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We investigate how symmetry and topological order are coupled in the 2 + 1d ZN rank-2 toric
code for general N , which is an exactly solvable point in the Higgs phase of a symmetric rank-2
U(1) gauge theory. The symmetry enriched topological order present has a non-trivial realization
of square-lattice translation (and rotation/reflection) symmetry, where anyons on different lattice
sites have different types and belong to different superselection sectors. We call such particles
“position-dependent excitations.” As a result, in the rank-2 toric code anyons can hop by one lattice
site in some directions while only by N lattice sites in others, reminiscent of fracton topological
order in 3 + 1d. We find that while there are N2 flavors of e charges and 2N flavors of m fluxes,

there are not NN2+2N anyon types. Instead, there are N6 anyon types, and we can use Chern-
Simons theory with six U(1) gauge fields to describe all of them. While the lattice translations
permute anyon types, we find that such permutations cannot be expressed as transformations on
the six U(1) gauge fields. Thus the realization of translation symmetry in the U6(1) Chern-Simons
theory is not known. Despite this, we find a way to calculate the translation-dependent properties
of the theory. In particular, we find that the ground state degeneracy on an Lx × Ly torus is
N3 gcd(Lx, N) gcd(Ly, N) gcd(Lx, Ly, N), where gcd stands for “greatest common divisor.” We
argue that this is a manifestation of UV/IR mixing which arises from the interplay between lattice
symmetries and topological order.
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I. INTRODUCTION

Topological order [1] is a cornerstone in understand-
ing gapped liquid phases of highly-entangled quantum
matter [2]. At the microscopic level, phases with topo-
logical order exhibit long-range entanglement [3–5]. At
the macroscopic level, from the highly-entangled con-
stituents emerges remarkable robust properties, like in-
ternal gauge fields, exotic bulk excitations (anyons),
topology-dependent ground state degeneracies, and gap-
less chiral edge excitations. In the presence of symme-
tries, this structure of topological orders becomes even
richer and the quantum phase is said to posses symme-
try enriched topological (SET) orders [6–12].

For instance, the emergent anyons do not need to
form a linear representation of the symmetry group and
can instead transform protectively under its elements.
This then allows them to carry fractional quantum num-
bers of the symmetry, known as symmetry fractionaliza-
tion [6, 13]. This is a familiar phenomena in the context
of fractional quantum Hall states where the anyons trans-
form protectively under the U(1) symmetry group cor-
responding to the electron’s charge and consequentially
carry fractional amounts of the electron charge [14]. In-
trinsic topological orders can also be enriched by external
symmetries, such as the space group of an underlying lat-
tice [15–18]. For example, anyons transforming protec-
tively under lattice translations can carry fractional crys-
tal momentum, which consequentially reduces the size of
the first Brillouin zone in the reciprocal lattice [6]. In
additional to it’s richness, we note how in both of the
above examples, symmetry fractionalization provides di-
rect experimental signatures for the underlying topolog-
ical order: the former being fractionally quantized Hall
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conductivity in a two-dimensional electron gas [19] and
the latter through proposed neutron scattering experi-
ments on candidate quantum spin liquids in frustrated
magnets [17, 20, 21].

In both of the above examples, the symmetry elements
act locally on anyons as a U(1) phases, which describe
the fractional quantum number they carry. However, it is
also possible for the symmetry transformations to addi-
tionally induce a nontrivial automorphism on the anyon
types, permuting inequivalent anyon types [22–24]. By
inequivalent anyons, we mean excitations belonging to
different topological superselection sectors (see appendix
E of Ref. [25] for a review of the algebraic theory of
anyons). For instance, consider a double-layer fractional
quantum Hall system. There is an internal Z2 symmetry
operator which exchanges the elementary anyons on each
layer, physically corresponding to an anyon tunneling be-
tween layers [26]. Furthermore, there are exactly solv-
able lattice models, like Wen’s plaquette model [27, 28]
or the color code [29, 30], where lattice transformations
permute inequivalent anyons. For example, in the pla-
quette model on the square lattice, there are two types
of elementary excitations, e charges and m flux. Lattice
translations by one lattice space in either the x or y di-
rections take all e charges to m fluxes and all m fluxes
to e charges. Following the terminology introduced in
Ref. [22], we say that SET phases including such non-
trivial automorphisms contain unconventional SET or-
ders. In these phases, the interplay between symmetry
and topological order is even more striking. Indeed, in
all of the above described examples, the existence of au-
tomorphism permuting inequivalent anyons causes the
topological ground state degeneracy to become depen-
dent on the system’s size (in a non-extensive way).

While gauging a global symmetry leads to topological
order present in the discussion above, gauging a subsys-
tem symmetry (a symmetry acting only on subspace of
the entire system) leads to fracton topological order [31–
33]. Phases with this order are characterized by topologi-
cal excitations that are only able to move along subsets of
the spatial lattice [34–38]. These subdimensional excita-
tions are also said to have fractionalized mobility. While
individually they can only move within planes (planons),
along lines (lineons), or are entirely immobile (fractons),
their composite objects can be completely mobile. Such
subdimensional physics has emerged as a very exciting
frontier of quantum matter, displaying a wide range of
phenomena, such as nonergodic behavior [34, 39, 40] and
emergent gravitational physics [41–47]

There’s an interesting way to understand subdimen-
sional particles’ mobility based on how their topologi-
cal superselection sectors transform under lattice transla-
tions [48]. Consider a superselection sector s and the op-
erator Ti which performs a translation in the i-direction
by one lattice spacing. If lattice translations induce the
transformation Ti : s 7→ s, then by definition there ex-
ists an operator that moves the elementary excitation of
superselection sector s by one lattice spacing in the i di-

rection (a “string” operator). However, suppose that for
all integers n less than the linear size of the system, that
(Ti)

n : s 7→ sn 6= s. This then means that there does not
exist a string operator which moves the elementary ex-
citation of s in the direction i. For instance, on a cubic
lattice if (Tx)n : s 7→ sn 6= s and (Ty)n : s 7→ sn 6= s but
Tz : s 7→ s, then s is the topological superselection sec-
tor of a lineon restricted to move in the z direction. If
(Ti)

n : s 7→ sn 6= s for all i then s describes a fracton,
where as if Ti : s 7→ s for all i then s describes a normal
mobile excitation.

This is reminiscent of unconventional SET orders. In-
deed, under translations in any direction a subdimen-
sional particle cannot move, its corresponding superselec-
tion sector is changed. Therefore, for phases with fracton
topological order and an underlying lattice, there is al-
ways some lattice translation that induces a nontrivial
automorphism on the superselection sectors. This point
of view is quite enlightening. Indeed, it provides an intu-
itive explanation as to why the topological ground state
degeneracy scales with system size for fracton topolog-
ical orders: the number of excitation types grows with
the system size. Furthermore, the UV/IR mixing known
to occur in fracton phases can be understood as a conse-
quence of global equivalence relations between excitation
types which only exist when the system is put on a topo-
logically nontrivial space. The intuition behind this will
be explained in detail throughout this paper. Therefore,
from this point of view, some of the most striking features
of fracton topological phases arises from a rich interplay
between long-range entanglement and symmetry.

Throughout this paper, we’ll denote excitations that
change type under lattice transformations as “position-
dependent excitations.” From the above discussion,
all subdimensional excitations are position-dependent,
but not all position-dependent excitations are subdimen-
sional. Indeed, position-dependent excitations occur in
the aforementioned Wen’s plaquette model and the color
code, which both have traditional topological order. Be-
cause they do not posses fracton topological order, it
means that while there are superselection sectors where
Ti : s 7→ s′ 6= s, there is some n > 1 smaller than the lin-
ear system size such that (Ti)

n : s 7→ s. Recalling the
example provided from the plaquette model, while a sin-
gle translation takes Ti : e 7→ m and Ti : m 7→ e, a dou-
ble translation acts as the identity: (Ti)

2 : e 7→ e and
(Ti)

2 : m 7→ m.

In this manuscript, we investigate an unconventional
SET phase with position-dependent excitations that are
closer in similarity to subdimensional excitations. In
other words, an unconventional SET order that is simi-
lar to fracton topological order. One promising route to
such an SET order is to start off with a phase contain-
ing only fracton topological order and undergo a phase
transition to a phase with conventional topological or-
der. Indeed, when subdimensional particles condense if
all of the additional excited particles that usually prevent
their movement are absorbed into the condensate, they
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can become mobile [49–53]. And so, through condensing
excitations, an extensive subset of the superselection sec-
tors (a feature of fracton topological order) reduce down
to to a finite number (conventional topological order).

A particularly simple class of theories known to in-
clude subdimensional particles are symmetric U(1) ten-
sor gauge theories [54]. In the context of quantum mat-
ter, these tensor gauge theories are effective theories de-
scribing exotic quantum spin liquid phases [41, 42, 55,
56]. Unlike in fracton topological order, the low-energy
physics is governed by gapless excitations and the gauge
charges’ subdimensional nature arises due to emergent
higher-moment symmetries, like dipole momentum con-
servation. When these tensor gauge theories are Hig-
gsed such that the U(1) group reduces to ZN , the gapless
gauge boson becomes gapped, the subdimensional parti-
cles typically become mobile, and the phase posses topo-
logical order [49–51, 57, 58]. While these excitations have
become mobile, they can typically only hop by multiple
sites at a time in the directions they were previously im-
mobile. For example, a lineon belonging to superselection
sector s in a phase where it is partially condensed still
satisfies Tx : s 7→ s′ 6= s, Ty : s 7→ s′ 6= s and Tz : s 7→ s,
like before the phase transition, but now also satisfies
(Tx)n : s 7→ s and (Ty)n : s 7→ s for an integer n > 1 less
than the system size. Therefore, this Higgs transition has
induced a phase transition from gapless fracton order to
unconventional SET order. This SET phase is more “sub-
dimensional like” because the value of n grows with N ,
where as, for instance, the plaquette model always had
n = 2.

The remaining of this paper is organized as follows.
In Section II A, we start by reviewing the rank-2 U(1)
“scalar charge” gauge theory in 2 + 1d and its subdi-
mensional particles, and describe how to regulate it on a
spatial square lattice. Upon Higgsing the lattice gauge
fields of this tensor gauge theory, we introduce the ex-
actly solvable model studied throughout this paper: the
ZN rank-2 toric code. In Section II B, we show how emer-
gent conservation laws of gauge charge and flux arising
from the fusion rules enforce that anyons of the same
species having a hidden flavor index and carry different
charge/flux based on their position. This recovers previ-
ous results of the mobility of these excitations and their
position-dependent braiding statistics. Additionally, it
allows us to define the anyon lattice which reveals how the
excitations change type under lattice transformations,
hence making the rank-2 Toric code poses an unconven-
tional SET order. Interestingly, these automorphisms on
anyon lattice vectors are nonlinear. Then, in Section II C,
we consider the affect of periodic boundary conditions
and find new equivalence relations between anyon types
which arise from the lattice-translations’ realization on
the anyon lattice. We find the ground state degeneracy
for general N and identify new non-local string opera-
tors that further modifies the mobility of the excitations.
The ground state degeneracy sensitively depends on the
system size, which we discuss in the context of UV/IR

mixing. The position-dependent excitation picture and
the anyon lattice additional provides a straight forward
way for developing a mutual Chern-Simons theory for the
rank-2 Toric Code, which is the subject of Section III A.
Using the Chern-Simon gauge fields, we find a basis set
of holonomies for the torus in Section III B, which in Sec-
tion III C we use to find a low-energy effective action in
terms of the gauge fields’ zero modes. The number of
ground states from this effective action is the same as
that found by considering the anyon lattice group. Fur-
thermore, this low-energy effective action explicitly de-
pends on the number of unit cells from the microscopic
theory, revealing the origin of the UV/IR mixing in the
effective theory.

II. ZN RANK-2 TORIC CODE IN 2 + 1D

One of the simplest cases of topological order is ZN
topological order. A canonical system which contains
ZN topological order is Kitaev’s toric code model1 in
2 + 1d spacetime dimensions [59]. It is an exactly solv-
able model that resides in the deconfined phase of a ZN
quantum gauge theory. One way to motivate the toric
code Hamiltonian is by “Higgsing” a vector U(1) lattice
gauge theory down to a ZN theory. The U(1) gauge
group is reduced to ZN , causing the U(1) gauge charge
to become a ZN gauge charge, the U(1) magnetic flux
loop to become a ZN vortex, and the gapless gauge bo-
son (the photon) to become gapped [60]. The toric code
is an exactly solvable point in this Higgs phase of the
U(1) lattice gauge theory.

In this section, we investigate the rank-2 toric code,
a recent generalization of the toric code. We will first
review how its Hamiltonian can be obtained by Higgs-
ing the gauge field in a tensor U(1) lattice gauge the-
ory [50, 51, 57, 58]. We then introduce a position-
dependent excitation picture, from which we study the
excitations’ mobility, braiding statistics, symmetry prop-
erties and find the ground state degeneracy for general N .
In addition to it’s utility in this section, the anyon lattice
framework for the position-dependent excitations will be
crucial for developing a mutual Chern-Simons theory of
the rank-2 toric code in Section III A.

A. Higgsed U(1) Symmetric Tensor Gauge Theory
and its Excitations

1. Continuum Field Theory

Consider a rank-2 U(1) quantum gauge theory in the
continuum with a compact gauge field Aij(x) and conju-
gate electric field Eij(x). We work in 2+1d so the indices

1 Throughout this paper, the terminology “toric code” refers to
the general ZN version
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i, j ∈ {x, y}. Both of these are symmetric rank-2 quan-
tum tensor fields and satisfy the canonical commutation
relation[

Aij(x), Ekl (y)
]

= i
(
δkiδlj + δliδkj

)
δ (x− y) . (1)

We work consider the so-called scalar charge theory,
where the U(1) gauge charge density ρ is given by the
Gauss’s law

ρ(x) = ∂i∂jE
ij(x), (2)

where Einstein’s summation convention is assumed and
∂i ≡ ∂/∂xi. Another thoroughly studied symmetric ten-
sor gauge theory is the so-called vector charge theory,
where the gauge charge density is a vector field and sat-
isfies the Gauss’s law is ρi = ∂jE

ji [54], but in 2 + 1d
the scalar and vector charge theories are dual to one an-
other [57]. The Gauss’s law in Eq. (2) generates the gauge
transformation [61]

Aij(x)→ Aij(x) + ∂i∂jf(x), (3)

where f(x) is a general function. In light of this gauge
transformation, we define the components of the gauge-
invariant magnetic field as2

Bx(x) = ∂yA
xy(x)− ∂xAyy(x), (4a)

By(x) = ∂xA
xy(x)− ∂yAxx(x). (4b)

We note that in this form, given that A transforms like
a 2-tensor, the magnetic field B transforms as a vector.

Symmetric tensor gauge theories have attracted a vast
interests recently due to their matter excitations hav-
ing subdimensional mobility due to global conservation
laws [54]. For instance, the U(1) dipole moment xρ is
conserved:∫

xiρ =

∫
xi∂j∂kE

jk = b.t.−
∫
∂kE

ik = b.t., (5)

where “b.t.” stands for “boundary term.” Therefore,
allowed dynamical processes are only those that con-
serve the system’s dipole moment. So, an isolated gauge
charge cannot move while a two particle bound state can.
By itself, it is immobile and hence a fracton. Addition-
ally, the “magnetic angular momentum,” (xBy − yBx),
is conserved:∫

(xBy − yBx) =

∫
(x∂xA

xy − x∂yAxx,

− y∂yAxy + y∂xA
yy),

=

∫
(−Axy +Axy) + b.t. = b.t..

(6)

2 In the 3+1d scalar charge theory, the components of the magnetic
field B̃ij are defined as B̃ij = εiab∂aAbj , where εijk is the totally
antisymmetric Levi-Civita symbol. In the 2+1d theory, we define
the components of the vector magnetic field B in terms of B̃ as
Bx = −B̃zy and By = B̃zx, which leads to Eq. (4).

This is like the “angular momentum” conservation law
for the vector charge theory, which enforces vector gauge
charges to move only in the direction of their charge.
Therefore, U(1) magnetic flux loops can move only in
the direction of B and are therefore lineons.

2. Lattice Field Theory and Higgsing

To regularize the continuum theory on a lattice, we
discretized the two-dimensional space as a square lattice
while time remains a continuous variable. Throughout
this section, there will be objects acting on or residing
on the sites, edges, and plaquette of the square lattice.
To make the notation less cumbersome, we’ll label all of
these by a corresponding lattice site. For each lattice
site (x, y), we associate with it the plaquette whose cen-
ter is at (x+ 1

2 , y + 1
2 ), the horizontal edge whose center

is (x+ 1
2 , y), and the vertical edge whose center is at

(x, y + 1
2 ). Throughout this paper, lengths are measured

in units of the lattice constant and so the lattice constant
is unity.

In order to discretize the continuum tensor gauge
fields, first consider two U(1) quantum rotors residing
on each lattice site and one U(1) quantum rotor at each
plaquette. Because the 2-tensor fields are symmetric in
two spatial dimensions, they each contain three indepen-
dent operators. For a given lattice site, the operators
corresponding to the xx and yy components each act on
one of the rotors residing on the lattice site while the
operator corresponding to the xy component acts on the
rotor residing on the plaquette [62]. Therefore, the lat-
tice operator Axxx,y acts one one of the rotors at lattice site
(x, y), Ayyx,y acts on the other rotor on the lattice site, and
Axyx,y acts on the rotor on the plaquette corresponding to
(x, y). This can be motivated from the gauge transforma-
tion in Eq. (3) as Aij should act on the same location as
∂i∂j . The designations then follow directly from the fact
that the discretized differential operators ∂x∂x and ∂y∂y
are naturally associated with a lattice site while ∂x∂y is
naturally associated with a plaquette [63].

In the continuum theory, the canonical commuta-
tion relation Eq. (1) is manifestly symmetric in ex-
changing the indices of A or E. However, because of
the Kronecker delta functions, the components of the
tensor fields satisfy [Axxx,y, E

xx
x,y] = 2i, [Ayyx,y, E

yy
x,y] = 2i,

and [Axyx,y, E
xy
x,y] = i. Because Aij is compact, this im-

plies that while Exy has integer eigenvalues, Exx and
Eyy have only even integer eigenvalues. Following
Ref. [51], we make the transformation Exx → 2Exx

and Exyy → 2Eyy so the lattice variables all satisfy
[Aijx,y, E

ij
x′,y′ ] = iδx,x′δy,y′ and thus all components Eij

have integer eigenvalues. With this change, however,
from the discretized Gauss’s law the eigenvalues of the
ρ operator take only even integer eigenvalue. There-
fore, we also make the transformation ρ→ 2ρ. Then,
the eigenvalues of Eij and ρ are only integers and the
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lattice Gauss’s law becomes

ρx,y =Exxx+1,y+ Exxx−1,y− 2Exxx,y+ Eyyx,y+1 + Eyyx,y−1

−2Eyyx,y+Exyx,y−E
xy
x−1,y+Exyx−1,y−1−E

xy
x,y−1.

(7)

Additionally, the components of the lattice magnetic field
are given by

Bxx,y = (Axyx,y −A
xy
x,y−1)− (Ayyx+1,y −Ayyx,y), (8a)

Byx,y = (Axyx,y −A
xy
x−1,y)− (Axxx,y+1 −Axxx,y). (8b)

Having put the scalar charge U(1) gauge theory onto
a lattice, The U(1) gauge group is now Higgsed so all
charge-N excitations condense into the vacuum, reducing
the U(1) gauge group down to ZN [60]. This can be done
formally by introducing a charge-N matter field, includ-
ing a Higgs term in the U(1) lattice gauge theory Hamil-
tonian, and then considering the low-energy subspace in
the Higgs phase where the gauge field is constrained to
Aij = 2π(integer)/N [50, 51]. In this Higgs phase, there
are ZN lattice gauge fields Xi and ZN electric fields Zi
which are given by

X1 = eiAxx

, X2 = eiAyy

, X3 = eiAxy

, (9a)

Z1 = ωE
xx

, Z2 = ωE
yy

, Z3 = ωE
xy

, (9b)

where ω = e2πi/N . It follows that Xi and Zj are unitary
operators and satisfy ZjXi = ωδi,jXiZj , X

N
i = 1, and

ZNi = 1. Additionally, there is a ZN Gauss operator

Gx,y and ZN magnetic flux operators F
(x)
x,y and F

(y)
x,y that

are given by

Gx,y = ωρi , (10a)

F (x)
x,y = eiBx

x,y , (10b)

F (y)
x,y = eiBy

x,y . (10c)

In terms of the Xi and Zi operators, Gx,y, F
(x)
x,y , and F

(y)
x,y

are

Gx,y = (Z†1,x,y)2(Z†2,x,y)2Z3,x,yZ
†
3,x−1,yZ3,x−1,y−1

× Z†3,x,y−1Z1,x−1,yZ1,x+1,yZ2,x,y−1Z2,x,y+1,

(11a)

F (x)
x,y = X2,x,yX

†
2,x+1,yX3,x,yX

†
3,x,y−1, (11b)

F (y)
x,y = X1,x,yX

†
1,x,y+1X3,x,yX

†
3,x−1,y. (11c)

A graphical representation of these operators is shown in
Fig. 1.

Using these operators, the rank-2 toric code Hamilto-
nian is

HR2TC = −1

2

∑
x,y

(Gx,y + F (x)
x,y + F (y)

x,y + h.c.). (12)

It is straight-forward to confirm that G, F (x), and F (y)

are all mutually commuting for every lattice site. There-
fore, this model is exactly solvable and the ground state

Z1 Z2 Z3 X1 X2 X3

†
†

†
† †

†

G
†

†
†

†
F(y)

F(x)

FIG. 1. A graphical representation of the ZN Gauss operator
G and magnetic flux operators F (x) and F (y) contained in the
rank-2 toric code’s Hamiltonian (see Eq. (12)). The disks are
color-coded to represent Xi and Zi operators, according to the
legend. Furthermore, disks with a † represent the Hermitian
conjugate of the corresponding operator.

|vac〉 is the eigenstate of G, F (x), and F (y) with the max-
imum eigenvalue, which is 1.

Before moving on to discuss the excitations in this
model, we now consider lattice transformations and show
that H is invariant under the space group of the square
lattice. The space group is p4m and can be generated
by a 4-fold rotation about a lattice site C4, a mirror
reflection about a horizontal line that intersects lattice
sites Mx, and lattice translations. It is easy to see that
HR2TC is invariant under translations. To see that it
is invariant under the point group elements, first note
that in the U(1) theory, because Aij is a symmetric ten-
sor its components transform under C4 as Axxx,y → Ayy−y,x,

Ayyx,y → Axx−y,x, and Axyx,y → −A
xy
−y−1,x, and under Mx

as Axxx,y → Axxx,−y, Ayyx,y → Ayyx,−y, and Axyx,y → −A
xy
x,−y−1.

Therefore, according to Eq. (9a), the Xi operators trans-
form as

X1,x,y → X2,−y,x,

C4 : X2,x,y → X1,−y,x, (13a)

X3,x,y → X†3,−y−1,x,

X1,x,y → X1,x,−y,

Mx : X2,x,y → X2,x,−y, (13b)

X3,x,y → X†3,x,−y−1.

Because Eij is also a symmetric tensor, Zi transforms

in the same way as Xi. Therefore, G, F (x), and F (y)

transform like

Gx,y → G−y,x,

C4 : F (x)
x,y → F y−y,x, (14a)

F (y)
x,y → (F

(x)
−y−1,x)†,

Gx,y → Gx,−y,

Mx : F (x)
x,y → F

(x)
x,−y, (14b)

F (y)
x,y → (F

(y)
x,−y−1)†.
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Z1 Z2 Z3 X1 X2 X3

FIG. 2. Excitations in the rank-2 toric code can be excited
using the Xi and Zi operators and carry charge as defined
by Eq. (15). (Left) The Zi operators excite vector gauge

fluxes ~m = (m(x),m(y)). m(x) (m(y)) excitations reside on
horizontal (vertical) links, and a positive gauge flux pictorially
corresponds to a vector pointing in the +x (+y) direction.
(Right) The Xi operators excite gauge charges e, which we
represent as “+” and “−” signs on the lattice sites for positive
and negative charge, respectively.

Using this, it is easy to see that the Hamiltonian remains
unchanged by both C4 and Mx and therefore it is invari-
ant under all lattice transformation.

The many-body ground state satisfies the local con-

straints Gx,y = F
(x)
x,y = F

(y)
x,y = 1 at each lattice site. The

excited states are connected to the ground state by act-
ing Xi or Zi on |vac〉, which gives rise to violations of
the ground state constraints. Just like in the toric code
model, this corresponds to exciting gapped particles from
an artificial vacuum. Violations of the of the Gx,y = 1
constraint corresponds to exciting gauge charges, which
we’ll denote as e particles, whereas violations of the

F
(x)
x,y = 1 and F

(y)
x,y = 1 constrains correspond to exciting

gauge fluxes (vortices), which we denote as m(x) and m(y)

particles, respectively. We’ll denote the charge carried by
an excitation as the mathfrak font of the symbol used to
label the excitation. So, the gauge charge carried by ex,y
(an e particle at lattice site (x, y) ) is ex,y and the gauge

flux carried by m
(x)
x,y is m

(x)
x,y and by m

(y)
x,y is m

(y)
x,y. If it

appears strange to label the charge by the lattice site
it corresponds to, we note that this will be discussed in
greater detail throughout Section II B 1. Nonetheless, for
a general energy eigenstate |ψ〉, the amount of charge car-
ried by an excitation at lattice site (x, y) is determined
by the eigenvalue relations

Gx,y |ψ〉 = ωex,y |ψ〉 , (15a)

F (x)
x,y |ψ〉 = ωm(x)

x,y |ψ〉 , (15b)

F (y)
x,y |ψ〉 = ωm(y)

x,y |ψ〉 . (15c)

The symmetry properties of the charges can then be de-
termined from Eqs. (14a) and (14b). Indeed, transform-

ing Gx,y, F
(x)
x,y , and F

(y)
x,y reveal that ex,y, m

(x)
x,y, and m

(y)
x,y

transform under C4 and Mx as

ex,y → e−y,x,

C4 : m(x)
x,y → m

(y)
−y,x, (16a)

m(y)
x,y → −m

(x)
−y−1,x,

ex,y → ex,−y,

Mx : m(x)
x,y → m

(x)
x,−y, (16b)

m(y)
x,y → −m

(y)
x,−y−1.

The ex,y excitations naturally reside on lattice sites
and, like in the continuum theory before Higgsing, are
scalar gauge charges. However, m(x) and m(y) trans-
form into each other like the components of a vec-
tor. Because of this, we introduce the vector charge

~mx,y = (m
(x)
x,y,m

(y)
x,y), and consider m

(x)
x,y (m

(t)
x,y) to reside

on the horizontal (vertical) edge associated with the lat-
tice site (x, y)3. As components of a vector charge, pic-
torially we represent them as vectors, where a positive
charge m(x) (m(y)) is a vector pointing in the +x (+y)
direction. The six different types of elementary excita-
tions excited using Xi and Zi operators are shown in
Fig. 2.

B. Position-Dependent Excitations

In this section, instead of using the lattice operators
Xi and Zi in detail to study the excitations of the rank-2
toric code, we’ll instead consider the anyon lattice they
form. This will present a powerful picture where anyons
of the same species (for instance, both e excitations)
carry different gauge charge depending on their position.
This turns out to be a natural framework to understand
their mobility and braiding statistics. It also reveals how
the anyons couple with the lattice symmetries in a rich
way. Finally, this will act as a starting point for devel-
oping a Chern-Simons theory as a low-energy effective
theory for the rank-2 toric code in Section III A. We note
that throughout this section, we will not be assuming
periodic boundary conditions. Instead, their affect will
be investigate in Section II C.

1. The Anyon Lattice

In the rank-2 toric code, as was discussed Sec-
tion II A 2, there are three species of elementary exci-
tations: e and ~m = (m(x),m(y)). It is typically the case
that excitations of the same species carry the same gauge

3 Unlike the normal toric code, due to e excitations being particles
while ~m excitations are vectors, the rank-2 toric code lacks an
electric-magnetic duality.
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charge/flux, and so for each species of anyon there is only
one inequivalent anyon flavor. However, this is not gen-
erally true and the number of inequivalent elementary
excitations can be greater than the number of species.

The number of inequivalent elementary excitations can
be found by first considering the most general possibil-
ity where for every lattice site the e and ~m particles
carry different gauge charges and fluxes. Therefore, for
the rank-2 toric code this initial starting point is when
the gauge charges and fluxes satisfy ex1,y1 6= ex2,y2 and
~mx1,y1 6= ~mx2,y2 for (x1, y1) 6= (x2, y2). This means that
for an Lx × Ly size system, there are initially 3LxLy
inequivalent elementary excitations. By requiring that
gauge charge and flux is locally conserved by all pro-
cesses that excite e and ~m excitations, subsets of the

initial gauge charges/flux ex,y, m
(x)
x,y, and m

(y)
x,y will be-

come linearly dependent. As a consequence, when all
such equivalence relations are taken into account the ini-
tial general 3LxLy inequivalent elementary excitations
reduces to the actual number of inequivalent elementary
excitations.

This procedure is general and can be used for any topo-
logical order provided its fusion rules. For instance, in
the 2 + 1d toric code, the initial 2LxLy number of ele-
mentary excitations reduces to two: a single ZN gauge
charge and ZN gauge flux. And so, as is already known
in the 2 + 1d toric code, all charges and vortices carry
the same gauge charge and gauge flux, respectively, re-
gardless of their position on the lattice. However, for the
rank-2 toric code we’ll find that this is no longer the case.

There are six different ways to excite e and ~m particles
from the ground state in the rank-2 toric code, which are
the configurations shown in Fig. 2. All other ways to
locally excite excitations are combinations of these six
configurations. They can be translated into fusion rules.
Letting 1 denote the trivial excitation (the vacuum), for
every lattice site (x, y) there are three fusion rules involv-
ing gauge fluxes

1 = m
(x)
x−1,y ⊗ m̄(x)

x,y, (17a)

1 = m
(y)
x,y−1 ⊗ m̄(y)

x,y, (17b)

1 = m̄(x)
x,y ⊗ m̄(y)

x,y ⊗m
(x)
x,y+1 ⊗m

(y)
x+1,y, (17c)

and three fusion rules involving gauge charges

1 = ex−1,y ⊗ ēx,y ⊗ ēx,y ⊗ ex+1,y, (18a)

1 = ex,y−1 ⊗ ēx,y ⊗ ēx,y ⊗ ex,y+1, (18b)

1 = ex,y ⊗ ēx+1,y ⊗ ex+1,y+1 ⊗ ēx,y+1. (18c)

Here, we use the notation that, for instance, ē denotes
the anti-particle of e and so, by definition, they obey

the fusion rules 1 = ēx,y ⊗ ex,y, 1 = m̄
(x)
x,y ⊗m(x)

x,y, and

1 = m̄
(y)
x,y ⊗m(y)

x,y. These fusion rules define equivalence
relations between excitations. Particularly, that the com-
posite objects on the right-hand side Eqs. (17) and (18)
belong to the same topological superselection sector as
the trivial excitation 1. Instead of thinking about the

superselection sectors, we can equally view these as an
emergent conservation laws relating the charge and flux
carried by different excitations. Because the ground state
carries no charge and flux, these fusion rules therefore
give

m
(x)
x−1,y −m(x)

x,y = 0, (19a)

m
(y)
x,y−1 −m(y)

x,y = 0, (19b)

−m(x)
x,y −m(y)

x,y + m
(x)
x,y+1 + m

(y)
x+1,y = 0, (19c)

ex−1,y − 2 ex,y + ex+1,y = 0, (19d)

ex,y−1 − 2 ex,y + ex,y+1 = 0, (19e)

ex,y − ex+1,y + ex+1,y+1 − ex,y+1 = 0. (19f)

In what follows, we’ll treat these as recurrence relations
and recursively solve for the gauge charge and flux carried
by e, m(x), and m(y) at a general lattice site4.

Let’s first consider the equivalence relations Eqs. (19a)
and (19b). They imply that for every fixed value y that

m(x)
x1,y = m(x)

x2,y ∀ x1 and x2, (20)

and that for every fixed value x that

m(y)
x,y1 = m(y)

x,y2 ∀ y1 and y2. (21)

Therefore, all m(x) along the same horizontal line, or sim-
ilarly all m(y) along the same vertical line, carry the same
gauge flux. So, for determining the number of inequiva-
lent elementary excitations, we can restrict ourselves to

only having to consider gauge flux types m
(x)
0,y and m

(y)
x,0

since m
(x)
x,y = m

(x)
0,y for all x and m

(y)
x,y = m

(y)
x,0 for all y. Us-

ing this, the remaining equivalence relation for the gauge
fluxes, Eq. (19c), becomes

−m(x)
0,y −m

(y)
x,0 + m

(x)
0,y+1 + m

(y)
x+1,0 = 0.

Solving for m
(x)
0,y+1 and setting x = 0 gives a recurrence re-

lation for m
(x)
0,y in terms of m

(x)
0,y−1 and the y-independent

m
(y)
0,0 and m

(y)
1,0. Recursively solving this for m

(x)
0,y gives

m
(x)
1,y = y m

(y)
0,0 + m

(x)
0,0 − y m

(y)
1,0.

Similarly, solving instead for m
(y)
x+1,0 and setting y = 0

gives a recurrence relation for m
(y)
x,0 in terms of m

(y)
x−1,0 and

4 Alternatively, one could view Eq. (19) as finite differences,
which in the continuum limit become the differential equa-
tions ∂xm(x) = 0, ∂ym(y) = 0, and ∂ym(x) + ∂xm(y) = 0 for
the gauge fluxes and ∂2xe = 0, ∂2ye = 0, and ∂x∂ye = 0 for
the gauge charge. Then, it is clear that their position-
dependency are m(x)(y) = C1 + y C2, m(y)(x) = C3 − x C2,
and e(x, y) = C4 + x C5 + y C6, where Ci are all constants. This
is exactly what we find solving these recursively.
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the x-independent m
(x)
0,0 and m

(x)
0,1 . Recursively solving

this for m
(y)
x,0 gives

m
(y)
x,0 = x m

(x)
0,0 + m

(y)
0,0 − x m

(x)
0,1 .

These expressions are in terms of m
(x)
0,0 , m

(y)
0,0, m

(x)
0,1 , and

m
(y)
1,0, which are not linearly independent as they’re re-

lated to one another by Eq. (19c) with x = y = 0. Ex-

pressing m
(y)
1,0 in terms of the other three, we are left with

only m
(x)
0,0 , m

(y)
0,0, and m

(x)
0,1 . It’s convenient to introduce

the gauge fluxes

mx = m
(x)
0,0 , my = m

(y)
0,0, g = m

(x)
0,1 −m

(x)
0,0 , (22)

and then the above results yield that the gauge flux car-
ried by the excitations m(x) and m(y) associated with
lattice site (x, y) are

m(x)
x,y = mx + y g, (23a)

m(y)
x,y = my − x g. (23b)

The same type of recursive analysis can be done for the
e particles. Indeed, the equivalence relation provided by
Eq. (19d) give a recurrence relation for ex,y in terms of
ex+1,y and ex+2,y. Similarly, Eq. (19e) give a recurrence
relation for ex,y in terms of ex,y+1 and ex,y+2. Solving
these two recurrence relation independently give

ex,y = x e1,y + (1− x) e0,y,

ex,y = y ex,1 + (1− y) ex,0.

Plugging one of these into the other yields an expression
for ex,y in terms of e0,0, e0,1, e1,0, and e1,1. However,
these four gauge charges are linearly dependent, related
to another another by Eq. (19f) at x = y = 0. Expressing
e1,1 in terms of the other three and introducing the gauge
charges

e = e0,0, px = e1,0 − e0,0, py = e0,1 − e0,0, (24)

the expression for ex,y simplifies to

ex,y = e + x px + y py. (25)

At first glance, Eqs. (23) and (25) appear to imply
that all excitations at different lattice sites carry different
gauge charges/fluxes, which would imply that there is an
extensive number of anyons flavors. For a theory with
the fusion rules Eqs. (17) and (18) where e and ~m are,
for instance, U(1) gauge charges/fluxes, this is indeed
true. However, this is not the case for the rank-2 toric
code because the e and ~m particles carry ZN charges and
fluxes, respectively, and therefore obey the fusion rules

1 = (ex,y)N , 1 = (m
(x)
x,y)N , and 1 = (m

(y)
x,y)N . In terms

of the basis charges and fluxes, this means that they all
satisfy N mx = 0, N my = 0, etc. Therefore, Eqs. (23)

𝔢
𝔭y𝔭x 𝔪x 𝔤

N = 3
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1 0

11

1
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1

2

1

1

0 111110

100 101

1
1

1 0

11

1
0

1

N = 2

𝔪y
𝔤

e m(x) m(y)

FIG. 3. The gauge charge and gauge flux carried by excita-
tions in the rank-2 toric code depend on the particle’s position
(see Eqs. (23) and (25)). For the ZN theory, this causes the
unit cell of the spatial lattice to become size N × N . Here,
we show examples of the unit cell for when (left) N = 2 and
when (right) N = 3. The three types of gauge charges carried
by e particles (e, px, py) are graphically represented by the
color-coded thirds of the circles on each lattice site. Similarly,
the three gauge flux types ~m particles carry (mx, my, g) are
graphically represented by the color-coded halves of the rect-
angles on the links of the lattice. The integers labeling both
represent the number basis gauge charges and fluxes a single
elementary excitation at that location carries.

and (25) satisfy

ex,y = ex+N,y = ex,y+N , (26a)

m(x)
x,y = m

(x)
x,y+N , (26b)

m(y)
x,y = m

(y)
x+N,y, (26c)

and so the number of anyon flavors is independent of
system size. There are N flavors of m(x) particles, N
flavors of m(y) particles, and N2 flavors of e particles,
each carrying different combinations of gauge flux and
gauge charge, respectively. This causes the unit cell of
the square lattice to become enlarged, now being N ×N
lattice sites in size. Fig. 3 shows examples of the unit
cell for N = 2 and N = 3 with the lattice sites and edges
labeled by the gauge charge/flux that an excitation there
carries.

From the above analysis, the m(x) and m(y) excitations
carry three different types of gauge flux (mx, my, and g)
while the e excitations carry three different types of gauge
charge (e, px, and py). Using this, we can now intro-
duce the anyon lattice that describes the excitations. For
abelian anyons, the anyon lattice A is an abelian group
under fusion. Anyons can be represented as vectors and
the fusion of anyons correspond to vector addition. In
this representation, the basis vectors spanning the anyon
lattice correspond to the basis gauge fluxes and charges.

Every vector ~̀ ∈ A corresponds to a unique topological
superselection sector. Therefore, for the rank-2 toric code
A = Z6

N , and a generic excitation is represented by the
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anyon lattice vector ~̀ as

~̀= `1 ~mx + `2 ~my + `3 ~g + `4 ~e + `5 ~px + `6 ~py,

.
=

`1`2
`3

⊕
`4`5
`6

 ,
(27)

It’s important to note that because `i ∈ ZN , the ele-
mentary excitations represented as anyon lattice vector
are

~̀
m

(x)
x,y

=

 1
0

y mod N

⊕
0

0
0

 , (28)

~̀
m

(y)
x,y

=

 0
1

−x mod N

⊕
0

0
0

 , (29)

~̀
ex,y

=

0
0
0

⊕
 1
x mod N
y mod N

 (30)

Finally, we note that because the anyon lattice is
spanned by three ZN gauge charges and three ZN gauge
fluxes, the rank-2 toric code in 2+1d possesses Z3

N topo-
logical order [50, 51]. However, we emphasize that be-
cause it is Z3

N topological order in the presence of the
square lattice symmetries, this is really symmetry en-
riched topological (SET) order. As we’ll see in Sec-
tion II B 4 and throughout later parts of the paper, this
plays an important role in understanding the rank-2 toric
code. For instance, the lattice symmetry elements per-
mute the anyon flavors, causing the topological degener-
acy to be extremely sensitive to the system’s size.

2. Pseudo-Subdimensional Particles

In general, an excitation can only reside on lat-
tice sites/edges that are compatible with the gauge
charge/flux it carries. Consequentially, an excitation’s
mobility can be affected if the gauge charge/flux it car-
ries depends on its position. For instance, an e excita-
tion at (x1, y1) can only move to the lattice site (x2, y2) if
ex1,y1 = ex2,y2 or else local conservation of gauge charge
will be violated. Because this emergent conservation law
arises from the fusion rules, this equivalently means that
in order for a local operator to exist that hops an exci-
tation from (x1, y1) to (x2, y2), then it must be the case
that ex1,y1 = ex2,y2 . Here, we consider the mobility of e,

m(x), and m(y) excitations using the position-dependent
anyon-lattice picture, compare them to the continuum
field theory of Section II A 1 where they correspond to
subdimensional particles, and discuss their string opera-
tors found in Refs. [50, 51, 57].

First, consider the m(x) and m(y) excitations. Let’s
denote the direction orthogonal (parallel) to their super-
script as the transverse (longitudinal) direction. So, for

instance, the transverse (longitudinal) direction for m(x)

is the y (x) direction. The mobility of m(x) and m(y) in
their longitudinal directions is determined by Eqs. (20)
and (21), respectively. Because all edges in their longitu-
dinal direction are associated with the same gauge flux,
the shortest distance m(x) and m(y) can hop by in their
longitudinal direction is by one lattice spacing. On the
other hand, the mobility of m(x) and m(y) in their trans-
verse directions is determined by Eq. (26b) and (26c),
respectively. Only edges at a minimum N lattice spaces
away in their orthogonal direction are associated with
the same gauge flux, and therefore the shortest distance
m(x) and m(y) excitations can hop by in their transverse
direction is N lattice spaces.

As for the e particles, their mobility is determined by
only Eq. (26a). The closest distance two lattice site asso-
ciated with the same gauge charge are is N lattice spac-
ing. Therefore the shortest distance e particles can hop
by in both the x and y direction is N lattice spaces.

In addition to the elementary excitations e, m(x), and
m(y), this analysis can be applied to composite exci-
tations. Indeed, particular nontrivial excitations made
of the e particles and ~m particles carry a position-
independent gauge charge and flux and can therefore
move freely. For instance, consider the m vector “dipole”
corresponding to the lattice site (x, y):

gx,y = m̄(x)
x,y ⊗m

(x)
x,y+1. (31)

From Eq. (23), as represented on the anyon lattice, it al-
ways carries the position-independent gauge flux gx,y = g
and therefore its mobility is unrestricted. As for compos-
ite excitations made up of e particles, from Eq. (25) the
e x-dipole

p(x)
x,y = ēx,y ⊗ ex+1,y (32)

always carries the position-independent gauge charge

p
(x)
x,y = px. Similarly, the e y-dipole

p(y)
x,y = ēx,y ⊗ ex,y+1 (33)

always carries the position-independent gauge charge

p
(y)
x,y = py. Therefore, both p(x) and p(y) are completely

mobile.
The mobility of e, m(x), and m(y) excitations are

closely connected to the conservation laws of the contin-
uum U(1) tensor gauge theory given by Eqs. (5) and (6).
Indeed, these cause the U(1) gauge charges (the e parti-
cles before Higgsing) to be fractons and U(1) magnetic
flux loops (the m(x) and m(y) particles before Higgsing)
to be lineons. The subdimensional behavior of the U(1)
case is also captured by the position-dependent gauge

charge/flux anyon picture. The expressions for ex,y, m
(x)
x,y,

and m
(y)
x,y given by Eqs. (23) and (25) apply indepen-

dent to whether or not the gauge charges/fluxes are ZN
charges/fluxes as their derivation never used the fact that
N -charges and N -fluxes condense. Then, for the U(1)
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case the expression for ex,y is different for each lattice
site, and therefore U(1) e particles cannot move (hence,

they’re fractons). As for m
(x)
x,y and m

(y)
x,y in the U(1) case,

because of Eqs. (19a) and (19b) they can still move by one
lattice spacing in their longitudinal direction, but cannot
move in their transverse direction (hence they’re lineons).
Upon Higgsing, since the U(1) charges and fluxes become
ZN charges and fluxes, the equivalence relation (26) ap-
plies which allows a process where excitations hop by N
lattice sites in the direction they previously could not
move.

While the position-dependent excitation picture recov-
ers the mobility of e and ~m excitations and their com-
posite objects, the above analysis only concludes that
there exists local string operators. However, the struc-
ture of these string operators is important in determining
the low-energy dynamics. Indeed, when subdimensional
particles condense in a Higgs phase, they can gain mo-
bility only if all of the additional excited particles that
usually prevent their movement are perfectly absorbed
into the condensate [49–53]. As such, the lattice string
operators can be rather complicated. Indeed, the string
operators that hops an e particle from (x, y) to (x+N, y)
or (x, y +N), respectively, are [50, 51, 57]

W (e,x)
x,y =

N−1∏
i=0

(
X†1,x+i,y

)i
,

W (e,y)
x,y =

N−1∏
i=0

(
X†2,x,y+i

)i
,

(34)

and the string operators that hop m(x) and m(y) by N
lattice spaces in their transverse directions are

W (m(x),y)
x,y =

N−1∏
i=0

Z3,x,y+i

(
Z1,x,y+iZ

†
1,x+1,y+i

)i
,

W (m(y),x)
x,y =

N−1∏
i=0

Z3,x+i,y

(
Z2,x+i,yZ

†
2,x+i,y+1

)i
.

(35)

On the other hand, the string operators that hop ex-
citations in directions they’re always mobile are much
simpler. Indeed, the string operators to hop m(x) and
m(y) in their longitudinal directions by one lattice site
are simply

W (m(x),x)
x,y = Z†2,x+1,y,

W (m(y),y)
x,y = Z†1,x,y+1.

(36)

Similarly, the string operators that hop the e dipoles p
(x)
x,y

and p
(y)
x,y by one lattice site are

W (p(x),x)
x,y = X1,x,y,

W (p(x),y)
x,y = X3,x,y,

W (p(y),x)
x,y = X3,x,y,

W (p(y),y)
x,y = X2,x,y,

(37)

and the ones for the m vector dipole gx,y are

W (g,x)
x,y = Z2,x+1,yZ

†
2,x+1,y+1,

W (g,y)
x,y = Z3,x,y+1Z1,x+1,y+1Z

†
1,x,y+1Z

†
3,x,y.

(38)

The rank-2 toric code Hamiltonian Eq. (12) does not
have dynamics, but by adding off-diagonal terms we can
consider the corresponding low-energy effective Hamilto-
nian describing the induced dynamical processes. The
leading order terms for small off-diagonal elements will
consists of quantities made of the fewest operators. The
minimum number of operators used to hop an e particles
by N lattice sites is

Le(N) =

{
N2/4, N is even

(N2 − 1)/4, N is odd
, (39)

where as the minimum number of operators to hop m(x)

and m(y) in their transverse directions, respectively, is

Lm(N) = N + 2Le(N). (40)

For N > 2, the leading order dynamical processes are
~m particles moving in one direction and p dipoles mov-
ing freely. In the low-energy effective Hamiltonian, the e
particles are therefore pseudo-fractons while the ~m par-
ticles are pseudo-lineons, and therefore there are pseudo-
subdimensional (subdimensional at low-energies) parti-
cles in 2 + 1d.

3. Position-Dependent Braiding Statistics

An interesting consequence of the e and ~m particles
carrying position dependent gauge charge and flux is
that their mutual braiding statistics become position-
dependent. While the position dependency of braiding-
statistics can be inferred directly from the string opera-
tors [57], the result seems rather magical. However, it be-
comes much more intuitive when understood as a conse-
quence of anyons from different lattice sites carrying dif-
ferent gauge charge/flux. Furthermore, considering the
excitations’ braiding statistics will also be useful later on
in Section III A when we develop a mutual Chern-Simons
theory as the low-energy effective field theory for the sys-
tem.

The elementary excitations e, m(x), and m(y) are all
bosons and therefore have trivial self-statistics. How-
ever, their nontrivial mutual statistics make them abelian
anyons. Indeed, braiding exe,ye counterclockwise around

either m
(x)
xm,ym or m

(y)
xm,ym will cause the many-body wave

function to pick up a phase that depends on the initial
coordinates (xe, ye) and (xm, ym). The phase accumu-
lated from this can be found by first finding the braiding
statistics between excitations carry the basis vectors of
the anyon lattice. Then, using the expressions for ex,y,

m
(x)
x,y, and m

(y)
x,y in Eqs. (23) and (25), the braiding statis-

tics between any elementary or composite excitations can
be found.
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First recall that as described by Eq. (22), the basis

gauge fluxes carry the gauge flux of m
(x)
0,0 , m

(y)
0,0, and

m
(x)
0,1 and from Eq. (24) the basis gauge charges carry the

gauge charge of e0,0, e1,0, and e0,1. Therefore, finding
the mutual braiding statistics for the anyon lattice ba-
sis amounts to finding the mutual statistics between the

m
(x)
0,0 , m

(y)
0,0, and m

(x)
0,1 and e0,0, e1,0, and e0,1. Using the

string operators it is straight forward to find their mu-
tual statistics from the relations ZjXi = ωδi,jXiZj where
ω ≡ exp[2πi/N ].

Indeed, using the e particle’s string operators given

by Eq. (34), braiding e0,0 around m
(x)
0,1 , and e1,0 around

m
(x)
0,1 or m

(y)
0,0 all cause the many-body wave function to

pick up the phase ω due to the relation XiZ
†
i = ωZ†iXi.

However, braiding e0,1 around m
(x)
0,0 instead causes the

many-body wave function to pick up the phase ω−1 due

to the relation X†i Z
†
i = ω−1Z†iX

†
i . From these, we can

find the braiding statistics between excitations carrying
the basis gauge charges and fluxes, which is summarize
in table I.

From the braiding statistics shown in table I and us-
ing Eqs. (23) and (25), it is straight forward to find the
mutual statistics between e and ~m particles at any site.
Indeed, braiding a single exe,ye particle around a sin-

gle m
(x)
xm,ym counter clockwise, the accumulated phase is

ω−(ye−ym). Therefore if there are `e units of exe,ye gauge

charge and `m(x) units of m
(x)
xm,ym gauge flux, the total

phase is

exp
[
iθe,m(x)(xe, ye, xm, ym)

]
= ω−`e`m(x) (ye−ym). (41)

Similarly, braiding a single exe,ye around a single m
(y)
xm,ym ,

the accumulated phase is ωxe−xm . Therefore, given that
there are `e units of exe,ye gauge charge and `m(y) units

of m
(y)
xm,ym gauge flux, the total phase becomes

exp
[
iθe,m(y)(xe, ye, xm, ym)

]
= ω`e`m(y) (xe−xm). (42)

Because ωN = 1, the position-dependent phase only de-
pends on the excitations’ relative positions in the N ×N
lattice unit cell. We note that from these expression, the
braiding statistics of any composite excitations can also
be readily found. Furthermore, these phases are in agree-
ment with the results found in Refs. [57, 58], validating
our expressions for the position-dependent gauge charge
and flux carried by the elementary excitations.

4. Lattice Transformations Effect on the Anyon Lattice

So far, we have seen that from the fusion rules, the ele-
mentary excitations’ vector representations in the anyon
lattice depends on their position. This restricted their
mobility and enriched them with position-dependent
braiding statistics. Furthermore, because the anyon lat-
tice is coupled to the direct lattice, this also means that

Braiding Statistics mx my g

e 1 1 ω

px 1 ω 1

py ω−1 1 1

TABLE I. The ex,y, m
(x)
x,y, and m

(y)
x,y excitations of the rank-

2 toric code have nontrivial mutual statistics and pick up

phase factor from braiding ex,y around m
(x)
x,y or m

(y)
x,y. The e

excitations carry basis gauge charges e px, and py and them(x)

and m(x) excitations carry basis gauge flux mx, my, and g (see
Eqs. (23) and (25)). This table shows the phases picked up
from braiding excitations carrying a single unit of each gauge
charge/flux, with ω ≡ exp[2πi/N ].

lattice transformations induce transformations on the
anyon lattice. We’ll investigate these transformations in
this section, further revealing the rich mixing between
symmetry and the topological order in the rank-2 toric
code.

The space group for the square lattice can be generated
by a 4-fold rotation, a mirror reflection, and translations
in the x and y directions. Under the point group part
of the space group, the excitations charge transform ac-
cording to Eq. (16). While under the two translations,
only their coordinates of the gauge charge/flux is changed

(e.g., Ty : ex,y → ex,y+1 or Tx : m
(y)
x,y → m

(y)
x+1,y). Be-

cause lattice transformations change the position of exci-
tations, they also induce a transformation on the gauge
charge/flux it carries.

Consider the 4-fold rotation C4 that rotates the lattice
counterclockwise by π/2 about the lattice site (0, 0). Ac-
cording to Eq.(16a), C4 transforms the gauge flux m(x)

and m(y) excitations carry as

C4 : m(x)
x,y → m

(y)
−y,x = my + y g,

C4 : m(y)
x,y → −m

(x)
−y−1,x = −mx − xg.

However, considering Eq. (23), this is equivalent to start-

ing with m
(x)
x,y and m

(y)
x,y and instead of transforming (x, y),

transforming the basis gauge fluxes as

mx → my,

C4 : my → −mx,
g→ g.

(43)

As for the e particles, under the rotation C4 the gauge
charge carried by ex,y transforms as

C4 : ex,y → e−y,x = e− y px + x py.

Comparison to Eq. (25), the transformation is equivalent
to starting with ex,y and transforming the gauge charge
basis as

e→ e,

C4 : px → py,

py → −px.
(44)
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Therefore, a rotation of the lattice indeed induces a trans-
formation on the anyon lattice.

Consider a generic excitation represented by the anyon

lattice vector ~̀, given by Eq. (27). Then, from Eq. (43)
and Eq. (44), the lattice rotation C4 induces a transfor-

mation on ~̀ represented as

C
(A)
4 : ~̀→

−`2 mod N

`1
`3

⊕
 `4
−`6 mod N

`5


The anyon lattice vector’s components are `i ∈ ZN and
therefore in order for the transformed ` to remain in Z6

N ,
the coefficients picking up a minus sign have to be modN .
This makes the transformation on the anyon lattice vec-
tor nonlinear. Nevertheless, we note that because any in-
tegers a and b satisfy −(−a mod b) mod b = a mod b,

this correctly satisfies (C
(A)
4 )4 = 1

The calculation and reasoning can be repeated for
the other three transformations that generate the space
group of the square lattice. Indeed, for a mirror reflection
about the horizontal line y = 0, the induced transforma-
tion on the anyon lattice is represented by

M (A)
x : ~̀→

 `1
−`2 mod N

−`3 mod N

⊕
 `4

`5
−`6 mod N


Note that this correctly satisfies (M

(A)
x )2 = 1. As for

translations in the x and y direction by one lattice spac-

ing, the matrices acting on ~̀ are represented by

T (A)
x : ~̀→

 `1
`2

`3 − `2 mod N

⊕
 `4
`4 + `5 mod N

`6

 ,

T (A)
y : ~̀→

 `1
`2

`1 + `3 mod N

⊕
 `4

`5
`4 + `6 mod N

 .

(45)

As a consequence of Eq. (26), both T
(A)
x and T

(A)
y trans-

formations satisfy (T
(A)
x )N = (T

(A)
y )N = 1, which can

easily be confirmed from the above expression.
All of the symmetry elements that generate the

square lattice space group act on the anyon lat-
tice vectors as non-linear transformations. However,
for odd N , if we choose the range of `i to be
−N−1

2 ,−N−1
2 + 1, · · · , 0, · · · , N−1

2 , then we can drop

mod N in the above transformations of C
(A)
4 and M

(A)
x .

In this case, C
(A)
4 and M

(A)
x are linear transformations

in the 6-dimensional anyon lattice. This implies that the
lattice space group transformations C4 and Mx can be re-
alized as a linear transformations on the six U(1) gauge
fields in the effective Chern-Simons theory discussed in
Section III A.

But for the lattice translations, we cannot find a range

of `i’s to linearize T
(A)
x and T

(A)
y . This implies that that

the lattice translations cannot be realized as transforma-
tions on the six U(1) gauge fields in the effective Chern-
Simons theory in Section III A. On the other hand, if the
mod N equivalence of the U(1) gauge charges could be
implemented in the effective Chern-Simons theory, then
the lattice translations could be realized as transforma-
tions on the U(1) gauge fields.

One may try to linearize the space group transforma-
tion on anyon types by enlarging the number of basis
anyon lattice vectors. If the anyon lattice vector space is
spanned by the number of indistinguishable elementary
excitations, so there are N2 gauge charge anyon lattice
basis vectors and 2N gauge flux basis vectors, the lattice
transformations would act on the anyon lattice vectors
linearly. However, this is not a legal basis because, as
we saw in Section II B 1, these anyon lattice vectors are
linearly dependent.

As discussed in Section II B 1, the rank-2 toric code has
Z3
N topological order that is enriched by the square lat-

tice’s space group. In Section I, we reviewed how there
are unconventional SET orders in which symmetry el-
ements additionally exchange inequivalent anyon types.
The transformations on the anyon lattice vectors above
describe these nontrivial automorphisms.

It is interesting to note that the fact symmetry ele-
ments exchange inequivalent anyon types is not explicit
from the rank-2 toric code Hamiltonian. For instance,
Wen’s plaquette model [27, 28], Z2-charges live on A pla-
quettes while Z2-fluxes live on B plaquettes, is in an un-
conventional SET phase. From the Hamiltonian, it is ex-
plicit that any lattice transformations that exchange A
and B plaquettes (e.b., translations on by lattice spacing)
will also exchange these anyon types. Here, lattice sym-
metries exchange inequivalent flavors of ZN -charges or
inequivalent flavors of ZN -fluxes, which are, respectively,
excited by the same local operators. Their inequivalen-
cies arise from their nontrivial fusion rules, which are in-
fluenced by the conservation laws in the continuum tensor
gauge theory: the fusion rules for exciting e particles are
the simplest ones that conserve dipole moment, Eq. (5),
and the fusion rules for exciting ~m particles are the sim-
plest ones that conserve “magnetic angular momentum,”
Eq. (6).

C. Global Anyon Equivalence Relations

So far, we have considered effects arising from local op-
erators (from the fusion rules studied) that were indepen-
dent of the system’s boundary conditions. In this section,
we now consider the system with periodic boundary con-
ditions. In particular, how the presence non-local opera-
tors wrapped around the nontrivial cycles of the torus af-
fect the excitations in the rank-2 toric code. These global
operators will give rise to new equivalence relations be-
tween anyon types. Indeed, for an Lx×Ly square lattice,
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periodic boundary conditions require that gauge charges
and fluxes satisfy the global equivalence relations

ex,y
pbc
= ex+Lx,y

pbc
= ex,y+Ly ,

~mx,y
pbc
= ~mx+Lx,y

pbc
= ~mx,y+Ly

.
(46)

We use the notation
pbc
= and terminology “global” to de-

note that the equivalence relation is satisfied only given
periodic boundary conditions and affects only non-local
operators that wind around the system. Using Eqs. (23)
and (25), these yield

Lx px
pbc
= 0, Ly py

pbc
= 0,

Lx g
pbc
= 0, Ly g

pbc
= 0.

(47)

Both local and global operators can condense N el-
ementary excitations into the vacuum, arising from the
property that XN

i = ZNi = 1. This too, of course, applies
for the nontrivial excitations p(x), p(y), and g. Eq. (47)
reveals that there exists operators that wind around the
system in the x direction that can cause Lx of the p(x)

and Lx of the g excitations to condense. And similarly,
that there exists operators that wind around the system
in the y direction that can cause Ly of the p(y) and Ly of
the g excitations to condense. We will only be concerned
with the exact form of these and similar non-local opera-
tors when it is required, and instead focus on the general
consequences of their existence using the equivalence re-
lations.

The above discussion implies that global operators can
potentially condense fewer than N charges into the vac-
uum. Indeed, the number of charges can be found by a re-
peated condensing algorithm. For instance, consider the
simultaneous equivalence relations for p(x), which we’ll
call level zero of the procedure:

Level 0: N px = 0, Lx px
pbc
= 0.

Assuming Lx > N , consider Lx of the px charges. While
according to Eq. (47) this can be condensed into the vac-
uum, let’s use that fact that N px = 0 to instead con-
dense only N of them. Because Lx of the p(x) anyons
were equivalent to the trivial excitation, (Lx − N) of
them must also be equivalent to the trivial excitation

and satisfy (Lx −N) px
pbc
= 0. Therefore, the simultane-

ous equivalence relations of level zero are updated to level
one:

Level 1: N px = 0, (Lx −N) px
pbc
= 0.

If (Lx −N) > N we’ll progress to level 2a of the proce-
dure by condensing N more of the px charges, leading
to

Level 2a: N px = 0, (Lx − 2N) px
pbc
= 0.

On the other hand, if (Lx −N) < N , we instead start
from N px = 0 and condense (Lx −N) of the px charges.

This gives the other possibility for level two of the pro-
cedure

Level 2b: (2N − Lx) px
pbc
= 0, (Lx −N) px

pbc
= 0.

This repeated condensation procedure continues by sub-
tracting the smaller integer from the larger integer of the
two equivalence relations until they yield the same equiv-
alence relation. Indeed, at this final level of the procedure

Final Level: Neff px
pbc
= 0, Neff px

pbc
= 0.

However, this is exactly Euclid’s algorithm for finding the
greatest common divisor (gcd) between two integers [64].
Therefore, given Lx and N in level zero, the final level
will always have Neff = gcd(Lx, N), and so the two simul-

taneous equivalence relations N px = 0 and Lx px
pbc
= 0

imply the single one gcd(Lx, N) px
pbc
= 0.

The same condensing procedure can be repeated for
the py charge and the g flux. The only different is that
for the g flux, there are now three constraints that need to

be simultaneously considered: N g = 0, Lx g
pbc
= 0, and

Ly g
pbc
= 0, and therefore the repeated condensation pro-

cedure will instead give gcd(Lx, Ly, N). Therefore, by
taking into account that the elementary excitations are
ZN charges and fluxes, Eq. (47) simplifies to

gcd(Lx, N) px
pbc
= 0, (48a)

gcd(Ly, N) py
pbc
= 0, (48b)

gcd(Lx, Ly, N) g
pbc
= 0, (48c)

Local operators do not have access to the equivalence
relations of Eq. (48) and therefore still view px and py

as ZN -charges and g as an ZN -flux. So, the anyon lat-
tice A to local operators is still spanned by three ZN -
charges and three ZN -fluxes. However, non-local op-
erators utilizing the periodic boundary conditions can
induces processes that condense gcd(Lx, N) of the px

charges, gcd(Ly, N) of the py charges, and gcd(Lx, Ly, N)
of the g charges. Therefore, these global operators per-
ceive the anyon lattice instead as

A pbc
= Z3

N⊗Zgcd(Lx,N)⊗Zgcd(Ly,N)⊗Zgcd(Lx,Ly,N). (49)

The subgroup of the anyon lattice corresponding to only
gauge charges according to non-local operators is

Ae
pbc
= ZN ⊗ Zgcd(Lx,N) ⊗ Zgcd(Ly,N),

while the subgroup of only gauge fluxes according to non-
local operators is

Am
pbc
= Z2

N ⊗ Zgcd(Lx,Ly,N).

In this remainder of this section, we will consider two
particularly interesting consequences of this result.
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1. Non-Local String Operators

In Section II B 2, we found that as a consequence of
the equivalence relations in Eq. (26), there exists local
operators that hop e particles by N lattice spaces in the x
and y directions and that hop m(x) and m(y) particles by
N lattice spaces in their transverse directions. Similarly,
as a result of the global equivalence relations in Eq. (48),
using Eqs. (23) and (25) implies the equivalence relations

ex,y
pbc
= ex+gcd(Lx,N),y

pbc
= ex,y+gcd(Ly,N), (50a)

m(x)
x,y

pbc
= m

(x)
x,y+gcd(Lx,Ly,N), (50b)

m(y)
x,y

pbc
= m

(y)
x+gcd(Lx,Ly,N),y. (50c)

Therefore there exists non-local operators that hop e par-
ticles in the x direction by gcd(Lx, N) sites and in the
y direction by gcd(Ly, N), and that hop m(x) and m(y)

particles gcd(Lx, Ly, N) lattice sites in their transverse
directions, respectively5. Physically, these involve com-
plicated processes where the excitations using local oper-
ators and winding around the system such that their net
displacement is as described above.

For an e particle, when Li (i = x or y) is a multiple of
N , hopping e around the system once in the i-direction
and returns to its position. Thus, as verified by Eq. (50a),
in this case global operators can still only hop e by a net
N lattice sites. However, When Lx or Ly is not a multiple
of N , after winding around the system once in that direc-
tion, the e particle does not return to where it started.
Instead, it arrives at a different lattice site within the
N × N unit cell gcd(Li, N) sites away. Hence the non-
local string operator that hops e by gcd(Li, N) lattice
sites is just the local string operator wrapped around the
system once.

The non-local string operators that hop an m(x) or
m(y) particle by gcd(Lx, Ly, N) in their transverse direc-
tions are much more complicated. It is constructed using
a four-step sequence of operators that excite ~m particles
from vacuum and hop them throughout the system until
the final operator is the desired non-string operator for
hopping by gcd(Lx, Ly, N) sites. The sequence uses a re-
sult from elementary number theory known as Bézout’s
identity, which states that the gcd of two integers a1 and
a2 can be written as [64]

gcd(a1, a2) = b1a1 + b2a2.

There are an infinite number of “Bézout coefficients” b1
and b2, but one is always a non-negative integer and the

5 In the presence of periodic boundary conditions, the braiding
statistics between a gauge charge and gauge flux can be come
quite complicated. By utilizing the periodic boundary condi-
tions, particles can braiding and pick up different phases than
those described by the expressions in Section II B 3.

other a non-positive integer6. Using that

gcd(Lx, Ly, N) = gcd( gcd(Lx, N), gcd(Ly, N) )

and applying Bézout’s identity gives the decomposition

gcd(Lx, Ly, N) = bx gcd(Lx, N) + by gcd(Ly, N). (51)

In constructing the string operator, we’ll use two the min-
imal pairs of Bézout coefficients (b±x , b

∓
y ), which are de-

fined as the smallest positive (b+x,y) and negative (b−x,y)
Bézout coefficients. The recipe for the string operator
that hops m(y) by gcd(Lx, Ly, N) sites in the x direction
is as follows (see Fig. 4 for a visualization of each step in
the produce).

(1) First, using the fusion rule Eq. (17c), excite the
trivial excitation

m̄(x)
x,y ⊗ m̄(y)

x,y ⊗m
(x)
x,y+1 ⊗m

(y)
x+1,y

from the vacuum. The next three steps will involve hop-
ping these four excitations throughout and around the
system. Regardless of its position, we’ll denote the exci-

tation m̄
(x)
x,y as simply m̄(x), m

(y)
x+1,y as m(y), etc, without

any risk for ambiguity.

(2) The composite object m
(x)
x,y+1 ⊗m

(y)
x+1,y can move

freely along the x̂+ ŷ direction. Indeed, from Eq. (23),
it carries gauge flux

m
(x)
x,y+1 + m

(y)
x+1,y = mx + my + (y − x) g

which in invariant under translations in the x̂+ ŷ direc-

tion. The second step is to hop m
(x)
x,y+1 ⊗m

(y)
x+1,y in the

x̂+ ŷ direction (b+y gcd(Ly, N)− 1) times.

(3) The excitation m(y) can always hop by one lat-
tice site in the y direction, and using a non-local oper-
ator m(x) can hop in the y direction by gcd(Ly, N) lat-
tice spaces. The latter is for the same reason that with
periodic boundary conditions an e particle can hop by
gcd(Li, N) in the i direction. The third step is to hop
m(y) in the −ŷ direction (b+y gcd(Ly, N)− 1) times, and

to hop m(x) by gcd(Ly, N) lattice sites b+y times in the
−ŷ direction.

(4) The fourth, and final, step is to first hop m(x) by
one lattice site (b+y gcd(Ly, N)− 1) times in the −x̂ di-
rection such that it stops at site (x, y) and annihilates
with m̄(x). Then hop m(y) by gcd(Lx, N) lattice sites in
the −x̂ direction (−b−x ) times. Because b−x and b+y are the

Bézout coefficients of the decomposition Eq. (51), m(y)

will stop at position (x+ gcd(Lx, Ly, N), y), a distance

gcd(Lx, Ly, N) away from m̄(y).

6 Given a pair of Bézout coefficients (b1,b2) for the
integers a1 and a2, all other pairs are given by(
b1 − n a2

gcd(a1,a2)
, b2 + n a1

gcd(a1,a2)

)
, where n ∈ Z.
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(x + gcd(Lx, Ly, N ), y)

1

2

(x, y)

(x + b+
y gcd(Ly, N ),

y + b+
y gcd(Ly, N ))

(x + b+
y gcd(Ly, N ), y)

3

4

FIG. 4. In the presence of periodic boundary conditions, mx

and my excitations can hop in the y and x directions, respec-
tively, by gcd(Lx, Ly, N) lattice sites. This string operator is
complicated, but can be constructed using a four-step recipe,
as described in the main text. The top panel shows the first
two steps, the middle panel shows the third step, and the bot-
tom panel shows the fourth step of constructing this string
operator for m(y). Relevant lattice sites are labeled once but
color coded throughout the panels to avoid cumbersome la-
beling, and b+y is a Bézout coefficient satisfying Eq. (51)

This recipe creates a string operator that hops m(y)

from (x, y) to (x+ gcd(Lx, Ly, N), y). The string opera-

tor that hops m(x) from (x, y) to (x, y + gcd(Lx, Ly, N))
is created in a similar fashion. In the recipe, steps 1 and
2 involve only local operations that could have been done
in the absence of periodic boundary conditions. It’s im-
portant to note, however, that in order to hop m(x) by
gcd(Ly, N) lattice sites in the y direction in step 3 (when
gcd(Ly, N) 6= N) this string operator winds around the

system. Similarly hopping m(y) by gcdLx, N lattice sites
in the x direction in step 4 (when gcd(Lx, N) 6= N) in-
volves an operator that winds around the system. Indeed,
hopping m(y) in the x direction by gcd(Lx, Ly, N) lat-

tice sites requires winding m(y) around the system (−b−x )

times in the x direction and winding a m(x) particle b+y
times around the system in the y direction. Similarly,
hopping m(x) in the y direction by gcd(Lx, Ly, N) lat-

tice sites requires winding m(x) around the system (−b−y )

times in the y direction and winding a m(y) particle b+x
times around the system in the x direction.

2. Ground State Degeneracy

Due to the global equivalence relations, non-local oper-
ators using periodic boundary conditions identify possi-
bly fewer anyon types than local operators, depending on
the system size. An effect of this is that the ground state
degeneracy (GSD) becomes sensitive to the system size.
In topologically ordered phases, degenerate ground states
are distinguished by Wilson loop operators defined on
the system’s topologically nontrivial cycles and are sub-
ject to the low-energy constraint that defines the ground
states subspace. So, because these Wilson loops distin-
guish possibly fewer anyon types, there can be fewer Wil-
son loop types and therefore the GSD can potentially be
smaller than the naive guess.

On a torus, the number of ground states is equal
to the number of topological excitations — the num-
ber of superselection sectors — distinguishable by global
Wilson loops [24, 30, 65]. The anyon lattice accord-
ing to local operators is A = Z6

N and therefore local
operators distinguish N6 superselection sectors. How-
ever, according to global operators, the anyon lattice is
given by Eq. (49) and therefore global operators distin-
guish N3 gcd(Lx, N) gcd(Ly, N) gcd(Lx, Ly, N) superse-
lection sectors. Because the Wilson loop operators per-
ceive the latter number of sectors, the GSD is

GSD = N3 gcd(Lx, N) gcd(Ly, N) gcd(Lx, Ly, N). (52)

As shown in Fig. 5a, for fixed N the GSD takes multiple
different values in the range N3 ≤ GSD ≤ N6 depending
on the system size. Furthermore, the number of unique
GSD values does not change monotonically with N , as
shown in Fig. 5b. Instead, it depends on the number
of divisors of N , which is always a minimum when N is
a prime number. Indeed, when N is prime, gcd(Li, N)
can either be 1 or N , and therefore there are always only
three different values of the GSD when N is a prime: N3,
N4, or N6.

The extreme sensitivity of the GSD to the system’s
size prevents a well-defined continuum limit from exist-
ing. Indeed, changing the system size by a single lattice
spacing, which is seemingly inconsequential after taking
the continuum limit, leads to drastically different num-
ber of ground states. Therefore, any low-energy effective
field theory must make explicit mention to the lattice
spacing and number of lattice sites (which we’ll indeed
find to be true in Section III C). This can be interpreted
as a manifestation of UV/IR mixing [66, 67], where the
low-energy (IR) physics cannot be decoupled from the
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FIG. 5. The ground state degeneracy (GSD) of the rank-2
toric code is highly sensitive to the system’s size (see Eq. (52)).
(a) For a fixed N , the GSD’s value will change in the range
N3 ≤ GSD ≤ N6 as the system size Lx×Ly is changed. In the
plot, for each value of N , the log base N of all possible GSD
values are plotted. (b) While there is always a finite number
of different unique GSD values, the number them does not
change monotonically with N and is very chaotic. However,
the number of GSD values is always at its minimum when N
is a prime, and the GSD only takes the values N3, N4, or N6.
In the plot, the dashed lines are drawn to guide the eye.

high-energy (UV) physics. Here, low (high) energy ref-
erees to energies much smaller (larger) than the anyons’
energy gaps. The UV/IR mixing arises because the anyon
lattice and spatial lattice are coupled. The anyon lattice
describes gapped excitations which are details of the UV
theory. On the other hand, the system’s size is only de-
tectable by non-local (very long-wavelength) operators
and is therefore an IR property. The global anyon equiv-
alence relations relate the number of distinct anyon types
(a UV property) to the system size (an IR property) and
therefore a change in IR induces a change in the UV.

We emphasize that the GSD’s sensitivity to the system
size is a consequence of the global equivalent relations
Eq. (47), which themselves were consequences of the fact
that the anyons gauge charge and flux is position depen-
dent. However, while not framed in the framework on
lattice-dependent excitations, similar results have been

seen in other lattice models. For instance, the GSD of
Wen’s Z2 plaquette model on a torus can either be 2
or 4, depending on if the system’s linear size is even
or odd [27, 28]. Similarly, the GSD of the color code
model [29, 30] is also sensitive to the system size of a
hexagonal lattice based on whether or not the lattice
is globally tricolorable. Furthermore, recently Seiberg
et al. have found the GSD of several different models to
depend on the the greatest common divisor between the
system size and N [66, 67]. In particular, as a conse-
quence of possessing a ZN global dipole symmetry, the
1 + 1d “ZN tensor gauge theory” they study is closely re-
lated to the gauge charge sector of the rank-2 toric code.
Indeed, ignoring the y-direction in our above analysis,
the gauge-charge sector of the anyon lattice would be
spanned by e and px. Non-local operators perceive e as
a ZN -charge and px as a Zgcd(Lx,N)-charge. Therefore,
there are N gcd(Lx, N) globally distinguishable anyons
made out of only these gauge charges, which is the same
number as the GSD found in the 1 + 1d “ZN tensor gauge
theory” studied in Ref. [67]. It would be interesting to
see if the results from all of these mentioned models could
also be understood in terms of position-dependent exci-
tations.

III. LOW-ENERGY EFFECTIVE FIELD
THEORY

In Section II, we have found and studied the anyon
lattice that describes the rank-2 toric code model. Us-
ing this vector space formalism, we have investigated the
mobility of gapped excitations and their corresponding
string operators, the position-dependency of their braid-
ing statistics, and the ground state degeneracy on a torus.
The ground state degeneracy, given by Eq. (52) and plot-
ted in Fig. 5, was extremely sensitive to the system’s size.
One may then wonder what, if any, long-wavelength ef-
fective field theory could have the rank-2 toric code as its
UV regularization. In this section, we now develop such
an effective theory that describes the topological order in
the rank-2 toric code. The effective action we find reveals
the UV/IR mixing that was hinted at in Section II C 2:
the IR theory’s coupling constants explicitly depends on
the number of unit cells in the UV regularized lattice.

A. Mutual U6(1) Chern-Simons Theory

Mutual Chern-Simons theory is a powerful theoretical
tool used to describe and characterize abelian topological
orders in 2 + 1d [68]. It acts as a long-wavelength effec-
tive field theory for energies below the excitations’ gaps,
described by the 2 + 1d Minkowski spacetime action

SMCS =
Kij

4π

∫
dt d2x εµνρa(i)

µ ∂νa
(j)
ρ + . . . , (53)
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where K is a symmetric integer matrix, εµνρ is the an-
tisymmetric Levi-Civita symbol, and the ellipsis denotes
higher-order symmetry allowed terms, such as Maxwell
terms. To connect this mutual Chern-Simons action with
the 2+1d abelian topological order, we first introduce a

compact U(1) 3-vector gauge field a(i) = (a
(i)
0 ,a(i)) for

each basis gauge charge and flux. We can then find
the matrix elements of K using the fact that the braid-
ing statistics between two particles corresponding to the
gauge fields a(i) and a(j) is given by θij = 2π(K−1)ij .

For example, ZN topological order is described by
an effective U2(1) mutual Chern-Simons theory, where
one gauge field corresponds to the ZN -charge and the
other to the ZN -flux, and the K matrix is given by
K = Nσx (where σx is the Pauli-x matrix) [27, 69].
The rank-2 toric code is instead described by a U6(1)
mutual Chern-Simons theory. We’ll consider the gauge
fields (a(1), a(2), a(3)) corresponding to the three flavors
of gauge flux (mx, my, g) and (a(4), a(5), a(6)) corre-
sponding to the three independent flavors of e particles
(e, px, py). Then, from the mutual statistics shown in
table I, we can solve for the matrix elements of K−1, and
upon taking its inverse yields

K =

(
03 C

C> 03

)
C =

 0 0 −N
0 N 0

N 0 0

 , (54)

where 03 is a 3 × 3 matrix of all zeros. Note that this
correctly is an integer matrix7. Furthermore, from the
form of the K matrix, this mutual Chern-Simons theory
is equivalent to adding three mutual Chern-Simon terms
describing ZN topological order. This agrees with the
conclusion made in Section II B 1 and Refs. [50, 51] that
the rank-2 toric code has Z3

N topological order.
However, the K matrix alone does not fully character-

ize the topological order, the symmetry transformations
and how they act on the gauge fields are also impor-
tant. Indeed, for example, when translations act on the
gauge fields such that they all satisfy periodic bound-
ary conditions, the ground state degeneracy (GSD) on
a torus is given by |detK| [68, 71]. From the above
K matrix, this would give that the GSD is always N6.
However, in Section II C 2, we found that this is only
true when both Lx and Ly are multiples of N . When
this is the case, the transformations acting on an anyon
lattice vector induced by lattice translations, Eq. (45),

satisfy (T
(A)
x )Lx = 1 and (T

(A)
y )Ly = 1. Therefore, only

when gcd(Lx, N) = gcd(Ly, N) = N do the gauge fields
all indeed satisfy periodic boundary conditions.

When this is not the case, this means that transla-
tions act on the gauge fields nontrivially, causing them

7 Here the matrix elements of K are integers. When this is not the
case, we note that the K matrix can still be determined from the
excitations’ self and mutual-statistics, but auxiliary gauge fields
must be included into the theory (see appendix C of Ref. [70]).

to satisfy modified boundary conditions and therefore the
GSD is no longer |detK|. Indeed, for instance, when Lx
is not a multiple of N , (T

(A)
x )Lx is no longer the identity

and translations around the system induce an automor-
phism on the anyon lattice. Similar is true for transla-
tions around the system in the y direction. This then
causes the gauge fields to satisfy twisted periodic bound-
ary conditions [26], of the general form

cxi a
(i)(x+Lx, y)+cyi a

(i)(x, y+Ly)+cia
(i)(x, y) = 0, (55)

where sum over i is implied and cxi , cyi , and ci are integers.
To find these twisted boundary conditions, we need to

know how translations act on the gauge fields. How-
ever, lattice transformations act on the anyon lattice
vectors nonlinearly, which makes such a task nontriv-
ial. Typically, for linear transformations, one finds how
the gauge fields transform by considering a generic anyon
lattice vector transforming under some linear transfor-

mation ~̀→ U~̀. Assuming that U corresponds to a sym-
metry of the theory, the gauge fields then transform as
~a→ (U−1)>~a, where (~a)i = a(i). This is because in the
field theory, a generic excitation is described by the term

(~̀·~aµ)jµ in the effective Lagrangian density, and ~a trans-

forms in such a way so ~̀ · ~aµ remains unchanged. Addi-
tionally, using this transformation of ~a, in order for the
mutual Chern-Simons term to remain unchanged by the
transformation, we find the familiar result that the K
matrix must transform as K → UKU>. Because the
anyon-lattice transforms non-linearly, these familiar re-
sults using linear algebra no longer apply8.

While we cannot find how the lattice transformations
act on the gauge fields of the Chern-Simons theory, we
can still find an effective action using the mutual Chern-
Simons theory with K matrix (54). In what follows, we’ll
do so by considering the Holonomies of the torus in terms
of these gauge fields, from which we find the zero modes
of the gauge fields. Then, plugging in the gauge fields in
terms of their zero modes into the mutual Chern-Simons
theory yields an effective low-energy action.

B. Holonomies of the Torus

The topological (global) contributions of the gauge
fields are their zero modes, which are the holonomies of
the torus. On a torus, for each gauge field there are two
holonomies, so for the U6(1) mutual Chern-Simons the-
ory written down in the previous section there are a total
of twelve holonomies. These twelve holonomies act as a
basis from which all other holonomies can be generated.
We can find them by first considering gauge-invariant

8 It would be interesting if there exists a non-abelian Chern-Simons
theory describing the same topological order but for which lattice
transformations act on the gauge fields linearly.
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line-integrals along the nontrivial cycles of the torus. Be-
cause the gauge fields satisfy complicated twisted peri-
odic boundary conditions, Eq. (55), we’ll see that in or-
der to be gauge-invariant some of these line integrals will
be integrating around the torus multiple times.

Physically, the holonomies are Wilson loops, corre-
sponding to exciting particles and anti-particles and hop-
ping the particles around the system until they return
to where they started and can annihilate with the anti-
particles back into the ground state. On the lattice, when
excitations hop by N lattice sites at a time they need to
go around the system multiple times to return to the
lattice site they started. In the field theory, having a
particle return back to where it started is trivial since
we’re in the continuum limit. However, whether or not it
can annihilate back into vacuum is subtle because of the
twisted boundary conditions. One way to approach this

is by considering how (T
(A)
x )nxLx and (T

(A)
y )nxLy act on

the anyon lattice vectors for integers nx and ny. While

we do not know how T
(A)
x and T

(A)
y transform the gauge

fields, we can instead find the smallest nx and ny such

that (T
(A)
x )nxLx and (T

(A)
y )nxLy are the identity. If they

act as the identity on anyon lattice vectors, this is the one
case we do know how they act on the gauge fields: also
as the identity. This amounts to ignoring the details of
the twisted boundary conditions and instead finding out
how many times the holonomy needs to go around the
system in order to close (for the particles to annihilate
back into vacuum).

Indeed, let’s first consider the gauge charge sector. Re-
call that in Section II B 2, the non-trivial excitations p(x)

and p(y), whose gauge charge corresponds to the gauge
fields a(5) and a(6) respectively, can hop by one lattice
site in every direction. In terms of the anyon lattice
vectors, this means that the vector whose components
are `ipx = δi,5 (for the px excitation) or `ipy = δi,6 (for

the py excitation) are unchanged under lattice transla-
tions Eq. (45). Therefore, lattice transformations do not
change the gauge charge carried by p(x) and p(y) and
consequentially act on the gauge fields a(5) and a(6) as
the identity. Thus, these gauge fields satisfy the typical
periodic boundary conditions

a(5)(x+ Lx, y, t) = a(5)(x, y + Ly, t) = a(5)(x, y, t),

a(6)(x+ Lx, y, t) = a(6)(x, y + Ly, t) = a(6)(x, y, t).

Their four holonomies therefore need to go around the
system only once to close and are given by

Γ7(y, t) =

∮ Lx

0

dx a(5)
x (x, t, y),

Γ8(x, t) =

∮ Ly

0

dy a(5)
y (x, t, y),

Γ9(y, t) =

∮ Lx

0

dx a(6)
x (x, t, y),

Γ10(x, t) =

∮ Ly

0

dy a(6)
y (x, t, y).

The other two holonomies from the gauge charge
sector can be found by consider a particle carrying e
gauge charge, which corresponds to the gauge field a(4).
However, now the corresponding anyon lattice vector,
`ie = δi4, transforms non-trivially. Indeed, going around
the system nex times in the x-direction or ney times in the
y-direction, this anyon lattice vector transform as(

T (A)
x

)ne
xLx

: ~̀
e → ~̀

e + (nexLx mod N) ~̀px ,(
T (A)
y

)ne
yLy

: ~̀
e → ~̀

e + (neyLy mod N) ~̀py .

Therefore, in order for the holonomy in terms of the cor-
responding gauge fields to close, the number of times it
winds around the system must satisfy neiLi mod N = 0.
For example, for the x-direction, this implies that

nexLx − kN = 0

for any integer k. The smallest value k can take such
that nex is an integer is k = Lx/ gcd(Lx, N) and there-
fore nex = N/ gcd(Lx, N). Using that the least-common
multiple (lcm) between two integers a and b satisfies
lcm(a, b) = |ab|/ gcd(a, b), the gauge field a(4) satisfies
the boundary condition

a(4)(x+ lcm(Lx, N), y, t) = a(4)(x, y, t).

Similarly, in y direction a(4) must also satisfy the bound-
ary condition

a(4)(x, y + lcm(Ly, N), t) = a(4)(x, y, t).

Therefore, the two holonomies involving a(4) are

Γ11(y, t) =

∮ lcm(Lx,N)

0

dx a(4)
x (x, y, t),

Γ12(x, t) =

∮ lcm(Ly,N)

0

dy a(4)
y (x, y, t).

The other six holonomies come from the gauge flux
sector. Similar to the p(x) and p(y) excitations in the
gauge charge sector, the lattice vector for the g excitation
does not change under lattice translations. Therefore, the
corresponding gauge field, a(3), satisfies normal periodic
boundary conditions

a(3)(x+ Lx, y, t) = a(3)(x, y + Ly, t) = a(3)(x, y, t),

from which we introduce the two holonomies

Γ1(y, t) =

∮ Lx

0

dx a(3)
x (x, t, y),

Γ2(x, t) =

∮ Ly

0

dy a(3)
y (x, t, y).

Similarly, acting the lattice translations on the anyon lat-
tice vectors of mx and my in their longitudinal direc-
tions leaves them unchanged. And so, their correspond-
ing gauge fields satisfy periodic boundary conditions in
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the x and y-directions, respectively:

a(1)(x+ Lx, y, t) = a(1)(x, y, t),

a(2)(x, y + Ly, t) = a(2)(x, y, t).

Their corresponding holonomies are

Γ3(x, t) =

∮ Ly

0

dy a(2)
y (x, t, y),

Γ4(y, t) =

∮ Lx

0

dx a(1)
x (x, t, y).

The last two holonomies come from m(x) and m(y)

going around the system in their transverse directions.
Consider going around the system nmx or nmy times in
both transverse directions:(
T (A)
y

)nm
y Ly

: ~̀
m(x) → ~̀

m(x) + (nmy Ly mod N) ~̀g,(
T (A)
x

)nm
x Lx

: ~̀
m(y) → ~̀

m(y) + (−nmx Lx mod N) ~̀g.

Notice that both transformations add ~̀g. Therefore, the

most general holonomy will include hopping both m(x)

in the y-direction and m(y) in the x-direction. Indeed,
letting

~̀′
m(x) =

(
T (A)
y

)nm
y Ly

~̀
m(x) ,

~̀′
m(y) =

(
T (A)
x

)nm
x Lx

~̀
m(y) ,

we have that

~̀′
m(x)+~̀′m(y) = ~̀

m(x)+~̀m(y)+(nmy Ly−nmx Lx mod N))~̀g.

So, in order for this holonomy to close, we must have
nmy and nmx satisfy nmy Ly − nmx Lx mod N = 0, which
implies that for some integer k that

nmy Ly − nmx Lx − kN = 0. (56)

We are looking for two holonomies from which all
other holonomies involving m(x) and m(y) moving in
their transverse directions can be generated. They
are defined by two different “basis” values of nmy and

nmx : (nm1
x , nm1

y ) and (nm2
x , nm2

y ). For the first pair,

(nm1
x , nm1

y ), we are free to have one of the components

be zero, for instance nm1
x = 0. Then, this reduces to

the one dimensional version we’ve considered previously,
so (nm1

x , nm1
y ) = (0, N/ gcd(Ly, N)). This then gives the

holonomy.

Γ5(x, t) =

∮ lcm(Ly,N)

0

dy a(1)
y (x, y, t).

Because nm1
x = 0, nm2

x must be the smallest possible
value to ensure all holonomies can be generated. Rewrit-
ing Eq. (56) as

nmx Lx−gcd(Ly, N)

(
nmy

Ly
gcd(Ly, N)

− k N

gcd(Ly, N)

)
= 0,

the term in parenthesis is some integer in terms of the
variables we’re solving for, and so like before the smallest
nmx that satisfies this is

nm2
x =

gcd(Ly, N)

gcd(Lx, gcd(Ly, N))
=

gcd(Ly, N)

gcd(Lx, Ly, N)
.

Plugging this back into Eq. (56), nm2
y is given by

nm2
y =

lcm(Lx, gcd(Ly, N)) + kN

Ly
, (57)

where k is any integer for which nm2
y is also an inte-

ger. There does not appear to be a closed form for
such a k in terms of generic Lx, Ly, and N . Never-
theless, from the theory of linear Diophantine equations,
because gcd(Ly, N) divides lcm(Lx, gcd(Ly, N)) there in-
deed exists a solution [64]. Therefore, from here on out
we will leave our expressions in terms of the integer nm2

y .
From the above discussion we therefore have that the
final holonomy is given by

Γ6(x, y, t) =

∮ lcm(Lx,gcd(Ly,N))

0

dx a(2)
x (x, y, t)

+

∮ nm2
y Ly

0

dy a(1)
y (x, y, t).

C. Effective Action and Ground State Degeneracy

Having written down the Mutual Chern Simons the-
ory and the corresponding Holonomies of the torus, we
can now find an effective theory describing the degenerate
ground state manifold on the rank-2 toric code. The low-
energy local constraint defining the ground state |vac〉 of
the mutual Chern-Simons theory is given by the Gauss-

law constraint9 K0i ε
jk∂ja

(i)
k |vac〉 = 0, which implies

that ε0jk∂ja
(l)
k |vac〉 = 0. We note that upon quantizing

the theory, the operator ε0jk∂ja
(l)
k is the generator the

familiar U(1) gauge transformation a
(i)
k → a

(i)
k + ∂kf

(i).
Considering only states within the low-energy subspace of

the Hilbert space, the gauge fields satisfy ∂xa
(i)
y = ∂ya

(i)
x

at all points in spacetime. This causes constraints to arise
on the gauge-invariant line-integrals Γi. For instance,
consider Γ1(y, t) and differentiate it with respect to y.
Pulling the partial derivative inside the integral and us-
ing the Gauss law constraint, we find that ∂yΓ1(y, t) = 0.
Using similar manipulations, it’s easy to show that all Γi
are position independent and only depend on t. Then,
under the influence of this constraint, the 12 holonomies
of the torus are constrained to Γi(x, y, t) = ϕi(t).

9 By Gauss-law constraints, we mean the local constraints which
the 0-components of a act as Lagrange multipliers to enforce. Or,
equivalently for the mutual Chern-Simons theory, the equations

of motion for a
(i)
0 .
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Because this is true for any gauge-field configura-
tion, we can express the components gauge fields in
terms of these space-independent 12 holonomies. For the
holonomies integrating around space only once (Γi for
i = 1, 2, 3, 4, 7, 8, 9, 10) this give the familiar results [72]

a(3)
x (x, y, t) =

ϕ1(t)

Lx
, a(3)

y (x, y, t) =
ϕ2(t)

Ly
,

a(5)
x (x, y, t) =

ϕ7(t)

Lx
, a(5)

y (x, y, t) =
ϕ8(t)

Ly
,

a(6)
x (x, y, t) =

ϕ9(t)

Lx
, a(6)

y (x, y, t) =
ϕ10(t)

Ly
,

a(2)
y (x, y, t) =

ϕ3(t)

Lx
, a(1)

x (x, y, t) =
ϕ4(t)

Ly
.

For the holonomies that can wind around the system mul-
tiple times (Γi for i = 5, 6, 11, 12), we find that

a(4)
x (x, y, t) =

ϕ11(t)

lcm(Lx, N)
, a(4)

y (x, y, t) =
ϕ12(t)

lcm(Ly, N)
,

a(1)
y (x, y, t) =

ϕ5(t)

lcm(Ly, N)
,

a(2)
x (x, y, t) =

N ϕ6(t)− nm2
y gcd(Ly, N) ϕ5(t)

N lcm(Lx, gcd(Ly, N))
.

These expressions for the gauge fields in terms of the
holonomies are defined up to some pure gauge fluctua-
tions, which we do not include. The part we do show is
independent of space, giving the topological part of the
gauge fields and acting as their zero-momentum modes.
Lastly, we emphasize that because in a compact gauge
theory the low-energy observables are Wilson loop am-
plitudes Wi = eiϕi , the holonomies ϕi are all 2π periodic
phases.

Plugging in this expressions to the mutual Chern-
Simons theory, we get an effective theory of ground state
in terms of the holonomies (zero modes of gauge fields)
described by the action

Seff =
bij

2π

∫
dt ϕi

dϕj
dt

. (58)

Here, b is a 12 × 12 antisymmetric matrix given by

b =

(
06 B

−B> 06

)
, (59)

where 06 is a 6×6 matrix of zeros and the integer matrix
B is

B =



0 0 0 0 0 Ny
0 0 0 0 −Nx 0

−N 0 0 0 0 0

0 0 0 −N 0 0

0 −nm2
y Nxy Ny 0 0 0

0 NNxyN
−1
y 0 0 0 0


. (60)

For conciseness in the matrix B we have denoted

Nx ≡ gcd(Lx, N),

Ny ≡ gcd(Ly, N),

Nxy ≡ gcd(Lx, Ly, N).

Seff describes a particle moving on a 12-torus in a mag-
netic field described by the two form bij .

Using the effective theory, we can now see if it re-
produces the ground state degeneracy found from the
anyon lattice calculation in Section II C 2. Because the
Wilson loop amplitudes are the only observables at low-
energy, the number of ground states is given by size
of the smallest faithful representation of the nontrivial
commutation relations satisfied by Wi. Quantizing the
effective theory, from the canonical commutation rela-
tion

[
bijϕi/2π, ϕj

]
= i (where i is summed over but j

is not), we find that the commutation relations between
holonomies is [ϕi, ϕj ] = 2πi(b−1)ij . From this, the alge-
bra satisfied by Wilson loops operators is therefore given
by

WiWj = e−2πi(b−1)ijWjWi.

The dimension of the smallest representation is given by
the Pfaffian of b [71], and therefore the ground state de-
generacy is GSD = |pf(b)|. Computing the Pfaffian, we
find that

GSD = N3 gcd(Lx, N) gcd(Ly, N) gcd(Lx, Ly, N), (61)

exactly agreeing with the result Eq. (52) found from the
anyon lattice. Note that despite the variable nm2

y appear-
ing in the matrix B, it does not affect the GSD.

The action Seff of Eq. (58) describes the long-
wavelength properties of the SET order in the rank-2
toric code, yet the number of ground states depends on
details from the lattice (the number of lattice sites, Lx
and Ly). This arises because the effective action’s cou-
pling constants are explicitly dependent on these micro-
scopic parameters, and thus we see the UV/IR mixing
directly. The structure of these coupling constants are a
consequence of the structure of the holonomies found in
Section III B. Therefore, from the point of view of field
theory, the UV/IR mixing is due to the twisted bound-
ary conditions satisfied by the gauge fields, which forced
the holonomies to integrate around the system a num-
ber of times dependent on the microscopic parameters
in order to be gauge invariant. And finally, similar to
the understanding of UV/IR mixing from the anyon lat-
tice point of view, this was determined by how lattice
translations act on anyon lattice vectors, and hence the
gauge fields. Therefore, microscopically, the UV/IR mix-
ing emerges due to the interplay between the lattice’s
translation symmetries and the long-range entanglement
pattern in the many body states of the rank-2 toric code.
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IV. CONCLUSION

In this paper, we have built off the work initiated in
Refs. [50, 51, 57] and studied an exactly solvable point
of a Higgsed symmetric tensor gauge theory in 2 + 1d
known as the ZN rank-2 Toric code. This model has un-
conventional symmetry enriched topological (SET) order,
meaning that the enriched symmetries permute inequiv-
alent anyon types in addition to acting on them projec-
tively. We found that this enforces anyons of the same
species to have a spatially dependent flavor index based
on the different gauge charge/flux they carry. Using this,
we investigated their mobility, position-dependent braid-
ing statistics, and how the lattice transformations are
realized on the anyon lattice. This allowed us to find the
ground state degeneracy on a torus for general N , which
revealed the presence of UV/IR mixing. Then, using the
basis charges and fluxes of the anyon lattice, we devel-
oped a mutual Chern-Simons theory from which we found
a low-energy effective action describing the SET order of
the rank-2 toric code. This low energy theory on a torus
reproduced the ground state degeneracy and explicitly
showed the presence of microscopic details in its coupling
constants, and hence the aforementioned UV/IR mixing.

There are many interesting follow-up questions. The
first few are in the context of the rank-2 Toric code model.
It is a very rich model due to how the lattice symmetries
couple to the topological order, and it would be interest-
ing to explore their interplay further. For instance, the
symmetry fractionalization patterns [13] arising could be
rich and exciting to understand. Furthermore, upon con-
densing anyons, since the anyons are position-dependent,
not only would the topological order change [73] but some
of the lattice symmetries would also spontaneously break.
Studying these lattice-symmetry breaking patterns from
condensing topological excitations would be interesting
too. Additionally, because excitations have directions
which they can only hop by greater than one lattice site,
it would also be interesting to study the effect of extrin-
sic lattice defects, which would act as non-abelian exci-
tations [28, 74–78].

The second set of follow up questions are in the con-
text of fracton topological order. The unconventional
SET order in the rank-2 Toric code model is reminiscent

of fracton topological order. Therefore, it would be inter-
esting to see if the ideas presented here could be applied
to a model with genuine fracton topological order. For
example, could emergent conservation laws arising from
the fusion rules be used to find the position-dependent
gauge charge/flux in a model with fracton topological or-
der, as we did in Section II B 1 for the rank-2 toric code?
In doing so, we found that despite there beingN2+2N in-
equivalent elementary excitations, there were fewer types
of gauge charge and flux: only six basis charges/fluxes.
A model with fracton topological order would start off
with an extensive number of inequivalent elementary ex-
citations, but its likely that by using the emergent con-
servation laws, one would end up with a basis including
a sub-extensive number of charges/fluxes. From this ba-
sis, assuming the results from conventional topological
order apply, it becomes quite obvious that the ground
state degeneracy should scale sub-extensively with the
system’s size. Furthermore, it’s an open question for
whether or not there exists an effective quantum field
theory that describes the low-energy physics of fracton
topological order [49, 66, 67, 79–84]. From the position-
dependent excitations point of view, there would be
a sub-extensive number of corresponding Chern-Simons
gauge fields, which is closely in line with the thinking of
the infinite Chern-Simons theory developed in Ref. [70].
Additionally, such a framework could open up the avenue
to consider fracton topological order in terms of S and
T matrix formalism [85], which could possibly be stud-
ied in the thermodynamic limit in which they would be
infinitely dimensional matrices. However, how one could
extract the mutual statics data required remains an open
question.
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