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Local moment formation is ubiquitous in disordered semiconductors such as Si:P, where it is
observed both in the metallic and the insulating regimes. Here, we focus on local moment behavior
in disordered insulators, which arises from short-ranged, repulsive electron-electron interactions.
Using density matrix renormalization group and strong-disorder renormalization group methods, we
study paradigmatic models of interacting insulators: one dimensional Hubbard chains with quenched
randomness. In chains with either random fermion hoppings or random chemical potentials, both
at and away from half-filling, we find exponential decay of disorder-averaged charge and fermion
2-point correlations but power-law decay of disorder-averaged spin correlations that are indicative
of the random singlet phase. The numerical results can be understood qualitatively by appealing to
the large-interaction limit of the Hubbard chain, in which a remarkably simple picture emerges.

I. INTRODUCTION

A fundamental challenge in condensed matter physics
has been to understand the implications of local moment
formation in disordered electronic systems. Local mo-
ments have long been observed in disordered semicon-
ductors, such as Si:P and Si:P,B, where they crucially
affect the thermodynamic1,2 and dynamical3 properties
in both the metallic and the insulating regimes4–6. If
the properties of the phases themselves are altered by
local moments, it follows that at least in principle, lo-
cal moments can influence the universal behavior near
metal-insulator quantum phase transitions7–9.

Much work has been done in understanding mag-
netic excitations in the metallic regime of disordered
systems5,10. In two spatial dimensions, for instance,
there is a tendency towards a magnetic instability even
in the weak disorder limit, far from a putative metal-
insulator transition11–16. By contrast, since the early
seminal work of Bhatt, Lee and Co-workers17,18, consid-
erably less attention has been devoted to local moment
behavior in the insulating regime.

Assuming the existence of local moments in the in-
sulator, the theory of Bhatt and Lee17 establishes the
tendency towards random singlet formation, due to an
exponentially broad distribution of antiferromagnetic ex-
change interactions among the local moments. Later
work by Bhatt and Fisher19 pushed this picture further,
into the metallic regime, arguing that local moments es-
sentially decouple from the metallic electrons, due to van-
ishingly small Kondo temperatures. Nevertheless, it re-
mains unclear how such behavior emerges from electrons
in a random landscape, in the presence of short-ranged
interactions.

In this paper, we report some progress in this direc-
tion and analyze models of electrons in the presence of
both short-range interactions and strong disorder. Given
our focus on the insulating state, we study one dimen-
sional models, in which the tendencies towards insulating

ground states are strongest. We are especially interested
in the behavior away from half-filling, where at least mi-
croscopically, a description in terms of local moments
alone is not justified a priori.

Using a combination of density matrix renormalization
group simulations and real space renormalization group
techniques, we demonstrate that the Hubbard chain ex-
hibits random singlet behavior both at and away from
half-filling. Our conclusion holds for both random po-
tentials (site disorder) and random hoppings (bond disor-
der). To make intuitive sense of our results, we appeal to
the strong-interaction limit of the Hubbard model and ac-
count for our results in terms of spin-charge separation20:
nearly-free holes exhibit Anderson localization, while
spins experience random Heisenberg exchange, resulting
in random singlet formation along the lines of Bhatt and
Lee.

II. MODEL

The simplest effective Hamiltonian governing electrons
with disorder and short-range interactions is the Hubbard
model with randomness:

H = −
∑
i,σ

ti(c
†
i,σci+1,σ + h.c.) +

∑
i

µini + U
∑
i

ni↑ni↓,

(1)

where c†iσ(ciσ) creates(destroys) an electron with spin
σ =↑, ↓, on lattice site i, the density operator on site

i is ni =
∑
σ c
†
iσciσ. On-site interactions are taken to be

repulsive: U > 0, ti are nearest-neighbor hopping ampli-
tudes, and µi are on-site chemical potentials.

We study two types of quenched randomness: site dis-
order, where the local chemical potentials µi are random,
and bond disorder, where ti are random. We choose µi
from a uniform distribution of mean µ = 0 and width
Wµ (i.e., µi is distributed uniformly on [−Wµ/2,Wµ/2]).
Similarly, ti are chosen from a uniform distribution of
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FIG. 1: Density-density, fermion 2-point and pair-field correlation functions on L = 144 Hubbard chains at electron filling
n = 11/12 with random potential, random hopping as well as for the disorder-free systems. Additionally, results for the non-
interacting (U = 0) but site-disordered system are shown. All data is shown for r ≤ L/2. The random-potential system has
parameters U = 6t, Wµ/2 = 3t, Wt = 0; the random-hopping system has parameters U = 12t, Wµ = 0, Wt/2 = 0.65t; the
clean system has parameters U = 6t, Wµ = Wt = 0; and the Anderson system has U = 0, Wµ/2 = 3t, Wt = 0. (a) Disorder-

averaged density-density correlations Cn(r) (Eq. 2) decay exponentially with distance r for the disordered systems, as opposed
to decaying with a power law as in the clean system. (b) Disorder-averaged electron 2-point functions decay exponentially
in all disordered systems. (c) Disorder-averaged superconducting pair-field correlations decay exponentially in the disordered
systems, in direct contrast to the power-law decay in the non-disordered Luttinger liquid. In the disordered systems, error bars
(omitted) are on the order of statistical fluctuations and are mostly not visible.

mean t and width Wt (i.e., ti is distributed uniformly on
[t−Wt/2, t+Wt/2]). We choose t = 1, setting this to be
the unit of energy.

In the absence of randomness, the model is integrable
and has of course been thoroughly studied21; the half-
filled system is well-described by a S = 1/2 Heisen-
berg antiferromagnet, and the doped chain exhibits Lut-
tinger liquid behavior over a range of electron concen-
trations and interaction strengths. With perturbatively
weak disorder, it is known that the Luttinger liquid tends
towards localization and that repulsive interactions en-
hance this tendency22. At half-filling, bond disorder pre-
serves particle-hole symmetry, and a spin chain with ran-
dom antiferromagnetic exchange accurately captures the
low energy behavior of the system. It has been well-
established that the latter results in an infinite random-
ness fixed point with random singlet behavior23,24. We
wish to explore the fate of the Hubbard chain with site
and bond randomness, both at and away from half-filling
where such a description in terms of spin alone is not
necessarily valid.

III. DMRG RESULTS

We analyze Hubbard chains described by Eq. 1 at
two fixed electron filling fractions, n = 1 (half-filling)
and n = 11/12, using the density matrix renormalization
group (DMRG)25,26 procedure. We perform all of the
simulations in the strong-interaction regime, U = 12t for
the random-hopping chains and U = 6t for the random-
potential chains. The DMRG algorithm works well for

both clean and weakly disordered systems. For a more
reliable study, we first obtain the ground state of a system
with weak disorder, then quasi-adiabatically increase the
disorder strength, adaptively increasing sweep number
and the number of basis states kept, until the resulting
well-converged ground state has been obtained. A sim-
ilar procedure has been used before in DMRG to treat
disordered systems27. In the present study, we perform
up to 50 sweeps and keep up to m = 1024 states with a
typical truncation error ε ∼ 10−9. For all parameters, we
sample at least 300 independent disorder realizations.

To characterize the ground state properties, we cal-
culate various equal-time correlation functions over the
interior half of the chain (from site L/4 to 3L/4), to min-
imize the boundary effects. We focus on measures of the
charge and spin behaviors, probed through the charge
density-density fluctuation correlation function

Cn(r) ≡ 〈(n(x)− 〈n(x)〉)(n(x+ r)− 〈n(x+ r)〉)〉 (2)

and the spin-spin correlation function

Cσ(r) ≡ 〈S(x)S(x+ r)〉 (3)

respectively, where r is the displacement between two
sites along the chain and x = L/4 is a fixed reference
point. We also measure the fermion 2-point function

G(r) ≡
〈
c†↑(x)c↑(x+ r)

〉
, (4)

where the choice of the up-spin does not matter due to
the spin SU(2) symmetry.
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Lastly, the superconducting pair-field correlation func-
tion is defined as

D(r) ≡
〈
∆†(x)∆(x+ r)

〉
(5)

where ∆(y) ≡ (c†↓(y)c†↑(y) − c†↑(y)c†↓(y))/
√

2 is the spin-
singlet pair creation operator on bond y.

We start by presenting evidence for charge localiza-
tion in the disordered systems away from half-filling. In
the absence of disorder, the n = 11/12 system has a
Luttinger liquid ground state. We observe that disorder,
regardless of type, localizes the charges. Fig. 1 shows ex-
ponential decay of the disorder-averaged density-density
correlation function Cn(r) (Eq. 2), the fermion 2-point

function G(r) (Eq. 4), and the superconducting pair-field

correlation function D(r) (Eq. 5) of the ground state in
the disordered systems as a function of distance r, in-
dicating a gap to charge excitations. Qualitatively, the
behaviors of these correlation functions in the random-
potential and random-hopping systems are very similar,
both differing significantly from the power-law correla-
tions expected for the disorder-free system. These corre-
lation functions for both site and bond randomness re-
semble those of an Anderson insulator.

We now turn to analyzing the disorder-averaged spin-
spin correlation functions Cσ(r) (Eq. 3) for different
chains: random-potential and random-hopping Hubbard
chains as well as the random-exchange Heisenberg anti-
ferromagnetic chain. Despite the presence of disorder, we
find that the spin SU(2) symmetry is not spontaneously
broken in Cσ(r) of each disorder realization and therefore

in the disorder-averaged correlation function Cσ(r).
The half-filled system is unsurprisingly a Mott insula-

tor, since the repulsive interaction U is the dominant
energy scale. The effective low-energy description of
the half-filled, large-interaction systems should then be
equivalent to the random Heisenberg antiferromagnet.
The results for the random Heisenberg chain and the
random-hopping Hubbard chain at half-filling are shown
in Fig. 2a, and the agreement between them reflects this
intuition. Our results agree also with previous studies
of the disordered Hubbard chain at half-filling28. We
note that the random-potential chain at half-filling ex-
hibits some curious charge behavior at weak disorder that
can be understood through a particle-hole transformation
(see Appendix). At large distances r, the spin correla-
tions in both the half-filled Hubbard chain with random
hoppings and the random Heisenberg chain exhibit de-
cays close to 1/r2, the expected behavior in a random
singlet phase. More surprisingly, Fig. 2b shows that
Cσ(r) in the random hopping and random potential sys-
tems away from half-filling decay at large distances r as
a power law close to 1/r2, indicating that the spin order,
both at and away from half-filling, are random-singlet-
like. Away from half-filling, statistical fluctuations de-
crease more slowly with sample number, as electron con-
figurations must now be taken into account.

Another hallmark of the random singlet phase is that
the physics is dominated by rare, long-range singlets.

FIG. 2: Disorder-averaged spin-spin correlation Cσ(r) (Eq.
3) for L = 144-site chains. Data is shown for distances r ≤
L/3 , as fluctuations increase with distance. Black dashed

lines indicate r−2 decay. (a) Cσ(r) in random Heisenberg
chain (yellow) and random-hopping Hubbard chain at half-
filling (purple) (see main text), averaged over at least 500

realizations. In both chains, Cσ(r) exhibits long-distance r−2

behavior for r > 10. Error bars (omitted) are not visible for

r > 10. (b) Cσ(r) in random-hopping and random-potential
systems at n = 11/12 electron filling, averaged over at least
1000 realizations, also exhibit decay close to r−2. Error bars
(omitted) are on the order of statistical fluctuations.

This characteristic can be probed by analyzing the typi-
cal correlation function (see Appendix) and by compar-

ing the disorder-averaged spin-spin correlations Cσ(r)
to the root-mean-square (RMS) spin-spin correlations√

(Cσ(r))2. In the random-singlet phase, both Cσ(r) and

(Cσ(r))2 are dominated by the probability of forming a
singlet of length r, which scales as 1/r2 at large r. One
then expects the disorder-averaged spin-spin correlations
to scale as 1/r2 and the RMS spin-spin correlations to
scale as 1/r in the random-singlet phase. By contrast, the
two quantities should agree in the weak-disorder limit,
in which rare-region effects can be ignored. Fig. 3

shows Cσ(r) and

√
(Cσ(r))2 with behaviors consistent
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FIG. 3: Spin correlation statistics in a L = 144 site chain
with random potential, Wµ/2 = 3t̄. Disorder-averaged spin

correlations Cσ(r) and the root-mean-square spin correlations√
(Cσ(r))2 shown for r ≤ L/3. In the absence of disorder,

the two quantities should be equivalent. Their difference here
indicates the importance of rare regions at a strong disorder
fixed point. A dotted line shows a 1/r2 decay, and a dashed
line shows a 1/r decay.

with random-singlet physics for a random-potential sys-
tem away from half-filling. Similar rare region-dominated
behavior is found for the random-hopping system.

IV. LARGE-INTERACTION LIMIT AND
NUMERICAL SDRG

Our results thus far can be understood qualitatively
through the simple picture of the Bethe Ansatz solution
of the (clean) Hubbard chain in the U/t → ∞ limit. In
this limit, the spins and charges are decoupled: the holes
are free to order t/U , and the spins form a Heisenberg
antiferromagnet on electron coordinates20. One could
thus expect the decoupled spins and charges to respond
independently to the disorder; the holes undergo Ander-
son localization, and the spins form a random singlet on
electron coordinates.

Quantitatively, we can explore this perspective by nu-
merically implementing a strong-disorder renormaliza-
tion group (SDRG) decimation procedure. We again
study the n = 11/12 chain with random potential, im-
posing now that the holes are localized (as justified by
the evidence from DMRG, Fig. 1) at local maxima in the
potential of a given disorder realization so that we are left
with an effective spin model. The effective spin model,
a random Heisenberg chain on electron coordinates, can
be computed using perturbation theory in t/U . We then
numerically implement the SDRG decimation of the ef-
fective random spin model (see Appendix). Averaging

the resulting ground states of many realizations is equiv-
alent to averaging over all configurations of the localized
holes, and one recovers random singlet behavior.

From the numerical decimation, we obtain the prob-
ability Ps(r) of forming a singlet pair separated by a
distance of r lattice sites, shown in Fig. 4a for sys-
tem sizes ranging from L = 600 to L = 12000 at
n = 11/12 electron density. This probability distribu-
tion ultimately determines the long-distance behavior of
Cσ(r)24,29. The probability of forming a singlet pair de-
cays as r−2 (dashed line) at large r, which is consistent
with the observations from DMRG.

Furthermore, the probability distribution of (logarith-
mic) bond energies ζ ≡ ln(J0/J) at late times in the
decimation (when only 50 free spins remain) agrees with
analytical predictions for the fixed-point distribution of
the vacancy-free Heisenberg chain24, as shown in Fig. 4b.
We perform a single-parameter fit for the energy scale Γ
in P (ζ,Γ) of the form e−ζ/Γ/Γ. In the vacancy-free ran-
dom Heisenberg chain, the fixed-point distribution de-
mands that the energy scale is related to the length scale
via Γ ∼

√
L. As shown in Fig. 4c, we find that the disor-

dered Heisenberg chain with localized holes exhibits this
same scaling, which is a signature of infinite randomness.
Our numerical SDRG analysis thus indicates that a dis-
ordered system with a finite density of localized holes still
exhibits random-singlet-like behavior, corroborating the
results from DMRG and the intuitive picture offered by
the large-interaction limit of the Bethe Ansatz solution.

V. DISCUSSION

We have explored the ground state properties of Hub-
bard chains in the presence of quenched bond and site
randomness, both at and away from half-filling. We find
in all cases that disorder localizes charges and gives rise to
random antiferromagnetic spin interactions, ultimately
driving the system to a random-singlet-like phase. These
results are consistent with the simple picture offered by
the large-interaction limit of the Bethe Ansatz solution
for the Hubbard chain, in which charges and spins are
decoupled and respond independently to disorder.

Our analysis here is specific to one dimension. In
higher dimensions, one has to also consider the nontrivial
effects of lattice geometry, particularly geometric frustra-
tion. Studies of (quasi) two-dimensional disordered spin
systems suggest that geometry, alongside disorder, plays
an important role in determining the spin state30–32; in
this case, possibilities include short-range antiferromag-
netic order, random-singlet, and spin glass order.

Since all single particle states are localized in the ran-
dom Hubbard chain, the systems we have considered here
offer valuable insight to the nature of the interacting in-
sulator. For the same reason, these models do not allow
us to make contact with the physics of local moments on
the metallic side, or even near the metal-insulator transi-
tion. While most one-dimensional models suffer from the
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FIG. 4: Results of numerically implementing bond decima-
tion, assuming charge localization, for various system sizes at
electron density n = 11/12, averaged over 2000 realizations.
(a) Log-log plot showing r−2 scaling of probability Ps(r) of
forming a singlet pair over r lattice sites. (b) Probability dis-
tribution of the logarithmic energy scale ζ = ln(J0/J), when
50 free spins remain, where J0 is the largest bond energy.
Solid lines are fits for Γ according to P (ζ,Γ) = e−ζ/Γ/Γ. (c)
Extracted best-fit values for energy scale Γ as a function of
system size L follows a trend Γ ∼

√
L, a clear signature of

infinite randomness.

same affliction, higher-dimensional models might allow
for study of metal-insulator transitions, but they prove
significantly more difficult to solve without employing

physically-motivated approximations33–35. Fortunately,
one dimensional models with quasiperiodicity as a proxy
for disorder exhibit single-particle mobility edges36–38,
and remain solvable in the presence of interactions39.
Thus, the extent to which their low energy behavior car-
ries over to their disordered, higher dimensional counter-
parts, is an open question that can be investigated with
a fair degree of rigor. We shall report on this in future
studies.
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VII. APPENDIX

A. System with a random potential at half-filling

At half-filling, the clean Hubbard chain is a Mott in-
sulator due to the presence of strong interactions, which
force the ground state to have only singly-occupied sites.
At half-filling, particle-hole symmetry of the Hubbard
model allows for an interesting distinction between the
effects of random hopping and random potential. The
difference is demonstrated in the behaviors of the charge
density-density correlation functions (Fig. 5a) at weak
and strong disorders. While the weak random hopping
model is still interaction-dominated and thus remains
similar to the non-random half-filled Hubbard model, the
weak random chemical potential model appears to pro-
mote charge density fluctuation correlations. For a range
of Wµ sufficiently small, the density fluctuation correla-
tions appear to have contrasting short- and long-distance
behaviors. At sufficiently strong disorder, both the ran-
dom potential and random hopping models yield expo-
nentially decaying charge density-density correlations, al-
though with different correlation lengths.

This weak-to-intermediate disorder behavior of the
half-filled chain may be understood by analyzing the
negative-U Hubbard model. The particle-hole transfor-
mation

c†i,↑ → (−1)idi,↑ , ci,↓ → di,↓, (6)



6

FIG. 5: Density-density correlation functions in half-filled
Hubbard chains of length L = 144 with (a) weak and (b)
strong site and bond disorder. In both cases, density corre-
lations in the chain with random hopping remain dominated
by interactions and exhibit little change as the disorder is
increased. In contrast, the chain with random potential un-
dergoes a transition in behavior as the disorder increases. The
density fluctuation correlations in the chain with weak ran-
dom potential appear to have a short-range, interaction dom-
inated region joined to a disorder-dominated region at large
distances. At strong disorder, the same system becomes dom-
inated by disorder.

maps the original Hubbard Hamiltonian in Eq.1 to

H̃ = −
∑
i,σ

ti

(
d†i,σdi+1,σ + h.c.

)
−
∑
i

µiS
z
i −U

∑
i

ñi↑ñi↓,

(7)

where ñi,σ = d†i,σdi,σ. Comparing Eq. 7 and Eq. 1, we
see that the spin and charge sectors effectively swap roles
(ni → Szi ) and that the sign of the interaction has flipped
(U → −U). The disorder in hopping remains bond disor-
der, but the disorder in chemical potential is transformed
to a random magnetic field. Correspondingly, the charge
density-density correlator (Eq. 2) of the U > 0 model is
transformed into a spin-spin correlator 〈Sz(x)Sz(x+ r)〉
in the U < 0 model.

In the large interaction limit |U/t| � 1, the ground
state of the U < 0 Hubbard model is superconducting.
The s-wave superconducting state has a gap to spin ex-
citations (interaction-dominated) and is stable to bond
disorder. However, it is unstable to magnetic disorder.
In the presence of weak magnetic disorder, the supercon-
ducting state retains the interaction-dominated behavior
at short distances but shows evidence of pair-breaking at
longer lengths, shown in Fig. 5a. For stronger magnetic
disorder (Fig. 5b), the spins of the U < 0 problem are
completely locally polarized by the strong random fields,
meaning the charges of the U > 0 problem are localized
by deep wells and high barriers in the random potential.

B. Numerical SDRG Of the Hubbard Chain

To corroborate the results from our DMRG calcula-
tions, we implement the real-space strong-disorder renor-
malization group (SDRG) procedure used to character-
ize the ground state and infinite-randomness fixed point
of the random antiferromagnetic Heisenberg chain24. We
cannot apply this procedure directly, since we start with a
Hubbard chain. Rather, we tackle the problem using per-
turbation theory in t/U to find the effective low-energy
(spin) Hamiltonian corresponding to the system, assum-
ing the charges are localized. The initial Hamiltonian is
Eq. 1.

At half-filling the procedure is straightforward as the
physical system is a Mott insulator, so the low-energy
description is a Heisenberg antiferromagnet with no va-
cancies. The spin interaction between the ith and i+1th
spins is found at second order in t/U as J ieff = 4t2i /U
in the random-hopping chain. In the random-potential
chain, we perturb the eigenstates of H0 = HU +Hµ with
the correction V = Ht to second order. Starting with
|ψ0〉 = (|↑, ↓〉 − |↓, ↑〉)/

√
2, we see that acting with V

brings this to two intermediate states:

|↑↓, 0〉 E = U + µi − µj
|0, ↑↓〉 E = U + µj − µi

Then, the total second-order energy correction to the sin-
glet state is

∆E(2) = − 2t2

U + (µi − µj)
− 2t2

U − (µi − µj)

From this, we see that the effective spin interaction
between two neighboring sites is

J ijeff =
2t2

U + (µi − µj)
+

2t2

U − (µi − µj)

=
4t2

U

[
1

1− (∆µij/U)2)

]
,

where ∆µij = µi − µj . This interaction remains antifer-
romagnetic so long as Wµ never exceeds U .

Away from half-filling, the evidence from DMRG sug-
gests that the charges are still localized. We assume then
that the holes sit at the local maxima of the chemical po-
tential, and we can again recover a description the low-
energy physics in terms of purely spin. In this case, spin
interactions of neighboring spins with no vacancy sep-
arating them still take the form described above, but
the spin interaction J ieff between spins separated by a
hole, at sites i and i + 2, is now found at fourth order
in t/U using Rayleigh-Schrodinger perturbation theory.
Note that we must go to fourth order because the singlet
and triplet energies are split only when the intermediate
states involve double occupancy.

In general, the fourth-order correction to the n-th en-
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Int. state 1 V01 Int, state 2 V12 Int. state 3

|S12〉, E = µ1 + µ2 t |0, ↑↓, 0〉, E = 2µ2 + U
√

2t |S12〉
|S12〉, E = µ1 + µ2 t |0, ↑↓, 0〉 , E = 2µ2 + U

√
2t |S23〉

|S12〉 , E = µ1 + µ2 t |↑↓, 0, 0〉 , E = 2µ1 + U
√

2t |S12〉
|S23〉 , E = µ3 + µ2 t |0, ↑↓, 0〉, E = 2µ2 + U

√
2t |S23〉

|S23〉 , E = µ3 + µ2 t |0, ↑↓, 0〉, E = 2µ2 + U
√

2t |S12〉
|S23〉, E = µ3 + µ2 t |0, 0, ↑↓〉 , E = 2µ3 + U

√
2t |S23〉

TABLE I: Contributions involving double occupancy of vir-
tual states in the fourth-order energy correction of a singlet
state across a hole.

ergy in perturbation has the form:

∆E(4)
n =

∑
i,j,k 6=n

〈n|V |i〉 〈i|V |j〉 〈j|V |k〉 〈k|V |n〉
(E

(0)
n − E(0)

k )(E
(0)
n − E(0)

j )(E
(0)
n − E(0)

i )
.

(8)
We consider a three-site system with a hole on site 2

(by construction, this implies µ2 > µ1, µ3). Starting with

the singlet state |S13〉 = (|↑, 0, ↓〉−|↓, 0, ↑〉)/
√

2 which has
energy E = µ1 + µ3, one can identify six possible con-
tributions to the fourth-order energy correction, shown
in Table I. Let |Sij〉 be the singlet state between spins
on sites i and j and Vij = 〈i|V |j〉. Again, we consider
the case of a random potential, so H0 = HU + Hµ and
V = Ht.

Defining µij = µi − µj , we can write the effective spin
interaction between spin 1 and 3 as:

J1,3
eff =

2t4

U3

[
1

(µ12/U)2 · (1 + µ31/U)

+
1

(µ32/U)2 · (1− µ31/U)

+
1

(µ12/U)2 · (1− µ12/U − µ32/U)

+
1

(µ32/U)2 · (1− µ12/U − µ32/U)

+
1

(µ12µ32/U2) · (1− µ12/U − µ32/U)

+
1

(µ12µ32/U2) · (1− µ12/U − µ32/U)

]

(9)

Note that because µ2 > µ1, µ3 by construction, the last
four terms in the effective interaction are guaranteed to
be positive. So long as Wµ < U , all terms in Jeff are pos-
itive and therefore Jeff remains antierromagnetic. The
expression in Eq. 9 holds for the case of ` = 1 holes in
a row. If there are ` ≥ 2 holes in a row, we approximate
the effective spin interaction between the spins sandwich-
ing the holes by the correct order of magnitude in t/U :
U(t/U)2`. Note that the interactions also remain anti-
ferromagnetic for the same reason.

Given the similarity in the effects of the random hop-
ping and random potential away from half-filling, we im-

plement the SDRG procedure only for the case of the
random potential, but we expect no qualitative difference
if considering the system with random hoppings. We use
chains of various lengths (see main text), with n = 11/12
electron filling.

The SDRG decimation procedure then proceeds as de-
scribed for a random Heisenberg antiferromagnetic chain
with no vacancies. At a given step, say the strongest
bond Jj connects the j-th spin to the j + 1th spin (note
that these may not reside on sites j and j + 1 away from
half-filling). This bond is decimated, as spins j and j+ 1
are locked into a singlet, giving rise to an effective bond
of J̃ = Jj−1Jj+1/(2Jj). In order to reconstruct the prob-
ability Ps(r) of forming a singlet bond with spins sepa-
rated by r sites, we track the spatial indices of the singlets
that are formed at each step and find the distribution of
their separations r over many realizations.

To find the distribution of couplings near the end of the
decimation procedure, we consider the couplings of each
chain when there are 50 remaining free spins. These cou-
plings are normalized by the energy scale at each SDRG
step (i.e., by the largest bond in the system at each step).
Fig. 4b in the main text shows the resulting histogram
of normalized couplings across many realizations for each
chain length.

C. Typical spin correlations

We analyze the typical (rather than average) spin cor-

relations, ln |Cσ(r)|, which has a long-distance behavior

ln |Cσ(r)| ∼ r0.5 in the random singlet phase24. We find

typical spin correlations ln |Cσ(r)| ∼ rp, with p between
0.42 and 0.48 for the region L/4 < r < L/2.

FIG. 6: Typical spin correlations ln |Cσ(r)| in a L = 144
random potential chain, at n = 11/12 electron filling, with
Wµ/2 = 3t̄.
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