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We investigate the ground state phase diagram of an extended Hubbard model with 𝜋-flux hopping term at
half-filling on a square lattice, with unbiased large-scale auxiliary-field quantum Monte Carlo simulations. As
a function of interaction strength, there emerges an intermediate phase which realizes two interaction-driven
quantum critical points, with the first between the Dirac semimetal and an insulating phase of weak valence
bond solid (VBS) order, and the second separating the VBS order and an antiferromagnetic insulating phase.
These intriguing quantum critical points are respectively bestowed with Gross-Neveu and deconfined quantum
criticalities, and the critical exponents [VBS = 0.6(1) and [AF = 0.58(3) at deconfined quantum critical point
satisfy the CFT Bootstrap bound. We also investigate the dynamical properties of the spin excitation and find
the spin gap open near the first transition and close at the second. The relevance of our findings in realizing
deconfined quantum criticality in fermion systems and the implication to lattice models with further extended
interactions such as those in quantum Moiré systems, are discussed.

Introduction.— The Landau-Ginzburg-Wilson (LGW)
paradigm of phases and their transitions is one of the cor-
nerstone of modern condensed matter physics [1, 2], in which,
the phase transition could be understood in terms of symmetry
breaking and the establishment of order parameters. Accord-
ing to LGW, the transition between two ordered phases with
spontaneously broken symmetries should either be first-order
or through an intermediate phase. However, new transitions
between novel quantum states that are beyond the LGW are
accumulating in recent years. For example, Senthil et al.
proposed that a continuous quantum phase transition between
the antiferromagnetic (AF) order and the valence bond solid
(VBS) order could exist [3, 4], dubbed as the deconfined quan-
tum critical point (DQCP). Strong evidence of DQCP in spin-
1/2 model on square lattice has been first shown in the J-Q
model by Sandvik [5, 6]. Subsequently, other numerical ex-
amples and new theoretical understanding of DQCP have been
developed in quantum spin models [7–20] and have been grad-
ually extended to interacting fermionic systems [21–27]. It is
obvious that model design and large-scale quantum Monte
Carlo (QMC) simulations played a key role in pushing the
frontier of our knowledge on such surprising phenomena.

Except the DQCP discussed above, interaction effects on
massless Dirac fermions have also attracted great attentions.
Since the linear dispersion is stable against weak interactions,
there must be one or more quantum phase transitions sepa-
rating the Dirac semimetal (SM) phase and various possible
Mott insulator states. Depending on the type of interactions,
many Mott insulators have been discovered, including the fer-
romagnetic and AF states [28–34], VBS state [35–40], ne-
matic phase [41], superconductor and quantum (spin) Hall
states [25–27, 42, 43] and many others. Among these exam-

ples, particular interests lie in the direction where from Dirac
SM to the strong-coupling limit, there exist multiple insulat-
ing phases as a function of the interaction strength, and leaves
room for interesting intermediate phases such as topological
ordered phases and multiple exotic quantum phase transitions,
such as Gross-Neveu and DQCP. Previous works have shown,
with spin-1/2 electron and SU(2) symmetry, extended inter-
action on honeycomb lattice offer a robust VBS with Kekulé
pattern exactly as such an intermediate phase between Dirac
SM and strong-coupling AF order [39]. However, although
the transition between Dirac SM with Kekulé VBS is found
to be a Gross-Neveu QCP, the transition between VBS and
AF phases is first order. These results motivate us to investi-
gate the interaction effect in 𝜋-flux extended Hubbard model
on square lattice, as we show below, in this case, except a
Gross-Neveu QCP between Dirac SM and VBS, there indeed
further emerges a continuous transition between the VBS and
AF phase within the largest system sizes accessed, consistent
with the expected behavior of the DQCP. Our results of the
Dirac fermion with an extended interaction, could also shed
light on the great on-going efforts in understanding the inter-
action effects on quantum Moiré material models [40, 44–50]
such as twisted bilayer graphene (TBG) and transition metal
dichalcogenides, where the interplay between flat band Dirac
cones and the extended Coulomb interactions can be engi-
neered by twisting angles, gating and tailored design of the
dielectric environment, and give rise to a plethora of exotic
phenomena.

Model and Method.—We study a SU(2) extended Hubbard
model with 𝜋-flux hopping term at half-filling on square lattice
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where 〈𝑖 𝑗〉 denotes the nearest neighbor, 𝑐†
𝑖𝜎
and 𝑐𝑖𝜎 are cre-

ation and annihilation operators for fermions on site 𝑖 with
spin 𝜎 =↑, ↓, 𝑛� is the extended particle number operator of
�-plaquette defined as 𝑛� ≡ 1

4
∑

𝑖∈� 𝑛𝑖 with 𝑛𝑖 =
∑

𝜎 𝑐
†
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and at half-filling 〈𝑛�〉 = 1, 𝑈 tunes the interaction strength,
which favors AF order in the strong coupling limit [38].
As shown in Fig. 1 (a), we set hopping amplitudes 𝑡𝑖,𝑖+®𝑒𝑥 = 𝑡

and 𝑡𝑖,𝑖+®𝑒𝑦 = (−1)𝑖𝑥 𝑡, where the position of site 𝑖 is given as
r𝑖 = 𝑖𝑥 ®𝑒𝑥 + 𝑖𝑦 ®𝑒𝑦 and 𝑡 = 1 is the energy unit. Such ar-
rangement bestows a 𝜋-flux penetrating each �-plaqutte. As
a consequence, two Dirac cones are located at K0 =

(
𝜋
2 ,±

𝜋
2
)

in the first Brillouin zone (BZ). We note the way of the fold-
ing and locations of the Dirac cones all depend on the gauge
choice of hopping amplitudes, i.e., with the above hopping
the BZ is folded in half (the blue area in Fig. 1 (b)), but the
distance between two Dirac cones is actually gauge invariant.
The model therefore still has full crystalline symmetries of the
square lattice (the p4mm wallpaper group), where each crys-
talline symmetry operation is supplemented by a U(1) gauge
transformation. For example, the translation symmetry be-
comes 𝑇®𝑒𝑥 : 𝑐𝑖 → (−1)𝑖𝑦 𝑐𝑖+®𝑒𝑥 . Consequently, we will still
discuss our results in the original square lattice BZ.
For the extended Hubbard interaction term, the onsite, first

and second nearest neighbor repulsions are all included in
one plaquette. This particular extended Coulomb interaction
form can be related with quantumMoiré materials with square
lattice structure. BecauseWannier orbitals of Moiré materials,
such as TBG, are quite extended, the relatively long-range
Coulomb interactions have to be included to construct the
effective model [51, 52]. As found in the previous studies [39,
40, 44, 45], such extended interaction will require a relative
larger𝑈 to gap out the Dirac cones.
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FIG. 1. (a) Square lattice with 𝜋-flux hopping. Red and black solid
lines correspond to −𝑡 and 𝑡. ®𝑒𝑥 (®𝑒𝑦) is the unit vector along x (y)
direction. The position of site 𝑖 is given as r𝑖 = 𝑖𝑥 ®𝑒𝑥 + 𝑖𝑦 ®𝑒𝑦 . (b)
The white square is the BZ of the original square lattice, the blue
BZ is the folded one considering the translation-symmetry-breaking
hopping amplitudes. The red solid points represent the position
of Dirac cones K0 =

(
𝜋
2 ,

𝜋
2

)
. High symmetry points 𝚪 = (0, 0),

X = (𝜋, 0) andM = (𝜋, 𝜋) are denoted.

One can easily show the Hamiltonian in Eq. (1) is sign-
problem free for auxiliary field QMC [53] and we implement
a projector version of QMC method [54] to solve the model.

Details of the algorithm can be found in SupplementalMaterial
(SM) [55], and we only mention the projection length 𝛽𝑡 = 𝐿

for equal-time measurements; 𝛽𝑡 = 𝐿 + 10 for imaginary-time
measurements and discrete time slice Δ𝜏 = 0.1. We simulate
the systems with linear size 𝐿 = 12, 16, 20, 24, 28, 32. We
have also tested that this setup is enough to achieve controlled
errorbars [55].

QMC results — The phase diagram obtained from QMC
simulations is shown in Fig. 2 (a). We find an emergent inter-
mediate phase which realizes two continuous quantum phase
transitions when gradually increasing the interaction strength
𝑈. They are the phase transition from Dirac SM to VBS phase
and that from VBS to AF phase. This particular sequence of
transitions has not been observed in other models. The first
corresponding QCP is at𝑈𝑐1/𝑡 = 23.5(5) and of Gross-Neveu
type with the VBS acquiring a 𝑍4 discrete lattice symmetry
breaking, and the critical point is expected to have emergent
U(1) symmetry as the 𝑍4 anisotropy is irrelevant [6]. The
second corresponding QCP is at 𝑈𝑐2/𝑡 = 29.25(25), sepa-
rating two spontaneous symmetry breaking phases, e.g. 𝑍4
for VBS and SU(2) for AF phases, and shall be explained ac-
cording to the deconfined quantum criticality [3, 4]. What’s
more, the corresponding critical exponents [VBS = 0.6(1) and
[AF = 0.58(3) are extracted, they satisfy the CFT Bootstrap
bound [56, 57]. In particular, to our best knowledge, our
model is the first one-tuning-parameter fermionic model that
gives rise to the critical exponents [VBS ≈ [AF meeting the
CFT Bootstrap bound at DQCP .
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FIG. 2. (a) Phase diagram of the extended Hubbard model as func-
tion of interaction strength𝑈, obtained from QMC simulations. The
SM-VBS transition at𝑈𝑐1 is continuous and of Gross-Neveu univer-
sality. The VBS-AF transition at 𝑈𝑐2 is also continuous and should
be explained according to the deconfined quantum criticality. Corre-
lation ratios of the (b) VBS order and (c) AF order as a function of
interaction strength𝑈 are shown.

To quantitatively study the two phase transitions, we define
two structure factors

𝐶AF (k, 𝐿) =
1
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for AF order and VBS order, respectively. In above
equations, S𝑖 = 1
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are gauge invariant bond op-

erators. For AF order, 𝐶AF (k, 𝐿) is peaked at momentum
M = (𝜋, 𝜋); for VBS order, 𝐶VBS (k, 𝐿) is peaked at mo-
mentum X = (𝜋, 0). We then use the renormalization-group
invariant correlation ratios (𝑐 = VBS,AF) to perform the data
analysis,

𝑅𝑐 (𝑈, 𝐿) = 1 − 𝐶𝑐 (k = Q + 𝑑q, 𝐿)
𝐶𝑐 (k = Q, 𝐿) , (4)

where Q is the ordering wave vector, |𝑑q| ∼ 1
𝐿
denotes

the smallest momentum on finite size lattice. By definition,
𝑅𝑐 (𝑈, 𝐿) → 1 (0) for 𝐿 → ∞ in the corresponding ordered
(disordered) phase. At the QCP, 𝑅𝑐 is scale invariant for
sufficiently large 𝐿 and exhibit the scaling behavior for the
corresponding universalities [23, 32, 58–60].
As shown in Fig. 2 (b), when varying 𝑈/𝑡 from 18 to

33, 𝑅VBS (𝑈, 𝐿) first increases then decreases. Importantly,
𝑅VBS (𝑈, 𝐿 = 20, 24, 28, 32) for different 𝐿 cross at two sepa-
rate regions. These results mean that our model undergoes two
phase transitions, and the VBS order is the intermediate phase.
Admittedly, the VBS order is very weak but remain finite at
thermodynamic limit (TDL), and we believe it is attributed to
the enhanced quantum fluctuations from the interplay of Dirac
fermions and extended interactions within a plaquette. We
also find at the transition, the VBS order parameter histogram
is consistent with emergent U(1) symmetry [39]. The corre-
lation ration of AF order is shown in Fig. 2 (c). Interestingly,
a clear crossing takes place around 𝑈/𝑡 = 29.4, which further
indicates the phase transition between the VBS and the AF
order is continuous.
To understand the two intriguing QCPs, we first focus on

themore complicatedVBS-AF transition, to demonstrate it has
the flavor of DQCP. To this end, we collapse the correlation
ratio of AF order with finite-size scaling relation 𝑅AF (𝑈, 𝐿) =
𝑓1
(
𝐿1/a (𝑈/𝑈𝑐 − 1)

)
, as shown in Fig. 3 (a), and obtain the

position of corresponding QCP at 𝑈𝑐2/𝑡 = 29.25(25) and the
correlation length exponent a = 1.13(5). Then at 𝑈𝑐2 the AF
and VBS structure factors, in Eqs. (2) and (3), shall obey the
following finite-size scaling ansatz [40, 61]

𝐶𝑐 (𝑈, 𝐿) = 𝐿−𝑧−[ 𝑓2
(
𝐿1/a (𝑈 −𝑈𝑐) /𝑈𝑐

)
, (5)

where [ is the anomalous dimension exponent, 𝑧 = 1 is the
dynamic exponent. As shown in Fig. 3 (c) and (d), we extract
[ from the slope of log-log plot of 𝐶𝑐 (𝑈, 𝐿) curves at𝑈𝑐2/𝑡 =
29.25 and find [AF = 0.58(3) for AF order and [VBS = 0.6(1)
for VBS order, respectively, give rise to good quality linear
fits.

6

8

10
12
14
16 U/t = 29.25

12

16

20

24

C V
B

S

L = 12
L = 16
L = 20
L = 24
L = 28

0.3

0.4

0.5

0.6

0.7

-2 -1
(U/Uc-1)L1/

210

R A
F

(a)

1

1.5

2

2.5

3

C A
F L

1+

-2 -1
(U/Uc-1)L1/

210

(b)

16 20 24 28
L

×10-3×10-3

16 20 24 28
L

C A
F

U/t = 29.25
(c) (d)

L = 32

32 32

8

FIG. 3. (a) The data collapse of correlation ratio 𝑅AF, which gives
𝑈𝑐2/𝑡 = 29.25(25) and a = 1.13(5). (b) The data collapse of AF
structure in the vicinity of𝑈𝑐2/𝑡 = 29.25with a = 1.13 and [ = 0.58.
The log-log plot of the structure factor of (c) AF order and (d) VBS
order versus the linear lattice size 𝐿 at 𝑈𝑐2/𝑡 = 29.25. The critical
exponents 1+[ can be extracted from the slopes of linear fitting curves
in log-log plots. We obtain [AF = 0.58(3) and [VBS = 0.6(1).

According to the scenario of DQCP [3, 4], the closeness
of the exponents from the two ordered phase approaching the
critical point, i.e. [VBS ≈ [AF in our setting, is considered
as an important signature for the associated emergent symme-
try [8, 9], and numerical evidences of such closenesses have
been seen in the J-Q model [5, 12], 3D loop model [9], as
well as those in the recently discovered the fermionic mod-
els [23, 25–27]. In the literature [8, 9, 12, 23, 25–27], the pre-
cise value of the exponents appears to depend on the detailed
implementation of each model, and there also exists the con-
formal field theory (CFT) bound that the emergent symmetry
need to satisfy [56, 57]. We note the [VBS and [AF in our work
satisfy the CFT Bootstrap bound, as well as in a completely
different interacing fermion model on a honeycomb lattice in
Ref. [23]. Importantly, comparing with Ref. [23], we only
use one tuning parameter in our model, as there is no interfer-
ence from nearby multicriticality or first-order transition as in
Ref. [23], which may pollute the measurement of critical ex-
ponents because a clean scaling behavior can only be observed
far away from the multicritical point or first-order transitions.
The more recent entanglement measurements further point out
the DQCP, at least in the J-Q model, might not be an unitary
CFT at the first place [18, 20] and other possible scenarios
such as multicritical point [16], complex CFT [62, 63] and
weakly first order transition [17], have been constantly and ac-
tively proposed and explored. Despite of these efforts and the
enigmatic situation of the DQCP, our observation, that within
the system sizes simulated, [VBS ≈ [AF, is consistent with the
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deconfinement at𝑈𝑐2. It is further worthwhile to point out that
a relative large [ ∼ 0.6 is also the hallmark of many QCPs as-
sociated with the fractionaliazation of elementary excitations
such as the condensation transition of spinon and visons in 𝑍𝑁

topological orders [64–66]. We also collapse the AF structure
factor according to the Eq. (5) with 𝑈𝑐2/𝑡 = 29.25, a = 1.13
and [ = 0.58, as shown in Fig. 3 (b), all data points fall on
a smooth curve. Therefore, our numerical data in Fig. 3 cer-
tainly reveal an internally consistent decription along the the
line of DQCP for the VBS-AF transition.
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FIG. 4. (a) The 1/𝐿 extrapolation of the single-particle gap
Δsp (K0, 𝐿), the gap opens at an interaction strength locating in a range
from 𝑈/𝑡 = 23 to 𝑈/𝑡 = 24. (b) The data collapse of the structure
factor of VBS order, which gives an estimation of 𝑈𝑐1/𝑡 = 23.5(5),
a′ = 1.0(1) and [′ = 0.89(3).

Next we move on to the SM-VBS transition. It is known
that the massless Dirac fermion is robust at weak interaction,
and the single-particle gap will open at a finite interaction
strength [24, 44]. In our model, we indeed find as a function
of𝑈, the Dirac SM transit to an insulating VBS order continu-
ously through a Gross-Neveu QCP [22, 37, 39, 40, 61, 67–76].
This is also consistent with the similar situation of the extended
Hubbard model on honeycomb lattice [39, 40].
To determine 𝑈𝑐1, we extract the single-particle gap

Δsp (K0, 𝐿) from a fit to the asymptotic long imagi-
nary time behavior of the single-particle Green’s function
𝐺 (k, 𝜏, 𝐿) =

(
1/𝐿4

) ∑
𝑖, 𝑗 ,𝜎 𝑒𝑖k·(r𝑖−r 𝑗)

〈
𝑐
†
𝑖,𝜎

(𝜏)𝑐 𝑗 ,𝜎 (0)
〉

∝
𝑒−Δsp (k,𝐿)𝜏 . The obtained Δsp (K0, 𝐿) are shown in Fig. 4 (a).
It is clear that Δsp (K0, 𝐿 → ∞) → 0 at 𝑈/𝑡 < 23 and
Δsp (K0, 𝐿 → ∞) > 0 at 𝑈/𝑡 > 24, which indicates 𝑈𝑐1/𝑡 ∈
(23, 24) and is overall consistent with the cross point of 𝑅VBS
shown in Fig. 2 (b). This again signifies the weakness of the
VBS order and the strong fluctuations at this QCP which give
rise to strong finite-size effect. To locate the 𝑈𝑐1 more accu-
rately, as shown in Fig. 4 (b), we collapse the VBS structure
factor according to the Eq. (5) in𝑈/𝑡 ∈ (23, 24). Although the
finite-size effect is strong, the data collapse nevertheless gives
rise to an estimation,𝑈𝑐1/𝑡 = 23.5(5), and critical exponents,
a′ = 1.0(1) and [′ = 0.89(3). These exponents are consis-
tent with previous numerical simulations of similar SM-VBS
transitions on the honeycomb lattice [39], where it is found the
three-fold lattice rotation symmetry is enhanced to an emergent
U(1) at the Gross-Neveu QCP. Since the three-fold anisotropy
of the U(1) order parameter is (dangerously) irrelevant at the

QCP, it is expected that the four-fold anisotropy should be even
more irrelevant in our case.
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FIG. 5. (a) Spin excitation gap Δsp (K0) for different 𝐿 and their
TDL extrapolation as a function of interaction strength 𝑈. The VBS
phase has a finite spin gap due to the formation of singlets. (b) Main
panel: first derivative of kinetic energy density as a function of 𝑈,
the solid curves are a cubic polynomial fitting through the data. No
discontinuity observed. Inset: kinetic energy density as a function
of 𝑈. Lines and points in both main panel and inset are shifted for
visualization purpose without changing the physical meaning. Error
bars are smaller than the symbols.

At𝑈 < 𝑈𝑐1, the ground state is in Dirac SM state, and thus
there is no spin excitation gap in the TDL. At 𝑈 > 𝑈𝑐2, the
ground state is in AF state, the spin excitation gap in the TDL
should also vanish because of the existence ofGoldstonemode.
However, the spin excitation gapwill open in the VBS state due
to the formation of a spin singlet [40]. To verify the theoretical
predictions, we measure the dynamical spin-spin correlation
function 𝐶 (k, 𝜏, 𝐿) = 1

𝐿4
∑

𝑖, 𝑗 𝑒
𝑖k·(r𝑖−r 𝑗) 〈S𝑖 (𝜏)S 𝑗 (0)

〉
. The

spin excitation gapΔspin (M, 𝐿) can be extract from imaginary-
time decay of𝐶 (k, 𝜏, 𝐿) ∝ 𝑒−Δspin (k,𝐿)𝜏 . As shown in Fig. 5 (a)
we extrapolate spin excitation gap to the TDL and find that
Δspin (M) goes to a finite value near𝑈𝑐1 and goes back to zero
near 𝑈𝑐2. These QMC results are consisted with our above
theoretical analysis, and thus confirm the process of evolution
of the ground state of our model, i.e. transiting from Dirac SM
to VBS state first and then from VBS to AF state, as a function
of interaction strength𝑈.
In addition, we providemore evidence that the twoQCPs are

continuous within the system size studied, by means of mon-
itoring the evolution of the expectation value of the kinetic
energy density. Since our QMC is of projector type, this is
meant to monitor the evolution of the (part of) the free energy
of the system. As shown in the inset of Fig. 5 (b), the kinetic en-
ergy density 𝐸 = 1

𝐿4

〈
−∑

〈𝑖 𝑗 〉,𝜎 𝑡𝑖 𝑗

(
𝑐
†
𝑖𝜎
𝑐 𝑗 𝜎 + H.c.

)〉
evolve

smoothly as function of 𝑈 for different system sizes. We then
compute their first order derivatives and find in the main panel
of Fig. 5 (b) no discontinuities, consistent with the continu-
ous phase transition. In the SM [55], we also present similar
analysis of the structure factors for AF and VBS orders. They
support the SM-VBS and VBS-AF transition are all continu-
ous.

Discussions — With the help of large-scale sign-free pro-
jector QMC simulation, we investigate the phase diagram of
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𝜋-flux extendedHubbardmodel on square lattice at half-filling.
Based on all the numerical results obtained, we conclude that
this simple looking model accquire an interesting phase dia-
gram with an intermediate phase with weak VBS order sep-
arating the well known Dirac SM and AF phases. More im-
portantly, we find the Gross-Neveu transition from Dirac SM
to VBS is continuous, and the transition from VBS to AF is
also continuous, consistent with deconfined quantum critical
criticality.
Our results, alongwith the previous works of extended inter-

action model on honeycomb lattice [38–40], point out the di-
rections that to realize interesting phase diagrams with (multi-
ple) intermediate phases between the free Dirac SM and strong
couplingMott insulators, the extended interactions beyond on-
site Hubbard term are crucial and could bring more surprises.
In fact, the weak VBS order discovered here and the DQCP
associated with it towards the AF order, imply further pertur-
bations could give rise to even more exotic interaction-driven
phases and transitions. In this context, our results also have
the relevance to the great on-going efforts in understanding
the interaction effect on quantum Moiré material models [38–
40, 44–48] such as twisted bilayer graphene and transition
metal dichalcogenides, where the interplay between flat band
Dirac cones and the extended Coulomb interactions can be
engineered by twisting angles, gating and tailored design of
the dielectric environment, and give rise to a plethora of exotic
phenomena and interesting phase and phase transitions. It is
natural to anticipate, with the technique and analysis presented
in this work, once further degrees of freedom and tunabilities
in Moiré systems are added, interesting phases and transitions
and their mechanism will be revealed from the lattice model
simulations.
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