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We study theoretically nonlinear optical properties of graphene quantum dots placed in a field
of a short and strong linearly polarized optical pulse. We address the problem of high harmonic
generation in quantum dots and how such nonlinear effect is affected by dephasing processes in a
quantum dot. The dephasing makes the ultrafast electron dynamics more irreversible with large
residual population of the excited quantum dot levels. In relation to the high-harmonic spectrum,
with increasing the dephasing time, the intensities of the low frequency harmonics increase while
the cutoff energy decreases. The dependence of the cutoff energy on the amplitude of the optical
pulse is also sensitive to the frequency of the pulse. When the frequency of the optical pulse is much
less than the quantum dot band gap, this dependence is almost linear, but when the frequency of
the pulse is comparable to the band gap, the cutoff energy shows saturation behavior at large field
amplitude, > 0.4 V/Å.

I. INTRODUCTION

Strong optical pulses, the amplitudes of which are com-
parable to internal electric fields in solids, are intensively
used to probe and control both the transport and optical
properties of electron systems1–14. The electron dynam-
ics in such pulses is highly nonlinear, which results in
such nonlinear optical effects as nonlinear absorption and
high harmonic generation15. The High Harmonic Gener-
ation (HHG) has a special role since it allows to convert
a low frequency pulse in the visible or infrared range into
the high frequency radiation, for example, extreme ul-
traviolet or soft X-ray16–24. The mechanism, which is
responsible for generation of high frequency harmonics,
is different for a system of randomly positioned atoms
and a system of a crystalline solid. High harmonic gen-
eration in atomic or molecular gases occurs through a
three step process, which consists of a tunnel ionization
of an electron, its acceleration in the laser field, and a
subsequent recollision with an atom25. Such process re-
sults in unique linear dependence of the HHG cutoff on
the energy of the pulse16.

In solids, the HHG occurs through the combination of
two types of dynamics induced by the field of the pulse:
interband and intraband dynamics19–21,26–28. Due to the
interband dynamics, the electrons are redistributed be-
tween the bands of a solid, while, due to the intraband
dynamics, the electrons are transferred through the non-
parabolic bands, which results in nonlinear optical re-
sponse. Both of these dynamics contribute to the gener-
ation of high harmonics. Which dynamics provides the
main contribution depends on the band gap of a solid
and the parameters of the pulse, e.g., its frequency. The
unique property of HHG in solids is that the HHG energy
cutoff has linear dependence on the pulse amplitude19,
while in gases, the HHG cutoff has linear dependence on
the pulse intensity16.

High harmonic generation is one of the characteristics
of the nonlinear optical response of solids. Their non-
linear optical properties strongly depend on the band
structure, impurity level, and other internal character-

istics of solids. For example, tin sulphide (SnS) has
shown excellent nonlinear optical properties due to tun-
able bandgap and fast carrier mobility29, a system con-
sisting of a few layer of bismuthene has shown strong
nonlinear refraction effect and all optical switching30,
graphdiyne has demonstrated relatively large nonlinear
refractive index31. A new family of two dimensional (2D)
materials, 2D transition metal carbides or nitrides (MX-
enes), has shown promising nonlinear optical properties,
which can be tuned by varying the ratios of M or X ele-
ments and their surface terminations32.

Nonlinear optical properties of solids can also be tuned
by changing their dimensionality, making them two di-
mensional, one dimensional, or zero dimensional systems.
Zero dimensional systems, which are called quantum dots
(QDs) or artificial atoms33,34, consist of a finite number
of atoms of the corresponding solid. The QDs have many
applications in different fields of science35–39. Due to di-
mensional quantization, the energy spectra of QDs are
discrete, which is similar to spectra of regular atoms. At
the same time, the QDs still have the features of the crys-
tal structure of the corresponding solid. Namely, within
the region of a QD, the atoms are placed periodically and
the discrete energy levels of the QD can be usually iden-
tified as belonging to different bands of the solid. Thus,
the HHG spectra of QDs can resemble the ones of the
corresponding solids. In Ref.40, a transformation of the
HHG spectrum from the atomic one to the spectrum of
the crystalline solid is traced within the one dimensional
model. It was shown that such a transformation occurs
for the QD consisting of just six nuclei.

In the present paper, we consider HHG in QDs, which
are based on graphene41–44. Graphene is a monolayer of
carbon atoms with honeycomb crystal strucure45,46. It
has unique transport and optical properties, which are
related to its specific relativistic low-energy dispersion of
the Dirac type47–50. In strong field of an ultrashort opti-
cal pulse, such dispersion results in interference patterns
in the conduction band population distribution in the
reciprocal space51. In graphene with broken inversion
symmetry, ultrashort circularly polarized optical pulse
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results in ultrafast valley polarization52, which occurs
due to the valley dependent topological resonance11,52.
Graphene QDs, interacting with a short optical pulse,
have also shown nonlinear absorption properties53. The
nonlinear absorption of other monolayer QD systems,
transition-metal dichalcogenide QDs, has been also re-
ported in Ref.54. Such nonlinear optical response has
been studied for ultrashort pulses, the duration of which
is much less than the characteristic dephasing or relax-
ation time. In this case, the electron dynamics during
the pulse is coherent. In the present paper, we address
the problem of a finite relaxation rate and study how the
relaxation processes can modify graphene QD’s nonlin-
ear optical response, such as HHG. It has been previously
shown that the HHG is sensitive to the relaxation rate in
three dimensional solids28.

The relaxation processes result in non-coherent elec-
tron dynamics in the field of the pulse. Such dynam-
ics is described within the density matrix approach55,56,
which is used below in the present paper. We also con-
sider only the internal electron dynamics within the QD
region without taking into account the possibility of ion-
ization of the QD.

The paper is organized as follows. In Section II, we
introduce the model and main equations. In Section III,
we discuss the results, which are summarized in the con-
cluding Section IV.

II. MODEL AND MAIN EQUATIONS

We consider a graphene QD, which consists of N =
24 carbon atoms, see Fig. 1. The distance between the
nearest neighbor atoms is a = 1.42Å. The electron system
of such a QD is described within the tight-binding model
with the Hamiltonian of the following form

H0 = −t
∑
<ij>

(â†i âj + h.c.), (1)

where i and j label the sites of QD, â†i and âi are creation
and annihilation operators for an electron on site i, and
t = −3.03 eV is the hopping integral57,58. For the QD
consisting of N atoms, the tight-binding model gives N
levels with the wave functions ψn and the corresponding
energies En, where n = 1, . . . N . Here the N/2 lowest
energy levels belong to the valence band, while all other
levels belong to the conduction band. Below we assume
that, in the initial state, i.e., before the pulse, the valence
band states are occupied and the conduction band states
are empty.

The graphene QD placed in an external electron field
of an optical pulse is described by the following time de-
pendent Hamiltonian

H(t) = H0 +H ′(t). (2)

Here the Hamiltonian H ′(t) describes the interaction of

electrons with the field of the pulse,

H ′(t) = −e
∑
i

â†i âiri · F(t), (3)

where F(t) is the time-dependent electric field of the
pulse and ri is the position of the ith atom. We con-
sider a pulse that is linearly polarized in the x direction,
see Fig. 1, with the electric field of the following form

Fx(t) = F0e
−(t/τ0)2 cos(ω0t), (4)

where ω0 is the frequency of the pulse and τ0 is the dura-
tion of the pulse. Below we consider three frequencies of
the pulse, ~ω0 = 1 eV, 2 eV, and 3.1 eV, with parameter
τ0 equals to 10 fs. In this case, there are at least eight
oscillations of the field of the pulse.

To include the relaxation processes, we describe the
electron system within the density matrix approach.
Without relaxation, the time evolution of the density op-
erator, ρ̂, is determined by the following equation

dρ̂

dt
=
i

~
[ρ̂, H] =

i

~
[ρ̂, H0] +

i

~
[ρ̂, H ′] , (5)

where [Â, B̂] is the commutator of operators Â and

B̂. Above equation (5) describes the coherent elec-
tron dynamics and is equivalent to the time dependent
Schrödinger equation with Hamiltonian H(t).

Taking the matrix elements of the left- and right-hand
sides of Eq. (5) between the states ψn of field-free Hamil-
tonian H0, we obtain the following matrix equation

ρ̇mn = iωmnρmn +
i

~
∑
k

(ρmkH
′
kn −H ′mkρkn), (6)

where ωmn = (En−Em)
~ , En is the energy correspond-

ing to the state ψn, ρmn =< ψm|ρ̂|ψn >, H ′kn = −e <
ψk|x|ψn > Fx(t), and Dx,kn = e < ψk|x̂|ψn > is the
dipole matrix element of the dipole operator ex̂.

Introducing the density matrix in the interaction rep-
resentation,

ρ̃mn = ρmne
−iωmnt, (7)

we rewrite Eq. (6) in the following form

˙̃ρmn =
i

~
∑
k

[
ρ̃mke

iωnktH ′kn −H ′mkρ̃kneiωkmt
]
. (8)

Equation (8) describes the coherent electron dynamics
in the field of the pulse, which does not take into ac-
count the relaxation effects. The relaxation processes
affect both the diagonal elements of the density matrix
and the nondiagonal elements. The relaxation of the di-
agonal elements is related to the inter-level transitions,
while the relaxation of the nondiagonal elements deter-
mines the coherence of the electron dynamics. The loss of
the coherence occurs at a much faster rate than the rate
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of the inter-level transitions. Below we consider only the
relaxation of the nondiagonal elements of the density ma-
trix with the characteristic relaxation (dephasing) time
τ . Thus, equation (8) does not change for m = n, while
for m 6= n it becomes

˙̃ρmn =
i

~
∑
k

[
ρ̃mke

iωnktH ′kn −H ′mkρ̃kneiωkmt
]
− ρ̃mn

τ
.

(9)
We solve the system of differential equations (8) and (9)
numerically using ODEINT library, which is a collection
of different numerical algorithms to solve initial value
problems of ordinary differential equations59. The initial
conditions are that, before the pulse, all the valence band
(VB) states are occupied and all the conduction band
(CB) states are empty, i.e., ρ̃nn = 1 if n ∈ VB and ρ̃nn =
0 if n ∈ CB.

With the known density matrix, we can calculate the
CB population NCB using the following expression

NCB(t) =
∑
m∈CB

ρ̃mm(t). (10)

Here the sum is over all QD CB states.
The dipole moment, which is used to find the induced

radiation of the QD, is given by following expression

dx(t) =
∑
mn

ρ̃mn(t)eiωmntDx,nm. (11)

Then, the total radiated power at frequency ω is deter-
mined by the Fourier transform of the time derivative of
the dipole moment, Fω[ḋx]. Namely, the radiated power
is given by the following expression

P (ω) =
µ0ω

2

12πc
|Fω[ḋx]|2. (12)

FIG. 1. Graphene quantum dot consisting of 24 carbon atom.
The incident laser pulse is linearly polarized along the x-
direction. The distance between the nearest neighbor atoms
is a = 1.42Å.

Below we consider the normalized power, PN , defined by
the following expression

PN (ω) =
P (ω)

P (ω0)
. (13)

The order of the high harmonic is also defined in units of
ω0,

Nω =
ω

ω0
. (14)

III. RESULTS AND DISCUSSIONS

We consider a graphene QD, the structure of which is
shown in Fig. 1. It consists of 24 carbon atoms and has
D6h symmetry. The energy spectrum of such a QD is
obtained within the tight-binding model and consists of
singly, doubly, and triply degenerate levels. The corre-
sponding energy spectrum is shown in Fig. 2. Twelve lev-
els with the negative energies are initially occupied and
belong to the VB. The levels with the positive energies
belong to the CB. The band gap for the QD is 3 eV. The
maximum energy difference between the CB and the VB
levels is around 16 eV. In this case, if the high harmon-
ics are generated through transitions between QD levels
then 16 eV should be the maximum frequency that can
be generated in such a QD. The time variations of popu-
lations of QD levels, i.e., ”dressing” of the QD states due
to electron-pulse interactions, result in harmonics with
the frequencies larger than 16 eV, as discussed below.

We consider graphene QD of a small size only, i.e., QD
with 24 atoms. Such QD has relatively large band gap, 3

FIG. 2. Energy spectrum of graphene QD shown in Fig. 1.
The spectrum consists of singly, doubly, and triply degener-
ate levels. Levels with the negative energy correspond to the
valence band while the levels with the positive energy corre-
spond to the conduction band. Before the pulse, all valence
band levels are occupied.
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eV, so for the optical pulse with the frequency of 1-2 eV
there is no resonant transitions within the system. With
increasing the QD size, the band gap due to dimensional
quantization decreases, resulting in resonant transitions
at relatively small frequencies of the pulse. At the same
time, the main effects of the relaxation processes on the
HHG in graphene QDs are already captured by the QDs
of a small size.

We apply a linearly polarized pulse, the profile of which
is shown in Fig. 3(a) for the field amplitude of F0 = 0.5
V/Åand the pulse frequency of ~ω0 = 1 eV. From the so-
lution of the density matrix equation, we obtain the CB
population, see Eq. (10), and the time-dependent dipole

FIG. 3. Panel (a): profile of a linearly polarized pulse. The
pulse amplitude is 0.5 V/Åand the frequency of the pulse is
~ω0 = 1 eV. Panel (b): conduction band population NCB as
a function of time. The QD is in the field of the pulse shown
in panel (a). The conduction band population is normalized
by the number of electrons, i.e., it is divided by 12. The
corresponding dipole moment is shown in panel (c). Only
x component of the dipole moment is nonzero. The dipole
moment roughly follows the profile of the electric field shown
in panel (a).

moment of the electron system. Their typical time de-
pendences are shown in Fig. 3(b) and (c). The CB pop-
ulation illustrates highly irreversible electron dynamics
when the residual CB population, i.e., population after
the pulse, is comparable to the maximum CB population
during the pulse. The positions of the maxima of NCB

are correlated with the maxima of |F (t)|.
The typical profile of the dipole moment of QD is

shown in Fig. 3(c). It is roughly proportional to the elec-
tric field of the pulse, but with some nonlinear features,
which finally determine the nonlinear optical response of
the system and generation of high harmonics in the ra-
diation spectrum.

The electron dynamics in the field of the optical pulse
strongly depends on the relaxation processes. To illus-
trate such dependence we show in Fig. 4 the CB popu-
lation for different relaxation times, τ . The field ampli-
tude is 0.5 V/Å. Here, we consider two frequencies of the
pulse, which are both below the band gap of graphene
QG: ~ω0 = 1 eV, which is almost three times less than
the QD band gap, and ~ω0 = 2 eV. One of the char-
acteristics of the electron dynamics is its reversibility,
i.e., returning of the system to its initial state after the
pulse. We introduce quantitative characteristics of the
reversibility, η, as the ratio of the CB population after
the pulse and the maximum CB population during the
pulse,

η =
N residual
CB

Nmax
CB

. (15)

The ratio η is between zero and one, where η = 0 cor-
responds to a perfectly reversible dynamics, while η = 1
corresponds to a highly irreversible dynamics.

For small frequency of the pulse, see Fig. 4(a), with
increasing the relaxation time, the electron dynamics be-
comes more reversible. Here, the reversibility parameter
η decreases from 0.98 for τ = 4 fs to 0.6 for τ = 20 fs.
Thus, for τ = 4 fs, the electron dynamics is highly irre-
versible, while, for τ = 20 fs, the electron dynamics is
partially reversible. Such partial reversibility of the elec-
tron dynamics is related to its coherence, which is more
preserved for larger values of τ .

Different situation occurs at larger frequency of the
pulse, see Fig. 4(b), where the frequency of the pulse is
~ω = 2 eV. In this case, the electron dynamics is much
less sensitive to the relaxation time and the dynamics is
highly irreversible for all values of τ , see Fig. 4(b). Here,
for all cases, the parameter η is close to 0.99. At the same
time, the whole CB population is much larger than the
CB population for the low frequency case, see Fig. 4(a).
For example, for ~ω0 = 1 eV and τ = 4 fs the residual
CB population is around 0.04, see Fig. 4(a), while for
~ω0 = 2 eV and τ = 4 fs it is around 0.2, see Fig. 4(b).

The total CB population shown in Fig. 4 describes the
net effect of the pulse on the QD. To clarify how different
levels of the QD respond to the optical field we show in
Fig. 5 the residual populations of different CB levels. As
expected, the levels with the lower energies are generally
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more populated compared to the higher energy levels, but
this dependence is not monotonic and some higher energy
levels are more populated than the lower energy levels.
This is due to properties of the dipole matrix elements,
which do not show monotonic dependence on the energy
of the levels.

The dependences of the populations of individual levels
on the relaxation time are sensitive to the frequency of
the pulse. For the pulse frequency of 1 eV, see Fig. 5(a),
with increasing the relaxation time, the populations of
CB levels are suppressed. Such suppression is more pro-
nounced for the higher energy levels. For example, when
the relaxation time increases from 4 fs to 20 fs, the pop-
ulation of the lowest CB level decreases by a factor of
≈ 2.5, while the population of the highest energy level
decreases by almost 11 times. When the frequency of the
pulse becomes close to the band gap, see Fig. 5(b), the
populations of the energy levels have weak dependence
on the relaxation time. When the relaxation time in-
creases from 4 fs to 20 fs, the populations of the levels
change by less than ≈ 20 %. Also, for all CB levels except
one, with increasing the relaxation time, the populations
decrease, but for the second CB level we observe a differ-
ent behavior. For this level, when the frequency of the
pulse is 2 eV, with increasing τ , its population slightly
increases. This is related to triple degeneracy of the sec-
ond CB level, see Fig. 2, which results in large density
of states associated with this level.

The emission spectra of the QD is calculated from Eq.
(12). Since polarization of the pulse is along the axis of
symmetry of graphene QD, i.e., along the x-axis, there
is no induced dipole moment along the y direction and
the dipole radiation from the system is linearly polarized
along the x direction. In Fig. 6, we show the radiation
spectra for three different frequencies of the pulse and
different values of the relaxation time. Here, we added
the results for the frequency of ~ω0 = 3.1 eV, which
is a little large than the band gap. We did not study
the electron dynamics at this frequency in great details,
since, as we can see from Fig. 6, there are only a few high

FIG. 4. Conduction band population as a function of time.
The conduction band population is normalized by the num-
ber of electrons, i.e., it is divided by 12. The corresponding
relaxation times are shown next to the lines. The frequency
of the pulse is ~ω0 = 1 eV (a) and ~ω0 = 2 eV (b). The pulse
amplitude is 0.5 V/Å.

harmonics that are generated in this case, see column (c)
in Fig. 6. For example, at the relaxation time of 20 fs,
the maximum harmonic that is generated at ~ω0 = 3.1
eV is 5, while at the frequency of 1 eV, it is 13.

Since the QD has an inversion symmetry, only odd
harmonics are generated60. The radiation spectra have
clear cutoff frequencies, which depend both on the re-
laxation time and the frequency of the pulse. Namely,
with increasing the frequency of the pulse, the maximum
harmonic order that is generated decreases and, with in-
creasing the relaxation time, the cutoff frequency also
decreases. Thus, when the electron dynamics becomes
incoherent, i.e., at small relaxation times, the system
generates more high harmonics, see Fig. 6, compared
to the coherent case, τ = 20 fs. Such behavior is corre-
lated with the population of the CB levels shown in Fig.
5, where with increasing τ , the higher energy levels be-
come less populated, which results in suppression of the
high harmonics.

Comparing the results for different frequencies of the
pulse, see columns (a)-(c) in Fig. 6, we can say that,
with increasing the frequency of the pulse, the energy
cutoff increases. For example, for the relaxation time of
τ = 4 fs, the highest harmonic that is generated by the
pulse with the frequency of 1 eV [see column(a)] is 15
with the corresponding energy of 15 eV. For the same
relaxation time, the highest harmonic for the pulse with

FIG. 5. Residual population of conduction band levels. The
pulse amplitude is 0.5 V/Å. The corresponding dephasing
times are marked in each panel. The frequency of the pulse
is ~ω0 = 1 eV (a) and ~ω0 = 2 eV (b).
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the frequency of 2 eV [see column (b)] is 11, the energy
of which is 22 eV. At the same time, when the frequency
of the pulse reaches the band gap, see column (c) in Fig.
6, the maximum harmonics is 7 with the corresponding
energy of 21.7 eV, which suggests that the energy cutoff
reaches a saturated value when the frequency of the pulse
approaches the band gap. Similarly, looking at the results
for the relaxation time of 20 fs, see Fig. 6, we can find
that the maximum energies of the high harmonics are 13
eV, 18 eV, and 15.5 eV, for the pulse frequencies of 1
eV, 2 eV, and 3.1 eV, respectively. In this case, there is
even a small suppression of the energy cutoff when the
frequency of the pulse becomes close to the band gap.

Thus, the laser pulse with the higher frequency, but be-
low the band gap, strongly perturbs the system, resulting
in generation of higher frequency harmonics and higher
energy cutoff comparing to the case of the low frequency
pulse. Such behavior is correlated with the results shown
in Fig. 5, where the populations of the CB levels with
high energies are larger for the higher frequency pulse.

Another property of the emission spectra shown in Fig.
6 is that, with decreasing the relaxation time, the emis-
sion spectra become less noisy and with well defined har-
monic peaks. For example, for the relaxation time of
τ = 20 fs, the emission spectrum between the fifth and
the seventh harmonics has extra noisy features which dis-
appear at the relaxation time of τ = 4 fs. The reason for
such behavior is that, for a shorter relaxation time, fewer
trajectories contribute to a given harmonic61,62, while for
a longer relaxation time, multiple trajectories, which oc-

FIG. 6. Emission spectrum of graphene QD. High harmon-
ics with well-defined cutoffs are clearly visible in the spec-
trum. The corresponding relaxation times are marked for
each graph. The frequency of the pulse is ~ω0 = 1 eV in
column (a), ~ω0 = 2 eV in column (b), and ~ω0 = 3.1 eV in
column (c). With increasing the relaxation time, the emission
spectrum becomes more noisy with less defined high harmonic
peaks. The pulse amplitude is F0 = 0.4 V/Å.

cur during the coherent electron dynamics, result in extra
interference effects and complex emission spectra63.

The dependencies of the intensities of high harmonics
on the pulse amplitude are shown in Fig. 7 for different
relaxation times and different frequencies of the pulse.
Only the first four lowest harmonics are shown. When
the frequency of the pulse is 1 eV, see Fig. 7(a)-(d), the
intensities of the high harmonics monotonically increase
with F0. With increasing the harmonic order, the depen-
dence of its intensity on F0 becomes stronger. For exam-
ple, for Nω = 3, the intensity has a weak dependence on
F0 and is almost constant at 10−3, while for Nω = 9, the
intensity changes from 10−8 at small F0 to 10−3 at large
F0. Such behavior is similar for all relaxation times.

When the frequency of the pulse becomes close to the
band gap, see Fig. 7(e)-(h), where the frequency of the
pulse is 2 eV, the intensities of high harmonics become
non-monotonic functions of the field amplitude for low
harmonics. Namely, the intensities of the third and the
fifth harmonics have maxima at the field amplitude close
to 0.4 V/Å. At the same time, the intensities of the higher
harmonics, Nω = 7 and 9, have monotonic dependence
on F0.

Another difference between the low and the high fre-
quencies of the pulse is that the ninth harmonic (Nω = 9)
has much smaller intensity for the case of ~ω0 = 2 eV
compared to the one of ~ω0 = 1 eV. This is related to
the fact that, for the pulse frequency of 2 eV, the ninth
harmonics has the energy of 18 eV, which is larger than
the maximum range of singe particle energies within the
QD, see Fig. 2, where this range is around 16 eV. As a
result the ninth harmonic is generated due to collective
transitions between many levels, which results to its low
intensity for the pulse with 2 eV frequency.

To clarify the effect of relaxation time on the radia-
tion spectra, we show in Fig. 8 the intensities of the first
four harmonics as functions of the relaxation time. In
panels (a) and (e), which correspond to the low field am-
plitude of 0.1 V/Å, only first three harmonics are shown
since the fourth harmonics (Nω = 9) is not generated in
this case. For all cases, shown in Fig. 8, the intensities
monotonically increase with the relaxation time. Thus,

FIG. 7. Intensity of the first four high harmonics (Nω = 3, 5,
7, and 9) versus the amplitude of the optical pulse, F0. The
frequency of the pulse is ~ω0 = 1 eV in panels (a)-(d) and 2
eV in panels (e)-(h). The relaxation time is 4 fs (a) & ( e),
10 fs (b) & (f), 15 fs (c) & (g), and 20 fs (d) & (h).
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FIG. 8. Intensity of the first four high harmonics (Nω = 3,
5, 7, and 9) versus the relaxation time. The frequency of the
pulse is ~ω0 = 1 eV in panels (a)-(d) and 2 eV in panels (e)-
(h). The pulse amplitude is 0.1 V/Å(a) & ( e), 0.35 V/Å(b)
& (f), 0.5 V/Å(c) & (g), and 0.75 V/Å(d) & (h).

the largest intensities of the high harmonics are realized
for the coherent electron dynamics, i.e., for the large re-
laxation time. The radiation spectra also show a stronger
sensitivity to the relaxation processes at small field am-
plitude. Namely, at F0 = 0.1 V/Å, the intensities of the
high harmonics change by almost two orders of magni-
tude when τ increases from 4 fs to 20 fs, see Fig. 8(a)
and (e), while at F0 = 0.75 V/Å, the corresponding vari-
ations of the intensities are ten times smaller, see Fig.
8(d) and (h).

The intensities of the high harmonics in Figs. 6-8 are
shown in units of the intensity of the main peak at the
frequency ω0. The intensity of the main peak can be
estimated from the calculated dipole moment and its
Fourier transform. For example, for the field amplitude
of 0.5 V/Å, the frequency of the pulse ~ω0 = 1 eV, and
relaxation time of 4 fs, the power radiated by the QD
at frequency ω0 is around 10 W/cm2. Then, as follows
from Figs. 6-8, the power radiated by the QD at the fre-
quencies of high harmonics is a few orders of magnitude
smaller.

One of the important characteristics of the radiation
spectrum is its high harmonic cutoff, which is defined
as the maximum harmonic order that can be generated
during the pulse. In Fig. 9, the high harmonic cutoff
is shown as a function of the pulse amplitude, F0, for
different frequencies of the pulse and different relaxation
times. The curve for the relaxation time of 10 fs coin-
cides with the one for τ = 4 fs. When the relaxation time
increases to 20 fs then, as we mentioned above, the corre-
sponding harmonic cutoff decreases. The dependence of
the harmonic cutoff on the field amplitude is different for
different frequencies of the pulse. For small frequency,
~ω0 = 1 eV, the dependence of the harmonic cutoff on
F0 is almost linear, see Fig. 9(a). The linear dependence
of the HHG cutoff on the field amplitude is also observed
in solids, both two dimensional and three dimensional19.

Different behavior is observed for larger frequencies of
the pulse, ~ω0 = 2 eV and 3.1 eV, see Fig. 9(b) and (c).
In this case, there is a clear deviation from the linear de-
pendence. Namely, at small field amplitudes, F0 < 0.35

V/Å, there is almost linear dependence of the harmonic
cutoff on F0, while at larger field amplitudes, F0 > 0.35
V/Å, the harmonic cutoff becomes suppressed. Here, for
the relaxation time of 20 fs, there is a saturation behavior
and the harmonic cutoff is constant, while for the smaller
relaxation times, 4 fs and 10 fs, the harmonic cutoff is
constant within small range of F0, up to 0.5 V/Å, and
then it increases with the slope that is less then the one
at small field amplitudes, F0 < 0.35 V/Å.

When the frequency of the pulse becomes almost equal
to the band gap, ~ω0 = 3.1 eV, the harmonic cutoff as the
function of the field amplitude, see Fig. 9(c), also shows
dependence with the variable slope. Here, the slope is
large at small field amplitude, F0 < 0.1 V/Å, then it
decreases for 0.1 < F0 < 0.35 V/Å, becomes zero within
some range of F0, and increases again.

Thus, for the high frequencies of the pulse, ~ω0 > 2
eV, there is a suppression of the harmonic cutoff at large
field amplitudes. Such property can be attributed to a
finite number of energy levels within graphene QD, which
results in finite energy range of around 16 eV, see Fig. 2.
The harmonic cutoff in the HHG spectrum determines
also the corresponding energy cutoff, which, for ~ω0 =
2 eV, is around 18 eV for the relaxation time of 20 fs
and 26 eV for τ = 10 fs. These values are larger than
the QD energy range of 16 eV, which means that, at
large field amplitude, the harmonic cutoff is determined
by simultaneous transitions between many single particle
levels.

For all frequencies of the laser pulse, the harmonic cut-
off is larger for the system with the smaller relaxation
time, i.e., for the less coherent system. It is related to
the fact that, for the coherent system, the electron dy-
namics is more reversible, see Fig. 4, which results in less
population of the high-energy CB levels and correspond-
ingly in smaller harmonic cutoff.

IV. CONCLUSION

Due to dimensional quantization, a graphene QD has
an intrinsic band gap, which depends on the size of the
dot. As a result, in the QD of a small size, an ultra-

FIG. 9. Harmonic cutoff versus the amplitude of the optical
pulse. The frequency of the pulse is ~ω0 = 1 eV (a), 2 eV
(b), and 3.1 eV (c). The relaxation time is shown next to the
corresponding line in each panel. The first data point in all
panels correspond to the field amplitude of 0.01 V/Å.
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fast electron dynamics in the field of a strong optical
pulse can be both reversible and irreversible depending
on the frequency of the pulse. If the frequency of the
pulse is much less than the band gap of the QD then
the electron dynamics is almost reversible, i.e., after the
pulse, the electron system returns to its initial state. But
if the frequency of the pulse is comparable to the band
gap then the electron dynamics is highly irreversible, i.e.,
the residual population of the excited QD states is al-
most the same as their maximum population during the
pulse. The reversibility of electron dynamics is strongly
affected by the dephasing processes. The dephasing pro-
cesses make the electron dynamics incoherent and more
irreversible. Since the electron dynamics completely de-
termines the nonlinear optical response of the system,
such as high harmonic generation, then the nonlinear op-
tics of graphene QDs strongly depends on the dephasing
processes.

The dephasing, which is introduced through relaxation
of the nondiagonal elements of the density matrix, affects
both the intensities of the high harmonics and the har-
monic cutoff. With increasing the relaxation time, i.e.,
when the electron dynamics becomes more coherent, the
intensities of harmonics increase. This can be attributed
to the fact that for the coherent dynamics more paths can
contribute to formation of high harmonics coherently, re-
sulting in larger intensity.

The effect of relaxation on the harmonic cutoff is also
related to the reversibility of electron dynamics. Namely,
with increasing the relaxation time the electron dynam-
ics becomes more reversible with less population of the
highly excited quantum dot levels. As a result the har-

monic cutoff decreases with increasing the relaxation
time. As a function of the field amplitude, the harmonic
cutoff shows almost linear dependence at small frequen-
cies of the pulse when the corresponding energy cutoff is
less than the energy range introduced by the lowest and
the highest energy levels in the quantum dot. When this
energy range becomes comparable to the energy cutoff,
which happens at large frequencies of the pulse, then the
cutoff shows a saturated behavior as a function of the
pulse amplitude.

For experimental verification of the high harmonic gen-
eration from graphene QDs, an array of QDs should be
prepared to enhance the intensity of the corresponding
radiation. The measurements can be done following the
standard experimental setup, where the emitted radia-
tion is routed to a spectrometer64. An array of graphene
QDs can be also used for generation of high frequency op-
tical pulses. Although the intensity of such pulses can be
low, the pulses can be generated in the hard ultraviolet
region.
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