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The optical properties of monocrystalline, intrinsic silicon are of interest for technological applica-
tions as well as fundamental studies of atom-surface interactions. For an enhanced understanding,
it is of great interest to explore analytic models which are able to fit the experimentally determined
dielectric function ǫ(T∆, ω), over a wide range of frequencies and a wide range of the temperature
parameter T∆ = (T − T0)/T0, where T0 = 293 K represents room temperature. Here, we find that
a convenient functional form for the fitting of the dielectric function of silicon involves a Lorentz–
Dirac curve with a complex, frequency dependent amplitude parameter which describes radiation
reaction. We apply this functional form to the expression [ǫ(T∆, ω) − 1]/[ǫ(T∆, ω) + 2], inspired by
the Clausius–Mossotti relation. With a very limited set of fitting parameters, we are able to rep-
resent, to excellent accuracy, experimental data in the (angular) frequency range 0 < ω < 0.16 a.u.
and 0 < T∆ < 2.83, corresponding to the temperature range 293 K < T < 1123 K. Using our
approach, we evaluate the short-range C3 and the long-range C4 coefficients for the interaction of
helium atoms with the silicon surface. In order to validate our results, we compare to a separate
temperature-dependent direct fit of ǫ(T∆, ω) to the Lorentz–Dirac model.

I. INTRODUCTION

Because of its enormous technological importance, the
optical properties of monocrystalline, undoped silicon,
sometimes referred to as intrinsic silicon, have been
investigated in great detail over the past decades1–25.
The determination of an appropriate analytic model for
the frequency-dependent, and temperature-dependent,
dielectric function also is of prime interest, especially be-
cause it may give insight into the physical mechanism
that generates the response of the medium21,22. In gen-
eral, it is of obvious interest to find a satisfactory rep-
resentation of the available data for the dielectric func-
tion of silicon, using the most simple analytic functional
form possible. The aims of our paper are as follows: (i)
We explore the applicability of simple functional forms,
which we refer to as the Clausius–Mossotti and Lorentz-
Dirac models (which include radiation reaction damp-
ing terms) for the frequency- and temperature-dependent
dielectric function of silicon. (ii) We aim to describe
the temperature dependence of the dielectric function of
intrinsic silicon, using an efficient model, i.e., using a
small number of fitting parameters. Finally, (iii) we aim
to demonstrate the applicability of the functional forms
of the temperature- and frequency-dependent dielectric
function for the calculation of a practically important
quantity, namely, the short-range (C3) and long-range
(C4) coefficients of the atom-surface interaction for a few
simple atomic systems interacting with intrinsic silicon.
We have carefully examined available data sets for the

real and imaginary parts of the dielectric function of sil-
icon and base our investigations on Refs. 13, 14, 19, 20,
and 23 (see also a pertinent comprehensive discussion
in Appendix A1). For these data sets, which cover the
temperature range 293K < T < 1123K, we attempt to

find a uniform, simple, temperature-dependent analytic
model for the dielectric function of monocrystalline (in-
trinsic) silicon. Our motivation is twofold. First, such an
analytic model could be of interest for practical applica-
tions, and second, the most appropriate functional form
for the description of the dielectric function might other-
wise give insight into the physical mechanism underlying
the optical response of the medium. In Ref. 21, it is
pointed out that a two-resonance analytic model of the
Lorentz–Dirac (LD) type can successfully describe the
experimental data for the Si dielectric function over wide
frequency ranges. A physical interpretation and justifi-
cation for the functional form used in Ref. 21 is given in
Refs. 22 and 25. This justification21,22,25 is based on the
so-called LorentzDirac force (see Sec. 8.6.2 of Ref. 26 and
Appendix A2). A second fitting method, which we also
apply here, tries to augment the Lorentz–Dirac approach
using a functional form inspired by the Clausius–Mossotti
(CM) relation. The aim of the latter approach is to take
into account the local-field effect inside the crystal. The
dual fitting method has been used in Ref. 27 where it
has been shown that the Lorentz–Dirac and Clausius–
Mossotti functional forms (without the radiation reac-
tion term) can be mapped onto each other on the basis
of a simple resonance frequency shift detailed in Eq. (12)
of Ref. 27. (We note that the Clausius–Mossotti func-
tional form is referred to as the Lorentz-Lorenz formula
in Ref. 27.) Here, we aim to explore if similar conclusions
can be drawn when the model is augmented by a radi-
ation reaction term in the numerator of the resonance
functional forms, and in an application to the dielectric
function of a real material rather than a model problem.
A further motivation for our study comes from the fact
that a number of density-functional theory (DFT) and
Bethe–Salpeter based approaches28–33, time-dependent
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density-functional theory (TDDFT)29–31,33, as well as
QED-TDDFT frameworks34–37 suggest that the excitonic
mechanism governing the dielectric function of silicon
supports a functional form of the type explored here.
In order to ramify the motivation for our investiga-

tions, let us mention two additional aspects originating
in fundamental physics. The first is the potential use
of silicon in gravitational wave detection experiments,
where an accurate understanding of the optical prop-
erties is crucial to gauge the achievable interferometric
contrast24. The second is the use of monocrystalline sil-
icon as a substrate for atom-surface studies, notably, at
the Heidelberg Spin–Echo Atomic Beam Apparatus (see
Refs. 38–40). We here evaluate the temperature depen-
dence of the Casimir coefficients C3 (short-range) and
C4 (long-range), which represent the asymptotics of the
atom-surface interaction energy, for helium (and other)
atoms interacting with monocrystalline silicon. Helium
has been of prime experimental interest and takes a very
special role in atom-surface studies41–44, and we devote
special attention to the helium system here. Details of
other atoms are relegated to the Supplementary Mate-
rial45. We can anticipate that our two fitting methods
lead to consistent numerical results for the short-range
C3, and long-range C4 coefficients.
The paper is organized as follows. In Sec. II, we discuss

the fitting of the dielectric function of intrinsic silicon to
convenient functional forms. Specifically, in Sec. II A, a
functional form (a “master function”) is indicated which
will be used for our fitting in the following. (The physi-
cal justification of the “master function” is discussed on
the basis of the Lorentz–Dirac equation.) In Sec. II B,
we discuss an approach to the fitting of the temperature-
dependent dielectric function of silicon, which we refer
to as the Clausius–Mossotti approach. This approach is
based on the comparison of a specific ratio involving the
dielectric function, to a generalized Lorentz–Dirac func-
tional form, with complex oscillator strengths. The lat-
ter functional form constitutes our “master function”. In
Sec. II C, we discuss, for comparison, an alternative ap-
proach to the description of the temperature-dependent
dielectric function based on the Lorentz–Dirac approach.
In Sec. III, we perform the evaluation of the coefficients
C3 and C4 for helium interacting with silicon. Conclu-
sions are presented in Sec. IV. SI mksA units are used
throughout the paper.

II. DIELECTRIC FUNCTION OF SILICON

A. Lorentz–Dirac and Master Function

In Refs. 21, 22, and 25, the authors advocate to fit
experimental data for the dielectric function of a refer-
ence material via a functional form of the Lorentz-Dirac
type, which is essentially equal to the Sellmeier form46,
but with a complex amplitude parameter (which could
be understood as a complex oscillator strength), which

TABLE I. Coefficients resulting from Clausius-Mossotti fit-
ting, as described in Eqs. (9) and (10), are given for the first
resonance of monocrystalline silicon over a range of tempera-
tures 0 < T∆ < 2.83. Here, Eh is the Hartree energy and ~ is
Planck’s constant.

T∆ aCM
1 ωCM

1 γCM
1 γ′CM

1

[Eh/~] [Eh/~] [Eh/~]

0.000 0.004943 0.1293 0.01841 0.1306

0.273 0.004856 0.1277 0.01973 0.1392

0.444 0.004564 0.1266 0.01964 0.1474

0.614 0.004715 0.1264 0.02030 0.1403

0.785 0.004508 0.1258 0.02059 0.1440

0.956 0.004647 0.1256 0.02075 0.1355

1.126 0.004586 0.1249 0.02139 0.1405

1.397 0.004903 0.1247 0.02221 0.1284

1.468 0.005163 0.1243 0.02287 0.1173

1.638 0.005588 0.1237 0.02529 0.1179

2.321 0.007875 0.1242 0.03141 0.0614

2.833 0.008155 0.1231 0.03376 0.0608

takes the radiation reaction into account. Details of the
derivation of the functional form have been discussed at
length in the literature, and they are recalled for the
convenience of the reader in Appendix A2 where we lay
special emphasis on the sign of the imaginary part of
the numerator term. As a result of these considerations,
we are motivated to define the functional form f(T∆, ω),
which we refer to as the LorentzDirac master function,
as follows:

f(T∆, ω) =

kmax
∑

k=1

ak(ω
2
k − iγ′kω)

ω2
k − ω2 − iωγk

, (1)

with the dimensionless temperature parameter

T∆ =
T − T0
T0

, (2)

where T0 = 293 K. In Eq. (1), the resonance energies ωk,
the radiation reaction damping constants γ′k and level
widths γk, and the amplitudes ak all depend on T∆. The
functional form given in Eq. (1) has a propagator denomi-
nator equal to that of a damped harmonic oscillator while
the numerator (the oscillator strength) has a nonvanish-
ing imaginary part. The parameter kmax terminates the
sum over the generalized damped oscillator terms; as we
will show, the sum over oscillators leads to a satisfac-
tory representation of the dielectric function with only
few terms, resulting in kmax being a small integer.
Before we discuss the actual fitting procedure, it is in-

structive to ask how the specific form of f(T∆, ω) can be
justified from first-principles theory. The ab initio calcu-
lation of the dielectric function of a material is a two-step
process: first, the electronic band structure is obtained,
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FIG. 1. Real (top row) and Imaginary (bottom row) parts of the dielectric function ǫCM(T∆, ω) are plotted as functions of the
angular frequency ω, for monocrystalline (undoped, intrinsic) silicon for various temperatures. Experimental data13,23 (dotted)
is shown to be in agreement with the CM fit (blue) defined in Eq. (4) for temperature-dependent parameters given in Eq. (11)
and coefficients in Table III. Note that the quantity ~ω/Eh is equal to the angular frequency expressed in atomic units. Eight
additional temperatures, between T∆ = 0 and T∆ = 2.83, namely, the values T∆ = 0.273, 0.444, 0.614, 0.785, 0.956, 1.297,
1.468, and 1.638, are considered in the Supplementary Material45 .

TABLE II. We present the analog of Table I for the second
resonance of monocrystalline silicon.

T∆ aCM
2 ωCM

2 γCM
2 γ′CM

2

[Eh/~] [Eh/~] [Eh/~]

0.000 0.7709 0.3117 0.0990 0.0971

0.273 0.7739 0.3135 0.1066 0.1057

0.444 0.7761 0.3135 0.1173 0.1176

0.614 0.7766 0.3133 0.1191 0.1193

0.785 0.7780 0.3138 0.1242 0.1247

0.956 0.7783 0.3129 0.1293 0.1307

1.126 0.7796 0.3136 0.1336 0.1351

1.397 0.7804 0.3130 0.1363 0.1381

1.468 0.7815 0.3122 0.1424 0.1447

1.638 0.7847 0.3128 0.1333 0.1295

2.321 0.7869 0.3072 0.1194 0.1121

2.833 0.7949 0.3117 0.1159 0.1016

either using density-functional theory (DFT) or Green’s
function based approaches28,32. In the second step, the

band structure is taken as input to obtain the optical
excitation spectrum of the material via linear-response
theory. To reproduce the double-peak structure of the
optical absorption spectrum of Si, it is essential to cap-
ture excitonic effects. This can be accomplished using the
Bethe-Salpeter equation28,32 or time-dependent density-
functional theory (TDDFT)29–31,33. In both approaches,
one first constructs a noninteracting response function
and then builds in dynamical many-body effects, most
notably the screened electron-hole interactions. The non-
interacting response function features energy denomina-
tors of exactly the same form as in Eq. (1). It is cus-
tomary to choose empirical line broadening parameters
(corresponding to our γk) on the order of 0.1 – 0.2 eV
to obtain optical spectra in good agreement with exper-
iment. This simulates the lifetime broadening caused by
phonons, disorder, or finite quasiparticle lifetimes47.

Standard Bethe-Salpeter or TDDFT calculations of
the optical absorption spectra of solids do not include
any radiative reaction forces, and the resulting oscillator
strengths are purely real30. To formally justify the pa-
rameter γ′k in Eq. (1) one needs an ab initio approach in
which the dynamics of the electrons and the photon field
are coupled and treated on an equal footing, either at the
classical level using Maxwell’s equations, or using QED.
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TABLE III. We present coefficients associated with the
Clausius-Mossotti model given in Eq. (11), found from fit-
ting the coefficients in Table I and Table II as functions of
temperature, for monocrystalline silicon.

k aCM
k,0 aCM

k,1 aCM
k,2

1 4.870 × 10−3
−8.936 × 10−4 7.854 × 10−4

2 7.722 × 10−1 5.984 × 10−3 5.586 × 10−4

k ωCM
k,0 [Eh/~] ωCM

k,1 [Eh/~] ωCM
k,2 [Eh/~]

1 1.289 × 10−1
−4.571 × 10−3 9.421 × 10−4

2 3.129 × 10−1 6.405 × 10−4
−6.527 × 10−4

k γCM
k,0 [Eh/~] γCM

k,1 [Eh/~] γCM
k,2 [Eh/~]

1 1.875 × 10−2 9.274 × 10−4 1.651 × 10−3

2 9.742 × 10−2 4.814 × 10−2
−1.518 × 10−2

k γ′CM
k,0 [Eh/~] γ′CM

k,1 [Eh/~] γ′CM
k,2 [Eh/~]

1 1.387 × 10−1 1.161 × 10−2
−1.543 × 10−2

2 9.505 × 10−2 5.607 × 10−2
−1.948 × 10−2

For the latter case, a coupled QED-TDDFT framework
has been developed in the past few years34–37. More rele-
vant for the context of our work, Schäfer and Johansson48

recently proposed a TDDFT formalism that includes dis-
sipation due to classical Abraham-Lorentz-type radiative
reaction forces, and presented applications to plasmonic
systems. The functional forms employed here are consis-
tent with the mechanisms underlying the DFT, TDDFT,
Bethe–Salpeter and QED-TDDFT frameworks employed
in the investigations which lead toward an ab initio un-
derstanding of the dielectric function. While at present,
to our knowledge, there exist no first-principles calcu-
lations of the optical spectra of periodic solids includ-
ing classical radiative reaction forces or QED; given the
progress in the field, such results may emerge in the near
future.
In Refs. 27 and 49, inspired by the ClausiusMossotti

relation, the dielectric ratio

ρ(T∆, ω) =
ǫ(T∆, ω)− 1

ǫ(T∆, ω) + 2

.
= f(T∆, ω) (3)

was fitted to the LorentzDirac functional form, for α-
quartz. [The fitting to the functional form is indicated
by the

.
= sign.] In this paper, we propose to combine the

advantages of the approaches outlined in Refs.21,22,25,27,
namely, the inclusion of radiation reaction, and the ad-
vantage of the approach chosen in Refs. 27 and 49, which
is the dense-material effect encoded in the Clausius-
Mossotti relation. To this end, we first take experimental
data for the temperature-dependent dielectric function of
silicon, on the basis of which we calculate the dielectric
ratio ρ(T∆, ω), which we then fit with f(T∆, ω). The

resulting expression for the dielectric function is

ǫCM(T∆, ω)
.
=

1 + 2f(T∆, ω)

1− f(T∆, ω)
. (4)

This will be referred to as the Clausius-Mossotti (CM)
fit. The more direct fit

ǫLD(T∆, ω)− 1
.
= f(T∆, ω) (5)

will be referred to as the Lorentz-Dirac (LD) fit. The
quantity

δǫ(T∆, ω) = |ǫCM(T∆, ω)− ǫLD(T∆, ω)| (6)

measures the dependence of the fitted dielectric func-
tion on the fitting procedure. Of course, the quantity
δǫ(T∆, ω) does not include experimental uncertainty per-
taining to the input data13,14,19,20,23. For the statistical
uncertainties of the fitting parameters of our model, we
refer to Tables I and II of the Supplementary Material45.
A brief discussion is in order. While one could ar-

gue that the CM fit is favored by physical consid-
erations49, one should note the lack of experimental
uncertainty estimates in the input data provided in
Refs. 14, 19, and 20. As a byproduct of the alternative
fits ρ(T∆, ω) ≈ f(T∆, ω) and ǫ(T∆, ω) − 1 ≈ f(T∆, ω),
we are able to estimate the uncertainty on the basis of
Eq. (6). Two remarks are in order. (i) Both ǫCM(T∆, ω)
as well as ǫLD(T∆, ω) fulfill the Kramers–Kronig rela-
tionships For ǫLD(T∆, ω), this has been shown explic-
itly in Ref. 22, while for ǫCM(T∆, ω), this follows from
the relations Re[ǫCM(T∆, ω)] = Re[ǫCM(T∆,−ω)] and
Im[ǫCM(T∆, ω)] = −Im[ǫCM(T∆,−ω)]. These relations
allow us to invoke the formalism outlined in Sec. 6.6 of
Ref. 26. (ii) In the asymptotic limit of large ω, in view
of the limiting process

ρ(T∆, ω) =
ǫ(T∆, ω)− 1

ǫ(T∆, ω) + 2

ω→∞

−→
ǫ(T∆, ω)− 1

3
, (7)

for ω → ∞, one has ǫ(T∆, ω) −→ 1 + 3ρ(T∆, ω). So,
in the asymptotic limits, the two fitted functional forms
f(T∆, ω) become equivalent up to the addition of unity,
and a multiplicative factor three.

B. Clausius-Mossotti Model

In the context of the current investigation, our aim is
to find a simple and consistent fit to the dielectric func-
tion of monocrystalline (intrinsic) silicon. In the current
section, we attempt to fit the dielectric ratio ρ(T∆, ω) de-
fined in Eq. (3) to the master function given in Eq. (1).
Let us first recall a few essential formulas. We denote the
real and imaginary parts of the complex index of refrac-
tion by n(ω) and k(ω), respectively, These quantities are
related to each other by the Kramers–Kronig relations
(see, e.g., Chap. 6 of Ref. 26). The same is true for the
real and imaginary parts of the dielectric function ǫ(ω),
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(a) (b)

FIG. 2. Real [panel (a)] and Imaginary [panel (b)] parts of the Clausius-Mossotti dielectric function ǫCM(T∆, ω)
as described by Eq. (4) are plotted as functions of the reduced temperature T∆ and driving frequency ω, for
monocrystalline silicon with parameters given in Eq. (11) and coefficients in Table III. This plot shows agreement
between the CM fit shown here and the LD fit shown in Fig. 4.

which is given as ǫ(ω) = [n(ω) + i k(ω)]2. We introduce
a phenomenological description of the dielectric function
by simply assuming a temperature dependence of the in-
dividual parameters in Eq. (15). This approach has been
taken in Refs.19,50,51. We thus write the temperature-
dependent dielectric functions as in Eq. (3),

ρ(T∆, ω) =
ǫ(T∆, ω)− 1

ǫ(T∆, ω) + 2

≈ ρCM(T∆, ω) =
ǫCM(T∆, ω)− 1

ǫCM(T∆, ω) + 2

=

kmax
∑

k=1

aCM
k (T∆) [ω

CM
k (T∆) ]

2 − i γ′CM
k (T∆)ω)

[ωCM
k (T∆) ]2 − ω2 − iω γCM

k (T∆)
, (8)

where k counts the number of resonances and we have
indicated the place where we employ the fitting procedure
by the “≈” sign.

The temperature-dependent real and imaginary parts
of ρCM(T∆, ω) can thus be written as follows,

Re[ρCM(T∆, ω)] =

kmax
∑

k=1

aCM
k (T∆)

×
ω2
[

γCM
k (T∆) γ

′CM
k (T∆)− [ωCM

k (T∆)]
2
]

+ ω4

(ω2 − [ωCM
k (T∆)]2)2 + ω2

[

γCM
k (T∆)

]2 , (9)

while the imaginary part is

Im[ρCM(T∆, ω)] =

kmax
∑

k=1

aCM
k (T∆)ω

×
ω2γ′CM

k (T∆) +
{

γCM
k (T∆)− γ′CM

k (T∆)
}

[ωCM
k (T∆)]

2

{ω2 − [ωCM
k (T∆)]2}2 + ω2

[

γCM
k (T∆)

]2 .

(10)

Following Refs. 4 and 5, the coefficients ak(T∆), ωk(T∆),
and γk(T∆) are approximated by quadratic functions in
the temperature,

ak(T∆) = aCM
k,0 + aCM

k,1 T∆ + aCM
k,2 (T∆)

2 , (11a)

ωk(T∆) = ωCM
k,0 + ωCM

k,1 T∆ + ωCM
k,2 (T∆)

2 , (11b)

γk(T∆) = γCM
k,0 + γCM

k,1 T∆ + γCM
k,2 (T∆)

2 , (11c)

γ′k(T∆) = γ′CM
k,0 + γ′CM

k,1 T∆ + γ′CM
k,2 (T∆)

2 , (11d)

where T0 = 293K. In Tables I and II, we show the
Clausius-Mossotti dielectric ratio coefficients for intrin-
sic silicon, obtained by fitting data taken from Refs. 14
and 19 to Eqs. (9) and (10), for the first two resonances.
We find that fits with kmax = 2 lead to satisfactory re-
sults. Coefficients from Tables I and II are then fitted by
assuming a quadratic temperature dependence accord-
ing to Eq. (11), to obtain a dielectric function for sil-
icon ǫ(T∆, ω) which is a function of temperature and
frequency. The coefficients from this fit are given in
Table III. In Fig. 1, the CM fit defined in Eq. (4) is
plotted alongside experimental data14,19, using the co-
efficients from Table III and temperature-dependent pa-
rameters given in Eq. (11). The similarity of the plots
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TABLE IV. Coefficients resulting from the LD fit, accord-
ing to Eqs. (13) and (14), are given for the first resonance
of monocrystalline silicon over a range of temperatures 0 <
T∆ < 2.83. We recall that Eh is the Hartree energy and ~ is
Planck’s constant.

T∆ aLD
1 ωLD

1 [Eh/~] γLD
1 [Eh/~] γ′LD

1 [Eh/~]

0.000 2.817 0.1254 0.01243 0.05791

0.273 2.713 0.1248 0.01305 0.05348

0.444 2.674 0.1245 0.01335 0.05094

0.614 2.568 0.1241 0.01348 0.04748

0.785 2.899 0.1240 0.01545 0.04800

0.956 2.790 0.1236 0.01508 0.04536

1.126 2.643 0.1233 0.01448 0.04078

1.297 2.607 0.1227 0.01491 0.03939

1.468 2.813 0.1224 0.01610 0.03600

1.638 2.967 0.1212 0.01794 0.03360

2.321 3.164 0.1194 0.02062 0.02098

2.833 4.423 0.1190 0.02750 0.01212

TABLE V. We present the analog of Table IV for the second
resonance of monocrystalline silicon. Coefficients resulting
from the Lorentz–Dirac fit, according to Eqs. (13) and (14),
are given over a range of temperatures 0 < T∆ < 2.83.

T∆ aLD
2 ωLD

2 [Eh/~] γLD
2 [Eh/~] γ′LD

2 [Eh/~]

0.000 7.844 0.1545 0.02994 0.00792

0.273 8.245 0.1529 0.03115 0.01272

0.444 8.325 0.1520 0.03151 0.01589

0.614 8.588 0.1520 0.03247 0.01768

0.785 8.344 0.1515 0.03245 0.01880

0.956 8.410 0.1507 0.03275 0.02136

1.126 8.537 0.1501 0.03284 0.02421

1.297 8.749 0.1495 0.03407 0.02427

1.468 8.601 0.1490 0.03422 0.02528

1.638 8.709 0.1475 0.03592 0.02379

2.321 8.873 0.1455 0.03825 0.02284

2.833 7.789 0.1453 0.03648 0.02526

from Figs. 1 and 3 indicates that the CM fit and the
LD fit both accurately reproduce the experimental data
using different methods, demonstrating that the conclu-
sions of Ref. 27 are more generally applicable. A unified
three-dimensional representation for the dielectric func-
tion of silicon is given in Fig. 2 Based on fits of the
functional form given in Eq. (11), we obtain the fits pre-
sented in Fig. 1, for individual temperatures. A unified
three-dimensional representation for the real and imagi-
nary parts of the temperature- and frequency-dependent
dielectric function ǫCM for silicon is given in Fig. 2.

TABLE VI. Coefficients associated with the Lorentz–Dirac
model given in Eq. (15), found from fitting the coefficients in
Table IV and Table V as functions of temperature, are given
for monocrystalline silicon.

k aLD
k,0 aLD

k,1 aLD
k,2

1 2.892 × 100
−6.339 × 10−1 3.890 × 10−1

2 7.864 × 100 1.121 × 100
−3.754 × 10−1

k ωLD
k,0 [Eh/~] ωLD

k,1 [Eh/~] ωLD
k,2 [Eh/~]

1 1.255 × 10−1
−2.154 × 10−3

−9.91 × 10−5

2 1.544 × 10−1
−4.408 × 10−3 3.685 × 10−4

k γLD
k,0 [Eh/~] γLD

k,1 [Eh/~] γLD
k,2 [Eh/~]

1 1.308 × 10−2
−3.701 × 10−4 1.819 × 10−3

2 2.980 × 10−2 4.011 × 10−3
−4.602 × 10−4

k γ′LD
k,0 [Eh/~] γ′LD

k,1 [Eh/~] γ′LD
k,2 [Eh/~]

1 5.732 × 10−2
−1.261 × 10−2

−1.211 × 10−3

2 8.672 × 10−3 1.688 × 10−2
−4.117 × 10−3

C. Lorentz–Dirac Model

As discussed in Sec. II A, we now turn to the sec-
ond method of fitting the dielectric function of the ref-
erence substrate, monocrystalline silicon, which is based
on a direct fit of the experimentally determined dielec-
tric function ǫ(T∆, ω) to the Lorentz–Dirac master func-
tion Eq. (1) with free parameters. We introduce a phe-
nomenological description of the dielectric function by
assuming a temperature dependence of the individual pa-
rameters, and write the temperature-dependent dielectric
function in terms of a functional form inspired by the
master function given in Eq. (1), but with temperature-
dependent parameters,

ǫ(T∆, ω) ≈ ǫLD(T∆, ω) = 1

+

kmax
∑

k=1

aLDk (T∆)
{

[ωLD
k (T∆) ]

2 − i γ′LDk (T∆)ω
}

[ωLD
k (T∆) ]2 − ω2 − iω γLDk (T∆)

, (12)

where we employ a fitting procedure during the step that
is marked with the ≈ sign. The temperature-dependent
real part of ǫ(T∆, ω) can thus be written as follows,

Re[ǫLD(T∆, ω)] = 1 +

kmax
∑

k=1

aLDk (T∆)

×
ω2
[

γLDk (T∆) γ
′LD
k (T∆)− ωLD

k (T∆)
2
]

+ ω4

(ω2 − [ωLD
k (T∆)]2)2 + ω2

[

γLDk (T∆)
]2 . (13)
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FIG. 3. We present the analog of Fig. 1 for the LD as opposed to the CM fitting procedure. Again, real (top row) and Imaginary
(bottom row) parts of the dielectric function ǫLD(T∆, ω) are plotted as functions of frequency ω, for monocrystalline silicon for
various temperatures, but here, for the LD fitting procedure. Experimental data13,23 (dotted) are found to be in agreement
with the LD fit (red) defined in Eq. (5) for temperature-dependent parameters given in Eq. (15) and coefficients in Table VI.
For the LD fit, eight additional temperatures, between T∆ = 0 and T∆ = 2.83, namely, the values T∆ = 0.273, 0.444, 0.614,
0.785, 1.126, 1.297, 1.468, and 1.638, are considered in the Supplementary Material45 .

The imaginary part is given as follows,

Im[ǫLD(T∆, ω)] =

kmax
∑

k=1

aLDk (T∆)ω

×
ω2γ′LDk (T∆) +

{

γLDk (T∆)− γ′LDk (T∆)
}

[ωLD
k (T∆)]

2

{ω2 − [ωk(T∆)]2}2 + ω2
[

γLDk (T∆)
]2 .

(14)

In full analogy with the approach outlined in Refs. 4 and
5 and in Sec. II B [see Eq. (11)], the coefficients ak(T∆),
ωk(T∆), and γk(T∆) are approximated by quadratic func-
tions in the temperature,

ak(T∆) = aLDk,0 + aLDk,1 T∆ + aLDk,2 (T∆)
2 , (15a)

ωk(T∆) = ωLD
k,0 + ωLD

k,1 T∆ + ωLD
k,2 (T∆)

2 , (15b)

γk(T∆) = γLDk,0 + γLDk,1 T∆ + γLDk,2 (T∆)
2 , (15c)

γ′k(T∆) = γ′LDk,0 + γ′LDk,1 T∆ + γ′LDk,2 (T∆)
2 , (15d)

where T0 = 293K. In Tables IV and V, we show the
Clausius-Mossotti dielectric ratio coefficients for intrin-
sic silicon, obtained by fitting data taken from Refs. 14
and 19 to Eqs. (13) and (14), for the first two resonances.
Coefficients from Tables IV and V are then fitted by as-
suming a quadratic temperature dependence according

to Eq. (15), to obtain the dielectric function for silicon
ǫ(T∆, ω) as a function of temperature and driving fre-
quency. The coefficients from this fit are given in Ta-
ble VI. The accuracy of the fits can be seen in Fig. 3
where the LD fit defined in Eq. (5) is plotted alongside
experimental data14,19, using the coefficients from Ta-
ble VI and temperature-dependent parameters given in
Eq. (15). The similarity of the plots given in Fig. 3 to
those in Fig. 1 reveals that the CM fitting and the LD
fitting both accurately reproduce the experimental data
using different methods. A unified three-dimensional rep-
resentation for the dielectric function of silicon is given
in Fig. 4.

For the LD its, one particular point is worth mention-
ing: If one searches for the best fit parameters (in the
sense of a least-squares approach) for the fitting proce-
dure ǫLD(T∆, ω)

.
= 1+ f(T∆, ω), with unrestricted fit pa-

rameters ak, ωk, γk, and γ
′

k, then one may incur, for cer-
tain temperatures, fitting functions for ǫLD(T∆, ω) whose
imaginary part, for small and positive ω, turns slightly
negative. This behavior is unphysical. We have therefore
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TABLE VII. Short-distance coupling parameters CCM
3 and

CLD
3 of the Casimir–Polder potential are given for helium

interacting with a monocrystalline silicon surface. Results
are given for the CM and the LD fitting procedures given in
Eqs. (4) and Eq. (5), respectively. The numerical values are
obtained using the integrals given in Eqs. (19) and (20). The
data is plotted in Fig. 5, as a function of the temperature.

Helium on Silicon

Short–Range C3 Coefficient

T∆ CCM
3 [a3

0Eh] CLD
3 [a3

0Eh] % difference

0.000 0.04906 0.04950 0.91
0.273 0.05013 0.05068 1.10
0.444 0.05128 0.05132 0.08
0.614 0.05143 0.05173 0.57
0.785 0.05198 0.05253 1.04
0.956 0.05247 0.05276 0.54
1.126 0.05295 0.05297 0.04
1.297 0.05321 0.05311 0.18
1.468 0.05376 0.05317 1.09
1.638 0.05254 0.05274 0.38
2.321 0.05066 0.05123 1.13
2.833 0.05022 0.05021 0.03

implemented the condition

∂

∂ω
Im[ǫLD(T∆, ω)]

∣

∣

∣

∣

ω=0

=

kmax
∑

k=1

aLDk (T∆)

[ωLD
k (T∆)]2

(

γ′LDk (T∆)− γ′LDk (T∆)
)

> 0 (16)

in the nonlinear fitting procedure52 via additional di-
rectives. We observe that, as we ensure that the first
derivative of the fitted imaginary part at zero frequency
is forced to be positive, the entire fitted imaginary part
consistently assumes positive values over the entire fre-
quency range 0 < ω <∞.

III. ATOM–SURFACE POTENTIALS

The transition of the atom-surface potential from the
short-range to the long-range region has been discussed
at length in the literature (see, e.g., Refs. 49, 53–55 and
references therein). It is well known that the atom-
surface potentials V (z) mediated by the exchange of vir-
tual photons change from a 1/z3 short-range asymptotic
behavior to a 1/z4 long-range asymptotic behavior (z is
the atom-wall distance). The 1/z3 short-range asymp-
totic behavior persists for z ≪ a0/α, while the 1/z4

long-range asymptotic behavior is relevant for long range,
z ≫ a0/α, where a0 is the Bohr radius and α is the fine-

TABLE VIII. Long-distance coupling parameters CCM
4 and

CLD
4 of the Casimir–Polder potential are given for helium

interacting with a monocrystalline silicon surface. Results
are given for the CM and the LD fitting procedures given in
Eqs. (4) and Eq. (5), respectively. Values are compared with
Eqs. (26) and (27) in Fig. 6.

Helium on Silicon

Long–Range C4 Coefficient

T∆ CCM
4 [a4

0Eh] CLD
4 [a4

0Eh] % difference

0.000 15.32 15.40 0.55
0.273 15.37 15.49 0.76
0.444 15.41 15.50 0.61
0.614 15.42 15.55 0.82
0.785 15.44 15.57 0.84
0.956 15.45 15.56 0.70
1.126 15.47 15.55 0.51
1.297 15.49 15.60 0.70
1.468 15.52 15.62 0.63
1.638 15.59 15.69 0.65
2.321 15.67 15.78 0.69
2.833 15.83 15.82 0.04

structure constant. The asymptotic forms are

V (z) = −
C3

z3
= −(C3)a.u.

Eh

(z/a0)3
, a0 ≪ z ≪

a0
α
,

(17a)

V (z) = −
C4

z4
= −(C4)a.u.

Eh

(z/a0)4
, z ≫

a0
α
. (17b)

Here, we denote the numerical value of the C3 and C4

coefficients, measured in atomic units, by (C3)a.u. and
(C4)a.u., respectively.
The C3 and C4 coefficients are, in a natural way,

temperature-dependent, as they depend on the dielectric
function of the substrate material54,56–58. Hence, there is
a functional relationship C3 = C3(T∆) and C4 = C4(T∆).
It is thus clear that, for atom-surface interaction stud-
ies, it is convenient to have analytic models for the
temperature-dependent dielectric function of a material;
we here consider the case of intrinsic silicon. The temper-
ature dependence of the coefficient C3(T∆), which gov-
erns the short-distance behavior of the Casimir–Polder
potential, can be written as follows49,53–55,

C3(T∆) =
~

16π2ǫ0

∫

∞

0

dω α(iω)
ǫ(T∆, iω)− 1

ǫ(T∆, iω) + 1
. (18)

Based on the two fitting procedures given in Eqs. (8)
and (12), we can define the coefficients

CCM
3 (T∆) =

~

16π2ǫ0

∫

∞

0

dω α(iω)
ǫCM(T∆, iω)− 1

ǫCM(T∆, iω) + 1
,

(19)
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(a) (b)

FIG. 4. We present the analog of Fig. 2 for the LD fit, as opposed to the CM fit of the dielectric function. Real
[panel (a)] and Imaginary [panel (b)] parts of the dielectric function ǫLD(T∆, ω), as described by Eq. (5), are plotted
as functions of the reduced temperature T∆ and driving frequency ω, for monocrystalline silicon with parameters
given in Eq. (15) and coefficients in Table VI. We find good agreement of the LD fit shown here and the CM fit
shown in Fig. 2.

for the Clausius–Mossotti fit, and analogously

CLD
3 (T∆) =

~

16π2ǫ0

∫

∞

0

dω α(iω)
ǫLD(T∆, iω)− 1

ǫLD(T∆, iω) + 1
(20)

for the Lorentz–Dirac fit. In order to calculate C3(T∆),
we need the dynamic polarizability of the atom α(ω). In
Appendix B, we describe a rather universally applicable
scheme for the calculation of the dynamic polarizabil-
ity of an arbitrary atom, based on tabulated oscillator
strength for a limited set of transitions, augmented by a
matching (at high energy) against the Thomas–Reiche–
Kuhn (TRK) sum rule59,60. The method uses the fact
that, at purely imaginary argument, the dynamic polar-
izability is a smooth function which avoids the singular-
ities of the integrand at the resonance frequencies. We
have applied the method to both atomic hydrogen as well
as helium, neon, argon, krypton and xenon. For helium
interacting with a silicon surface, results are given in Ta-
ble VII. Results for helium interacting with silicon are
also shown in Fig. 5. A remark is in order. The numerical
results given in Table VII correspond to the parameter
fits for individual temperatures, as outlined in Eqs. (4)
and Eq. (5), and in Tables I and II. The smooth curves
in Fig. 5 (and analogously in Fig. 6) constitute the re-
sults of plotting Eqs. (4) and Eq. (5) using the smooth
temperature-dependent model outlined in the coefficients
given in Tables III and IV. For room temperature, these
are in agreement with those recently presented in Ref. 61.
A separate least-squares fit using a quadratic polynomial
in T∆ yields the following result for the temperature-

dependent C3 coefficients for helium on silicon,

CCM
3 (T∆) ≈ CCM

3 (0)
{

1 + cCM T∆ + dCM(T∆)
2
}

, (21)

where CCM
3 (0) = 0.04905, cCM = 0.10569, and dCM =

−0.034338. Analogously, one obtains

CLD
3 (T∆) ≈ CLD

3 (0)
{

1 + cLDT∆ + dLD(T∆)
2
}

, (22)

where CLD
3 (0) = 0.04923, cLD = 0.09939, and dLD =

−0.033309.
For the other atoms under investigation, the C3 co-

efficient read as follows. For H, we obtain, using the
Lorentz–Dirac fit, in atomic units, at room temperature,
a result of 0.1042, while for Ne, Ar, Kr, and Xe, the
results for C3, in atomic units, read as 0.1080, 0.3914,
0.5853 and 0.9157, respectively.
Let us now investigate the long-range asymptotic be-

havior, as described by Eq. (17b), and let us consider the
temperature dependence of the C4 long-range coefficient.
Indeed, the C4 coefficient governing the long-distance be-
havior z ≫ a0/α of the Casimir–Polder potential can be
written as49,53,54

C4(T∆) =
~c

2π

3

8
α(0) φ(T∆) , (23)

where α(0) = α(ω = 0) is the static polarizability of the
atom. The emergence of α(0) in the result illustrates the
fact that, for large atom-wall separation, the interaction
is mediated by very low-energy virtual photons. The φ
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FIG. 5. Short-distance coupling parameters CCM
3 (T∆) and

CLD
3 (T∆) of the Casimir-Polder potential, are plotted as func-

tions of T∆ for helium interacting with a monocrystalline sil-
icon surface. Data points (black dots) are taken from Ta-
ble VII. The blue curve corresponds to the Clausius–Mossotti
fit, given in Eq. (19), while the red curve corresponds to the
Lorentz–Dirac fit, given in Eq. (20). The data points are
taken at T∆ = 0.000, 0.273, 0.444, 0.614, 0.785, 0.956, 1.126,
1.297, 1.468, 1.638, 2.321, and 2.833.

function in Eq. (23) is given as an integral, as follows,

φ(T∆) =

∫

∞

1

dp
H(ǫ(T∆, 0), p)

p4
, (24)

where the H function reads49,53,54

H(ǫ, p) =

√

ǫ − 1 + p2 − p
√

ǫ − 1 + p2 + p
+(1−2p2)

√

ǫ − 1 + p2 − p ǫ
√

ǫ − 1 + p2 + p ǫ
.

(25)
The C4 coefficient can be calculated on the basis of the
Clausius–Mossotti fit described in Sec. II B,

CCM
4 (T∆) =

~c

2π

3

8
α(0) φCM(T∆) , (26a)

φCM(T∆) =

∫

∞

1

dp
H(ǫCM(T∆, 0), p)

p4
, (26b)

or the Lorentz–Dirac fit, described in Sec. II C,

CLD
4 (T∆) =

~c

2π

3

8
α(0) φLD(T∆) , (27a)

φLD(T∆) =

∫

∞

1

dp
H(ǫLD(T∆, 0), p)

p4
. (27b)

An analytic result for φ, expressed with logarithms, reads
as follows,

φ(T∆) = 2

[

2ǫ(T∆, 0)
3 − 4ǫ(T∆, 0)

2 + 3ǫ(T∆, 0) + 1

4(ǫ(T∆, 0)− 1)3/2
L1

+
ǫ(T∆, 0)

2

2
√

ǫ(T∆, 0) + 1
{L2 − L3}+

1

6(ǫ(T∆, 0)− 1)

[

6ǫ(T∆, 0)
2

−3ǫ(T∆, 0)
3/2 − 4ǫ(T∆, 0)− 3

√

ǫ(T∆, 0) + 10
]

]

. (28)
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FIG. 6. Long-distance coupling parameters CCM
4 (T∆) and

CLD
4 (T∆) of the Casimir–Polder potential, are plotted as func-

tions of T∆ for helium interacting with a monocrystalline
silicon surface . Data points (black dots) are taken from
Table VIII. The blue curve corresponds to the Clausius–
Mossotti fit, given in Eq. (26), while the red curve corresponds
to the Lorentz–Dirac fit, given in Eq. (27). The data points
are taken at T∆ = 0.000, 0.273, 0.444, 0.614, 0.785, 0.956,
1.126, 1.297, 1.468, 1.638, 2.321, and 2.833.

Here, the logarithmic terms are

L1 = ln

(

√

ǫ(T∆, 0)−
√

ǫ(T∆, 0)− 1
√

ǫ(T∆, 0) +
√

ǫ(T∆, 0)− 1

)

, (29a)

L2 = ln

(

√

ǫ(T∆, 0) + 1− 1
√

ǫ(T∆, 0) + 1 + 1

)

, (29b)

L3 = ln

(

√

ǫ(T∆, 0) + 1−
√

ǫ(T∆, 0)
√

ǫ(T∆, 0) + 1 +
√

ǫ(T∆, 0)

)

. (29c)

Our result for φ(T∆) is in agreement with the result given
in Eq. (23) of Ref. 54, but differs in its functional form;
we attempt to reduce the complexity of the functions in-
volved. The term in square brackets in Eq. (28) approxi-
mates unity in the limit of a perfectly conducting surface,
ǫ(T∆, 0) → ∞. The correction terms about the limit of
large ǫ(T∆, 0) can be expanded in a series in inverse half-
integer powers of ǫ(T∆, 0). The first two correction terms
lead to the expression

φ(T∆) = 2

[

1−
5

4
√

ǫ(T∆, 0)

+
22

15ǫ(T∆, 0)
+O

(

ln[ǫ(T∆, 0)]

ǫ(T∆, 0)3/2

)]

. (30)

Numerical values for C4(T∆) are calculated for each value
of T∆, for both the CM fitting procedure [according
to Eq. (26)] and the LD fitting method [according to
Eq. (27)]. Results for helium atoms interacting with a
silicon surface are given in Table VIII and Fig. 6.
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Conversely, a fit using a quadratic polynomial in T∆
yields the following result for the temperature-dependent
C4 coefficients for helium on silicon,

CCM
4 (T∆) ≈ CCM

4 (0)
{

1 + fCM T∆ + gCM(T∆)
2
}

, (31)

where CCM
4 (0) = 15.32, fCM = 0.0076444, and gCM =

0.0014732. Analogously, one obtains

CLD
4 (T∆) ≈ CLD

4 (0)
{

1 + fLDT∆ + gLD(T∆)
2
}

, (32)

where CLD
4 (0) = 15.40, fLD = 0.013560, and gLD =

−0.0013667.
The relative discrepancies between the CM and LD fits

for C4 are commensurate with those for the correspond-
ing C3 coefficients, as listed in Tables VII and VIII. This
is consistent with fact that the C4 coefficients are deter-
mined by the static value ǫ(T∆, ω = 0) of the dielectric
function, which can be determined to roughly the same
accuracy as the integral over all frequencies, which enters
Eq. (18). Note, also, that the static value of the helium
polarizability is well known from Refs. 62 and 63. A fur-
ther remark might be in order. The relative difference
of the numerical values for the C4 coefficients, obtained
from the CM and LD fits, is smaller by about a factor
of five than the relative difference of the static dielectric
function ǫ(T∆, 0), obtained from either fit. This some-
what surprising observation finds a natural explanation
when one considers the numerically small variation of the
φ function with respect to the value of ǫ(T∆, 0), in the
relevant range ǫ(T∆, 0) ≈ 11.5. In consequence, the C4

coefficients are determined to much better accuracy than
the static dielectric function.
For the other atoms under investigation, the C4 coef-

ficient read as follows. For H, Ne, Ar, Kr, and Xe, the
results for C4, in atomic units, read as 49.99, 29.52, 122.9,
182.8 and 303.0, respectively (at room temperature).

IV. CONCLUSIONS

We have found a unified description of the
temperature-dependent and frequency-dependent dielec-
tric function ǫ(T∆, ω) of intrinsic (monocrystalline) sili-
con, using the LD and CM functional forms, augmented
by radiation-reaction terms, with only two generalized
oscillator terms entering the master function given in
Eq. (1). For intrinsic silicon, we find that both the CM
function [ǫ(ω) − 1]/[ǫ(ω) + 2] as well as the LD func-
tion [ǫ(ω) − 1] itself can be fitted very well to exper-
imental data. This conclusion is fully consistent with
the observations made in Ref. 27, where a model with-
out radiation reaction was considered. The R2 values
are greater than 0.99 for either fit, for all temperatures
studied here, as evident from Fig. 2 of the Supplemen-
tary Material45. The CM fit is able to represent exper-
imental data marginally better than the LD fit, consis-
tent with its ability to model the local-field effect. The

temperature-dependence of the coefficients of our model
is well described by simple quadratic forms.
Our fitting, as described in Secs. II A and II B, is suc-

cessful, and leads to the temperature-dependent parame-
ters listed in Tables III and VI. These lead to a satisfac-
tory representation of the dielectric function of intrinsic
silicon in the temperature range 0 < T∆ < 2.83, i.e.,
293K < T < 1123K. The entire problem is of consider-
able interest, and the investigation of a uniform represen-
tation of the dielectric function over a wide temperature
range requires a careful evaluation of available experi-
mental data (see Appendix A 1). The fact that a unified
model with analytic coefficients is able to describe the
temperature-dependent, and frequency-dependent dielec-
tric function of intrinsic silicon over wide ranges of the
parameters, could be interpreted as supporting the self-
consistency of the experimental data for the dielectric
function, obtained by various different groups over the
past two decades13,14,19,20,23.
We employ the results of our fitting in the temperature-

dependent evaluation of the short-range, and long-range,
asymptotics of the atom-surface interaction potential
for helium atoms interacting with intrinsic silicon (see
Sec. III). We find that the C3 and C4 coefficients given
in Eqs. (17a) and (17b) exhibit a moderate temperature
dependence depicted in Figs. 5 and 6. Our approach
allows us to determine temperature-dependence C3 and
C4 coefficients with a relative accuracy which we would
like to conservatively estimate as 5%, due to the intrinsic
uncertainty in the experimental data, even if the rela-
tive difference of the C3 and C4 coefficients given in Ta-
bles VII and VIII is smaller than 5%. This estimate is
supported by an error propagation calculation based on
computer algebra52, which propagates the uncertainty es-
timate for the fit parameters given in the Supplementary
Material45 to the determination of the C3 and C4 coeffi-
cients. Interestingly, our calculations imply the existence
of a manifest temperature dependence of atom-surface
interactions, which goes beyond the “thermal discretiza-
tion” of the frequencies of the virtual photons that me-
diate the atom-surface interaction, in terms of the Mat-
subara frequencies64–66.
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Appendix A: Intricacies of the Dielectric Function

1. Brief Review of Published Data

A very brief review of the available experimental data
for the dielectric function of intrinsic silicon might be
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in order. The subject is interesting because of a signif-
icant dependence on the sample preparation, with tiny
surface impurities having a potentially detrimental effect
on the accuracy of the obtained data. In view of ap-
parent discrepancies among some published data, which
will be discussed in the following, we here prefer to use
rather recent compilations of optical properties of sili-
con; it is hoped that potential issues with previous mea-
surements may have been addressed in the more recent
compilations. Specifically, our sources for experimental
data of silicon at room temperature are Refs. 13, 20, and
23. Our main sources of temperature-dependent data are
Refs. 14 and 19. We use Ref. 19 as a source for the exper-
imental measurements of silicon at 298K, 523K, 773K,
973K, and 1123K. For completeness, Ref. 14 is used as a
source for experimental measurements of silicon at 293K
(additional data for room temperature), 373K, 423K,
473K, 523K, 573K, 623K, 723K. As a side remark, we
can add that the room temperature data (293K, from
Refs. 13, 14, 20, and 23) differ only very slightly from the
data obtained for 298K in Ref. 19. The data for 298K
cover a smaller frequency range as compared to the data
for 293K; the discussion of the data available for 298K
is relegated to the Supplementary Material45. We also
mention Ref. 20 for a discussion of the temperature de-
pendence of the dielectric function of silicon, where the
linear term of the coefficients (as a function of the tem-
perature T ) is taken into account.

Now, for completeness, let us briefly discuss some
apparent discrepancies among other data sets. For
example, in Ref. 16, it is pointed out that “recent
measurements13,17, at both the ultraviolet and infrared
ends of the spectrum have considerably improved the ac-
curacy of silicon optical data at these wavelengths, ren-
dering past tabulations8–10 and assessments15 largely ob-
solete.” Along the same direction, in Sec. IV.b of Ref. 18,
it is pointed out that the compilation of silicon (Si) opti-
cal data in Ref. 8 relies on two sets of silicon absorption
values based on the intensity transmission measurements
originally reported in Refs. 1 and 3. Yet, it is pointed
out in Sec. IV.b of Ref. 18, that the values reported in
Ref. 3 spanning 1.2–2 eV were obtained from very thin
epitaxial films on sapphire and there is a mismatch by a
factor of 5 at 1.28 eV as compared to the values reported
in Ref. 1.

In Ref. 18, near the start in the Introduction, it is
pointed out that: “However, even though silicon is one of
the most heavily studied and well-understood materials,
the accuracy of reported optical constant spectra for crys-
talline silicon is still an issue. The original spectroscopic
ellipsometry results for silicon obtained by Aspnes7 have
been questioned (especially for energies less than 3.4 eV
by the work of Jellison13 using a two-channel polariza-
tion modulation ellipsometer).” Furthermore, in Ref. 18,
near the start in the Introduction, it is also pointed out
that the measurements reported in Ref. 7 were compli-
cated both by the difficulty of stripping residual oxide
without roughening the sample and by acquisition of el-

lipsometric data at an angle of incidence which pushed
the measured ellipsometric values at smaller photon en-
ergies into a sub-optimal region for the rotating-analyzer
ellipsometer (RAE) used. It is also pointed out that in
Ref. 13, a careful oxide layer removal procedure was prof-
iting from a separate intensity transmission measurement
used in order to establish the overlayer thickness.
Finally, we should also mention that we have made sev-

eral unsuccessful attempts to fit the data given in Ref. 8
over the frequency range 0 < ~ω < 5 eV with functional
forms that fulfill the Kramers–Kronig relations. An in-
spection reveals that data for the imaginary part of the
dielectric function given in Ref. 11, and Refs. 14 and
19, exceeds the values given in Ref. 8 in the frequency
range 1 < ~ω < 2 eV by almost a factor two. The newer
data given in Refs. 14 and 19 is amenable to a fit using
a consistent functional form, as detailed in this current
study. Furthermore, we note that no actual data pairs of
frequency and real and imaginary part of the dielectric
function are given in Ref. 11. However, a quantitative
inspection of the curves given Figs. 2, 3, and 4 of Ref. 11
leads to the conclusion that the data on which the Ref. 11
is based, are in agreement with the analysis presented in
the current investigation.
The availability of convenient, consistent, simple func-

tional forms to describe the frequency-dependent, and
temperature-dependent dielectric function of intrinsic sil-
icon, as derived here, should thus be of considerable in-
terest to the community.

2. Lorentz–Dirac Model

Let us start from Eq. (2) Ref. 22, which describes the
acceleration ~a on a charge carrier particle of charge q in
terms of the Lorentz–Dirac formalism,

~a =
1

m
~Fext + t0 ~̇a . (A1)

The latter term describes radiation reaction. A dis-
cussion of the Lorentz–Dirac equation can be found in
Sec. 8.6.2 of Ref. 26. The radiation reaction time is [see
Eq. (3) of Ref. 22]

t0 =
q2

6πǫ0mc3
. (A2)

One defines a characteristic acceleration ~ac and a char-
acteristic time scale tc through the formulas [see Eqs. (4)
and (5) of Ref. 22]

~ac =
1

m
~Fext , ~̇ac =

~ac
tc
, (A3)

Then, according to Eq. (6) of Ref. 22, one defines

tlight = sq/c (A4)

as the time it takes light to travel a characteristic dis-
tance sq which could be chosen as the size of the charge
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distribution, or, from a classical point of view, as the clas-
sical electron radius obtained by equating the electron
rest mass with the electrostatic self-energy of the elec-
tron’s charge distribution, taken as centered on a sphere
of radius sq. Then, according to Eq. (7) of Ref. 22, one
has

m ∼ mem ∼
q2

4πǫ0sq
, (A5)

where mem is the self-energy (self-mass) of the electron.
One assumes a not-too-fast change in the acceleration,

i.e., a not-too-abrupt dynamical change,

tc ≫ tlight . (A6)

Under the observation [see Eq. (9) of Ref. 22] that t0 ∼
tlight, one derives the condition [see Eq. (10) of Ref. 22]

t0 ∼ tlight ≪ tc , t0/tc ≪ 1 , (A7)

under which the authors of Ref. 22 arrive at the follow-
ing formula [see Eq. (25) of Ref. 22] for the polarization

density ~P in the sample,

d2 ~P

dt2
+

(

2Γ + t0 ω
2
r −

q2t0N

3mǫ0

)

d~P

dt

+

(

ω2
r −

q2N

3mǫ0

)

~P =
q2N

m
~E +

q2Nt0
m

d ~E

dt
. (A8)

From Ref. 22, one can see that Γ is the damping rate as-
sociated with the frictional force between atoms, ωr is the
natural frequency of the restoring force, N is the num-
ber of atoms per unit volume, and q is the charge of the
electron. The transformation to Fourier space proceeds
by writing

~P (t) =

∫

dω

2π
e−iωt ~P (ω) , (A9)

so that, in Fourier space, one replaces d/dt→ −iω.

Setting ~P (ω) = ǫ(ω) ǫ0 ~E(ω), one then arrives at the
following formula,

ǫ(ω) = ǫ∞ +
a0 − iω a1

b0 − ω2 − iω b1
. (A10)

With reference to Eq. (A8) and Eq. (27) from Ref. 22,
the parameters are identified as follows,

b1 = 2Γ + t0 ω
2
r −

q2t0N

3mǫ0
, b0 = ω2

r −
q2N

3mǫ0
, (A11a)

a0 =
q2N

m
, a1 =

q2t0N

m
. (A11b)

In Eq. (A10), the signs of the terms multiplying a1 and
b1 are inverted as compared to Eq. (28) of Ref. 22, pre-
sumably due to a typographical error in Ref. 22. Note
that, upon using the functional form (A10), a1 and b1
are obtained as positive rather than negative quantities
in our fitting procedure, for silicon, supporting the func-
tional form indicated in Eq. (A10) (with positive terms
a1 and b1). This finding also is in line with the functional
form used in Ref. 21.

TABLE IX. Energy differences are given En0 = En − E0 be-
tween the reference 1S ground state of hydrogen (H) and ex-
cited states (nP). The fine-structure and Lamb shift are not
resolved. We also list corresponding oscillator strengths fn0

for the first 10 excited states. The data includes the reduced-
mass correction (the oscillator strength scales with the first
power of µ/me, where µ is the reduced mass of hydrogen, and
me is the electron mass.) All entries are in agreement with
the data compilation given in Ref. 67.

n En0 [Eh] fn0 [e2a2
0Eh]

2 0.37480 0.41640

3 0.44421 0.07914

4 0.46850 0.02901

5 0.47974 0.01395

6 0.48585 0.00780

7 0.48954 0.00482

8 0.49193 0.00319

9 0.49356 0.00222

10 0.49473 0.00161

11 0.49560 0.00120
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FIG. 7. The dynamic polarizability of atomic hydrogen is
plotted as a function of the imaginary driving frequency. The
exact solution given in Eq. (B8) (red curve) is compared
with the approximation given in Eq. (B2) (blue-dotted curve),
which is based on the oscillator strengths listed in Table IX.
The static polarizability of hydrogen is α0 = 9/2e2a2

0/Eh,
which is 9/2 in atomic units. The relative difference between
the exact values and the approximation can be found in Fig. 8.

Appendix B: Dynamic Polarizability

1. General Algorithm

We aim to delineate a rather general algorithm here
which allows one to calculate the dynamic polarizabil-
ity of an atom at imaginary driving frequency, α(iω),
based on the knowledge of the oscillator strengths of a
few low-lying transitions, and additional input from the
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FIG. 8. The relative difference χ(ω), described in Eq. (B13),
between the exact expression for the dynamic polarizability
of hydrogen given in Eq. (B8) and the discrete model given
in Eq. (B2), is plotted as a function of the driving frequency.
Here q is the number of discrete oscillator strengths included
in the discrete model, as given in Table IX.
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FIG. 9. The relative difference ξ(T∆), defined in Eq. (B16),
between the short-distance Casimir-Polder parameter C3 eval-
uated using the exact expression for the dynamic polarizabil-
ity given in Eq. (B8) and the discrete model given in Eq. (B2)
is plotted as a function of temperature for hydrogen interact-
ing with silicon. Note that the plot range on the ordinate axis
is restricted.

known asymptotic behavior of the polarizability for large
driving frequency, to be derived from sum rules. The
algorithm should be accurate to a few percent over the
entire frequency range 0 < ω <∞ and thus sufficient for
the calculation of atom-surface interactions, where the
dominant source of uncertainty comes from the dielectric
function (see Sec. III).
The approach is to first collect, from databases50, the

transition energies and oscillator strengths of a few low-
lying transitions. This collection immediately allows to
describe the frequency dependence of the dynamic polar-
izability for low excitation frequency argument. In order
to model the contribution of the continuum states of the
atom, we add one more virtual transition to a “pseudo-
level”, which is energetically positioned in the continuum.

The oscillator strength is matched against the Thomas–
Reiche–Kuhn (TRK) sum rule59,60 sum rule, and the en-
ergy of the pseudo-level is adjusted so that the correct
overall low-frequency (“static”) limit of the polarizabil-
ity is recovered. Because we only consider imaginary fre-
quencies, we are far enough away from any atomic res-
onance that we do not need to worry about the decay
width of the state, i.e., about the imaginary part of the
energy that otherwise enters the polarizability.
The atomic polarizability is defined as (see Refs. 49

and 62)

α (ω) =
∞
∑

n

e2 a20Eh fn0

E2
n0 − (~ω)2

, (B1)

where fn0 is the oscillator strength of the atom, measured
in atomic units, and En0 ≡ En −E0 is the energy differ-
ence between the virtual and exited states |ψn〉. We note
that the oscillator strength is used, in atomic physics,
as a dimensionless quantity (for an excellent overview of
pertinent conventions, see Ref. 68.) The sum is carried
out over all of the discrete states as well as the continuous
spectrum.
In order to approximate the atomic polarizability with

our model polarizability, α(ω) ≈ αm(ω), we divide the
infinite sum in Eq. (B1) into two parts,

α(ω) ≈ αm(ω) = αd(ω) + αc(ω) , (B2)

in which αd(ω) is the sum over the terms from the first
q discrete (bound) states

αd(ω) =

q
∑

n=1

e2a20Eh fn0

E2
n0 − (~ω)

2 , (B3)

where we neglect the width of the virtual states, antici-
pating that our final aim will be to evaluate the polariz-
ability at imaginary driving frequency (where the decay
width terms are negligible for our purposes).
Let us denote by αc the contribution of the continuum

states. We model the contribution αc(ω), using a pseudo-
level, as follows,

αc(ω) =
e2a20Eh f∞

E2
∞

− (~ω)
2 . (B4)

The oscillator strength of the additional “continuum”
level f∞ is found by requiring that sum over all oscilla-
tor strengths obey the TRK sum rule which in SI mksA
units can be expressed as

∑

n

fn0 = N , (B5)

where N is the total number of electrons in the system,
and n runs over all virtual levels (discrete and contin-
uum). Therefore, the matching condition for the oscilla-
tor strength of the continuum pseudo-level is

f∞ ≈ N −

q
∑

n=1

fn0 . (B6)
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The energy position of the additional “continuum” level
E∞ can be found by requiring our ansatz to reproduce
known numerical values of the static polarizability,

E2
∞

=
f∞

α(0)− αq(0)
. (B7)

This algorithm will be applied to hydrogen, before being
generalized to other atoms.

2. Hydrogen

Because the dynamic polarizability of hydrogen can
be calculated analytically69–72, a comparison of the com-
plete result to that found using the algorithm described
above can be used as a measure of the validity of our
ansatz. We start from the analytic solution for the di-
electric function for the ground state of hydrogen as a
function of ω as described in Refs. 69, 71, and 72,

α(ω) =
e2 ~2

α4 µ3 c4
[Q(ω) +Q(−ω)] , (B8)

where µ is the reduced mass of hydrogen, α is the fine-
structure constant, c is the speed of light, e is the ele-
mentary charge, and ~ is Planck’s unit of action. The
matrix element Q = Q(ω) is given as follows,

Q(ω) =
Eh

e2 a20

〈

1S

∣

∣

∣

∣

~r
1

HS − E1S + ω
~r

∣

∣

∣

∣

1S

〉

, (B9)

where 1S denotes the ground state of hydrogen, the scalar
product is understood for the position operators ~r, HS

is the Schrödinger–Coulomb Hamiltonian, and E1S is the
ground-state energy,
The Q matrix elements are dimensionless and can be

expressed in terms of the dimensionless photon energy
variable

t = t(ω) =

(

1 +
2~ω

Eh

)

−1/2

, (B10)

and

Q(ω) =
2t2

3(1− t)5(1 + t)4
[

3− 3t− 12t2 + 12t3

+19t4 − 19t5 − 26t6 − 38t7
]

+
256t9

3(1 + t)5(1− t)5
2F1

(

1,−t, 1− t,

(

1− t

1 + t

)2
)

,

(B11)

and it is understood that t ≡ t(ω). Here, 2F1 is the
Gaussian hypergeometric function. In Table IX, we col-
lect oscillator strengths for the first ten dipole-allowed
hydrogen transitions from the reference ground state to
excited nP states, with n = 2, . . . , 11. One can verify that

the oscillator strengths, for general n, obey the following
general formula,

fn0 =
256n5

3(n2 − 1)4

(

n− 1

n+ 1

)2n

(B12)

which can be derived starting from Eq. (6.133) of Ref. 26.
The angular integral in that expression can be calculated
directly while Eq. (7.414.7) of Ref. 73 can be used to
evaluate the radial integral. The Gaussian hypergeomet-
ric function that appears in the result can be expressed
in closed form. The result given in Eq. (B12), upon the
inclusion of reduced-mass effects, reproduces all data col-
lected in Table IX, originally collected from Ref. 67.
The left panel in Fig. 7 shows the numerical results for

the dynamic polarizability as a function of ω. Numerical
results from the proposed algorithm for first 10 energy
differences and oscillator strengths fn0 collected in Ta-
ble. IX (blue-dotted line), are nearly identical to those
from the analytic solution in Eq. (B8) (red-dotted line).
A closer look, as described by Fig. 8, reveals a peak in
the relative difference χ(ω) of the exact dynamic polar-
izability of hydrogen given in Eq. (B8), and the model
polarizability given in Eq. (B2),

χ(ω) =
αm(iω)− α(iω)

α(iω)
, (B13)

at a driving frequency of about one atomic unit. How-
ever, the peak relative difference occurs in a region
where the absolute value of the polarizability has already
dropped to about one tenth of its static value (see Fig. 7),
and is thus less than 1% when divided by the static po-
larizability. Note that the plot pertains to imaginary
driving frequencies, so that the bound-state poles remain
invisible.
Let us compare, for the Lorentz–Dirac fit (at room

temperature), the result for C3, for hydrogen interacting
with silicon, evaluated in terms of the model polarizabil-
ity (B2), to the result obtained using the exact polariz-
ability, given in Eq. (B8). We define

C
(m)
3 (T∆) =

~

16π2ǫ0

∫

∞

0

dω αm(iω)
ǫLD(T∆, iω)− 1

ǫLD(T∆, iω) + 1
,

(B14)
as the result obtained from the model polarizability, and

C
(e)
3 (T∆) =

~

16π2ǫ0

∫

∞

0

dω α(iω)
ǫLD(T∆, iω)− 1

ǫLD(T∆, iω) + 1
,

(B15)
as the result obtained using the exact polarizability.
Then, the relative difference is

ξ(T∆) =
C

(m)
3 (T∆)− C

(e)
3 (T∆)

C
(e)
3 (T∆)

, (B16)

and it is plotted in Fig. 9. The difference of about 1% is
negligible on the level of the uncertainty in the determi-
nation of C3 implied by the dielectric function.
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3. Other Elements

Just as for hydrogen, the atomic polarizability of he-
lium may be calculated according to the algorithm out-
lined in Sec. B 1. The static polarizability of helium

is α(ω = 0) = 1.383 e2 a20/Eh
62,63 which is equivalent

to a numerical value of 1.383 in atomic units. For he-
lium, extensive calculations are available (see Refs. 74–
79). Data for other elements can easily be found in the
NIST database, which is available online (see Ref. 50).
Furthermore, additional data on oscillator strengths is
available for other atoms of interest, from Refs. 80–84.
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M. R. Vogt, I. Kröger, S. Winter, A. Schirmacher, S. Lim,
H. T. Nguyen, and D. MacDonald, “Uncertainty analysis
for the coefficient of band-to-band absorption of crystalline
silicon,” AIP Advances 5, 067168 (2015).
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