative effects
the relaxation has on the latched readout efficiency and
we explore different ranges of the relaxation rates with
respect to the SET-QD tunneling rates.
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FIG. 5. Latched readout visibility. (a) Final probability
of the (1,2) charge configuration after latching as a function
of detuning ε and the Zeeman energy difference ∆Ez. Left
(right) plot corresponds to simulations starting from ground
the |G〉 (excited |E〉) eigenstates. (b) Visibility of latching
readout as a function of ε and ∆Ez. (c) Visibility of latched
readout for all possible nuclear configurations for an example
of a 1P-2P system at ε = −50 GHz.

C. Latching visibility

We model the latched readout by simulation of the
(2) → (3) process in Fig. 1 (b) (blue arrows). We
start at γ′min = −100 GHz, move to γ′max = 100 GHz
within tin time, and wait at γ′max for a time twait.
In Fig. 5(a) we plot the final probability of the (1,2)
charge configuration for the initial state |G〉 (left) and
|E〉 (right) as a function of ε and ∆Ez. We assume
that in point 2 (blue) in Fig. 1(b) the |G〉 state has
evolved to S(0,2), and we set initial probabilities for
the simulation accordingly. The parameters used for
simulations are following (ΓL,ΓR,Γ

0
S ,Γ

0
T , C, tin, twait) =

(105 s−1, 107 s−1, 107 s−1, 105 s−1, 1/50 GHz−1, 1 ns, 500
ns). A key feature of the plot is that the (1,2) proba-
bilities are symmetric with respect to the ∆Ez = 0 axis.
The readout visibility in Fig. 5(b) is therefore now insen-
sitive to the sign of ∆Ez, which means the readout map-
ping is the same both for positive and negative magnetic
field gradients. Therefore, in contrast to shelving read-
out, latched readout does not need to be calibrated as it
gives a non-zero average visibility for donor systems even
if the nuclear spins are flipping during the experiment.
In Fig. 5(c) we plot the visibility for all the possible nu-
clear configurations in the 1P-2P qubit system (discussed
previously in Fig. 3(c)), for the detuning ε = −50 GHz.
The average visibility for this specific configuration and
parameter set reaches 74% – equivalent to fidelity of 87%
(see Appendix). Further in the text we explain how this

value can be improved.
There are two effects that harm the latched readout

visibility which can be observed in Fig. 5(a). The first
one is the |E〉 to S(0,2) state relaxation, which is reflected
in the decreased (1,2) probability (green regions) in the
right plot. For zero ∆Ez the |E〉 state is a pure triplet,
with no singlet admixtures, thus only the triplet relax-
ation ΓT will contribute to the full relaxation rate. How-
ever, within the detuning range plotted, the ΓT relax-
ation rate we adapt (max. Γ0

TC|ε| = 105s−1 for ε = −50
GHz) is considerably slower than (1, 1) → (1, 2) tunnel-
ing rate ΓR = 107s−1 and thus not visible in Fig. 5(a).
For non-zero ∆Ez the singlet relaxation ΓS starts to play
a role, as ∆Ez introduces S(0, 2) admixtures into the |E〉
state. For the set of parameters that we use in the sim-
ulations the singlet relaxation rate ΓS reaches the same
value as (1, 1)→ (1, 2) tunneling rate, ΓS = ΓR, at a de-
tuning of -50 GHz. The total |E〉 relaxation effects will
increase both with |∆Ez| (due to larger admixtures of
S(1,1) in |E〉 state) and |ε| (as ΓS is linearly dependent
on detuning) – hence the shape of the green regions in
the right plot in Fig. 5(a). The second effect limiting
latched readout visibility is leakage of the ground singlet
state |G〉 to the (1,2) states at small, up to few GHz,
detuning |ε|. This leakage channel can be observed in
the left plot of Fig. 5(a) as a brighter region – increased
(1,2) probability – close to ε = 0. For small |ε| we are
still within the S(0, 2)−S(1, 1) anticrossing region, where
the charge configuration of the ground singlet state is
not well defined. While the S(0, 2)→ (1, 2) transition is
nearly blocked (due to the small tunneling rate ΓL), the
S(1,1) part of the wavefunction can still tunnel to the
(1,2) states upon latching. As we move away from (1,1)-
(0,2) anticrossing by increasing |ε| the S(1,1) admixture
into the ground singlet state decreases and this leakage
effect vanishes.

If it were not for the |G〉 → (1, 2) leakage effect,
it would be preferable to use arbitrarily small |ε| to
minimize the |E〉 relaxation. Similarly, if not for the
|E〉 → S(0, 2) relaxation, an arbitrarily large |ε| would
be preferable to avoid the |G〉 → (1, 2) leakage. The
presence of the two competing leakage effects requires
a careful optimization to reach the maximum possible
latched readout visibility. To achieve >99% fidelity it is
necessary to optimize the qubit design both at fabrica-
tion and measurement level to simultaneously minimize
both the relaxation and leakage effects – we discuss this
in detail in the next Section.

D. Optimization of readout parameters

Optimization of the latched readout protocol can
therefore be ensured at two points during the system de-
sign. First, the potential for high readout visibility can
be optimized during the STM fabrication process. The
device can be engineered for best readout performance
by determining and setting the number of donors in each
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FIG. 6. Optimization of latched readout fidelity for
the 1P-2P donor qubit. (a) Average readout fidelity as a
function of ratio ΓL/ΓR for 3 different values of ΓR. For each
ΓR value the wait time is adjusted to twait = 5/ΓR. All other
parameters (hyperfine constants, detuning, relaxation rates)
are same as for Fig. 5(c). (b) Fidelity as a function of twait

and ε for ΓR = 109s−1, ΓL = 105s−1.

quantum dot, the tunnel coupling between dots and the
tunnel rates between the SET and the dots. Secondly,
optimization can occur during singlet-triplet qubit oper-
ation. For a device of a specific architecture and system
parameters the experimental variables like ε, tin, twait
can be adjusted to minimize the effect of relaxation pro-
cesses to achieve the highest visibility possible.

First we discuss optimization at the qubit design. The
main problem limiting latched readout efficiency is the
|E〉 → S(0, 2) relaxation due to singlet admixtures in |E〉
state introduced by ∆Ez. A straightforward way to im-
prove the visibility is then to minimize the hyperfine in-
teraction which will result in decreased ∆Ez. To achieve
this we can use quantum dots with a larger inter-donor
separation, thereby weakening the electron localization
at the donor sites and thus decreasing the hyperfine con-
stants [42]. Another solution is to load the system with
more electrons, e.g. (1,3) instead of (1,1) for the 1P-2P
system, where the lower electron pair on the right dot
does not take part in spin dynamics but screens the hy-
perfine interaction of the single outer electron. Although
donor placement can be currently performed with great
accuracy [4], fabrication of multi-donor dots with precise
control over the donor positions within a single litho-

graphic patch is the focus of ongoing work. Currently,
the characteristics of the donor dots can be derived from
post-fabrication measurements combined with atomistic
modelling [43, 44], allowing one to select qubits which
are most suitable for latched readout. Also, flexibility of
loading more or less electrons to each fabricated multi-
donor dot makes them less vulnerable to uncertainty in
donor placements. In the long term, promising ongoing
projects in our team [45] and others [46–48] remain fo-
cused on deterministic incorporation of donors such that
their number and position is precisely controlled at the
fabrication stage. We know a non-zero ∆Ez is neces-
sary for qubit operation and thus can not be entirely
removed. The charge relaxation due to singlet admix-
tures in the |E〉 state will therefore always be the limit-
ing factor of latched readout. It is therefore important
to also maximize the (1,1)-(1,2) transition rate, ΓR by
bringing the right QD as close as possible to the SET.
Ideally ΓS � ΓR, so the tunneling of the |E〉 state to
(1,2) happens much faster than its relaxation to (0,2). It
is also important to minimize ΓL to avoid any undesired
(0,2)-(1,2) tunneling, which would decrease |G〉 state vis-
ibility. One way this can be achieved is by placing the left
donor QD further away from SET. Additionally, using a
larger inter-dot distance – and thus smaller tunneling t0
between the dots – helps latched readout, since it makes
the leakage region from the left plot in Fig. 5(a) narrower
as well as suppresses |E〉 → S(0, 2) relaxation [41, 49].

In Fig. 6(a) we show the latched readout fidelity av-
eraged over all possible nuclear spin configurations for
the 1P-2P system (hyperfine constants, detuning and re-
laxation rates as in Fig. 5(c)) as a function of the ratio
ΓL/ΓR. Here we keep ΓR constant while changing the
tunneling rate of the left dot ΓL; and we plot the fidelity
for 3 different values of ΓR (for each value we adjust the
latching time to twait = 5/ΓR). We can see that the
readout efficiency drastically falls when the ratio ΓL/ΓR
approaches 1, i.e. when the tunnel rates between each
dot and the SET are the same. In this limit no latch-
ing effects occur and both |G〉 and |E〉 states are equally
mapped to (1,2) charge configuration. The fidelity im-
proves for smaller ΓL/ΓR ratios, with maximum fidelity
to be achieved at the limit of ΓL/ΓR → 0. However, we
can see in Fig. 6(a) that the fidelity saturates already
around ΓL/ΓR = 10−4. We can also notice the fidelity
improves when increasing ΓR. As the relaxation rate here
is set constant at ΓS = 107s−1, increasing ΓR over this
value allows the tunneling to exceed the relaxation effect.
However, even for ΓS = ΓR we still can achieve fidelity
values of over 90% – ultimately too little for high-fidelity
singlet-triplet qubit operation but useful as a tool for fur-
ther investigation of relaxation rates.

Once the system is optimized at the fabrication level
we can further improve the latched readout fidelity by
choosing the optimal values of ε and twait during the
measurement. Here we discuss the example of 1P-2P
qubit system of Fig. 5(c). We limit the optimization at
the fabrication level to increasing ΓR to 109s−1. That
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ensures a low ΓL/ΓR = 10−4 ratio and high value of ΓR
with respect to relaxation rates. In Fig. 6(b) we show the
average fidelity for the described 1P-2P system as a func-
tion of twait and ε. We can see that within a relatively
small range of both parameters the visibility varies be-
tween 50 and a maximum of over 99%. The lowest read-
out efficiency can be observed for small twait of less than
ns (which is on the order of tunneling time 1/ΓR) due to
an insufficient time for (1,1)→(1,2) tunneling, and for de-
tuning values close to zero, due to (0,2)→(1,1) leakage. If
we increase both twait and ε, the fidelity improves signif-
icantly. It is possible to identify a value around ε ≈ −80
GHz and twait ≈ 6.9 ns that minimizes the two compet-
ing relaxation processes, resulting in maximum fidelity of
99.4%. However, if we further increase either twait or ε,
we can see the fidelity deteriorates again due to the in-
creased triplet relaxation. Thus the optimization during
the measurement is finding the sweet spot of twait or ε
which maximizes the latched readout visibility.

V. g–FACTOR DIFFERENCE

Finally, we would like to comment on other possible
source of ∆Ez in donor systems, namely the g-factor dif-
ference between the dots. This g-factor variability origi-
nating from spin-orbit effects has been widely discussed
for gate-defined quantum dots [20, 21]. ∆Ez of the or-
der of 10 MHz/T has been recently measured in silicon
dots [50]. As the value of g-factor in quantum dots may
vary with electric fields [51] and due to atomistic effects,
like interface roughness, it is also adequate to consider
the same effects in donor dots. The g-factor shift due
to electric field has been investigated theoretically for a
single donor [52], showing that relative g shifts of the
order of 10−5−10−4 are possible for experimentally real-
istic values of magnetic and electric fields. Also number
of donors in the dots and atomistic arrangement within
the dot may have an effect on the g-factor values, how-
ever the information on that matter is limited. Previous
measurements of 1P and 2P dots reported g-factor val-
ues within error of each other, i.e. g1P = 1.988 ± 0.002
and g2P = 1.986± 0.002 [35]. As we are not able to pre-
cisely estimate the g-factor difference in a system of two
arbitrary multi-donor dots, we consider only nuclear-spin
related ∆Ez in this paper. However, we can qualitatively
discuss how the g-factor difference of various magnitude
could potentially impact both shelving and latching read-
out protocols.

The Zeeman energy difference due to g-factor differ-
ence ∆g between the dots is equal

∆Eg =
∆g

g0
hγeB (3)

where g0 is an average g-factor of both dots, B is ex-
ternal, static magnetic field and γe = 27.97 GHz/T is
electron spin gyromagnetic ratio. The total Zeeman en-
ergy difference in the system would then be a sum of the

effects originating from g-factors and nuclear spins

∆Etot = ∆Eg + ∆Ez (4)

While we have shown ∆Ez changes in time and takes
both positive and negative values, we can assume ∆Eg
is constant in time. Then, for 1P-2P example discussed
in this paper ∆Etot would take all the possible values of
∆Ez (shown in Fig. 3(c) and 5(c)) shifted by ∆Eg value.
Here we can consider two regimes:

• |∆Eg| < max(∆Ez) – in this case ∆Etot would
take both positive and negative values, however
in contrast to ∆Ez its set will not be symmetri-
cal with respect to 0. For shelving readout that
would mean some improvement in fidelity, increas-
ing the average visibility to>0. However, in general
the improvement would not be sufficient to achieve
high-fidelity readout without calibration step. The
fidelity of readout + calibration step would not
change significantly when ∆Eg is included, as some
of the absolute values of Zeeman energy difference
will increase (beneficial for shelving readout) and
some will decrease (detrimental to the readout) as
compared to no g-factor difference. Similarly for
latched readout, simultaneous increase of some ab-
solute values of Zeeman energy difference and de-
crease of others will mitigate the effect on readout
fidelity. Exact changes in readout visibilities will be
dependent on exact values of hyperfine constants
and need to be calculated case-by-case.

This regime assumes ∆Eg up to few hundreds MHz,
which translates to approximately g/g0 < 10−3 for
realistic values of magnetic field and hyperfine in-
teraction in multi-donor dots.

• |∆Eg| > max(∆Ez) – here ∆Etot would take only
negative or only positive values (depending on the
sign of ∆Eg). That would have positive effect on
shelving readout, as the high-fidelity limit could be
now achievable without a need for calibration step.
In contrast, that high ∆Eg would be detrimental
for latched readout, as generally increased absolute
values of the Zeeman energy difference would mag-
nify the effect of triplet relaxation.

This regime spans g/g0 values above approximately
> 10−3.

Exact calculations for a given value of g-factor differ-
ence can be performed with our model by including ∆Eg
in the Hamiltonian. The magnitude of ∆Eg might de-
termine which of the two discussed readout protocols is
more favourable for a given device.

VI. CONCLUSIONS

We have investigated two singlet-triplet qubit readout
methods, namely shelving and latched readout, applied
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to multi-phosphorus donor qubits in silicon. We per-
formed numerical simulations to estimate the readout
visibility for realistic multi-donor quantum dot qubits
and analyzed the influence of different system parameters
(tunneling rates, timescales of the experiment, hyperfine
interaction) on the maximum readout fidelity which can
be achieved. For shelving readout we showed that the dy-
namic nature of nuclear spin flipping (at the frequency
of the order of Hz) gives rise to a zero visibility of the
singlet-triplet states. To overcome that it is essential to
incorporate a calibration step in which we probe the nu-
clear spins before each measurement protocol. Using such
a calibration step we were able to show that the readout
fidelity could be increased to over 99% when correct, i.e.
corresponding to the current nuclear state, readout map-
ping is applied. In contrast, latched readout is not sen-
sitive to the dynamic nature of the nuclear spin flipping
because it maps singlet and triplet states the same way
for both positive and negative ∆Ez. As a consequence
we showed that by optimising both the device design and
operating conditions we could achieve 99% fidelity in 1P-
2P system.
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APPENDIX: METHODS

We first calculate two-electron eigenstates of the sys-
tem. In the basis [S(0, 2), ↑↑ (1, 1), ↑↓ (1, 1), ↓↑ (1, 1), ↓↓
(1, 1)] we can express the Hamiltonian in the following
way:

H2e = h


ε 0 t0/

√
2 −t0/

√
2 0

0 γeB 0 0 0

t0/
√

2 0 −∆Ez

2 0 0

−t0/
√

2 0 0 ∆Ez

2 0
0 0 0 0 −γeB

 (5)

The three-electron (1,2) states [↑ S, ↓ S] are independent
and can be described by Hamiltonian:

H3e = h

(
ε
2 − γ + γeB

2 0

0 ε
2 − γ −

γeB
2

)
(6)

Here h is Planck constant, B is external, static magnetic
field and γe = 27.97 GHz/T is electron spin gyromagnetic
ratio. For all the calculations in the paper we use tun-
neling t0 = −2 GHz and external magnetic field B = 2
T.

The two-electron basis states ↑↑ and ↓↓ are not mixed
with any other states in the Hamiltonian and form two
eigenstates T+ and T−, respectively. S(0,2) state mixes
with ↑↓ and ↓↑, forming 3 eigenstates: S02, G and E.
S02 consists predominantly of S(0,2) basis state, however
gets some admixture of (1,1) state around the (0,2)-(1,1)
anticrossing. At zero ∆Ez the G and E eigenstates can
be described as singlet and triplet states: |G〉 ≈ (↑↓ − ↓↑
)/
√

2 and |E〉 = (↑↓ + ↓↑)/
√

2.
The exchange J is defined in the paper as the en-

ergy difference between the lowest singlet and unpolar-
ized triplet states, i.e. between |G〉 and |E〉 states when
∆Ez = 0. It arises from mixing of the singlet (1,1) and
the (0,2) states. As S(0,2) is included in the basis of
Hamiltonian H2e, we do not need to explicitly introduce
J between ↑↓ (1, 1) and ↓↑ (1, 1) states, but we obtain
J when solving H2e for eigenstates. J then is dependent
on detuning ε, such that it reaches a value of t0 for ε = 0
and goes to 0 for ε→∞.

We simulate shelving and latching readout solving
equation

dP

dt
= ΓP (7)

where P is a vector of eigenstates probabilities and Γ
is a matrix of transition rates. The rates in Γ depend
on ε and γ thus in our simulations are effectively time-
dependent. The same problem can be solved with Master
equation in Lindblad form, however that approach would
give the same results as we do time evolution in the basis
of eigenstates.

We calculate transition rates between each two-
electron and three-electron states using Fermi’s Golden
Rule:

ΓΨ→↑S =
(
ΓL|〈Ψ|S(0, 2)〉|2 + ΓR(|〈Ψ| ↑↑〉|2 + |〈Ψ| ↑↓〉|2)

)
×f((EΨ − E↑S), T, µ)

ΓΨ→↓S =
(
ΓL|〈Ψ|S(0, 2)〉|2 + ΓR(|〈Ψ| ↑↓〉|2 + |〈Ψ| ↓↓〉|2)

)
×f((EΨ − E↓S), T, µ)

where f() is Fermi-Dirac distribution, T is tempera-
ture and µ is chemical potential of the SET. In all the
calculations in the text we use T = 200 mK and µ = 0.

The visibility of the readout is calculated as
V=FG+FE-1, where FG (FE) is a final probability of
charge configurations corresponding to G (E) state when
the initial state of the simulation has been set to G (E).
For shelving, FG is calculated as a sum of final proba-
bilities of S02, G and E states FG = PS02 + PG + PE ,
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as we assume all of those states will be mapped to (0,2)
charge configuration when we decrease detuning to Pauli
blockaded (0,2) region and wait T0 relaxation time. FE
is calculated as a sum of blocked triplet states T− and
T+ probabilities. For latching, FG is final probability of

S02 state and FE is a sum of probabilities of (1,2) states
i.e. ↓ S and ↑ S.

Readout fidelity F can be calculated using the visibility
V and the relation F = (V + 1)/2.
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