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Recent experimental observation of inertial spin dynamics calls upon holistic reevaluation of the
theoretical framework of magnetic resonance in ferromagnets. Here, we derive the secular equation
of an inertial spin system in analogy to the ubiquitous Smit-Beljers formalism. We find that the
frequency of precessional ferromagnetic resonances is decreased as compared to non-inertial case.
We also find that the frequency of nutational resonances is generally increased due to the presence of
magnetic anisotropy and applied magnetic field. We obtain exact solutions of the secular equation
and approximations that employ the terminology of non-inertial theory and thus allow for convenient
estimates of the inertial effects.

Inertial effects of spin dynamics have mostly been ne-
glected in the analysis of experimental spin resonance and
spin transport results, since they mainly manifest them-
selves at hardly accessible terahertz frequencies in fer-
romagnets. With recent advances in spectroscopic tech-
niques [1, 2], this fundamental phenomenon has been ob-
served in permalloy, cobalt and cobalt-iron-boron ferro-
magnetic films [3, 4]. Inertial spin dynamics offers novel
avenues for ultrahigh-frequency spintronic applications
using well-established ferromagnetic materials and is thus
becoming a prominent field of research.

The mathematical concept of inertia of magnetization
was introduced in the context of magnetoelastic coupling
in ferromagnets by H. Suhl [5]. It was followed by an
extension of the breathing Fermi surface model which
demonstrated the emergence of a damping contribution
linked to inertia [6, 7]. It was noticed that the Landau-
Lifshitz-Gilbert (LLG) equation, which describes magne-
tization motion in analogy with a spinning top, required
an inertial tensor of a rigid body. A revision [8] of this
analogy within a macroscopic Lagrangian approach sug-
gested that inertia originates from generalization of gyro-
magnetic ratio — the magnetic moment is non-collinear
to the angular momentum. The Landau-Lifshitz-Gilbert
equation was extended by including the second-order
time derivative of magnetization, which now resembles
Newton’s equation of motion for a massive point parti-
cle.

This inertial Landau-Lifshitz-Gilbert (ILLG) equation
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reads

∂tM = − |γ|µ0M×Heff +
α

M0
M× ∂tM

+
η

M0
M× ∂ttM,

(1)

where γ = gµB/~ is the gyromagnetic ratio, µB is the
Bohr magneton, g is the g-factor, µ0 is the permeability
of free space, M is the magnetization with the magnitude
M0, Heff is the effective magnetic field, α is the Gilbert
damping, η is the inertial parameter. The inertial param-
eter has been discussed to be correlated to the Gilbert
damping within the breathing Fermi surface model [6, 7]
and torque-torque correlation model [9], whereas inertia
has been considered independent of damping within the
classical Lagrangian approach [8]. The ILLG equation
was derived within the framework of mesoscopic nonequi-
librium thermodynamics [10] and the Dirac-Kohn-Sham
theory [11]. In an atomistic method, exchange interac-
tion, damping, and inertia were calculated from first prin-
ciples [12]. The microscopic origin of inertia has been
asserted in the relativistic spin–orbit coupling [9, 13, 14].

Inertia leads mainly to nutation – a THz-frequency mo-
tion of magnetization superimposed on the regular GHz-
frequency precession [15] (Fig. 1). Nutational resonances
have been discussed in ferromagnets [16] and antiferro-
magnets [17–20]. Moreover, travelling nutational spin
waves [21–23] have been proposed. Besides nutational
motion, inertia has been found to result in a frequency
shift of the uniform magnetization precession [15, 24] and
spin waves [22] at GHz-frequencies. Previous studies of
inertial spin dynamics treated various ferromagnetic sys-
tems including nanoparticles and nanostructures [25–27],
however, a general approach based on ILLG for a ferro-
magnet with an arbitrary magnetic anisotropy has not
yet been proposed.

Here, we develop a holistic theoretical framework for
a ferromagnet with an arbitrary magnetic anisotropy en-
ergy landscape in analogy to the Smit-Beljers (SB) ap-
proach. For the last six decades [28], the Smit-Beljers
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Figure 1. The magnetization M precesses around the effec-
tive magnetic field and Heff due to the precessional torque
(blue). The inertial torque (red) causes the magnetization to
undergo a concurrent nutational motion. The total magneti-
zation motion is subject to the damping torque (green).

formalism has been an indispensable tool for routinely
predicting and analyzing macrospin ferromagnetic reso-
nance and, with extensions, spin-wave resonances. Now,
our theoretical framework allows for deriving the fre-
quencies of the nutational and precessional resonances of
anisotropic ferromagnets in the presence of inertia. We
formulate the secular equation of inertial spin dynamics,
provide its exact and approximate solutions, and discuss
the interplay of inertia and magnetic anisotropy.

The Smit-Beljers approach was initially developed via
linearizing the Landau-Lifshitz equation in spherical co-
ordinates and using small-angle approximation around
the equilibrium direction of magnetization [29, 30]. Em-
ploying the periodic solution ansatz, the ferromagnetic
resonance (FMR) frequency was derived as

ω2
SB =

|γ|2
(
1 + α2

)
M2

0 sin2θ0

(
∂θθF∂φφF − (∂θφF )

2
)
, (2)

where θ0 is the equilibrium polar angle of magnetization.
The equation gives a closed-form relation between the
FMR frequency and magnetic anisotropy energy F and
allows for efficient and convenient numerical analysis of
experimental data [31].

In our approach, we similarly write the ILLG equa-
tion in spherical coordinates which now contains first
and second derivatives of the angles. As detailed in the
Appendix A, the relative magnitude of the terms in this
resulting equation can be analyzed by their prefactors
expressed in the orders of the Gilbert damping param-
eter α. Since the latter is typically 103 − 102, we omit
higher-order terms and arrive at

∂ttθ =
|γ|µ0Hθ

η
− α |γ|µ0Hϕ

η
+
∂tϕ sin θ

η
+(∂tϕ)

2
sin θ cos θ,

∂ttϕ sin θ =
|γ|µ0Hϕ

η
+
α |γ|µ0Hθ

η
− ∂tθ

η
−2∂tϕ∂tθ cos θ.

(3)

Using the small-angle approximation, we develop the
equations around the equilibrium direction of magneti-
zation which introduces second-order derivatives of the
energy F . The system of equations can be further lin-
earized employing a Jacobian matrix of the angles (Ap-
pendix A). Using the periodic solution ansatz, we arrive
at a fourth-order characteristic polynomial constituting
the secular equation of the inertial spin system:[

ω2

|γ|2
−
(
1 + α2

)
M2

0 sin2θ0

(
∂θθF∂φφF − (∂θφF )

2
)]

− η2ω2

[
ω2

|γ|2
− 1

η |γ|M0

(
∂θθF +

∂ϕϕF

sin2θ0

)]

− iω α

|γ|M0

(
∂θθF +

∂ϕϕF

sin2θ0

)
= 0.

(4)

The first group of terms corresponds to Eq. 2. The sec-
ond group of terms introduces inertia of magnetization.
The third group of terms corresponds to the frequency-
domain linewidth of the ferromagnetic resonance

∆ωSB =
|γ|α
M0

(
∂θθF +

∂ϕϕF

sin2θ0

)
(5)

as it does in the non-inertial case [28, 32]. The pre-
sented approach has the advantage to converge to the
Smit-Beljers secular equation when the inertial parame-
ter vanishes and can be written as:(
ω2 − ω2

SB

)
− η2ω2

(
ω2 − 1

ηα
ω∆ωSB

)
− iω∆ωSB

α
= 0

(6)
Equation 6 has two physical solutions – precessional res-
onance ωp at lower frequency and nutational resonance
ωn at higher frequency. In Appendix B, we calculate the
explicit (exact but complex) solutions, shown in Fig. 2,
as a benchmark for the consecutive approximations.

First, similarly to the original Smit-Beljers formalism,
we can omit the imaginary term in the secular Equation 6
– an approximation that we mark with ’a’ – and derive
an analytical form of the resonance frequencies:

ω(a)
p =

(
p−

√
p2 − q

)1/2

, (7)

ω(a)
n =

(
p+

√
p2 − q

)1/2

, (8)

where

p =
1

2η2
+

∆ωSB

2αη
,

q =
ω2

SB

η2
.

(9)

The analytical form can be used conveniently to calculate
the resonance frequencies via ωSB and ∆ω, thus adding
just a few extra steps compared to Smit-Beljers formal-
ism. However, the analytical form is still too complex
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Figure 2. Frequency-field relation of ferromagnetic resonance and nutational resonances. Explicit solutions of Eq. 6 for the
precessional resonance (orange) show a red-shift compared to the non-inertial Smit-Beljers case (dashed blue). Explicit solutions
of Eq. 6 for the nutational resonance (red) show a blue-shift compared to the zeroth-order approximation 1/η. (a) The calculation
parameters for a thin film with cubic magnetocrystalline anisotropy are: g = 2.09, µ0M0 = 2.1 T, α = 0.002, η = 75 fs · rad−1,
Kcub1 = 4.9 × 104 J · m−3, Ref. [3, 4, 33]. (b)-(d) The following parameters for a thin film with uniaxial magnetocrystalline
anisotropy have been used: g = 2.17, µ0M0 = 1.8 T, α = 0.10, η = 75 fs · rad−1, Ku1 = 4.1 × 105 J · m−3, Ref. [3, 4, 34].

and the effect of magnetic anisotropy on precessional and
nutational behavior is not immediately clear.

We thus implement another approximation – marked
with ’b’ – by expanding the analytical form into a Taylor
series (Appendix B) and neglecting higher-order terms in
∆ωSBη � 1:

ω(b)
p = ωSB

√
1− η∆ωSB

α
, (10)

ω(b)
n =

1

η
+

∆ωSB

2α
. (11)

Here, we immediately see a systematic red-shift of the
precessional frequency as compared to the non-inertial
case of ωSB. As shown in Fig. 1, the inertial torque vec-
tor has a notable component that is antiparallel to the
precessional torque, thus effectively reducing the latter.

The nutational frequency ω
(b)
n , on the other hand,

shows a substantial frequency increase (a blue-shift) as
compared to an earlier estimation ωn ∼ 1/η for an
isotropic ferromagnet [3, 4]. Another approximation, for
instance employed in Ref. [15], accounts for a frequency
shift due to an applied magnetic field

ω̄n =

√
1 + η |γ|µ0H0

η
=

1

η
+
|γ|µ0H0

2
+ ... (12)

but neglects the effects of magnetic anisotropy. While
the nutational frequency obtained in our model converges

to the estimate ω̄n in the case of vanishing anisotropy,
it demonstrates that magnetic anisotropy (both, shape
and magnetocrystalline) shifts the nutation resonance
frequency as compared with ω̄n, and must be accounted
for according to the characteristic polynomial (Eq. 6) and
its solutions.

We calculate the effect of magnetic anisotropy on pre-
cessional and nutational resonances for four concrete ex-
amples of magnetic samples that have been and may
likely be used in an experiment probing inertial spin dy-
namics. We consider single-crystal ferromagnetic thin
films with cubic magnetocrystalline anisotropy (nickel)
and uniaxial magnetocrystalline anisotropy (hcp cobalt)
with magnetic parameters obtained from experimental
data of Refs. [3, 4]. The explicit (exact) solutions of the
characteristic polynomial of Eq. (6) are plotted in Fig. 2
for various configurations of applied magnetic field with
respect to the film surface and crystal symmetry axes.
We use free energy density and equilibrium angles de-
fined in Appendices C and D. As shown in Fig. 2, the
effect of inertia is consistent in all calculated scenarios.
The precessional frequency experiences a red-shift due
to inertia as compared to resonance frequency ωSB for
non-inertial Smit-Beljers case. Both aligned precessional
modes (above the saturation field) and non-aligned pre-
cessional modes (below the saturation field in hard-axes
configurations) [31] experience a red-shift which increases
with increasing precessional frequency. For the aligned
modes, the red-shift thus becomes stronger with increas-
ing magnetic field. For non-aligned modes, on the other
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hand, decreasing magnetic field can result in increasing
red-shift. The nutational frequency experiences a blue
shift due to magnetic anisotropy and magnetic field. The
blue-shift typically increases with increasing magnetic
field. However, below the saturation field in hard-axes
configurations, the blue-shift of the nutational frequency
can become stronger with decreasing magnetic field (see
the red line in Fig. 2(a-c)). The exact behavior is domi-
nated by the ∆ωSB term in Eqs. (10-11). Both shifts can
be substantial (reaching up to 12% in the magnetic field
of 10T) for all calculated scenarios.

While we use the explicit solutions of the secular
equation in Fig. 2 to visualize the effects of magnetic
anisotropy in inertial spin systems, the observed fre-
quency shifts are in qualitative agreement with the ap-
proximations. To assess the quantitative validity of our
approximations ’a’ and ’b’, we compare them with the
benchmark of the explicit solutions. We find that the an-
alytical form ’a’ (Eqs. (7-8)) accrues less than 0.5% error
for aligned modes when compared to the exact solution of
Eq. 4; however, it should be stressed that the character-
istic polynomial Eq. 4 itself has been derived for inertial
parameters η � 1/∆ωSB. The next-step approximation
by the Taylor series ’b’ (Eqs. (10-11)) introduces an error
less than 6% for aligned modes with η < 100 fs · rad−1,
while at higher values of the inertial parameter, the Tay-
lor series causes a substantial error of the frequencies.
While the approximation ’b’ in Eqs. (10-11) should thus
be treated with caution, for comparison, we calculate
the explicit forms of precessional and nutational frequen-
cies for aligned modes in the configurations displayed in
Fig. 2:

(a) The out-of-plane cubic case:

ω(b)
p

2
= |γ|2

(
1 + α2

)(
−µ0M0 + µ0H0 +

2Kcub1

M

)2

×
[
1− η |γ|

(
−2µ0M0 + 2µ0H0 +

4Kcub1

M

)]
,

(13)

ω(b)
n =

1

η
+ |γ|

(
−µ0M0 + µ0H0 +

2Kcub1

M0

)
(14)

(b) The out-of-plane uniaxial case:

ω(b)
p

2
=
(
1 + α2

)
|γ|2

(
−µ0M0 + µ0H0 +

2Ku1

M0

)2

×(
1− η|γ|

(
−2µ0M0 + 2µ0H0 +

4Ku1

M0

))
,

(15)

ω(b)
n =

1

η
+ |γ|

(
−µ0M0 + µ0H0 +

2Ku1

M0

)
. (16)

(c) The in-plane perpendicular uniaxial case:

ω
(b)
p

2
=
(
1 + α2

)
|γ|2 (µ0M0 + µ0H0)

(
µ0H0 −

2Ku1

M0

)
×(

1− η|γ|
(
µ0M0 + 2µ0H0 −

2Ku1

M0

))
,

(17)

ω(b)
n =

1

η
+ |γ|

(
µ0M0

2
+ µ0H0 −

Ku1

M0

)
. (18)

(d) The in-plane parallel uniaxial case:

ω
(b)
p

2
=
(
1 + α2

)
|γ|2

(
µ0H0 +

2Ku1

M0

)
×(

µ0M0 + µ0H0 +
2Ku1

M0

)
×(

1− η|γ|
(
µ0M0 + 2µ0H0 +

4Ku1

M0

))
,

(19)

ω(b)
n =

1

η
+ |γ|

(
µ0M0

2
+ µ0H0 +

2Ku1

M0

)
. (20)

It is a common practice to analyze experimentally de-
termined dependences of ferromagnetic resonance fre-
quency on applied magnetic field for evaluating magnetic
parameters such as magnetic anisotropy and g-factor
[31, 35–40]. Our work demonstrates that such evalua-
tion needs to be adjusted by taking into account the in-
ertial red-shift. In particular, measurements at higher
fields/frequencies have been considered to result in more
accurate determination of magnetic parameters [41–45].
Our model, however, shows that especially at high mag-
netic fields, inertial red-shift is strong and needs to be
taken into account.

It should be noted that in the framework of the ex-
tended breathing Fermi surface model [6, 7], the inertial
term with negative sign was derived. Such negative in-
ertial term would formally result in a blue-shift of the
precessional frequencies. However, since the origin of in-
ertia is still under discussion, we consider here only the
effects of the positive inertial term suggested in Ref. [8].

In summary, we derived the secular equation for an in-
ertial spin system with an arbitrary magnetic anisotropy
energy in analogy with the Smit-Beljers approach. We
find that ferromagnetic resonance experiences a substan-
tial red-shift due to the inertia, while nutational reso-
nance experiences a blue-shift due to magnetic anisotropy
and field. For an accurate evaluation of magnetic pa-
rameters from magnetic resonance measurements, inertia
needs to be taken into account. Our model (Eq. 6) allows
for convenient calculation of precessional and nutational
resonances of an inertial spin system using parameters
(ωSB and ∆ω) obtained from non-inertial models.
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Appendix A: SMIT-BELJERS APPROACH WITH
INERTIA

First, we transform the ILLG equation into spherical
coordinate system and find equilibrium angles of mag-
netization. Second, we linearize the system of equa-
tions describing magnetization dynamics at the equilib-
rium point. Finally, we derive the eigenfrequencies cor-
responding to the resonances.

In spherical coordinate system one writes M = M0er,
Heff = Hrer + Hθeθ + Hϕeϕ, where magnitude of mag-
netization vector persists over time. Using

∂tM = M0 (∂tθeθ + sin θ∂tϕeϕ) ,

∂ttM = M0

{[
−(∂tθ)

2 − (∂tϕ)
2
sin2θ

]
er

+
[
∂ttθ − (∂tϕ)

2
sin θ cos θ

]
eθ

+ [∂ttϕ sin θ + 2∂tϕ∂tθ cos θ] eϕ} ,

(A1)

one transforms the ILLG equation into

∂ttθ =
|γ|µ0Hθ

η
− α∂tθ

η
+
∂tϕ sin θ

η
+(∂tϕ)

2
sin θ cos θ,

∂ttϕ sin θ =
|γ|µ0Hϕ

η
− α∂tϕ sin θ

η
− ∂tθ

η
−2∂tϕ∂tθ cos θ.

(A2)

Here, we introduce the first approximation, i.e. we re-
place the ”red” terms in the system (A2) with the ”blue”
ones in the system (A5) as follows. Based on the ILLG
equation, we write

α∂tϕ sin θ

η
= −α |γ|µ0Hθ

η
+
α2∂tθ

η
− α(∂tϕ)

2
sin θ cos θ + α∂ttθ,

α∂tθ

η
=
α |γ|µ0Hϕ

η
− α2∂tϕ sin θ

η
− 2α∂tϕ∂tθ cos θ − α∂ttϕ sin θ

(A3)

and substitute these equations in (A2) instead of the cor-

responding ”color” terms. We obtain

∂ttθ =
|γ|µ0Hθ

η
− α |γ|µ0Hϕ

η
+
∂tϕ sin θ

η

(
1 + α2

)
+(∂tϕ)

2
sin θ cos θ + 2α∂tϕ∂tθ cos θ + α∂ttϕ sin θ,

∂ttϕ sin θ =
|γ|µ0Hϕ

η
+
α |γ|µ0Hθ

η
− ∂tθ

η

(
1 + α2

)
−2∂tϕ∂tθ cos θ + α(∂tϕ)

2
sin θ cos θ − α∂ttθ.

(A4)
The last two terms in the both equations are negligible,
since they are multiplied by α < 1, while ∆ωSBη � 1.
The α2 terms are much less than one, hence the ILLG
equation is converted to

∂ttθ =
|γ|µ0Hθ

η
− α|γ|µ0Hϕ

η
+
∂tϕ sin θ

η
+(∂tϕ)

2
sin θ cos θ,

∂ttϕ sin θ =
|γ|µ0Hϕ

η
+
α|γ|µ0Hθ

η
− ∂tθ

η
−2∂tϕ∂tθ cos θ.

(A5)

This transformation is commonly adopted and was per-
formed in Ref. [32]. The advantage of the first approxima-
tion is that the final result, which is to be shown below,
converges to the SB equation for η = 0. Note that the
effective magnetic field Heff = −µ−1

0 ∂MF in spherical
coordinate system is given by

Hθ = − 1

µ0M0
∂θF, Hϕ = − 1

µ0M0 sin θ
∂ϕF. (A6)

In order to find the eigenfrequencies from the nonlin-
ear system of equations (A5), it is necessary to linearize
it and to determine the equilibrium orientation of mag-
netization. The equilibrium given by the angles θ0 and
ϕ0 is found from the extremum conditions

∂θF = 0, ∂ϕF = 0 (A7)

limited by the conditions for the minimum, namely, the
determinant of a Hessian matrix has to be positive

∂θθF∂ϕϕF − ∂θϕF∂ϕθF > 0 (A8)

and one of the second derivative has to be positive as well

∂θθF > 0. (A9)

In the excited state, magnetization is deflected from the
equilibrium orientation by the effective magnetic field
changes over time. Here, we introduce the second ap-
proximation, which corresponds to the standard SB ap-
proach, that is the deflection from equilibrium is small

∆θ (t) = θ (t)− θ0, ∆ϕ (t) = ϕ (t)− ϕ0 (A10)

and it is sufficient to limit the expansion of free energy
to the linear terms

∂θF = ∂θθF∆θ + ∂θϕF∆ϕ,

∂ϕF = ∂θϕF∆θ + ∂ϕϕF∆ϕ,
(A11)
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where the second derivatives are evaluated at the equilib-
rium. Using the small-angle approximation, one obtains
from expressions (A5)-(A11)

∂tt∆θ =

(
− |γ|
ηM0

∂θθF +
α |γ|

ηM0 sin θ0
∂θϕF

)
∆θ

+

(
− |γ|
ηM0

∂θϕF +
α |γ|

ηM0 sin θ0
∂ϕϕF

)
∆ϕ

+
∂t∆ϕ sin θ0

η
+ (∂t∆ϕ)

2
sin θ0 cos θ0,

∂tt∆ϕ sin θ0 =

(
− |γ|
ηM0 sin θ0

∂θϕF −
α |γ|
ηM0

∂θθF

)
∆θ

+

(
− |γ|
ηM0 sin θ0

∂ϕϕF −
α |γ|
ηM0

∂θϕF

)
∆ϕ

−∂t∆θ
η
− 2∂t∆ϕ∂t∆θ cos θ0.

(A12)

In order to linearize this system of equations, the fol-
lowing notations are introduced

a41 = − |γ| ∂θϕF
ηM0sin2θ0

− α |γ| ∂θθF
ηM0 sin θ0

,

a42 = − 1

η sin θ0
,

a43 = − |γ| ∂ϕϕF
ηM0sin2θ0

− α |γ| ∂θϕF
ηM0 sin θ0

,

ν4 = −2 cot θ0,

a21 =
α|γ| ∂θϕF
ηM0 sin θ0

− |γ| ∂θθF
ηM0

,

a23 =
α |γ| ∂ϕϕF
ηM0 sin θ0

− |γ| ∂θϕF
ηM0

,

a24 =
sin θ0

η
,

ν2 = sin θ0 cos θ0,

x1 = ∆θ,

x2 = ∂t∆θ,

x3 = ∆ϕ,

x4 = ∂t∆ϕ.

(A13)

Employing (A13), we rewrite the system (A12) as

∂tx1 = x2,
∂tx2 = a21x1 + a23x3 + a24x4 + ν2x

2
4,

∂tx3 = x4,
∂tx4 = a41x1 + a42x2 + a43x3 + ν4x2x4.

(A14)

At the fixed point x∗ = (x∗1, x
∗
2, x
∗
3, x
∗
4) the dynamics of

the nonlinear system (A14) are qualitatively similar to
the dynamics of a linear system (A15) associated with

the Jacobian matrix J (x∗) [46], i.e. ∂tx1

∂tx2

∂tx3

∂tx4

 =

 ∂x1f1 (x∗) . . . ∂x4f1 (x∗)
...

. . .
...

∂x1
f4 (x∗) . . . ∂x4

f4 (x∗)


 x1

x2

x3

x4

 ,

(A15)

where right-hand sides of the Eqs. (A14) denoted as fi.
The fixed point is determined by equating the derivatives
of the nonlinear system (A14) to zero, which gives the
following equations

x2 = 0,
a21x1 + a23x3 = 0,
x4 = 0,
a41x1 + a43x3 = 0,

(A16)

with the solution x∗1 = x∗2 = x∗3 = x∗4 = 0. The Jacobian
matrix of Eqs. (A14) is

J =

 0 1 0 0
a21 0 a23 a24 + 2ν2x4

0 0 0 1
a41 a42 + ν4x4 a43 ν4x2

 (A17)

and at the point x∗1 = x∗2 = x∗3 = x∗4 = 0 it provides the
linear system of equations

∂tx1 = x2,
∂tx2 = a21x1 + a23x3 + a24x4,
∂tx3 = x4,
∂tx4 = a41x1 + a42x2 + a43x3.

(A18)

This third approximation goes beyond the SB approach
and it is the linearization of the system (A14). The
eigenvalues of these equations give resonance frequencies,
which are calculated from the characteristic polynomial

ω4 + (a21 + a24a42 + a43)ω2

− i (a24a41 + a23a42)ω − a23a41 + a21a43 = 0.
(A19)

Restoring the original variable notations, one finds the
equation describing eigenfrequencies of a ferromagnet
with inertia[

ω2

|γ|2
−
(
1 + α2

)
M2

0 sin2θ0

(
∂θθF∂φφF − (∂θφF )

2
)]

− η2ω2

[
ω2

|γ|2
− 1

η |γ|M0

(
∂θθF +

∂ϕϕF

sin2θ0

)]

− iω α

|γ|M0

(
∂θθF +

∂ϕϕF

sin2θ0

)
= 0.

(A20)

Note that this equation can be converted to SB formula
(2) if the inertial parameter vanishes.



7

Appendix B: EXACT AND APPROXIMATE
EXPRESSIONS OF RESONANCE FREQUENCIES

The quartic Eq. (A20) results in two pairs of roots.
The first pair is precessional frequency modified by iner-
tia, one root of the pair is positive, the second is nega-
tive. The same applies to the other pair corresponding to
the nutational frequency. Here we consider only positive
roots. Let us use the Ferrari’s solution for this quartic
equation to write exact expressions of resonance frequen-
cies, and introduce the notations:

Ar = M2
0 η

2,

Cr = −M2
0 −M0η |γ|

(
∂θθF +

∂ϕϕF

sin2θ0

)
,

Dr = iM0α |γ|
(
∂θθF +

∂ϕϕF

sin2θ0

)

Er =
|γ|2

(
1 + α2

)
sin2θ0

(
∂θθF∂φφF − (∂θφF )

2
)
,

ar =
Cr

Ar
, br =

Dr

Ar
, cr =

Er

Ar
.

(B1)

In the Ferrari’s method, one determines a root of the
nested depressed cubic equation. In our case, the root is
written

yr = −5ar

6
+ Ur + Vr, (B2)

where

Ur =
3

√
−
√
P 3

r

27
+
Q2

r

4
− Qr

2
,

Vr = − Pr

3Ur
,

Pr = −a
2
r

12
− cr,

Qr =
1

3
arcr −

a3
r

108
− b2r

8
.

(B3)

Thus, the exact precessional angular frequency modified
by inertia is given by

ωp =

√
ar + 2yr

2

− 1

2

√
−3ar − 2yr −

2br√
ar + 2yr

,

(B4)

The exact nutational angular frequency can be written
as

ωn =

√
ar + 2yr

2

+
1

2

√
−3ar − 2yr −

2br√
ar + 2yr

.

(B5)

Next, we write a few approximations allowing one
to elucidate the physics behind the Eqs. (B4)-(B4).
The approximation ”a” of resonance frequencies is de-
rived by taking into account the real part of the quar-
tic Eq. (A20), which transforms this equation to bi-
quadratic one. Thus, the approximation ”a” of preces-
sional frequency reads

ω(a)
p =

(
p−

√
p2 − q

)1/2

. (B6)

The approximate nutational frequency is given by

ω(a)
n =

(
p+

√
p2 − q

)1/2

, (B7)

where

p =
1

2η2
+

∆ωSB

2αη
,

q =
ω2

SB

η2
,

(B8)

This approximation introduces an additional error, which
does not exceeds 0.5% for the aligned modes for the pa-
rameters employed in the main part of the paper. We
thus find that the solution ’a’ can be considered suffi-
ciently accurate in the context of this work.

The expressions (B6) and (B7) can be further simpli-
fied by employing Taylor series expansion and assump-
tion that ∆ωSBη � 1. The approximation ’b’ of preces-
sional frequency is

ω(b)
p = ωSB

√
1− η∆ωSB

α
. (B9)

From Eq. (B9), one can see that this expression of pre-
cessional frequency modified by inertia converges to the
conventional expression of FMR at η = 0. The approxi-
mation ”b” of the nutational frequency reads

ω(b)
n =

1

η
+

∆ωSB

2α
. (B10)

The series expansion leads to a further error of about
6% for the parameters used for numerical calculations
presented in the main part of the paper.

Appendix C: FREE ENERGY DENSITY

We consider two geometrical configurations are of in-
terest for the study of resonances in magnetic materials.
In the first configuration, a magnetic field rotates tan-
gentially through the plane of the film surface x0y plane
(Fig. C.1(a)). In the second configuration, the magnetic
field goes from the tangential direction to the normal
direction in x0y plane (Fig. C.1(b)). In the geometries
selected here, the films are located differently relative
to the axes, thus the aforementioned planes do not coin-
cide. Such choice of the axes allows one to avoid the divi-
sion by zero in the out-of-plane applied field configuration
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Figure C.1. The orientation of coordinate frames in the case
of magnetic field applied in-plane (a) and out-of-plane (b).

Figure C.2. The sequence of z-y-z rotations to the α̃, β̃ and
γ̃ angles respectively.

(Fig. C.1(b)). Otherwise, if one directs the magnetic field
along the normal to the film in the configuration of axes
shown in Fig. C.1(a), one obtains singularity (θ0 = 0) in
Eqs. (4) and (2). Note that an alternative approach was
derived in the past by Baselgia et al. [47].

In order to write expressions of the energy contribu-
tions, let us define coordinate frames. In the general case,
the axes of magnetocrystalline anisotropy (cubic, uniax-
ial, etc) may not coincide with the demagnetization axes,
therefore, one needs to make a transition from one axis
to another to calculate the energy. We indicate angles of
magnetization vector as θ and ϕ respectively to Carte-
sian coordinate system xyz, defining the demagnetizing
energy. The polar and azimuthal angles of vector of the

magnetic field are denoted by θH and ϕH with respect to
the same axes. The axes specifying the energy of mag-
netocrystalline anisotropy are indicated by xayaza. For
instance, we focus on uniaxial anisotropy in the rotated
coordinate system such that c-axis (za) is aligned with
y-axis. Thus, the free energy density is given by

F = FZ + Fdm + Fa, (C1)

where FZ is the Zeeman energy density, Fdm is the de-
magnetizing energy density and Fa is related to magne-
tocrystalline anisotropy. Using representation of vectors
in spherical coordinate system, one writes the Zeeman
energy as

FZ = −µ0MH

= −µ0M0H ( sin θ sin θH cos (ϕ− ϕH)

+ cos θ cos θH )

(C2)

and the demagnetizing energy as

Fdm =
1

2
µ0M

2
0 ( Nx sin2 θ cos2 ϕ+Ny sin2 θ sin2 ϕ

+Nz cos2 θ ) ,
(C3)

where Nx, Ny, Nz are demagnetizing factors. The mag-
netocrystalline anisotropy energy of a ferromagnet with
cubic symmetry is given by

Fcub = Kcub1

(
α2

1α
2
2 + α2

2α
2
3 + α2

1α
2
3

)
+Kcub2α

2
1α

2
2α

2
3 + ...

= Kcub1cos2ϕasin2θa

[
cos2ϕa+

(
1 + sin2θa

)
sin2ϕa

]
+Kcub2sin4θasin2ϕacos4ϕa + ...,

(C4)

where θa and ϕa are polar and azimuthal angles of the
magnetization vector in xayaza frame, α1, α2 and α3 are
directional cosines with respect to the same frame. Fi-
nally, the uniaxial anisotropy energy can be written as

Funi = Ku1sin2θa +Ku2sin4θa +Ku3sin6θa

+Ku4sin6θa cos 6ϕa + ...,
(C5)

where constants of anisotropy are denoted with Ki.
The magnetization vector can be specified in two

equivalent ways

M = M

 α1

α2

α3

 = M

 sin θa cosϕa

sin θa sinϕa

cos θa

 , (C6)

therefore, one can write

θa = arccosα3,

ϕa = arctan
α2

α1
. (C7)
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On the other hand, one can match the vector components
in the xayaza frame with xyz frame using the Euler ro-
tation matrix in the form α1

α2

α3

 = Eu

(
α̃, β̃, γ̃

)T  sin θ cosϕ
sin θ sinϕ
cos θ

 , (C8)

Eu

(
α̃, β̃, γ̃

)
=

 cα̃cβ̃cγ̃ − sα̃sγ̃ −cγ̃sα̃ − cα̃cβ̃sγ̃ cα̃sβ̃
cβ̃cγ̃sα̃ + cα̃sγ̃ cα̃cγ̃ − cβ̃sα̃sγ̃ sα̃sβ̃
−cγ̃sβ̃ sβ̃sγ̃ cβ̃

 , (C9)

thereby one rotates xyz axes to xayaza axes. Note that
the coordinate system rotates, not the vector, therefore
the Euler matrix is transposed. Here we introduce the
short notations for trigonometric functions cα̃ = cos α̃,
sα̃ = sin α̃ and so on. The given Euler rotation matrix
describes a sequence of rotations to the angles α̃, β̃ and
γ̃ around the z, y and z local axes (Fig. C.2). Thus, one
can express directional cosines α1, α2 and α3 through
the predetermined rotation angles α̃, β̃, γ̃ and angles of
magnetization θ and ϕ in the xyz frame, then one can
use formulae (C7) and corresponding expression of en-
ergy density to calculate anisotropy energy in the xyz
coordinate system.

For example, we focus on ferromagnets with uniaxial
symmetry and cases shown in Fig. C.1, then the con-
sistency between the magnetization angles in xyz and
xayaza frames is given by

Eu

(π
2
,
π

2
, 0
)T

=

 0 0 −1
−1 0 0
0 1 0

 , (C10)

 α1

α2

α3

 =

 − cos θ
− sin θ cosϕ
sin θ sinϕ

 , (C11)

θa = arccos (sin θ sinϕ) ,

ϕa = arctan (tan θ cosϕ) .
(C12)

The energy density is defined as

F = −µ0M0H ( sin θ sin θH cos (ϕ− ϕH)

+ cos θ cos θH )

+Ku1

(
1− sin2 θ sin2 ϕ

)
+ Fdm,

(C13)

where we neglect the high-order anisotropy terms. For
the in-plane configuration (Fig. C.1(a)), one writes

Fdm =
µ0M

2
0

2
cos2θ, (C14)

whereas for the out-of-plane case shown in Fig. C.1(b),
the demagnetizing energy is given by

Fdm =
µ0M

2
0

2
sin2θsin2ϕ. (C15)

The presented expressions of energy density allows to
avoid the division by zero in the out-of-plane magnetiza-
tion configuration (θ0 = 0). One can calculate the second
derivatives of the energy density and substitute the re-
sults in the Eq. (4) to find the FMR frequency modified
by inertia or the nutation frequency.

Appendix D: EQUILIBRIUM ANGLES OF
MAGNETIZATION

Based on presented approach, we find equilibrium an-
gles of magnetization for the all investigated configura-
tions and the results are plotted in Fig. D.3. Note that
angles for the in-plane are calculated for the geometry
shown in Fig. C.1(a), while angles for out-of-plane cases
are given in another axes (Fig. C.1(b)).
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Figure D.3. Equilibrium angles of magnetization. (a-d) polar angles. (e-h) azimuthal angles.



11

[1] J. A. Fulop, S. Tzortzakis, and T. Kampfrath, Laser-
driven strong-field terahertz sources, Advanced Optical
Materials 8, 1900681 (2020).

[2] T. Seifert, S. Jaiswal, U. Martens, J. Hannegan,
L. Braun, P. Maldonado, F. Freimuth, A. Kronenberg,
J. Henrizi, I. Radu, E. Beaurepaire, Y. Mokrousov,
P. M. Oppeneer, M. Jourdan, G. Jakob, D. Turchinovich,
L. M. Hayden, M. Wolf, M. Münzenberg, M. Kläui, and
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M. Farle, L. C. Sampaio, R. E. Arias, and I. N. Krivoro-
tov, Field-dependent perpendicular magnetic anisotropy
in CoFeB thin films, Applied Physics Letters 105, 152403
(2014).

[43] I. Barsukov, Y. Fu, C. Safranski, Y.-J. Chen, B. Young-
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