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We derive a general low-energy theory for twisted moiré heterostructures comprised of Dirac
materials. We apply our theory to heterostructures on the surface of a three dimensional topological
insulator (3D TI). First, we consider the interface between two 3D TIs arranged with a relative twist
angle. We prove that if the two TIs are identical, then a necessary condition for a perturbative magic
angle where the Dirac cone velocity vanishes is to have an interlayer spin-flipping hopping term.
Without this term, the Dirac cone velocities can still be significantly renormalized, decreasing to
less than half of their original values, but they will not vanish. Second, we consider graphene on
the surface of a TI arranged with a small twist angle. Again, a magic angle is unachievable with
only a spin-flipping hopping term; under such conditions, the Dirac cone is renormalized, but only
moderately. In both cases, our perturbative results are verified by computing the band structure
of the continuum model. The enhanced density of states that results from decreasing the surface
Dirac cone velocity provides a tunable route to realizing interacting topological phases.

I. INTRODUCTION

Magic angle twisted bilayer graphene exhibits a vari-
ety of interacting phases such as superconductivity and
the quantum anomalous Hall effect [1-4]. The relative
twist angle between the two layers acts as a tuning knob
that can dramatically change their physical properties.
Specifically, at specific “magic” twist angles [5-7], the
renormalized Dirac cone velocity vanishes, leaving be-
hind gapped flatbands that are susceptible to interacting
instabilities.

In this manuscript, we ask whether the physics ob-
served in twisted graphene heterostructures can be real-
ized in other Dirac materials. We are particularly moti-
vated by renormalizing the velocity of the Dirac cone on
the surface of a topological insulator (TI), where an in-
teracting gap will yield either a quantum anomalous Hall
insulator or a topological insulator [8]. Recently, the ef-
fect of a slowly spatially-varying “moiré superlattice” po-
tential on the surface of a topological insulator has been
studied [9-11]. Such a potential will increase the surface
density of states at the Dirac point by renormalizing the
Dirac cone. It will also generate van Hove singularities
at an energy slightly above and below the Dirac point.
Both of these effects will enhance the instabilities towards
interacting topological phases [10-19]. A potential that
breaks time-reversal symmetry may produce flat Chern
bands [20]. The theory can be generalized to modulate
an interacting gap on the edge of a 2D TI [21].

Here, we consider a different route to manipulating
the surface Dirac cone velocity, which is to incorporate a
3D TI into a twisted heterostructure with another Dirac
material. The interlayer coupling between the two Dirac
cones offers a new tuning knob compared to the superlat-
tice potential and, as we show, can lead to perfectly flat
bands under certain ideal (but not fine-tuned) conditions.

To this end, we derive a general theory of a twisted
moiré heterostructure between two Dirac materials. The
two layers need not be identical, but we require them to

feature Dirac cones which, upon being arranged with a
small twist angle, are separated by a small momentum
difference. We derive an analytical expression for the low-
energy theory as a function of the interlayer coupling and
discuss the effect of rotation, time-reversal, and interlayer
mirror symmetries.

We then apply our theory to two types of twisted het-
erostructures on the surface of a topological insulator.
First, we consider the two-dimensional (2D) interface be-
tween two three-dimensional (3D) TIs arranged with a
small relative twist angle. To meet our criterion that
the two Dirac cones must be separated by small momen-
tum after twisting, we require that the Dirac cones are
not at the center of the Brillouin zone (BZ), but rather
at the (m,7) point. We then derive conditions for gap-
less flat bands. Our most significant result is that if the
two 3D TIs are identical, a gapless flat band requires
an interlayer spin-flipping hopping term. We prove that
this condition is mathematically equivalent to the known
condition in twisted bilayer graphene that an interlayer
sublattice-swapping is necessary to achieve a magic an-
gle [22]. However, while the latter is natural in twisted
bilayer graphene, the origin of a spin-flipping term is not
clear, although it is symmetry-allowed. Nonetheless, if
the spin-flipping term is not present, the Dirac cone ve-
locity can still be significantly renormalized, reaching a
minimum around half of its original value. We back our
analytical results with a numerical simulation.

The second heterostructure we examine in detail is
graphene on the surface of a topological insulator, ar-
ranged with a small relative twist angle. Graphene on
a 3D TI surface has been studied extensively without a
twist angle, both theoretically [23-32] and experimen-
tally [33-44]. A twist angle was considered in Refs. 26
and 42, but flat bands were not considered. The primary
goal of the previous literature was to enhance spin-orbit
coupling in graphene. Our motivation is in the opposite
direction: we hope the interlayer coupling from graphene
will renormalize the Dirac cone on the 3D TI. Similar



to the interface between two topological insulators, we
find that a magic angle condition is not achieved with-
out spin-flipping interlayer hopping, although the 3D TI
Dirac cone can still be slightly renormalized. We verify
our analytical results with a numerical model.

II. MAGIC ANGLE CONDITION FOR DIRAC
CONES AT TRIM POINTS

We are interested in twisted bilayer heterostructures
of two Dirac materials. Although our theory is applica-
ble to any Dirac material, we focus on the case where
one layer has a single time-reversal-invariant Dirac cone
at a TRIM point, which implies it is the surface of a
strong 3D TI. We write down the most general inter-
layer coupling Hamiltonian and compute the self-energy
of each Dirac cone perturbatively in the coupling. From
the self-energy, we extract both an energy shift and a
renormalized Fermi velocity for the Dirac cone, the lat-
ter of which gives a magic angle condition. We then
discuss the physical conditions necessary to achieve the
magic angle. Although we use the language specific to a
twisted moiré heterostructure, the theory presented ap-
plies equally well to a moiré heterostructure created by
stacking two layers with a small lattice mismatch.

A. Model for Dirac materials

A Dirac Hamiltonian for an isotropic gapless Dirac
cone at charge neutrality can be written in the form:

Hp(k) = vk - o, (1)

where o is some here-unspecified degree of freedom such
as spin, sublattice, or orbital. (The proof that Eq. (1) is
fully general is given in Appendix A.) When the Dirac
cone is not at the origin, we will denote the momentum
difference from the Dirac point at kg by k = k — ko.
In each layer, there may be multiple Dirac cones of the
form of Eq. (1), which are labelled by valley, spin, or
other indices. Unless symmetry-related, each Dirac cone
will have a different Fermi velocity and energy, as well
as anisotropy; for simplicity here we do not vary these
parameters.

The Hamiltonian for each layer L = 1,2 is written as

H(k) = Hp(k)d;; (where 4, j run over the different Dirac
cones, e.g., in graphene, over spin and valley):

o = [ R0} H (o (2)
Interlayer coupling is then included as:
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Here, 1) 1 are the electron field operators on layer L at
crystal momentum kg + k& with spin, orbital, valley, etc.

indices implicit; note kg may also implicitly depend on
valley and layer.

The vectors ) are the displacements in momentum
space of the Dirac cones that result from twisting (see,
e.g., Fig. 1). The collection of vectors {Q; — Q;} from
each valley form the reciprocal lattice of the moire pat-
tern and thereby define the moire BZ. A derivation of
which @ enter and how to compute the corresponding in-
terlayer coupling matrix Tt is given in Appendix B. Un-
der the assumption that the lattices are nearly matched
and arranged with a small twist angle, and, in addition,
that the interlayer spacing is appreciably larger than
the lattice constant of either material, Ty is only non-
negligible for a finite set of Q.

The low-energy continuum model in Egs. (2) and (3) is
valid when k is small (i.e., close enough to a Dirac cone
that the linearization is valid) and when the valleys are
well-separated (i.e., the distance between distinct valleys
is much larger than Q).

To study the effect of the interlayer coupling term in
Eq. (3) on the Dirac Hamiltonian in Eq. (2), we assume
that the interlayer coupling is small, in the sense that
the energy scale of interlayer coupling, ¢, is much less
than v|Q| for the smallest value of |Q|. (This implicitly
assumes that there is no Q = 0 term; the possibility of
such a term is discussed further in Sec. III.) We then
work perturbatively in the parameter ¢/v|Q)|.

We further assume the presence of both time-reversal
symmetry, 7, with 72 = —1, and an in-plane rotational
symmetry by 27/n, denoted C,, ., with n > 2. The rota-
tion symmetry ensures that the Dirac cone is isotropic,
which is a convenient and physically relevant simplifica-
tion, but is not necessary. If the two layers are the same,
there may be additional symmetries that exchange the
layers. The action of the symmetry operators is derived
in Appendix A.

B. Self-energy of a single Dirac cone

We now treat the interlayer coupling in Eq. (3) as a
perturbation to the Dirac Hamiltonian in Eq. (2) and
compute the self-energy to lowest order in ¢/v|Q|. From
the self-energy, we will extract the renormalized veloc-
ity and energy shift of the original Dirac cone due to
interlayer coupling. We compute the self-energy of a
single Dirac cone located at a time-reversal-invariant-
momentum (TRIM); in Appendix C we discuss the gen-
eralization for a system with multiple Dirac cones not
necessarily at TRIM. Without loss of generality, we take
the layer in which we are computing the self-energy to be
layer 1, with Fermi velocity vy, while layer 2 has Fermi
velocity wvs.

In this single Dirac cone case, the combination of
time-reversal and rotational symmetry constrain the self-
energy to take the form:

Zsingle—cone (

w, k) = —[Aw+B+C(k-0)+ D(k x o)] (4)



The parameter A determines the quasiparticle weight via
Z7' = 1+ A, while the parameters C and D are di-
rect corrections to the renormalized Fermi velocity, which
takes the form:

% (01—0)2+D2

v = 1+A ) (5)

where v; is the original velocity before the interlayer cou-
pling. The parameter B in Eq. (5) determines an overall
energy shift of the renormalized Dirac cone, given by:

B
AE =1 + A ©)

Eq. (5) is an important result: it imposes a condition to
find a “magic angle” where the renormalized Fermi veloc-
ity vanishes, specifically, v = 0 when D = 0 and C' = v;.
In contrast, previous work [9] showed that a superlattice
potential on the surface of a 3D TI can renormalize the
Dirac cone velocity, but does not result in a magic angle
condition; in the language of Eq. (5), it yields C = D = 0.

We now derive the physical conditions that must be
satisfied to realize the magic angle by expressing the ab-
stract parameters A, B, C, D in terms of the physical in-
terlayer coupling terms, Tg, introduced in Eq. (3).

For simplicity, we first assume the original Dirac cone
is coupled to a single Dirac cone in an adjacent layer, so
that T is a 2 X 2 matrix. For each @), we decompose T
as follows:

o) +t1,0(@x0), (7)

where the parameters ¢y . || 1 are complex numbers. Note
that since Q is ill-defined at @@ = 0, ¢ and ¢, are not
continuous through 6 = 0; specifically, the behavior of Q

implies that ¢ | ~ sgn(f), to lowest order in 6.
In terms of these coefficients,

Ty =tol+1t, 00, + tH’Q(Q -
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These equations follow directly from the more general
results presented in Appendix C 1.

More generally, if the original Dirac cone is coupled to
multiple Dirac cones in the second layer, labelled by an-
other (valley, spin, etc.) index, then the decomposition
in Eq. (7) should be applied to each valley, and the pa-
rameters A, B, C, D are found by summing Eq. (8) over
all valleys.

In each of the sums in Eq. (8), all symmetry-related
Q@ values will contribute the same summand, due to the

definition of the coefficients in Eq. (7) and the symmetry
properties discused in Appendix B 3. Accordingly, if only
the smallest @@ values are non-negligible, it suffices to
consider the couplings for one choice of Q.

III. INTERFACE BETWEEN TWO 3D
TOPOLOGICAL INSULATORS

The first case we will consider is the interface between
two 3D TIs that are stacked on top of each other with
a small relative twist angle. This is also the simplest
case, since each surface hosts only a single time-reversal-
invariant Dirac cone.

If both layers have a Dirac cone at I', there will be a
zero-momentum (@ = 0) interlayer coupling term. Phys-
ically, this term appears because even after twisting, the
Dirac cones at I" have no momentum separation. (Math-
ematically, the Q=0 term arises from our derivation in
Appendix B.) The presence of a @ = 0 term invalidates
our results in the previous section, which were derived by
expanding perturbatively in ¢/v|Q|. Instead of a renor-
malized gapless Dirac cone, a Q = 0 term will open a
gap at the interface, similar to the interface between two
untwisted 3D TIs, but modulated by a superlattice po-
tential. Therefore, to realize a gapless Dirac cone at an
interface between two twisted 3D TIs, we require that at
least one layer has a Dirac cone at a TRIM that is not I'.

This motivates us to consider the hypothetical situa-
tion of an interface between two Cj-symmetric 3D TIs
with the same lattice constant and Dirac cones at the
surface M = (w,7) point. When the two materials are
twisted, the surface BZ is illustrated in Fig. 1a. Since the
Dirac cones are at (m, ), they are Cy-invariant and thus
isotropic to linear order (any rotation of order greater
than two will yield an isotropic Dirac cone.) Without
such a symmetry, the Dirac cones can flatten anisotrop-
ically; if the velocity vanishes in only one direction, an
effective 1D system results [45, 46]. The other TRIM
on the surface of a four-fold-symmetric TI are not Cy-
symmetric: the (m,0) and (0, 7) points mix under a four-
fold rotation. On the surface of a three- or six-fold sym-
metric TI, the TRIM also mix under the three- or six-fold
rotational symmetry, such that there are no TRIM points
(besides T") that are three- or six-fold invariant. Thus, if
we seek a Dirac cone at a TRIM that will be renormalized
isotropically at a twisted interface between two 3D TIs,
our only option is to consider a Dirac cone at (w,7) on
the surface of a four-fold symmetric topological insulator.

We may also consider interfaces between two 3D TIs
with different lattice constants. For example, consider an
interface between one 3D T1I with a Dirac cone at M and
a second 3D TT with a Dirac cone at I', such that the two
materials have a 2:1 lattice vector mismatch (their unit
cell areas differ by a factor of four). In this setup, the cone
at M from the first layer is folded onto I' from the second
when the layers are aligned. When the two materials are
twisted, the surface BZ is illustrated in Fig. 1b. The low-



energy theory of the interface is similar to the case where
the two layers have the same lattice constant and both
have Dirac cones at M, but subject to different symme-
tries. Further, the global topology, i.e., where the Dirac
points are located on the surface BZ, may differ, which
gives rise to different mechanisms for the topological pro-
tection of gapless surface states. One can generalize to
construct interfaces with more complicated supercells de-
scribing any integer ratio of lattice constants.

A. Identical TI surfaces

We start by considering the first scenario, where both
TIs are identical and have Dirac cones at M. Then
CyT symmetry leaves each @ invariant (as we derive in
Eqgs (B8) and (B9), it acts as —0,K, implying o, T0, =
Tg.) This constrains the coefficients ¢, t and t; to be
real, whereas t, is purely imaginary. Accordingly, let us
define t, = it,.

We assume that only the smallest symmetry-related
set of four @) contribute nonnegligibly. Without loss of
generality, we may then choose these (Js along the x and
y-axes, as illustrated in Fig. la. This choice of Qs is
still valid in the presence of a small lattice mismatch,
although the decomposition into #|| and ¢, will change.
Eq. (8) simplifies to:

2 2 2 2
Alto o+t o+totile)

A= 202 (92)
B 8(to,Qf||,clz}|g|M,sz,Q) (o)
oo 4(ti’intﬁ7Q) (9)
p- gL (94)

One of the most important consequences of these for-
mulas is that if 1 and ¢, vanish, then the only non-zero
term is A. However, according to the formula for the
renormalized velocity in Eq. (5), a magic angle requires
C > 0. Thus, to lowest order in perturbation theory, a
magic angle in this system requires ¢; to be non-zero.
Since, by its definition in Eq. (7), ¢, is a coefficient of
off-diagonal Pauli matrices, we conclude that magic an-
gles are only possible in the presence of inter-layer spin-
flipping hopping terms.

This result can be understood by analogy to twisted
bilayer graphene, where instead of spin, the ¢ matrices
act on the sublattice degree of freedom. In Ref. [22], the
authors showed that magic angles do not appear in the
“second chiral limit” of TBLG where inter-sublattice in-
terlayer hopping vanishes. When sublattice is replaced
by spin, this is exactly our result that magic angles do
not appear at the interface between two identical 3D TIs
without spin-flipping interlayer hopping. Although in

TBLG the Dirac cones are in sublattice space and pro-
tected by spinless C57, while on the surface of a 3D TIT,
the Dirac cone is in spin space and protected by T, we
show in Appendix D1 that this analogy is mathemati-
cally rigorous.

We now consider the magic angle constraint in more
detail. If the two 3D TI layers are identical, they have
an additional layer-interchanging symmetry Cy, (which,
in combination with Cy, generates three other layer-
interchanging symmetries). Using the orientation of @s
defined in Fig. 1 (along with the action of the rotation
operator defined in Eq. B11), this symmetry requires:

ayTgloy =To, (10)

Combining the above equation with the decomposition
of Tg given in Eq. (7) (and the aforementioned C7 con-
straints) yields the single additional constraint ¢, = 0,
which, from Eq. (9), implies D = 0, C = 4t2L’Q/vQ2.
According to the expression for the renormalized Fermi
velocity in Eq. (5), a magic angle will result when D = 0,
C = vy. Since varying the twist angle changes the mag-
nitude Q? that appears in the denominator of C, we con-
clude that aslong ast| g # 0, there will exist some magic
twist angle where C' = v;. Importantly, this magic twist
angle requires no fine-tuning.

On the other hand, as mentioned below Eq. (9), t1 ¢
corresponds to a spin-flipping interlayer hopping term.
While this term is symmetry-allowed, it is not obvious
how such a term would naturally arise, and we might ex-
pect it to be small. Since the magic angle occurs when
C = vy, which implies t| ¢ ~ v@Q, then if t| ¢ is small,
the magic angle requires that @ also be small, which cor-
responds to a small twist angle (see Fig. 1la). At such
small twist angles, there are two places where our per-
turbative results may fail. First: if spin-preserving cou-
plings dominate, then we require small |Q| for ¢, /v|Q| to
be sufficiently large. However, since our expansion in ¢
includes a leading order approximation in ¢y /v|Q| as well,
the smallness of |Q)| may demand working to a higher or-
der in perturbation theory in ¢y. Second: physically, our
assumption of rigid layers may break down at small twist
angle if disorder or lattice relaxation effects dominate.

In the absence of a layer-interchanging symmetry,
generically ¢ # 0. Since this implies D # 0 whenever
C > 0, by Eq. (5), lowest-order perturbation theory indi-
cates magic angles will not arise. To higher order in per-
turbation theory, fine-tuned scenarios may arise where a
magic angle exists, but we do not expect it to be generic.

In Sec. IITC we will compare our perturbative pre-
dictions for the magic angle to a global band structure
calculation.

B. Spin vs. pseudospin

The low-energy Hamiltonian v(k - ¢) is not the unique
description of a Dirac cone invariant under time-reversal
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(a) Surface Dirac cones at M in both layers, with
identical lattice constants.
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(b) Dirac cone at M on one surface and I' on the other,
with lattice constants that differ by a factor of two.

FIG. 1: BZ at the interface between two 3D TIs arranged with a small relative twist for two scenarios described in
Sec. III. Filled circles indicate Dirac cones; empty circles indicate other TRIM in the original BZ. Vectors @ indicate
the momentum difference between nearest Dirac cones, which is exactly the effective quasimomentum transfer in the

continuum model, per Eq. (3).
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FIG. 2: Moiré BZ. Blue and red filled circles are the
locations of Dirac cones from each layer. Empty circles
indicate other points along the BZ path (which may be

TRIM points depending on the configuration.)

and rotation symmetries: specifically, as derived in Ap-
pendix A1, any linear combination of k - ¢ and k x o
is invariant. Such linear combinations can be brought
into the form v(k - o) by a unitary transformation, al-
though the transformation also changes the meaning of
the spin basis. As a first example, if the Hamiltonian in
one layer is described by v(k - 0) and the Hamiltonian in
the other layer is described by v(k x o) or —v(k - o), then
we reach the same conclusion as in the previous section
that magic angles exist, but they require a different mix-
ture of £, and ¢;. Importantly, spin-flipping hopping is
still required.

However, we get a different result if one layer has the
low-energy Hamiltonian —k - o*. The unitary transfor-
mation that transforms this Hamiltonian to the form k- &
exchanges spin-flipping and spin-preserving interactions
(following the procedure described in Appendix A1).
Thus, the interlayer hopping term that results in a magic

angle to leading order in perturbation theory is now a
spin-preserving term. For other o*-type Hamiltonians,
the hopping required to achieve a magic angle preserves
the projection of spin in the z-direction, but not in all
directions, i.e., the requirement to achieve a magic angle
is a linear combination of ¢tg and ¢,.

From a physical perspective, this set-up provides a
physically reasonable (spin-preserving) interlayer hop-
ping term to achieve flat bands at the interface between
two topological insulators. However, this physical moti-
vation for the interlayer hopping term comes at a cost:
it requires two different topological insulators, one with
effective Hamiltonian & - o and the other with —k - o*.

Physically, materials with a k - o* Hamiltonian can be
distinguished from materials with a k - ¢ Hamiltonian
by their spin texture: their spins rotate in opposite di-
rections around the Dirac cone, as illustrated in Fig. 3.
Specifically, writing the linearized Hamiltonian for layer
L as k- My, - o, the spin-winding of the Dirac cone is
classified by the parameter:

xr = sgn(det(Mp)) = £1, (11)

where x1,(k-0) =1 and xr(—k-0c*) = —1. To determine
whether spin-flipping inter-layer hopping is necessary to
realize a magic angle, the relevant quantity is x := x1xo,
the product of the x of each layer: if the product is +1, z-
spin-preserving interlayer hopping is required, whereas if
the product is —1, then z-spin-flipping interlayer hopping
is required.

Note that x does not completely classify the Hamil-
tonian, and as a consequence, the mixture of ¢ and ¢,
required to achieve a magic angle depends on the low-
energy Hamiltonian. For example, the ratio of ¢ to ¢,
required for a magic angle at the interface between two
3D TIs with k- ¢ Dirac cones will be different than that
required at the interface between two 3D TIs with £ x o
Dirac cones, even though both cases have x; = x2 = +1.
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FIG. 3: Spin textures of the conduction bands of different Dirac cones. For Dirac cones where o appears in the
Hamiltonian, spin and momentum rotate the same way, whereas for Dirac cones where ¢* appears, spin and
momentum rotate in opposite directions. This winding number also results in different (unitarily equivalent) angular
momentum representations.

C. Global band structure

So far we have derived the existence/absence of a magic
angle using the renormalized Dirac cone velocity derived
in Eq. (5) to leading order. We now study the valid-
ity of our conclusions to higher order in both k and tg
by computing the full band structure. We assume spin-
preserving coupling and consider two cases: one in which
both TIs have effective Hamiltonians of the form k- o (as
considered in Sec. IITA), and one in which the second TT
instead has an effective Hamiltonian of the form —k - o*
(as discussed in Sec. IIIB), where o always references
the spin degree of freedom, rather than a rotated pseu-
dospin degree of freedom. We will call these the y = +1
and y = —1 cases. Note that the band structure for the
X = —1 case with spin-preserving hopping is identical to
the x = +1 case with spin-flipping hopping, i.e., tg — ¢ .

Fig. 4 shows the spectrum plotted along the ABB’A
slice of the moiré BZ, which is labelled in Fig. 2. The
top row of plots are spectra for the x = +1 case, and
the bottom row of plots are spectra for the x = —1 case,
with varying to/v|Q| in different columns.

We expect in the x = —1 case (from Eqgs (9¢) and (5),
taking to — ¢, according to the basis change described in
the previous section and derived in Appendix A 1) that a
magic angle will arise for ¢o/v|@| = 0.5. Examining the
to/v|@Q| = 0.5 plot, we find bands that are appreciably
flatter, but not yet “magic.” However, we observe that
at higher coupling, to/v|@Q| = 0.75 (Fig. 4, bottom-right)
produces appreciably flatter bands near a magic angle.
We attribute this mismatch between our perturbative
and numerical results to the fact that at the predicted
magic angle, our perturbative parameter to/v|@Q| = 0.5
is not very small. In Fig. 5, we compare the numerical
and perturbative calculations of the Fermi velocity and

see that they begin to deviate around to/v|Q] ~ 0.2.

Nonetheless, the band structures plotted in Fig. 4 con-
firm the qualitative intuition (discussed in Sec. IIIB)
that, while both the x = +1 and xy = —1 cases produce
some band flattening (compare the leftmost column, in
which the layers are uncoupled, to the other columns),
the x = —1 case produces much flatter bands with spin-
preserving interactions than the y = +1 case. This can
be seen by comparing the spectra in the two rows of
Fig. 4: the bandwidth along the AB line, and in par-
ticular at D, is consistently narrower in the y = —1 case.

The same trend appears in Fig. 5, where the Fermi
velocity is plotted against to/v|@|. The two cases are
notably closer in Fermi velocity than first-order pertur-
bation theory would predict for intermediate values of
to/v|Q| (between 0.2 and 0.5), but the x = —1 case nev-
ertheless consistently yields lower Fermi velocities, and
for large to/v|Q| 2 0.6, the x = —1 Fermi velocity be-
comes smaller by an order of magnitude than the x = +1
Fermi velocity. In addition, while the Fermi velocity os-
cillates in amplitude in the y = +1 case, the Fermi ve-
locity in the xy = —1 case decays monotonically, well past
the validity of the perturbation theory.

In Fig. 6, we illustrate the extremely flat low-energy
bands that result in the x = —1 case with ¢y /v|Q| = 1.3.
The figure shows that not only do the lowest energy
bands become flat, but the adjacent bands also collapse
onto the flat bands, creating a larger density of states
than would result from the flat bands alone. Both the ac-
cumulation of flat bands and the exponential suppression
of Fermi velocity were also discussed for twisted square
lattices in Ref. 47.

Returning to the spectra in Fig. 4, it is also notable
that the spectra are consistently gapless at all energies.
This is not required by the strong Zs topological in-
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FIG. 4: Moiré band structures for the interface between two 3D TIs. The path ABB’A refers to the moiré BZ shown
in Fig. 2. In the top row, the low-energy Hamiltonian for both materials is vk - o (x = +1), while in the bottom row,
the low-energy Hamiltonian for one TT is vk - o and for the other —vk - o* (x = —1). In all cases, only a single
spin-preserving interlayer coupling term is included. The band structures are identical to those that result from a
spin-flipping term by making the substitutions to — ¢, and x — —x.
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to/v|Q|

FIG. 5: Fermi velocity vs. ty for spin-preserving
couplings in the x = +1 (black) and xy = —1 (red) cases.
Dashed lines are first-order perturbation theory, solid
lines are extracted from numerically-computed band
structures. The y = —1 case consistently produces
lower Fermi velocities.

variant: time-reversal symmetry allows gaps to open at
the interface between two 3D TIs. Instead, the gapless
surface states are protected as a weak TI: the cones at
A and B are separated in the moiré BZ (as illustrated
in Fig. 2), and consequently are protected by the ap-
proximate translation symmetry of the moiré lattice [48],
which also protects the cones at C and C’. By “moiré
BZ” we refer to the BZ defined below Eq. (3), not the
BZ of any particular commensurate lattice; hence, the
translation symmetries are not sensitive to any partic-
ular commensurate structure. However, the protection
of Dirac cones by moiré translation symmetry implies
that disorder is sufficiently small on the moiré length
scale. (The simplicity of this argument is in contrast

0.50
0.25
s
> 0.00
1
_025 -
—-0.50

FIG. 6: Spectrum for spin-preserving coupling in the
x = —1 case with to/v|@| = 1.3. The original Dirac
cone becomes extremely flat and nearby bands collapse
in energy, creating a large density of states.

to the analogous circumstances in the second chiral limit
of TBLG [49] and in twisted square lattices [47] in which
a more nuanced argument is required.)

Dirac cones also appear at D and D’ in the top row in
Fig. 4. These crossings are not topologically protected:
there exist non-spin-conserving interlayer couplings that
are symmetry-allowed and would open a gap at D. In
particular, in the lower row in Fig. 4, the Dirac cones
have the opposite spin-momentum locking; hence, the
spins are aligned where the Dirac cones overlap at D and
a large gap opens.

Instead, these crossings’ gaplessness is a consequence of
the specific parameters used in our model. In particular:
since D lies on the A — B line (see Fig. 2), when the



Dirac cones have the same spin-momentum locking (i.e.,
both are of the form k- ), they have opposite spin at D.
Since the spectra in Fig. 4 only include spin-conserving
hopping, there is no term to open a gap at D. When
the two Dirac cones have different velocities or chemical
potentials, the crossing still remains gapless, but moves
along the A — B line.

There is one additional interesting feature to exam-
ine. In the x = +1 case, there are two nearly-degenerate
bands at to/v|@Q| = 0.75. Fig. 7 shows a finer range
of hopping parameters, which reveals the lowest conduc-
tion bands descend to produce additional zero-energy
states at a critical value of ¢y/v|@Q| = 0.75, then sepa-
rate again as the coupling increases. A similar critical
point where the lowest conduction band dips down and
touches the flat band also appears in TBLG, both in the
usual Bistritzer-MacDonald model (Fig. 3A of [5]) and
in the “second chiral model” with vanishing AB coupling
(Fig. 2c of [22]), although the nearly-degenerate bands
that result at this crossing are specific to our model.

The touching point appears to be distinct in the two
cases: in the TI-TT case, the touching point is at the
Dirac cones, whereas in TBLG the touching point is at
I' (away from the Dirac cones). However, this can be un-
derstood by interpreting the touching point as occurring
—(@ away from a Dirac point, which in TBLG is the T"
point and in our TI-TT model is at a Dirac cone.

IV. TI ON GRAPHENE

We have shown that stacking two 3D TIs with a small
twist angle can significantly renormalize the Dirac cones
at the interface, with nearly flat bands appearing at a
specific magic twist angle under certain conditions. In
the simplest case, the surface Dirac cone of each TT must
not be at the center of the surface BZ. However, none
of the 3D TIs in the BisSes family meet this condition:
their surface Dirac cones are always at T' [50, 51].

This motivates us to consider a second example of a
twisted heterostructure with multiple Dirac cones: the
interface between a topological insulator and graphene.
Such interfaces have been considered in previous work
[23-44], but the effect of a small relative twist angle was
not considered.

We consider a 3D TI with a single Dirac cone at T,
such as in BisSes. The lattice constants of the TI and
graphene differ by a factor of v/3 up to an approximate
3% lattice mismatch[26]; Fig. 8 shows the lattice match-
ing ignoring the lattice mismatch. The aligned super-
structure then folds the K and K’ points in graphene
onto I' in the TI BZ, with the resulting twisted structure
shown in Fig. 9. We assume the TI has a sixfold rota-
tional symmetry, as well as time-reversal symmetry. (The
sixfold symmetry is not exact: while each layer of BisSes
has a sixfold rotation axis, the layers are stacked such
that the axes do not coincide [50]. Thus, surface states
mostly localized on the top layer will exhibit an approxi-

mate sixfold rotational symmetry.) The TI Hamiltonian
is given by vprk - o, as in Sec. IIT A. Graphene’s Hamil-
tonian consists of four Dirac cones including spin and
valley; the matrix form is given in Appendix A 3.

In the subsequent sections, we will derive a perturba-
tive analytic calculation of the renormalization of the TI
Dirac cone that arises from its coupling to graphene. The
analogous calculation for graphene is more complicated
due to its spin degeneracy and is derived in Appendix C4;
when the interlayer hopping is spin-preserving, almost
all corrections vanish, with the nonvanishing coefficients
only rescaling the spectrum.

To go beyond our perturbative results, we compute the
surface band structure, specifying to the most physically
interesting case where spin is conserved. Our results both
validate the first-order perturbative calculation for the TT
Dirac cone renormalization and provide insight into the
higher-order corrections to the graphene Dirac cone.

A. Corrections to TI Dirac cone

We begin by computing the corrections to the TI Dirac
cone to first order in perturbation theory. In so doing,
we make use of the corrections to a single Dirac cone de-
rived in Eqs. (4)-(8). We decompose the interlayer cou-
pling terms Tg, defined in Eq. (3), into T s, Where
TQ,ko,s couples each graphene Dirac cone to the TI Dirac
cone, with the ko running over valley and s over spin. At
any particular @, only one valley will couple to the TI;
without loss of generality, we consider ) corresponding
to the K point, so that T g+ = 0. The interlayer cou-
pling terms for other values of () can then be determined
by time-reversal symmetry.

When the lattices are aligned, there is a moiré pat-
tern that arises from the lattice mismatch. In this case,
we can choose an orientation such that @ = Q,2z. On
the other hand, if we ignore the lattice mismatch and
consider arranging the graphene layer on the TI surface
with a small twist angle, we can take Q) = Q,¥. In the
most general case of a lattice mismatch and a small twist
angle, @ could point in an arbitrary direction; our for-
malism covers this case, but we here focus on the two
limits.

Regardless of the combination of twist and mismatch,
for a spin-preserving coupling, the corresponding T x s
will take one of two forms (depending on s), with the rows
corresponding to spins in the TT layer and the columns
corresponding to sublattice in the graphene layer:

¢t
Toxqr = {0 0] (12a)

(12b)

For either of these Ty K, t) = dmit1, where ¢ and £}
are defined in Eq. (7). Therefore, the direct correc-
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FIG. 8: Graphene on BisSes. Blue circles indicate Se
atoms on the BisSes surface; red circles indicate carbon
atoms in graphene. The superlattice matching is
accurate to ~ 3% [26].

tions C' and D to the Fermi velocity (computed accord-
ing to Eq. (8) and inputted into the Fermi velocity in
Eq. (5)) both vanish. Consequently, magic angles from
spin-preserving hoppings do not exist for any small twist
or strain.

By the same logic, purely z-spin-flipping hoppings will
also not produce magic angles in this case. Unlike the
interface between two 3D TIs (Sec. III), we need both z-
spin-preserving and z-spin-flipping hoppings to produce
magic angles.

Another change compared to the interface between two
3D TIs is that here, due to the small lattice mismatch,
the coupling to graphene shifts the TI's surface Dirac
cone up or down in energy, while the Dirac cones at the
interface between two 3D TIs experience no such shift
when the interlayer coupling is spin-preserving. (The lack
of an energy shift in that case is a consequence of the
parameter B in Eq. (9b) vanishing for spin-preserving
coupling; here, it vanishes for a small twist, but not for
lattice mismatch.) In this case, the energy shift follows
the formula:

12t%v¢ Q|

AE = — Vel
0% Q2 + 12¢2

(13)

The sign of the energy shift depends on the direction
of mismatch, i.e., whether the graphene unit cell or the

FIG. 9: The BZ of graphene (red) arranged on top of
the 3D TI BZ (blue), shown both with the lattice
mismatch (top) and then with a small relative twist
angle while neglecting mismatch (bottom). The
momentum differences @); are indicated in each case.

TI unit cell is larger compared to the perfect supercell
matching illustrated in Fig. 8.

B. Global band structure

We now plot the band structure to see how our per-
turbation theory holds up. We plot all spectra along the
path shown in Fig. 10, which is the same path used in
[5].

We first examine spin-preserving,  sublattice-
independent coupling (which does not produce magic
angles). We present one representative spectrum each
for the cases of twist and lattice mismatch in Fig. 11,



FIG. 10: Path along which spectra in Fig. 11 are
plotted in the case of lattice mismatch. For a twist, the
figure is rotated 90 degrees counterclockwise to account

for the different values for Q).

computed with ¢/vpr|@Q] = 0.25; other values of ¢
look qualitatively similar. The band structure near
the TI Dirac cone at A agrees with our perturbative
calculations: in the case of a lattice mismatch, it shows
an energy shift whose magnitude and direction matches
Eq. (13); there is no energy shift in the twist case; and in
either case there is only modest velocity renormalization.
Fig. 12 illustrates the behavior of Fermi velocity and
energy shift, as extracted from band structure, as a
function of twist angle. It shows that the Fermi velocity
does not experience nearly the renormalization achieved
at the interface between two 3D TIs (Fig. 5). It also
shows that at small twist angles and lattice mismatches
(large couplings), twisting suppresses Fermi velocity
more than mismatch for the same moiré lattice size.
The graphene cones at B, C, and D resemble the
quadratic bands of untwisted Bernal-stacked bilayer
graphene. This is because the TI couples graphene’s spin-
up and spin-down cones at K (since propagation in the
TT layer flips the z-component of spin). These cones are
not twisted relative to each other, so they couple in much
the same way as the Dirac cones in the different layers of
bilayer graphene, but with an effective interlayer hopping
parameter proportional to #?Q\ (instead of tpra).

This correction to the graphene Dirac cones is fourth
order in t, which agrees with our analytic calculation
showing that the only nonvanishing correction to the
graphene cone to quadratic order in ¢ is an overall rescal-
ing of the spectrum (details in Appendix C4).

Like the TT-TT interface, the spectra in Fig. 11 remain
gapless at all energies. This is topologically required be-
cause the Dirac cone on the 3D T1I surface is protected by
time reversal symmetry; unlike the TI-TT case discussed
in Sec. III C, here the topological protection is strong and
not weak (i.e., not dependent on the approximate trans-
lation symmetries of the moiré lattice) since there is only
one TT surface state.

In summary, our calculations predict that arranging
graphene on the surface of a 3D T1 with a small twist an-
gle is not a promising platform for creating flatter bands,

10

both because no gaps are topologically allowed to open
in the spectrum and because under the most physically
intuitive conditions, the Dirac cone is only marginally
renormalized.

V. CONCLUSIONS

We have studied moiré heterostructures on the sur-
face of a 3D TI. We derived analytic expressions for
the leading order corrections to the velocity of the sur-
face Dirac cone induced by coupling to another lattice-
matched Dirac material arranged with a small twist an-
gle. We applied our results to two types of heterostruc-
tures: an interface between two TIs and graphene on the
surface of a TI. We derived conditions for achieving a
“magic” angle at which the Fermi velocity vanishes.

One of our main results is that at the interface be-
tween two identical 3D TIs arranged with a small twist
angle, a spin-flipping interlayer hopping term is a nec-
essary ingredient to achieve a magic angle. The same
is true for graphene on a 3D TI. While such a term
is symmetry-allowed (enforcing time-reversal and rota-
tional symmetry), it is not clear what physical mecha-
nism would give rise to it. In future work, it would be
interesting to perform first-principles calculations for dif-
ferent material combinations (such as graphene on BisSes
or BiyTes, or the interface between two 3D TIs) to deter-
mine under what conditions the spin-flipping interlayer
hopping terms arise.

On the other hand, we found that magic angles
are achieved without spin-flipping interlayer hopping at
twisted interfaces between two lattice-matched TTs whose
Dirac cones have opposite winding number (see Fig. 3).
At the magic angle, such an interface realizes locally flat
bands. Unlike in twisted bilayer graphene, the flat bands
are not gapped from the conduction/valence bands due
to topological constraints. Nonetheless, such locally flat
bands will enhance the density of states at the Dirac
point, which is favorable for realizing instabilities to su-
perconducting or quantum anomalous Hall states [10, 12—
19).

This analysis therefore provides two routes for induc-
ing magic angles on the surface of a 3D TI. There are also
several potential routes to creating flat bands in such sys-
tems that go beyond the setups considered in this paper.

One route would be to consider an interface between
two materials with Dirac cones at I'. We did not consider
this case here because such interfaces would generically
gap, and therefore exhibit qualitatively different behav-
ior than other twisted interfaces, although this case has
been studied recently for thin slabs [52]. Whether the re-
sulting bands contain interesting features (e.g., van Hove
singularities [10]) remains an open question.

Another route would be to reduce the rotational sym-
metry. We limited ourselves to Dirac cones that would re-
main isotropic to linear order in the twisted heterostruc-
ture, i.e., those that remain a center of three- or four-fold



11

1.0 A \\i\;////@\\w A é\\%@vn\%\/f\z// A
100/ XRIAEK AN | IR L AR AN

FIG. 11: Spectrum of TT-graphene heterostructure with zero interlayer hopping (left) and spin-preserving
sublattice-independent interlayer hopping t/vr;|Q| = 0.25 for a uniform lattice mismatch without twist (center) and
twist without mismatch (right). We assume vg = 2vpy [23].
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FIG. 12: Renormalized TI Dirac cone velocity v /vry
(top) and energy shift Fy/vrr|Q| (bottom) as a function
of the spin-preserving and sublattice-independent
hopping parameter t/vrr|Q| extracted from band
structure calculations (solid lines) and computed
perturbatively (dashed line, drawn only in the one case
where it does not overlap with a solid line), for the case
of a small twist angle (red) and small lattice mismatch
(black). In the twist case, the energy and Fermi velocity
perfectly match the perturbative calculations, so those
lines are not drawn. In the lattice mismatch case, the
Fermi velocity has the same perturbative theory as the
twist case (i.e., following the solid red line).

rotation. If one considers Dirac cones with less rotational
symmetry, then even where a vanishing Fermi velocity is
impossible, it may be possible to achieve a significantly
enhanced density of states via anisotropic band flattening
[45, 46]. In such a setup, one may have “partial magic
angles” where Dirac cone velocity vanishes in one direc-
tion. The interacting instabilities of a 3D TI with such a
Dirac cone provide a potential scenario for further study.
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Appendix A: General Hamiltonians for Dirac
Materials

In this appendix, we discuss the Dirac Hamiltonian in
a single layer. In Sec. A1, we discuss our basis choice
for the Dirac Hamiltonian. In Sec. A 2 we consider the
representations of rotational and time-reversal symme-
try on this Hamiltonian, and show that, after a further
change of basis, time-reversal symmetry can be brought
to a canonical form of oy K. Finally, in Sec. A 3 we elab-
orate on the details and symmetry representation of the
graphene Hamiltonian, along with explicit matrices that
perform the aforementioned changes of basis.

1. Dirac Hamiltonians

Let us begin by considering a two-state Hamiltonian
in two dimensions which identically vanishes in energy
at k = 0. The most general expansion to linear order in
k can be expressed as:

HE)=(a-E)I+k-b-oc+(c-k)o. (A1)

If the spectrum is isotropic, then the vectors a and
¢ must vanish, while the tensor b is constrained to the
trace and antisymmetric parts (which commute with ro-
tations). Then the Hamiltonian can be written as a sum
of two terms:

H(k) = bis(k-0) +bra(k x o) (A2)

We can then perform a unitary transformation de-
scribed by the matrix:

exp(iarctan(byq/b1s)0./2) (A3)
This will transform our Hamiltonian into:
\/ b%s + b%U,(I% : U) (A4)

Thus, an isotropic Dirac cone at k = 0 can generically be
written as vk - o in the appropriate basis.

A Dirac cone not at the origin will instead take the
form v(k —ko)-o. For this reason, we now define k as the
difference in momentum space between k and the center
of the Dirac cone kg:

kE=k—ko (A5)

This leads to the more general assertion that any
isotropic, gapless Dirac cone at charge-neutrality can
have an effective Hamiltonian written in the form Hp (),
with Hp as defined in Eq. (1).

More generally, for a Hamiltonian with multiple Dirac
cones indexed by the Dirac points kg ;, we can do the
same operations for each cone in terms of ki i=k— ko.i-

At the level of the perturbative small-angle calcula-
tion performed here, we can drop the i sub-index, and
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regard k as a formal parameter rather than a point in
momentum space per se. This is computationally con-
venient because it allows for valley-mixing basis changes
(which we will use in the following section); accordingly,
we will use k without sub-index in the rest of this pa-
per’s exposition. (To extract the physical meaning of the
terms we compute, the basis change must be reversed to
disentangle the valleys.)

Therefore, under the assumptions we make in this pa-
per, if we index our Dirac cones by 7 and j, we can always
write a single-layer Hamiltonian as:

H(k) = Hp(k)dy;. (A6)

2. Time-reversal and rotational symmetry

We now also assume that our materials have both time-
reversal symmetry 7 and in-plane n-fold rotational sym-
metry C),. Note both of these operations leave each layer
invariant, so we can discuss them before coupling two lay-
ers; however, in materials with multiple Dirac cones, the
symmetries do not have to leave each Dirac cone invari-
ant - the Dirac cones may be mixed under the symmetry
transformations.

Time-reversal symmetry can be expressed as the con-
dition that:

TH,;T_I =H_j (A7)

Similarly, if we denote by R the usual action of C,, on
the plane, then the rotation symmetry requires:

C,H;C! = Hyz (A8)

We now derive the matrix forms of 7 and C,,, which
will be implemented by anti-unitary and unitary matri-
ces, respectively, when acting on our Dirac Hamiltonian
in Eq. (A6). Given that 7 is antiunitary, it can generally
be written as:

T = Ty;(ioy,K), (A9)

where T is a matrix in ij space (trivial in o space) whose
structure will depend on the specific problem at hand.

Since 7T is anti-unitary and satisfies 72 = —1, it must be
that TTT = TT* = 1, and therefore that T is complex-
symmetric.

The rotation matrix can be written as:

C,, = Uyj exp(imo, /n), (A10)
Similar to time-reversal symmetry, there is a matrix U
which acts only in i space and will depend on the specific
problem. U must be unitary and have the property that
ur=1.

To simplify our calculations of twisted multi-Dirac
band structures (Appendix C), we would like to simplify
the form of T and U as much as possible. As these uni-
tary transformations should also preserve the form of our
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Hamiltonian, we constrain ourselves to only operating on
the i and j indices (rather than on those of Hp(k)).

Since T is complex-symmetric, we can perform an
Autonne-Takagi factorization [53, 54] to diagonalize it
into ¢;;. (Note the condition that T2 = —1 plays a vital
role in this decomposition by ensuring the symmetry of
T'; therefore, this decomposition does not directly apply
to spinless models.)

This change of basis yields new rotation matrices U;;
from our previous ﬁij, such that the rotation in the new
basis is U;; exp(imo,/n). These matrices U cannot gener-
ally be simplified by a further basis transformation while
preserving the properties established thus far. (We still
have the ability to act on the ¢j indices with a real orthog-
onal matrix without disturbing either our Hamiltonian or
the form of 7, but this is of comparatively limited use.)

In some cases, it is beneficial to diagonalize in the basis
of T7:= C5T, instead of 7. This will most often the case
if the model has a subset of Dirac cones (decoupled from
the rest) invariant under 7’ but not 7, which occurs, for
instance, in twisted bilayer graphene, where the K and
K' Dirac cones are decoupled from each other.

In this circumstance, 7" takes the matrix form:

The condition that 72 = +1 results in T}, also be-
ing complex-symmetric, and therefore the same Autonne-
Takagi factorization applies to reduce this to d;;. How-
ever, this diagonalization cannot (generally) be per-
formed simultaneously with the previous one, so one basis
or the other should be chosen for the computation on a

case-by-case basis.

3. Effective graphene Hamiltonian and symmetry
representations

We now present the application of the above method-
ology to graphene as a concrete example. In the process,
we develop a model of “half-graphene” which will serve
an effective simpler stepping stone in our calculations.

a. Graphene fundamentals

We can write an effective graphene Hamiltonian as four
Dirac cones coupled to sublattice, indexed by spin and
valley:

vk-t 0 0 0
0 wvk-1 0 0
Ho=1 o9 0 _wk-7 0 (A12)
0 0 0 —vk - T*

We will here use 7 to refer to the sublattice degree of
freedom, o to refer to the spin degree of freedom, and p



to refer to the valley degree of freedom. Therefore, the

above Hamiltonian can be equivalently written as:

Heg = vlkymopis + kyTypioloo (A13)

In this basis, time-reversal symmetry will be written
as:

T =ioyuK (A14)

For rotations, it will be computationally convenient to

separately consider Co and Cj5 (rather than Cg). These

take the form:

Co =10, Ty s (A15)

C5 = —exp(ino,/3) exp(inT,p./3) (A16)

b. Half-graphene model

A computationally simpler model would have only one
Dirac cone each at K and K’. Considering a spinless
model of graphene will not work if we want to preserve
time-reversal symmetry with 72 = —1. However, what
we can do is write a Hamiltonian for a material like
graphene with spin-valley locking. In other words, we
take a material with Dirac cones coupled to sublattice
at K and K’, but take a single Dirac cone at K with
one spin and one at K’ with the opposite spin. This
setup breaks C5 symmetry, but preserves both C3 and
time-reversal.

The effective Hamiltonian of such a model, before any
basis change, could be written by picking out the first
and fourth cones of our previous graphene model:

o= "7 0] (A17)

We can therefore inherit our symmetry representations
from that model as well. Let o denote the combined spin-
valley degree of freedom. Then, time reversal takes the
form:

T =i0,K (A18)
Similarly, threefold rotations take the form:
C3 = —exp(ino, (1, + 70)/3) (A19)

c. Basis change in half-graphene

We now take our simplified model of half-graphene and
put it into the standard form with a Hamiltonian of (vk -
T)oo with T = i, K.

First, we transform the Hamiltonian to our standard
form with a o, transformation on the second Dirac cone
only. Time-reversal then takes the form (ir,K)o,. We
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can easily transform o, into o, with a rotation by e™@v/4,
after which we transform the second Dirac cone by a fac-
tor of ¢ to eliminate the minus sign (exploiting antiuni-
tarity to eliminate the cone-dependent phase in 7).
Combining these transformations together yields the

matrix:
141 iTo —Ty
2 —Tp iTy

Due to this complicated transformation, the 7 and o
matrices in this basis refer to some combination of the
original degrees of freedom in a non-obvious way. (L.e.:
we use these symbols to refer to the indices in the matrix
structure rather than their original degrees of freedom.)

With our Hamiltonian and time-reversal symmetry
both in standard form, only the C3 rotation operator re-
mains nontrivial. That the operator is a symmetry of the
Hamiltonian determines how it acts on 7 space, so what
remains is to determine how it acts on o space, which is
precisely specifying the matrix U in Eq. (A10)). Com-
puting U in this case yields a standard rotation matrix:

(A20)

Us. g = exp(imoy/3) (A21)

d. Basis change in graphene

We now perform an analogous series of steps in our full
graphene model. There is some additional freedom in our
basis change here that we exploit to make our rotational
symmetries as simple as possible. In the end, our basis
transformation is:

itg 0 0 —7y

I1+i\ |- 0 0 in
2 0 @70 7y O
j 0

0 70 i1y

(A22)

With our basis transformations performed, we can now
write the rotations in the new basis. Again, we take
Eq. (A10) and specify the U matrices defined therein,
this time both for C3 and Cy symmetry:

Us = exp(imoy /3) o (A23)

UQ = 0oz (A24)

That these expressions factor is precisely the motiva-
tion for working with C3 and Cy rather than Cs: Cj
now acts trivially on the p indices and C5 acts trivially
on the o indices, whereas Cg acts nontrivially on both
indices simultaneously.

Moreover, we can now see the exact sense in which our
half-graphene model was, indeed, half of graphene: our
full model of graphene can be written as two Cs-related
copies of our half-graphene model. This will allow us
to work out the details of the C3 symmetry in our half-
graphene model in Sec. C3, then add the details of Cy
symmetry in the full graphene model in Sec. C4.



Appendix B: Interlayer Couplings

In this appendix, we derive the coupling between two
layers stacked with a relative twist angle. We begin with
a general derivation of interlayer couplings in a tight-
binding model given the lattice vectors of each layer and
then specialize to the case of small twist angle about
a commensurate crystal structure. We then specialize
to the case of coupled Dirac cones and incorporate the
constraints of time-reversal and rotational symmetry.
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1. General two-layer tight-binding couplings

We begin by considering the interlayer coupling be-
tween two layers with different lattices, with no con-
straints on the Hamiltonian of each layer.

Letting I, J index all non-momentum degrees of free-
dom (sublattice, orbital, spin, etc., but not valley, since
it is included in the integral over k) of layer 1 and I', J’
of layer 2, the two-layer Hamiltonian can generally be
written:

H= Z/ kowI,I,kH{J(k)djl,J,k + Z/ d2k/'l/};1/7k_/H21/J/(kl)ql}z’J/’k/
1,0 /B2 1 K1/BZ2

+ Z/ d2k/ &K (uqlkaJ’(k,k')%,J/,k,) +h.e.| (B1)
1 /BZ 1 BZ 2 Y

We now simplify T'(k,k’) by imposing some mini-
mal assumptions. We start by Fourier transforming
T (k, K'):

TIJ/ (k, k/) _ Z e_ik‘(R—i_”)eik/'(R/—s_T‘ﬂ)TIJ/(R7 R/)
R,R
(B2)
In the above equation, R and R’ denote the centers
of the unit cells of the two layers, whereupon r; and r/;
denote the location of sublattices I and .J’ relative to the

J

(

centers of their respective unit cells.

We then make a standard moiré tight-binding assump-
tion that the crystal locally has the translation invariance
of the original lattice, i.e.:

TIJ/ (R, R/) = tIJ/(R +7rr— R, - ?"J/) (B3)
Combining this equation with the previous one and

Fourier transforming again allows us to simplify signifi-
cantly:

T (k) = 3 e B BT (R oy R 1)

R,R’

— 2 efik-(RJrrI)eik'-(R'%»rJ/) § eik”-(R+r17R/7TJ/)t£./]//

R,R’

_ Z Z e—i(k—k“)-Rei(k'—k”).R'ei(k”—k)-me—i(k//—k/)-rJ,tig'

R,R' k"

k!’

. 1 . 1" ’ ’
= E E T e R R 7

G,G" k"

(Gorr—Glor 1) (1T
:E Okt e G

G,G’

In the above expressions, k” is allowed to run over all
of momentum space, whereas G and G’ are the reciprocal
lattice vectors of the two layers.

This final expression relates the coupling between two
materials of arbitrarily mismatched lattices to the Fourier
transform of the tight-binding interlayer hopping t!7(r).

2. Small-angle twisting

We now look specifically at the case where the two
layers are twisted with a small angle relative to a com-
mensurate cell and, further, that the low-energy physics
is well described by a k - p expansion about a particular
point kg in the BZ. (The derivation proceeds similarly for



a small lattice mismatch instead of a small twist angle.)
Making the substitutions k — ko + k, k' = k{ + K/,
Eq. (B4) becomes:

T’ (kv k,) = Z 5l}+ko+G,E’+k6+G’eZ(G.m7G .TJl)téikovLG
GG
(B5)

From here, we explicitly separate out twist angle de-
pendence: we split kg as kg = ko + 0ko, where ];0 is
twist-angle-independent and |0kg| ~ 6]ko|. Therefore, for
small twist angle, dko will be small. (As an example, in
graphene, ko would be the position of the K point before
twisting, and dko would be its deviation after twisting.)
We do a similar decomposition with G, &, and G’.

We now suppose that the interlayer spacing is much
greater than the interatomic spacing, which motivates
an assumption that t decays slowly in position space
and therefore quickly in momentum space [5]. Then, the
smallest values for k 4 ko + G (i.e., within the first few
BZ) dominate. Combined with our assumption for small
k, this justifies the following decomposition:

6E+k0+G,IE’+k6+G’ = 5}}04,-@,]}(’)4-@'5E+5k0+5G,E’+6k6+6G/
(B6)

The first term is #-independent: it implies that cones
will only couple after twisting if they fold onto the same
point in the BZ before twisting, allowing us a simple
way to determine what valleys do or do not couple. The
second term then specifies the twist angle dependence, as
it contains the #-dependent terms.

To simplify, we explicitly input the rotation by declar-
ing 0G' = MG, 6k}, = Mk}, and 6G = 6ko = 0, where
M is the difference between the rotation matrix and the
identity. Then, with an approximation in ¢ to lowest or-
der in k, we end up with the following expression for
T (k, K'):

E: VU L GGl )y 1
ko+G ky+G" “k,k'+M (ky+G") Fo+C

eNed

Coupling strength

(B7)
where 77 ;- denote the positions of the sublattice degrees
of freedom before being twisted. Finally, we define @ :=
k' — k and express this interlayer hopping as Tg, giving
the notation from the main text in Eq. (3).

Valley matching 6/Q-dependence

3. Symmetry constraints on Ty

We now derive the effect of symmetry on the inter-
layer coupling terms. In so doing, we explicitly assume
the Dirac Hamiltonian is written in the basis discussed
in Appendix A, including the specified form of the sym-
metry operators.

For simplicity of expression, we explicitly break the T
into a set of 2-by-2 matrices T ;. Note that ij’ used
here are not the same as I.J' in the previous section: I.J’
run over all non-valley degrees of freedom, whereas 75’
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run over time-reversal-invariant Dirac cones (which may
include valley degrees of freedom).

Time-reversal symmetry relates Q to —Q, and gives
the relation:

o'Tir, 0" = TirqQ (B8)

For in-plane rotations, we return to the U matrices
defined following Eq. (A10), which may be different for
each layer. Call the matrix for one layer U and for the
other U’. Implementing the rotation in momentum space
by @ — RQ, the resulting constraint is:

072 (U Ty mUpnle 7% = Tur g (B9)

Notice that the constraints imposed by time-reversal
and rotation symmetry in Eqs. (B8) and (B9) relate the
interlayer coupling at different ). Thus, once Ty is
known for one choice of @, it is determined for all other
Q@ related by time-reversal or rotation symmetry. The
exception to this is the combined symmetry operation
Cy T, which leaves () invariant and (due to antilinearity)
acts as a reality constraint on each individual Tg.

In the case of identical materials, there may also be
layer-interchanging rotations, like C, or Cy,. These fol-
low a similar formula to the in-plane rotations, except
instead of relating T to T, they relate T to TT. Letting
¢ denote the angle between the axis of rotation and the
r-axis, define:

o4 = cos(¢)o, + sin(¢)oy, (B10)

Then, letting £ denote the action of the rotation on @
and V a material-dependent transformation matrix rep-
resenting the action of the symmetry on the ¢j indices:

06 [Vii Th _eqVirloo = Tir g (B11)

There is a subtlety here in the formula involving T_¢q
instead of T'e. Specifically, @) is defined as the difference
in momentum from layer 1 to layer 2 (see below Eq. (B7)).
When the two layers are exchanged, the meaning of @) has
to change accordingly, which swaps Q — —Q.

In practice, it is only necessary to consider one out-
of-plane rotation symmetry, since the others are gen-
erated by products with the in-plane rotations. When
considering a particular @, it is prudent to consider an
out-of-plane rotation that preserves that @ (as done in
Sec. IITA), so that the out-of-plane rotation imposes a
constraint on T, rather than relating two distinct terms
Tg and T_¢q. This then (being an antilinear constraint
on a single @, akin to C37 ) imposes a reality constraint
on individual Tgy. A material with both Co7 and such an
out-of-plane symmetry may have conflicting reality con-
straints that can cause certain interlayer hopping terms
to vanish, as again can be seen in Sec. IIT A.

These symmetries are the only ones that we expect
to arise in generic models, since reflection symmetries



are (generically) broken in twisted bilayers and inter-
nal symmetries are model-specific. Without further con-
straints, we expect all interlayer hopping terms that sat-
isfy Egs. (B8), (B9) and (B11) to arise, although sym-
metry does not constrain their amplitudes.

Appendix C: Calculations of Self-Energy

In the following appendix, we compute the self-energy
of a Dirac cone in one layer of material that results from
hopping into the other layer. We show that the self-
energy takes the general form given by Eq. (4) and derive
the coefficients defined in Eq. (8). We also derive the
more general results that arise when there is more than
one Dirac cone in each layer.

We begin by discussing the general case in the special
basis described in Appendix A (in particular parts A1

J

ZTQZI/OJ_U(]C“FQ) ] le/
Q.

”kw

==Y giTaulQ +o(Q¥E-0) = 2Q- Q-

Q.

1
= — Z 721]2@4 {(TQ,il’Té,jl’ + TfQ,il’TiQJ’l/) sz + 'UQ2 (TQ,il’(Q . )TQ G
Q.U

+0 [ Tor (F-(Q1-2Q Q) 0) Th ju + T-qar (k- (@Q1-2Q2 Q) -0) T 4] }
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and A 2). We then discuss the extent to which this cal-
culation requires this change of basis and the extent to
which it can be ignored.

With the general case worked out, we proceed to com-
pute the quadratic corrections to graphene (and our sim-
plified half-graphene model) described in A 3.

1. General calculation

We first calculate the self-energy of a Dirac cone in
layer 1 due to its coupling to a Dirac cone in layer 2;
the self-energy of the Dirac cone in layer 2 from hopping
into layer 1 is identical up to the definition of @ (which
is the momentum shift in going from layer 1 to layer 2,
not the converse) and an interchange of the roles of T
and T't. The calculation of self-energy, to lowest-order in
perturbation theory, proceeds as follows:

o)+ Q*Q - NITY ;1
—Tqu(@Q- J)TiQ,jl’>

(C3)

1 * *
= Z 202Q4 {(TQJI’TQT)JV + Uy(TQ,il’ng,jw) Uy) Q*w +vQ? (TQ,il’(Q ‘ U)ng,jlf + oy (T, (Q - U)ng,jl') Uy)

o
+v (TQ,il’ (k- (QT-2Q®Q) o) T, Q.U

Let us now explain each equality: Eq. (C2) is derived
by expanding Eq. (C1) to linear order in the dimension-
less parameters w/v|Q| and |k|/|Q|. Eq. (C3) is derived
by averaging the terms Tg and T_¢, and Eq. (C4) re-
lates T_ g i1» to T s by the constraint imposed by time
reversal symmetry in Eq. (BS).
The above equation for the self-energy expanded to
linear order in k and w can be decomposed as:
Zij (k‘, w)

= Aijw + Bij +k- Vij, (05)

where the coefficients can be further decomposed as:

.Aij :Aijo'o + iA;jO'Z + ZA;/] o (C6a)
Bij ZBijO'O + Z.BZ{jO'Z + ’LBZ e (Cﬁb)
Vij =Vijo. +iVijo0 + M;j - o (Cée)

In the above equations, aside from the 7j indices, some of
the coefficients have implicit indices implied by the dot
products, i.e., A, A’, B, and B’ are scalars; A”, B", V,

_Uy(TQ,il’( (QT-20®Q) - )Q]l/)*ay)}

(C4)

(

and V' are two-component vectors; and M is a rank-2
tensor.

The factors of ¢ have been chosen so that all are real
due to time-reversal symmetry. Since the self-energy is
Hermitian, all unprimed coefficients are symmetric in
the ij indices, whereas all primed or double-primed in-
dices are antisymmetric. (In particular, the antisymmet-
ric terms vanish on the ij diagonal, and therefore do
not appear in the case of a single-Dirac cone, for which
i=j=1).

We rewrite the above equations in terms of traces over
the T' matrices using the following identities for 2x2 Her-
mitian matrices H:

H+oyH" 0, =Tr[Hloy
H—-o,H"0y, =Tr[Ho"|o,

(C7a)
(C7b)
By applying these identities to Eq. (C4) and isolating

the coefficients defined in Eqs (C5)-(C6), we find the fol-
lowing explicit expressions for the individual coefficients



defined in Eq. (CG):

.
Ay = Z o 2Q2 Re T To,iTh 1 (C8a)
Al = Z 5 Q2 Im Tr TQJZ'/Té,ﬂ/o'Z] (C8b)
ij“ = Z 2Q2 Im Tr TQ,”/T jir0 } (C8c)
=Y 55 Q2 ReTr [T (Q-0)Th 0] (C9a)
Qi '
1 I z
By = 5oge M| Tau Q- 0)Th 0 | (com)
Qi
1 -
Bl =Y g T | Ta.(Q- o)Th 00| (C90)
Qv
1 Q1A
wo_ W
(C10a)
/ 1 Q“Q, -
‘/iJH = 2/UQ2 <6M)\ -2 Q2 ImT‘I‘[TQ’ii/U TQ7ji’i|

(C10b)

v 1 QMQA v
MY = Z o <5*; 2753 >ReTr[TQ o Th 0"
© (C11)

So far, we have only imposed time-reversal symme-
try (in the form noted in Sec. A 2, using the constraints
derived in Sec. B3). To further constrain the form of
the self-energy, we should impose rotational symmetry.
While we cannot further simplify without knowing the
specific form of the rotation matrices U (defined in Ap-
pendix A 2), which are material-dependent, we now out-
line the procedure for simplifying further.

The core aspect of the simplification is relating the
terms in the sums over @ in Eqgs (C8)-(Cll) using
Eq. (A10). Writing, for instance, Eq. (C8a) as A;; =
>0 Ai;(Q) and noting Ay (RQ) = Uy A;(Q)UY,, it fol-
lows that A;; can be expressed in terms of only a single
representative Qg (of each symmetry-related-set of @),
i.e., we need only compute A;;(Qo). Summing over dif-
ferent @) is then equivalent to picking out the rotation-
invariant part of A;;(Qo) (under the representation of
rotations given by the U matrices) and multiplying by
an appropriate symmetry factor.

The same procedure can be applied to the rest of
Egs. (C8)-(C11) very similarly. The only modification
required is incorporating the p and v indices, where
present: A”(Q), etc., pick up a (vector) transformation
on those indices in addition to the U matrices that trans-
form the ij indices. This makes the decomposition into
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irreps different, but the philosophy is the same: find the
rotation-invariant part of those matrices and multiply by
an appropriate symmetry factor.

It is often useful to decompose M into the irreps of
the pv indices (before considering the ij indices): the
trace C, the antisymmetric part D, and the symmetric
trace-free part N, i.e.,

MZ‘D = ;6" + Dy + Ni“j” (C12)

We can be more concrete in the specific case where
there is only one Dirac cone. In this case, all primed
coefficients vanish as discussed below Eq. (C6). In ad-
dition, U is simply a phase factor. Thus, we only need
consider the rotational transformations of A, B, V', and
M, all of which are specified by U being a phase: A(Q)
and B(Q) are identical for all Q; V(Q) transforms like a
vector; and M (Q) transforms like a two-index tensor.

In the sum over @, therefore, the V(Q) will cancel for
any rotational symmetry (including Cs): denoting the
rotation operation on a vector by R, our above calcula-
tion reveals that V(R"Q) = R"V(Q), and so the sum of
rotation-related @) terms vanishes (3, V(R"Q) = 0).

A similar but more complicated representation theory
argument reveals that M is constrained to only its trace
and antisymmetric parts C and D (i.e., N vanishes).
This yields the single-cone result given in Eq. (4), with
coefficients as given in Eq. (8).

2. U(N) symmetry

The above calculation, in principle, only holds in the
special basis in which both materials have a k-o Hamilto-
nian and time reversal takes the form io, K. This requires
a change of basis that is inconvenient for developing intu-
ition in materials where the cones do not naturally come
in such a form, such as graphene (where time-reversal
does not naturally flip the internal degree of freedom of
a Dirac cone).

However, using our final results (C8)—(C11), we find
that the expression for self-energy of the first layer is in-
variant under a change of basis in the second layer that
acts only on the '’ indices, since they are summed over.
Thus, our result is invariant under the change of basis in-
dicated in A 2 (for the second layer), although not under
the change of basis described in Appendix A 1.

In this paper, this invariance allows us to avoid chang-
ing the graphene basis in Sec. IV; otherwise, we would be
forced to make all the changes of basis highlighted in Ap-
pendix A 3. Instead, we only need transform the Hamil-
tonian to a vk - o form (as described in Appendix A1),
which is trivial for the purposes of our calculation.

However, note the full basis change on the first layer
(the one for which we are calculating the self-energy)
is still necessary: a unitary change of basis on the ij
indices will not necessarily leave X;; invariant. Hence,
for the computation of the self-energy of the graphene



cones Appendices C3 and C4, the complex changes of
basis are still necessary.

3. Half-graphene corrections

We now apply the above computational method to the
case of the corrections to graphene from tunneling into
the Dirac cone on the surface of a TI, assuming for sim-
plicity that only the smallest set of Qs contribute non-
negligibly to the sums in Egs. (C8)-(C11). We begin with
the simpler half-graphene model presented in Sec. A 3.

For each of the terms presented in Egs. (C8)-(C11), we
can divide the contributions into rotational irreps (where
the action of the rotations are defined by the action of U
on the ij indices combined with the usual action on any
vector indices pv). For the trivial irreps, the summands
for different (symmetry-related) @s will all be identical,
and hence we can simply take a representative @@ and
multiply by a symmetry factor of 6. For nontrivial irreps,
the summands will cancel.

Consider first the corrections from A, A’, B, B’, C, and
D (as defined in Egs. (C6) and (C12)). For these terms,
since there are no vector indices, any irreps with ¢5 in-
dices that transform nontrivially under C3 will vanish in
the sum over @), which means (using the representation of
rotational symmetry given in Eq. (A21)) these terms can
only contribute og or o, terms; the pair (o,,0.) trans-
form like a vector instead. By symmetry in ij, the un-
primed terms contribute o¢ and the primed o,. There-
fore, the contributions from these terms to the self-energy
in Eq. (C5) can be written as:

(Aow+Bo) 000+ (Ayw+Bg) 20 +Co(k-T)o0+Do (kxT) 00

Next, consider the terms with vector indices: A},
B;;-“, Vi, and Vi/f, (as defined in eq. (C6)). Again, we
find the irreps that transform trivially. As p is a vector
index, another vector index from the ij is required, and
such an index can be found in the vector combination
(o%,0%). However, since these matrices are symmetric
in 47, the only term they can contribute to is V, and so
A// — B/l — V/ — O.

The surviving term, V, we have now decomposed as
Vi = V}oy, where a = z,2z and p = z,y. The
rotationally-invariant terms are those that contract the
© and a indices via dot and cross products, as follows:
for any matrix Sﬁ, the rotation-invariant parts are the
contractions of V! with S and €,”Sy.

Therefore, the contribution to the self-energy from V'
decomposes as:

(k- Vig) = Va(haort; + yorsy) + Valuo, — Fyo)
This choice of V; and V5 is, of course, not unique, but
the invariant subspace will be the same for all choices of
decomposition.

We can similarly decompose our last coefficient, Ni“j”:
the pv indices are a combination of o and o#, which
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transform as a vector, and therefore we must take a cor-
responding combination of ¢” and ¢*, as before. There-
fore, we can express our solution as:
Ni‘;” =N (ag”afj + oeé”’ofj) + Ng(afc“’afj - oz’z“’afj)
Concatenating these all together, we find the correc-
tions to the self-energy for our half-graphene model (in

the special basis of Appendix A3c) can be written in
terms of ten coefficients:

Sue(k,w) =(Aow + Bo)mooo + (Agw + By) 720,
+Cooo(k - 7) + Dooo(k x 7)
+ [Vikeo" + kyo®) + Vo (koo™ — kyo™)] 7
+(N16"% + Noo®)(kyTy + kyTs)
+(N16% = Noo™) (koo — kyTy)
(C13)

In the original basis, the self-energy takes the form:

EHg(];Z,CU) :(A()UJ —+ Bo)T()O'Q —+ (A()w —+ B(l))TZUO

E-T 0 ExT 0
Jrc(0{0 —k-T*]+DO{ 0 —kXT*:|
+ [Vl(hay + kyo™) + Vo (kyo" — l;:yay)] Ta
+(10 — 72)(N1(k - 0) — Na(k x o))

(C14)

Some of these terms may vanish to lowest order in per-
turbation theory; Eq. (C13) is the most general form con-
strained by symmetry.

For spin-preserving sublattice-independent hopping
with amplitude ¢, we can explicitly compute these terms
by by multiplying the term from Q = |Q|% (for twist) or
Q@ = |Q|Z (for lattice mismatch) by a symmetry factor of
six. We find that (in either case) the only nonvanishing
coeflicient in the self-energy is:

3t2

Ao = v2Q)2

(C15)

Hence, in this half-graphene model with spin-
preserving sublattice-independent hopping to the TI
layer, the effect of the lowest-order self-energy corrections
is an overall energy rescaling by a factor of 1 + Aj.

a. Corrections to TI cone from spin-preserving hopping

For sake of completeness, we here include the self-
energy corrections to the TI Dirac cone with spin-
preserving hopping in this model. Similar to graphene
(as discussed in Sec. IV A), we can split Tg into Tg k
and Tg ks (with no extra spin index in this case). Tak-
ing a @ for which Tg i is nonvanishing, we find that it
takes one of the forms:



b
Tox1 = {g 0} (C16a)

or

00
To. k| = {a b} (C16b)

All other T are symmetry-related, as in the graphene
case. Note unlike graphene, the two coefficients a and b
can be different due to the lack of Cy symmetry.

Like graphene, the C' and D coefficients vanish, but
the A and B coefficients do not. As a consequence of
these coefficients, the energy shift is:

6abvpc|Q)|

AE = —
v46Q?% + 3(a? + b?)

(C17)

4. Full graphene corrections

We now work with our full model of graphene, using
the half-graphene case as a starting point. We work in
the basis described in Appendix A 3d.

We first decompose the indices 4j into sub-indices for
the u and o degrees of freedom. For example, A;; =
Apa,qb, Where the p indices are pp, and the o indices
are oqp. As discussed below Eqs. (A23) and (A24), the
unitary rotation matrix Us only acts nontrivially on the
ab indices, while Uy only acts nontrivially on the pq in-
dices, which allows us to straightforwardly separate the
two symmetries (rather than working with a more com-
plicated Us = UsU; ! matrix).

As we did for the half-graphene case, we begin by con-
sidering the scalar coefficients A, B, C, D, A’, and B’.
We now filter down to the subrepresentations trivial un-
der both C3 and Cs. (3 implies each coefficient must
commute with o, and Cy implies it must commute with
Tz, by similar logic to that used in Appendix C3. Con-
sidering these in the context of the symmetry properties
of the different matrices yields the following contribution
to the self-energy:

[(Arpo + Azpiz)oomo + (Al po + Agpiz)oy T:]w
+ (Bipo + Bapz)ooTo + (Bipo + Bips)ooTs
+ (Crpo + Cop)oo(k - 7) + (Dipio + Dapig)oo(k x 7)

We next consider the vector parts A”, B”, V, and V.
The vector index must pair with a combination of ab and
pq indices which transforms like a vector under both Cy
and Cy. We use (0,,0.) as a vectorlike pair as before
for our ab indices, and either p, or p, in our pqg indices
(to anticommute with p, for C3). Combining this with
the knowledge that V is symmetric and the others are
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antisymmetric in 4, the resulting allowed terms are:

[A (0470 + 0.7y) + AS(00Ty — 0272) | plyw
+ [BY (0070 + 027y) + By (027 — 0272 |ty
+ Vi (kzoy + kyos) + Va (keos — kyou))Top
+ [‘/1(/51035 + EyUZ) + ‘/2(];960',2 - Eyax)]Tz/Jz
Finally, we consider the two-index N matrix, which
again is decomposable into «, and a,. These transform

like a vector under C5 but a scalar under Cs, resulting in
the allowed terms:

N = (Nlﬂo + NQ,ur)(azUz + azaz)
+ (N3po + Napiz) (w0, — @02)

Therefore, the full self-energy of this system, in the
special basis presented in Appendix A 3d, is:

B (k,w) = [(Arpo + Aspiz)oomo + (Al pio + Appiz)oy7.]w
+(Bipio + Bapiz)oomo + (Bipo + Bapiz)ooTs
+(Crpo + Copiz)oo(k - 7) + (Dlﬂo + Dapig)oo(k X 7)

+[AY (0475 + 0.7y) + A”( — 0.7 | plyw

+[ (O'sz + UzTy) ( Usz)],uy

+[Vi (koo + kyo2) + VQ(];? ]_fygr)]TOﬂy

+[Vi(kooy + kyo) + Valkeoo — kyoo)]7epe

+(N1po + Nopig)[(kaTy + kyTo)ow + (koo — ky7y)0]

+(Nspo + Napio)[(kaTy + kyT)o — (kaTe — kyTy)0a]
(C18)

This 24-coefficient equation is the fully general self-
energy for all possible varieties of coupling. Some terms
may vanish to leading order in perturbation theory.

For the special case of spin-preserving sublattice-
independent coupling, which is the most physically in-
tuitive tunneling term, the only nonvanishing term to
first order (both for lattice mismatch and for twist) is

Ag = %, and hence (like the half-graphene case) the

practical effect of the lowest-order corrections is a rescal-
ing of the self-energy.

Appendix D: Extensions

We now discuss straightforward but nontrivial exten-
sions of the self-energy computed in Appendix C 1.

1. (27 symmetry

In a material that lacks 7" symmetry but possesses Cy7T
symmetry, it is more convenient to diagonalize in the ba-
sis of CoT than 7. This is also the case in twisted bi-
layer graphene, where each valley is invariant under Cy7 .
Fortunately, the calculation of the self-energy with CoT



symmetry is methodologically similar to the calculation
with 7 symmetry shown in Sec. C 1, although, in general,
more terms appear.

Specifically, the calculation is identical up to Eq. (C2),
but then instead of averaging over T and T_¢ and using

J

Sij(k,w) :ZTQ,H' w—v(k+Q)- U]_ngg,jz'
Q)

S T QR+ 0@ (k- o) — 2Q - B)Q-0) + QQ - T,

24
or Ve
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T symmetry to relate them, we use the fact that Ty =
$(To+(CoT)To(C2T) ™), at which point the calculation
proceeds similarly.

If we use Autonne-Takagi factorization on Cy7 as dis-
cussed in Sec. A 2, simplifying the operator to o, /C, then
we instead find a self-energy of:

(D1)

(D2)

1 " *
=3 srgi { TeaTha +oe(TaaTh ) oe) Qo+ vQ (Ta.u(Q-0)Thu + 0ulTo(Q - 0)Th ) 0:)
Q,il’

o (Tow (5 (@1-2Q©Q) o) Ty + 00 (Toaw (- (@T-2Q©Q) - 0) Th ) o)}

Then the self-energy takes the same form as Eq. (C5),
except the symmetry decomposition of the matrices in
Eq. (C6) are replaced with:

-Aij :AijUO + ’L'A;:jCTZ + A;IJ e (
Bij :BijUO + iBéjUZ + B;; e (D4b)
Vij :V;'jO'O + Z'V;/jaz + Mij o

In this case (contrary to the terms in Eq. (C6)), un-
primed and double-primed terms are real symmetric ma-
trices in ij, whereas (only) single-primed terms are anti-
symmetric in those indices. (Also note the correspond-
ing interchange of V and V’, since Co7 imposes different
constraints.)

The equations for these coefficients are generally the
same as Egs. (C8)-(C11), except that real and imaginary
parts of the trace are changed.

For a single-cone material, the self-energy simplifies to:

2T (k,w) ~ (Al + Ay - 0)w
+(Bol4+By-0)+k-M-o+(k-V)I (D5)

We have not yet applied rotational symmetry. In a
generic model, we naively expect more terms allowed
by CoT (without 7) than by T (without Co7): the
ij-symmetric (i.e., unprimed) parts of (C6) allow two
scalars, one vector, and a tensor; here we have three vec-
tors instead of one (and none of the three vectors in the
CT care are the same as the vector in the 7T case).

However, when rotation symmetry is present, Eq. (D5)
again simplifies to Eq. (4). In particular, any rotational
symmetry will cause the A1, By, and V terms to vanish
(and a rotation of order greater than 2 will cause the
non-scalar portion of M to vanish), in exactly the same
fashion as the 7-based calculation. Then, the remaining
coefficients (Ao, By, and the remaining parts of M) are

(D3)

(

precisely analogous to the coefficients in (4).
find a similar condition on magic angles.

As an example of where this would be useful, consider
(a spinless model of ) TBLG. While TBLG can in princi-
ple be accounted for by a T-based transformation, it is
much simpler to use this Cy7 -based result because CyT
leaves each valley invariant. The ultimate consequence
of this is the the analogy between AB hopping in TBLG
and spin-flipping hopping in our TI-TT model discussed
in Sec. III.

Thus, we

2. More general Dirac Hamiltonians

We now offer a few comments on extending to a
broader class of Dirac Hamiltonians, including Dirac
cones not at charge neutrality, gapped Dirac cones, and
anisotropic Dirac cones. In all cases, the calculation is
straightforward to adapt, but it is worth highlighting the
extent to which these alternative Hamiltonians may yield
qualitative changes.

For Dirac cones not at charge neutrality, we find that
the coefficients A and B mix, i.e., if Ay and By are the
coefficients at charge neutrality, then away from charge
neutrality A and B are both linear combinations of Ag
and Bo.

For Dirac cones with mass terms, several new contribu-
tions to V and M appear (potentially yielding interesting
new physics). To compute the self-energy, it is most con-
venient to choose a different basis than the one outlined
in Sec. A: one would rather have the Hamiltonian (with
mass term) in the form v(k - o)m9 + mo,7, with time-
reversal symmetry in the form 7 = it 0, K.

This can always be done: performing the sequence of
steps through (A 2) puts the mass term as imo,A;;, for
A a real antisymmetric matrix. This A;; can always be
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remapped to a block-diagonal 7, while preserving the Finally, anisotropies also produce additional contribu-
form of time-reversal symmetry (by a Youla decompo-  tions to M and V, which may lead to different kinds of
sition), at which point we have our Hamiltonian in the behavior. For example, anisotropy may lead to “partial
form v(k - o)19 + mo, 7y, with T = io, 7K. From here, a  magic angles,” wherein one direction of a Dirac cone has
quarter-rotation about 7, will put both matrices in the a vanishing Fermi velocity and the other does not (as
above-specified form. discussed in [45, 46]).
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