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We revisit the holon-doublon binding problem in two-dimensional (2D) photoexcited Mott insu-9

lators. Low-energy photoexcited states in Mott insulators are described as a pair state of a doublon10

and a holon. The most basic question is whether its bound state is formed in the lowest-energy11

state, and negative and positive responses have been discussed in the past. In this study, we begin12

with the 2D Hubbard model, and transform it into the first effective model, which is based on the13

t/U expansion, with U and t being the Hubbard U and the electron hopping energy, respectively, We14

find that quantitative reliability is assured for U & 10t. Furthermore, we transform it into a second15

effective model that selects essential states in the low-energy region. In both the effective models, we16

distinguish two magnetic terms, namely, the spin-exchange interaction and the three-site transfer,17

and parametrize the two terms with the parameters, Jex and J3site. By changing the parameters18

apart from the restriction given by the Hubbard model, any positive Jex value with J3site = 0 yields19

a finite amount of binding, whereas a finite value of J3site suppresses the binding significantly, still20

leaving the Hubbard case of U=10t in the vicinity of the bound-unbound boundary.21

I. INTRODUCTION22

The physics of two-dimensional (2D) Mott insulators23

has attracted particular attention since the discovery of24

the high-Tc superconductivity in the copper oxides [1, 2].25

In an ordinary scenario, doped carriers suppress the an-26

tiferromagnetic (AF) spin order existing in the undoped27

systems, leading to metallic or superconducting states28

beyond a certain critical doping amount. In such cases,29

we have carriers that correspond to empty sites or doubly30

occupied sites when we confine our argument to the so-31

called single-band model, and we usually call them dou-32

blons (Ds) and holons (Hs), respectively. Properties and33

behaviors of such carriers have been discussed intensively,34

particularly from the viewpoint of magnetic interactions35

between the carriers and underlying spins [3–7].36

In this article, we discuss a similar problem in the con-37

text of the photoexcited states. In such states, we nat-38

urally expect photoexcited DH pairs. In one dimension,39

it is well known that they behave as a free DH pair in40

the whole region of the U/t value, where U and t are41

the on-site Coulombic energy and the nearest-neighbor42

(n. n.) hopping energy, respectively, of the 1D Hub-43

bard model [8–13]. We emphasize that the formation of a44

bound state between such carriers needs the inclusion of45

the Coulombic attraction working between them at dif-46

ferent sites, most typically the n. n. sites (so-called V in47

the extended Hubbard model). In contrast, the binding48

or non-binding of a single DH pair is non-trivial in 2D49

systems. In the 2D Hubbard model, the DH pair on the50

n. n. sites raises the total energy by U+3.5Jex, in the low-51

est energy state. Here, Jex is the spin-exchange energy52

and the energy is defined as the site-diagonal energy mea-53

sured from that of the perfectly ordered AF ground state.54

Note that Jex is 4t2/U in the strong U limit. The part55

of 3.5Jex corresponds to the magnetic energy originating56

from the number of mismatches in the spin alignment.57

On the other hand, pairs apart from each other have an58

energy cost of U+4Jex. This energy difference is the sole59

source of the DH binding, while quantum fluctuations are60

still neglected, thus leaving a question of whether this at-61

traction really stabilizes a DH bound state. Numerous62

theoretical studies have been performed to understand63

the optical conductivity of the 2D Hubbard model [14–64

19]. These studies indicate a peak or enhanced structure65

at the lower edge of the optical conductivity, although66

its nature has not been intensively discussed. Recently,67

a time-dependent density-matrix renormalization group68

(tDMRG) method is applied to the same Hamiltonian69

and supports the binding nature of the pair, although a70

bound state itself is not identified [20].71

To illuminate this long-standing problem, we first em-72

ploy a previously proposed effective model (hereafter, ef-73

fective model I) [21–25] and calculate the optical con-74

ductivity in a 32-site system that is not only larger than75

the previous one but also has an advantage for a reason76

later mentioned. For this system size, the aforementioned77

peak structure is clearly reproduced. However, it is puz-78

zling that even in the presence of such a structure, a79

clear signature of the DH binding in a real space cannot80

be confirmed, leaving the possibility that the system size81

is still insufficient. Hence, we propose an effective model82

(effective model II) that extracts certain states that are83

essential to the structure at the lower band edge and84

thoroughly discuss the binding problem in a sufficiently85

large system.86
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II. EFFECTIVE MODEL I AND THE RESULTS87

BASED ON IT88

First, we mention the effective model I, which is de-1

rived from the ordinary 2D Hubbard model using a t/U2

expansion, as presented in Appendix A. It is character-3

ized by three parameters: t, Jex, and J3site, which are il-4

lustrated in Fig. 1. Here, t is the same as that in the orig-5

inal Hubbard model, but now implies the direct transfer6

of a doublon or a holon without changing the energy on7

the scale of U . The remaining two parameters charac-8

terize the magnetic interactions. More explicitly, Jex is9

the parameter for the spin-exchange interaction, whereas10

J3site is for the spin-dependent transfer of a doublon or11

a hole. Note that Jex=J3site≃ 4t2/U in the Hubbard12

model.13

HH HHe

k l

e k l

Jex

t
t

Jex

J3site

J3site

FIG. 1. Illustrations of the interactions included in the effec-
tive model I. The case of a holon is presented as an example.
The two-way arrow, the solid one-way arrow, and the dashed
one-way arrow represent the spin-exchange interactions, the
direct transfer, and the three-site term, respectively. Site e is
an empty site, and the k and l sites are singly occupied sites.

14

15

The effective hamiltonian I thus derived is solved as16

follows: We determine the ground state and low-lying ex-17

cited states by exact diagonalization based on the Lanc-18

zos method [26]. The whole optical conductivity spec-19

trum is obtained by the continued fraction [27] applied20

to the ground state. The low-energy part of the spectrum21

is also determined based on the results from the Lanczos22

method and is used for a check of the reliability of the23

spectrum found by the continued fraction.24

Because the reliability of this effective model has not25

been discussed quantitatively thus far, we confirm it us-26

ing a cluster of 18 sites, as shown in Fig. 2(a), which27

allows for an exact calculation in the Hubbard model. As28

is observed in Fig. 2(b), the two optical conductivities29

are in good agreement for U/t=15 and U/t=20, whereas30

those for U/t=10 show some disagreement. As the actual31

copper oxides correspond roughly to U/t=10 [28], this32

case is the most important in relation to such materials.33

The results in this case show that the lowest energy peak34

is well reproduced, suggesting that the effective model35

can be used in the interpretation of the actual materials.36
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FIG. 2. (a) Cluster of 18 sites and (b) optical conductivities
calculated using the Hubbard model and the effective model
I. The broadening factor is commonly 0.1t.

Next, we apply this model to the cluster of 32 sites. In39

Fig. 3(a), we show the cluster for calculating N=32. In40

(b), we compare the results for the optical conductivity41

from the present effective model I and the tDMRG cal-42

culation based on the Hubbard model [20]. In the upper43

panel, the cluster size in the latter case is 8×4, whereas it44

is 6×6 in the lower panel. Note that in the upper panel,45

the cluster shapes are different between the two calcula-46

tions. Although there is some discrepancy, which might47

arise from the different boundary conditions, the overall48

coincidence is satisfactory.49
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FIG. 3. (a) Cluster used in the present calculation and (b)
comparison of the present result with those from tDMRG cal-
culations. The broadening factor is commonly 0.2t. The
periodic boundary condition is adopted in our calculation,
whereas in the tDMRG calculation, the open boundary con-
dition is adopted. The tDMRG results are reprinted from
Ref. [20].
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To better understand the nature of this lowest peak,51

we lift the restriction for J ’s mentioned above and change52

the parameter values rather freely. In Fig. 4, we provide1

an overview of the calculated spectra for U/t=10((a) and2

(c)), with the charge correlations ((b) and (d)). Here,3

the polarization of light is directed horizontally, and the4

charge correlation is defined to provide a doublon distri-5

bution around the holon at the origin. In (a) and (b), the6

parameters are set to Jex=J3site=J and J is changed as7

listed. Hereafter, the artificial broadening γ for the spec-8

tra is 0.1t unless stated explicitly. Note that the value for9

the Hubbard model with U/t=10 is approximately 0.4t.10

In (c) and (d), on the other hand, we show the results for11

Jex=J with J3site=0. Because the detailed analyses are12

described later, we mention only the basic points here.13

Focusing on the region specified by the ovals in (a) and14

(c), we identify two (four) optically allowed states for the15

former (latter) cases, respectively. Note that, in (a) with16

J/t=0.4, the two peak energies are rather close to each17

other, and in (c) with J/t=0.4, the highest-energy peak18

is absorbed in the part above it. As a trend common to19

both the cases, we notice that the absorptions in these20

regions split off from the higher-energy part more clearly21

when we increase the J value. Regarding the lowest-22

energy optically allowed state, each state appears as a23

sharp peak. At a glance, this seems to indicate a DH24

bound state, although it is not fully compatible with the25

feature in the charge correlations. For instance, in those26

for J/t=0.4 (top panels in (b) and (d)), no meaningful27

feature indicates localization of the doublon at the ex-28

pected sites ((±1, 0)). By contrast, when the J value is29

relatively large, we recognize a tendency for DH binding,30

for example, in (d) with J/t=2.0, although the degree of31

binding is somewhat imperfect when J3site>0, as shown32

in (b) with J/t=2.0. We will discuss these features later.33

3435

Next, we investigate the features found for J3site=036

more closely, focusing on the level structure in the low-37

energy region of the spectrum, as shown in Fig. 4(c). To38

simplify this situation, we draw the spectrum in this re-39

gion for a larger J value, as shown in Fig. 5(a). The four40

states mentioned above, #1∼#4, appear more clearly41

and are separated from the higher-energy part. Fig-42

ure 5(b) shows the energy differences between the cor-43

responding peaks specified by the arrows in (a), as a44

function of Jex/t. As already mentioned, the interval45

between a peak in this part and the lowest-energy peak46

in the remaining higher absorption part depicted by the47

triangles or squares increases monotonically as the value48

of Jex is increased. By contrast, the width of the lowest49

part remains almost constant as specified by the circles,50

the reason for which is explained later. Regarding the51

nature of the states, we show the charge density patterns52

in (c). For example, in the first state (#1), most of the53

weight is concentrated at the position (±1, 0) (site A de-54

fined in (d)), which is natural for a bound DH pair. The55

bright spot at (±3, ±4) is equivalent to this by transla-56
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FIG. 4. Optical conductivities and charge patterns for U=10t.
In the latter, the hole resides at the origin and the relative
density distribution of the doublon is plotted with interpola-
tion. In (a) and (b), Jex=J3site=J , whereas in (c) and (d),
Jex=J , but J3site=0. In (b) and (d), the summed density
inside the dashed area (cluster size) is normalized to unity.

tional symmetry. In addition, we find that the sites with57

significant weights are only B, C, and D in (d), except58

for the equivalent sites owing to the present symmetry.59

We refer to these states as “essential states” from here60

on.616263

As the mechanism providing such essential states, we64

propose the idea illustrated in Fig. 6. First, because we65

are concerned with the lowest optically excited states, we66

begin with a state having the least modification of the67

AF order in the ground state. This is “A” in the top-left68

panels both in (a) and (b). Here, “A” has two meanings,69

namely, the site where the hole resides and the state in70

which the spin arrangement is almost the same as that in71

the ground state. As is already mentioned in the intro-72

duction, the bare excitation energy is U+3.5Jex, counting73
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tivity for Jex=3.0t, (b) Jex-dependence of the energy inter-
vals appearing in (a), (c) charge-distribution maps, and (d) a
schematic showing A∼D states.

seven mismatches (orange bonds). From here on, we only74

refer to its magnetic part, for example, 3.5Jex, apart from75

U .1

First, we explain Process 1, which is illustrated in Fig.2

6(a). If we consider the hole motion, the hole moves to3

site E via the transfer of the neighboring up spin. This4

state has an energy of 5Jex. This up spin cannot flip by5

itself, because of the conservation of Sz, and flipping of6

this spin requires flipping of the surrounding spins, which7

requires further energy. When the hole moves further in8

the same direction, it reaches site F or state F, which9

corresponds to the energy of 6Jex. At this site, two spins10

intervene along the path of the hole, and their flipping is11

possible. After such flipping, we obtain the B state (the12

bare energy is 4Jex). Note that states F and B share the13

same hole site but have different spin configurations. We14

mostly mention the B state and call the corresponding15

site “B site”. Lastly, there are two similar sites, which16

are the “C” and “D” mentioned above.17

In contrast to Process 1, in which the hole movements18

occur before the spin flipping, Process 2 is characterized19

by the rule that the spin flip occurs before the carrier20

movement, as shown in (b). In this case, the intermediate21

states are denoted as E’ and F’. When we exchange the22

initial and final states, the roles of the two processes are23

also exchanged, and both processes must be included for24

consistency.25

Here, we actually evaluate how the AF order in the26

ground state is maintained in the lowest optically allowed27

states. For this purpose, we calculated the spin correla-28

tion function defined as S(l) ≡ (1/N)〈
∑

i Si+lSi〉 for the29

excited states #1∼#4, which are shown in Fig. 7(a) to-30

gether with that in the ground state [Fig. 7(b)]. The re-31
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FIG. 6. Schematics showing the two processes corresponding
to A→B transitions.

sults demonstrate that the AF order is really maintained32

in all the excited states #1∼#4. These features are also33

consistent with the preceding interpretation based on the34

dynamical mean-field theory [17].35
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shown in (b).

36

37

From here on, we focus on the level structure of the38

excited states #1∼#4. In Fig. 8(a), we plot the relative39

energies in this region by circles, changing the Jex val-40

ues. Note that each energy position of the second state41
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(#2), e(2), is used as a reference. We use this selec-42

tion because it is conjectured that the continuum part43

of the states starts from this position, and this conjec-1

ture is confirmed to be true later. As aforementioned,2

the spanned energy width, i. e., e(4) − e(1), does not3

depend significantly on Jex, while the inner level dis-4

tribution drastically changes. In particular, the lowest5

state departs from the other states, which suggests the6

formation of a single bound state in large clusters. We7

believe that this expectation is consistent with the afore-8

mentioned bare energies, namely, 3.5Jex for a single state9

(state A) and 4Jex for other BCD-like states. From here10

on, we name the latter as “low energy bulk states.” In11

this scenario, we also expect that the upper three states12

will make a continuum in an infinite system. When we13

return to the present cluster, the energy spanned by the14

three higher states shrinks significantly with increasing15

Jex, which is consistent with the almost constant whole16

width because the lowest state splits off almost linearly17

with Jex. This shrinkage of the higher part is directly18

related to the matrix elements of the processes in Fig. 6,19

dominated by the factor of t2/Jex, which is explained in20

detail later.21
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III. EFFECTIVE MODEL II AND THE24

RESULTS BASED ON IT25

To substantiate this scenario, we propose an effective26

model (effective model II), which includes only the A and27

low energy bulk states, as shown in Fig. 8(b). Here, we28

start the procedure by assuming that the Jex value is29

sufficiently large compared to t and apply a third-order30

perturbational analysis. Because we explain the details31

in Appendix B, we add only one point here. The effec-32

tive transfer is proportional to (t2Jex)/J
2=t2/Jex, partic-33

ularly for a large Jex, in the third-order perturbational34

sense as illustrated in Figs. 6(a) and (b). This explains35

the shrinking of the bandwidth of the possible continuum36

part for a large Jex, as previously mentioned. The circles37

in Fig. 8(a) show the resultant curves. Although there re-38

mains a slight difference, we judge that the reproduction39

is fairly good. We then calculate the density of states per40

site (DOS) for Jex=3.0t and N=20,000, with the energy41

levels for N=32, as shown in Fig. 8(c). The obtained42

DOS shows a sharp structure at the lower edge of the con-43

tinuum. This is related to the enhanced effective trans-44

fers along the diagonal direction, which provides such a45

one-dimensional feature. In more detail, we expect two46

paths for the H or D movement in the diagonal direction,47

which are the path going around the upper side and that48

around the lower side (see Fig. 6(c)). They can overlap49

with each other coherently, leading to the enhancement.50

With respect to the overall bandwidth, it is much larger51

than the spanned energy in the case of N=32. A close52

analysis of the size dependency indicates that there is53

a jump in the bandwidth when the size changes from54

N=32 to the next size in this scheme, N=72. We em-55

phasize that the bandwidth in (c) has almost converged,56

because of the large size used.57

Regarding our central concern, the bound state, we58

recognize its existence for any positive value of Jex. In59

Fig. 9, we plot the energy position measured from60

the lower edge of the continuum. Note that the values61

(squares) are extrapolated to the infinite size. Although62

there is a slight drop in the absolute value from that63

for N=32, particularly for smaller Jex values, we observe64

that the binding energy is always finite, except for a very65

small Jex region. Charge patterns of the bound states66

are also worth close observation. In the same figure, we67

show them for four typical Jex values. In these maps, we68

only show the non-equivalent quadrant, in which the D69

density around the H at the origin is plotted. Note that70

the density is normalized in this quadrant. The largest71

Jex case, namely, that for Jex=3.2t, shows the most local-72

ized pattern, whereas those for the smaller Jex cases show73

more delocalized patterns. A special remark is made for74

its extended nature along the diagonal line, which is at-75

tributable to the aforementioned enhanced hopping ma-76

trix elements along the diagonal direction.7778

Finally, we discuss the effects of the J3site on DH-79

binding. Part of its effect is the effective hopping to80

next n. n. sites without disturbing the AF order in the81

background. Therefore, we expect an effect toward less82

binding provided by this term and confirm it in the fol-83

lowing. First, we check whether the term of J3site is ap-84

propriately incorporated into the effective model II, and85

show the level structure for N=32, with the selection of86

J3site=Jex=J . In Fig. 10(a), we show the result using87



6

R
e

la
ti
v
e

 E
n

e
rg

ie
s
 /
t

N=∞

N=32

0   2   4   6   8   10

0   2   4   6   8   10

0   2   4   6   8   10 0   2   4   6   8   10

10

  8

  6

  4

  2

  0

10

  8

  6

  4

  2

  0

10

  8

  6

  4

  2

  0

10

  8

  6

  4

  2

  0

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 0  1  2  3
J   /t

J   /t = 0.4 J   /t = 1.2

J   /t = 3.2

J   /t = 1.6

0.1

0

0.08

0.06

0.04

0.02

0.1

0

0.08

0.06

0.04

0.02

0.1

0

0.08

0.06

0.04

0.02

0.1

0

0.08

0.06

0.04

0.02

ex

exex

ex

ex

J      /t=03site

lx

ly

ly

ly

lx lx

FIG. 9. Relative energies of the bound state measured from
the lower edge of the continuum for various Jex values and
corresponding charge patterns. Note that J3site=0.

triangles, which are compared with those obtained with-88

out J3site (circles). As an overall feature, the original four89

states split into three parts: one state with the highest1

energy, one state staying around the original energies,2

and two almost degenerate states at low energies. Com-3

pared with the spectra in Fig. 4(a), the lowest two states4

are attributable to those specified by thick arrows in Fig.5

4(a) and the middle state to that specified by thin arrows.6

An example is shown in Fig. 10(b), using the case of7

J=3.0t. Here, the obtained energy levels (vertical lines),8

with the energy shift of the latter by (-2.3)t, is compared9

with the spectral peaks. This energy shift is interpreted10

to be due to the imperfect inclusion of fluctuation in the11

effective model II. Assuming this energy shift, we notice12

a satisfying agreement except for the highest-energy re-13

gion, in which the electronic states are difficult to treat14

by the effective model II. Furthermore, aiming at more15

accuracy, we compare the two intervals, namely, that be-16

tween the lowest state and the third state (middle state)17

in the effective model II and that in the effective model18

I, i. e., the interval between the energies specified by the19

two arrows in Fig. 4(a). We consequently find that there20

is a slight difference, particularly in the small J region,21

as shown in Fig. 12 in Appendix C. In particular, in the22

effective model II, the effect of J3site is somewhat exag-23

gerated in the smaller J region. Because we prepared24

the effective model II without the J3site term, we now25

judge that another adjustment is required in the pres-26

ence of J3site and modify its value so as to reproduce the27

intervals found for the effective model I.28

The J3site values thus determined for each Jex=J are29

plotted by squares in the Jex-J3site diagram (Fig. 10(c)).30

The circles correspond to the boundary between a bound31

case and an unbound case, which is accurately deter-32

mined by the extrapolation to N=∞. Focusing on the33

squares, we observe that the larger J cases are contained34

in the unbound region, whereas smaller J cases fall into35

the bound cases, although direct analyses of energy levels36

indicate that all the binding energies are less than 0.1t. In37

Figs. 10(d) and (e), we show the details of such a bound38

state, particularly in the case of Jex=0.4t, which corre-39

sponds to the case of the Hubbard model with U=10t.40

Local density of states (LDOS) in (d), which is defined as41

the DOS projected onto the A site and approximates the42

optical conductivity, has a sharper structure at the lowest43

energy than the DOS, originating from its bound nature.44

The charge pattern in (e) also indicates the bound na-45

ture, which is basically the same as that appearing in46

the corresponding density map in Fig. 9, although the47

former is more extended.4849

In Fig. 11, we show the charge correlations for four50

cases along the line of Jex=0.4t, to understand the nature51

of the states more deeply. The top-left map (J3site=0) is52

essentially the same as that appearing as the bottom-left53

map in Fig. 9, and the top right (J3site=0.07t) is the54

same as that shown in Fig. 10(e). The bottom-left map55

(J3site=0.40t) corresponds to the result before the ad-56

justment of J3site, which also indicates a binding nature,57

although it is much more widespread than the previous58

ones. Finally, the bottom-right map (J3site=0.60t) is for59

the case which is inside the unbound region but still close60

to the phase boundary. As expected, the pattern is two-61

dimensionally spread.6263

IV. CONCLUSION AND FUTURE64

PERSPECTIVE65

We examined the photoexcited states of the 2D Mott66

insulators, focusing on the case of the Hubbard model67

with U=10t. The optical conductivity obtained using68

the effective model I with N=32 exhibited a sharp peak69

structure at the lower edge. To clarify the nature of this70

structure, we proposed the effective model II and found71

that in the absence of J3site, a single DH pair forms a72

bound state irrespective of the Jex value. In contrast,73

when we introduced J3site, there was a tendency for much74

less binding. In particular, the pair is bound, only for75

J3site . Jex. In the present scheme based on the effec-76

tive model II, the Hubbard case with U=10t falls into a77

bound case, maintaining the sharp peak at the lower edge78

as observed in the calculated spectrum by the effective79

model I, whereas the binding energy is very small. In80

this respect, however, we think that the accurate judg-81

ment for the binding is still difficult because of the limited82

precision of the present effective models. What we can83

confidently state is that the case is close to the bound-84

unbound boundary.85

As discussed, the J3site term greatly enhances the effec-86

tive itineracy, which yields a widespread whole band and87

a significant suppression in the DH binding energy. Such88
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effects manifest itself as a drastic change in the spectra,89

as demonstrated by the comparison between Figs. 4(a)90

and (c). Because the effect of J3site cannot be neglected1

when we discuss the photoexcited states of the Hubbard2

model, we think that such a strong suppression of the3

DH binding is characteristic of this system.4

We also address the relationship with the observations5

in actual materials. The optical conductivity spectra ob-6

served in various copper oxides commonly show enhance-7

ment at the lower edge [30–36]. We assign the sharp peak8

originating from the DH binding to the observed struc-9

tures. In particular, the theoretically found nature of the10

weakly bound pair is consistent with the spectral feature11

of the observation, namely, the enhancement that is not12

isolated from the continuum part above it. Next, since13
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FIG. 11. Charge correlations for the cases corresponding to
the points specified on the left side. Jex is fixed at 0.4t. The
case of J3site=0.07t (square) corresponds to the case of the
Hubbard model, with U=10t.

the situation of the Hubbard model with U=10t is subtle14

as mentioned above, there still remains the possibility of15

no DH binding. Even in this case, it is expected that a16

sharp structure will remain even if we lose the DH binding17

because of the property of the DOS. Based on such in-18

terpretations, we basically think that the present results19

are consistent with the observed optical conductivities.20

We also state two effects not considered in our anal-21

yses. The corresponding part of the spectrum is much22

broader in the observation. We suppose that possible23

fluctuations originating from the remaining effects, such24

as electron-phonon interactions, might broaden the peak,25

leading to a width (FWHM) around 0.2∼0.3 eV [36]. An-26

other point is the possibility that Coulombic interaction27

working between n. n. sites (the so-called V term in the28

extended Hubbard model) enhances this peak structure.29

We suppose that this effect is subsidiary because a large30

parameter value for V , 5∼6 t at least, is required to pro-31

duce a bound state [37]. Therefore, we believe that the32

magnetic origin of the sharp structure is essential, and33

that this finding will shed a new light on the low-energy34

properties of photodoped carriers in 2D Mott insulators.35
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Appendix A: Derivation of the effective model I48

We briefly describe the derivation of the effective model49

I, which is based on the established procedure of a t/U -1

expansion. This procedure is a unitary transformation2

that aims to eliminate the matrix elements connecting3

states for different DH pair numbers [23–25]. The original4

procedure was applied to the ground state in the Hub-5

bard model. Here, we apply it to photoexcited states,6

particularly with a single DH pair to create an effective7

model. The same effective model was derived using a8

slightly different formulation [21, 22]. However, the pro-9

cedure of the unitary transformation is more systematic,10

in the sense that the current operator is also transformed11

at the same time, and an explicit description is worth12

mentioning.13

First, the unitary transformation is formally written14

for the effective model I, Heff , as15

H(eff) ≡ eiSHe−iS , (A1)

where H is the original Hubbard model and S ≡ S[1] +16

S[2]+ ... is the generator of the transformation, with S[k]
17

being of the kth-order of t/U . As aforementioned, we se-18

lect S[k]’s to eliminate the matrix elements of H between19

the two states belonging to different subspaces. Note20

that we define subspaces such that each has a fixed DH21

pair number. After some derivation, we find22

iS[1] = U−1(T1 − T−1) (A2)

iS[2] = U−2[T1 + T−1, T0] , (A3)

where23

T1 ≡
∑

m≥0

Pm+1TPm , (A4)

T−1 ≡
∑

m≥1

Pm−1TPm , (A5)

T0 ≡
∑

m≥0

PmTPm , (A6)

with T and Pm being the kinetic part of H and the pro-24

jection operator into a subspace of m DH pairs. Using25

this selection, the resultant effective hamiltonian can be26

written as27

H(eff) = Vc + T0 + U−1[T1, T−1] +O(U−2) , (A7)

where Vc is the site-diagonal term of H , that is, the U -28

term. Using the same transformation, we obtain an ef-29

fective expression for the current operator as30

J (eff) = J + U−1[T1 − T−1, J ] +O(U−2) . (A8)

Furthermore, we decompose J as J=J1+J−1+J0, where31

J1 ≡
∑

m≥0

Pm+1JPm , (A9)

J−1 ≡
∑

m≥1

Pm−1JPm , (A10)

J0 ≡
∑

m≥0

PmJPm , (A11)

and we find a simpler form as32

J
(eff)
1 = J1 + U−1[T1, J0] +O(U−2) . (A12)

Expanding the above H(eff), we define its four compo-33

nents as34

H(eff) = H1 +H2 +H3 +H4 , (A13)
35

H1 ≡ Vc + T0 , (A14)

H2 +H3 ≡ −U−1T−1T1 , (A15)

H4 ≡ U−1T1T−1 . (A16)

Note that, at this stage,H2 andH3 are not yet separated.36

According to Ref. [21], they are separated into a term37

in which two nearest-neighboring spin sites are involved,38

and a term in which three consecutive sites, with a D or39

H site located at the end, are involved (refer to Fig. 1).40

The former, which we denote as H2, is the spin-exchange41

term expressed as H2 = Jex
∑

ll′ SlSl′ , where Sl is the42

usual spin operator at site l. Note that l is a 2D site43

index. In contrast, the latter term (H3) corresponds to44

the transfer of a D or an H by two sites, known as the45

three-site term. The explicit form is46

H3 = −
1

4
J3site{

k,l∈S̄,e∈Ē
∑

<e,k,l>,σ,σ′

C†
eσCkσC

†
kσ′Clσ′

+

k,l∈S̄,d∈D̄
∑

<d,l,k>,σ,σ′

C†
lσCdσC

†
kσ′Clσ′} . (A17)

Here, < i, j, k > are three different sites, where both the47

site pairs < i, j > and < k, l > are nearest neighbors, and48

S̄, Ē, and D̄ denote the sets of sites, consisting of singly49

occupied sites, empty sites, and doubly occupied sites, re-50

spectively. Note that both Jex and J3site are 4T
2/U when51

we follow the Hubbard model perfectly, although we lift52

this restriction and change it freely, as mentioned in the53

main text. In contrast, the last term, H4, is associated54

with the processes in which the states with no DH pair55

are intermediate states. We emphasize that this term is56

irrelevant in the present calculation of the photoexcited57

states. Actually, the processes are forbidden, because the58

photoexcited states have odd parity with respect to the59

charge conjugation (CC), whereas all the states with no60

DH pair have even CC parity.61

Appendix B: Derivation of the effective model II62

In this section, we derive the effective model II, partic-63

ularly for the case of Jex = J and J3site=0. The effect of64

J3site is included later straightforwardly. We follow the1

procedure used in the derivation of the effective model2

I, although the basic meanings of the states are largely3

different. First, we define the following Hamiltonian;4

h ≡ T̂ + V̂ , (B1)
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where5

T̂ ≡
∑

i∈SABCD,j∈SE

{t
(1)
ji |j >< i|+ h.c.}

+
∑

i∈SABCD,j∈SF

{t
(2)
ji |j >< i|+ h.c.}

+
∑

i∈SE,j∈SF

{t
(3)
ji |j >< i|+ h.c.} , (B2)

and6

V̂ ≡
∑

i

es(i)|i >< i| . (B3)

Here, |i > is limited to (A-F)-like states, and SABCD7

and Sµ (µ=E, F) are the subspaces to which (A-D)-8

like states and µ-like states, respectively, belong. es(i)9

are their bare state energies, es(A)=3.5J , es(B∼D)=4J ,10

es(µ)=5J or 5.5J for µ=E, and es(µ)= 6J or 6.5J for11

µ=F. The two choices of the es(µ) for µ=E, F are sum-12

marized as follows. First, we emphasize that each E- or13

F-like state is associated with a certain (A-D)-like state.14

This fact is almost trivial because the F-like state shares a15

holon site with one of the latter states. Regarding the E-16

like state, we focus on the four surrounding spins around17

the holon and observe that one of the spins is different18

from that of the others. For example, for the E-like state19

in Fig. 6(a), only one up spin exists on the left side. We20

then define the E-like state as being associated with the21

(A-D)-like state that has the holon at this position. Af-22

ter simple arithmetic, we can easily find that es(E)=5J23

(5.5J) for the E-like states associated with the A state24

(low energy bulk states). Similarly, we also find that25

es(F)=6J (6.5J) for the F-like states associated with the26

A state (low energy bulk states).27

From this model, we derive the effective model II by28

eliminating the E- and F-like states. To do so, we ap-29

ply a third-order perturbational analysis. Namely, we30

divide the entire Hilbert space into two subspaces: the31

subspace of the (A-D)-like states and those of the E-32

and F-like states, and use a unitary transformation that33

dismisses the interactions between the former and latter34

subspaces, as is done in deriving the effective model I.35

The difficulty is that the diagonal energies, es(i), are not36

homogeneous within each subspace. To avoid this, we37

redefine the Hamiltonian as follows.38

h = V0 + V1 + T̃0 + T̃1 + T̃−1 . (B4)

The first two terms confine the states within each sub-39

space, as40

V0 =
∑

i∈SE∪SF

(2J)|i >< i| (B5)

V1 = (−0.5J)|A >< A|

+
∑

i∈SE∪SF

(es(i)− 6J)|i >< i| (B6)

T̃0 =
∑

i∈SE,j∈SF

{t
(3)
ji |j >< i|+ h.c.} . (B7)

Note that we set a reference energy for each subspace,41

which is 4J and 6J for the ABCD subspace and the EF42

subspace, respectively, and that the difference between43

the two reference energies, that is, 2J , appears in Eq.44

B5. On the other hand, the last two terms provide the45

transitions between the two subspaces;46

T̃1 ≡
∑

i∈SABCD,j∈SE,

t
(1)
ij |j >< i|

+
∑

i∈SABCD,j∈SF,

t
(2)
ji |j >< i| , (B8)

and47

T̃−1 ≡
∑

i∈SABCD,j∈SE,

t
(1)
ij |i >< j|

+
∑

i∈SABCD,j∈SF,

t
(2)
ji |i >< j| . (B9)

We emphasize that the “transfer” energies, t
(1)
ij and t

(3)
ij48

are proportional to t, while t
(2)
ij to J . We omit actual49

expressions of them, because they are complicated due50

to the introduced spatial symmetries and the definitions51

of the basis set.52

We apply a unitary transformation to this model. The53

transformation is defined as an expansion, as was done54

in constructing the effective model I. In this case, t/(2J)55

is the expansion parameter and we use the property that56

[V0, Tm] = m(2J)Tm. Consequently, the V0 term plays57

the role of the Hubbard U term, and the transformation58

is expressed as follows;59

heff ≡ eishe−is , (B10)

where s ≡ s[1] + s[2] + ... with each s[n] being the nth-60

order of t/(2J), and the following first three terms are61

sufficient for the present purpose;62

is[1] = (2J)−1(T̃1 − T̃−1) (B11)

is[2] = (2J)−2[T̃1 + T̃−1, T̃0] (B12)

is[3] = (2J)−3

{

[[T̃1 − T̃−1, T̃0], T̃0]

+
1

4
[[T̃1, T̃0], T̃1]−

1

4
[[T̃−1, T̃0], T̃−1]

+
2

3
[T̃1 + T̃−1, [T̃1, T̃−1]]

}

. (B13)

The resultant effective Hamiltonian of the third order,63

h
(3)
eff , which is defined as h

(3)
eff≡exp(is(3))h exp(−is(3)),64
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using the definition, s(k) ≡
∑k

i=1 s
[k], is expressed as65

h
(3)
eff = T̃0 + V0 + V1 +

1

2J
[T̃1, T̃−1]

+

(

1

2J

)2{

T̃1(T̃0 + V1)T̃−1 + T̃−1(T̃0 + V1)T̃1

−
1

2
T̃1T̃−1(T̃0 + V1)−

1

2
T̃−1T̃1(T̃0 + V1)

−
1

2
(T̃0 + V1)T̃1T̃−1 −

1

2
(T̃0 + V1)T̃−1T̃1

}

+O((2J)−3) . (B14)

As expected, the Hamiltonian is closed within each1

subspace. In particular, we have a special interest in2

the ABCD subspace. In this case, the effective trans-3

fers between the different constituent states are de-4

rived from one of the third-order terms, that is, that of5

(1/2J)2T−1T0T1 in Eq. B14. Regarding the other terms,6

the first two terms, namely, T̃0 and V0, are irrelevant7

in the ABCD subspace, and the third term, V1, gives8

the energy lowering of 0.5J for the A state in the same9

subspace. The fourth term, that with the prefactor of10

1/(2J), corresponds to the modification of the diagonal11

energy of each state. Returning to the third-order terms12

(those with the prefactor of 1/(2J)2), we have the terms13

including T̃1T̃−1, with subspace-diagonal terms as addi-14

tional factors. These terms do not contribute at all. Ac-15

tually, the operation of T̃−1 does not change the present16

optically active states down to the ground states with17

no HD pair, because the latter states have the different18

CC symmetry. In contrast, the terms including T̃−1T̃119

provide finite contributions, which are corrections to the20

state-diagonal energies.21

Our basic strategy for calculating large systems while22

keeping quantitative reliance is to reproduce the behav-23

iors in Fig. 8(a) (green circles) with a model as simple24

as possible. For this purpose, first, we neglect most of25

the state-diagonal corrections. Instead, we allow a cor-26

rection to the difference between the diagonal energy of27

A state and the other states (“BCD”-like states). Fur-28

thermore, we modify the effective transfers by scaling all29

of them with a single parameter, which adjustment is es-30

sential when applying this model to a small Jex. By this31

scaling, we can also include the effect of spin fluctuation32

inherent in the AF background, which reduces the abso-33

lute values of the effective transfer energies. As a whole,34

we have the two adjustment parameters for diagonal en-35

ergies and transfer energies. Finally, we comment on the36

selection of V0. In the present formulation, we set the37

“representative” energy difference of the two subspaces38

at 2J , which is not a unique selection. If we select an-39

other value, we obtain a different expansion although the40

complete solution obtained after summing up the infinite41

series should be identical. This implies that at the level of42

h
(3)
eff , the results depend on this selection, and we, there-43

fore, select the value to reduce the higher-order terms44

as much as possible, that is, the selection of the repre-45

sentative energy difference as the average of the energy46

differences.47

Appendix C: Detailed results from the effective48

model II in the presence of J3site49

In Fig. 12, we show the Jex-dependence of the con-50

cerned energy interval for the three cases. The first case51

corresponds to the result obtained by the effective model52

I, which is shown by the triangles. The second one cor-53

responds to the “raw” result obtained by the effective54

model II with Jex=J3site=J (circles). There is a discrep-55

ancy between these values, particularly in the weak Jex56

region. Consequently, we adjust the J3site value for each57

Jex, to reproduce the data from the effective model I, and58

obtain the values represented by the squares.59
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FIG. 12. Jex-dependence of the relative energies. Energy
intervals of the first and third peaks obtained by the effective
model II with J3site >0 are plotted as circles and squares.
Here, the circles show the data without any adjustment for
J3site, that is, for J3site=Jex, while the squares are obtained
with adjustment. The results from the effective model I are
specified by triangles.
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