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It was recently suggested that the topology of magic-angle twisted bilayer graphene’s (MATBG) flat bands
could provide a novel mechanism for superconductivity distinct from both weakly-coupled BCS theory and the
d-wave phenomenology of the high-Tc cuprates. In this work, we examine this possibility using a density matrix
renormalization group (DMRG) study of a model which captures the essential features of MATBG’s symmetry
and topology. Using large scale cylinder-DMRG calculations to obtain the ground state and its excitations as a
function of the electron doping, we find clear evidence for superconductivity driven by the binding of electrons
into charge-2e skyrmions. Remarkably, this binding is observed even in the regime where the unscreened
Coulomb repulsion is by-far the largest energy scale, demonstrating the robustness of this topological, all-
electronic pairing mechanism.

A prerequisite for superconductivity is the binding of
charge-e fermions into bosonic charge-2e Cooper pairs1. This
requires an attractive interaction between two fermions which
carry the same charge, and consequently must overcome their
natural tendency to stay apart due to Coulomb repulsion. Con-
ventional lore dictates that these charge carriers are electrons,
and that the attraction is mediated by low-energy bosonic col-
lective modes of lattice (phonons) or electronic (critical fluc-
tuations or Goldstone modes) origin1–4. However, quantum
materials with topologically non-trivial band structures can
intertwine spin and charge degrees of freedom, leading to soli-
tonic spin-textures called skyrmions5,6 which carry electrical
charge7,8. This naturally begs the question: Can superconduc-
tivity arise from pairing of charge-e skyrmions, rather than
electrons? And what might provide the “pairing glue” be-
tween skyrmions that enables them to overcome Coulomb re-
pulsion?

In a companion work9, we analytically argued that magic
angle twisted bilayer graphene (MATBG) has the requisite
band topology and symmetries to exhibit superconductivity
via skyrmion-pairing10–13. Recent experimental evidence in
favor of strong coupling superconductivity14 and the pres-
ence of charged skyrmions in MATBG15 further motivates
a thorough, numerically unbiased investigation of skyrmion-
pairing. In this work, we distill the essential features of
MATBG into a minimal model for skyrmion superconductiv-
ity which we explore using large-scale density matrix renor-
malization group (DMRG)16 calculations. We find concrete
numerical evidence for a skyrmion-pairing mechanism that
requires neither retardation nor screening. Our work thus con-
firms the viability of a novel strong-coupling route to super-
conductivity which is all-electronic in nature, providing a new
avenue in the search for superconductivity at higher tempera-
tures.

To seek out the basic ingredients for this physics, it is use-
ful to recount some essential features of MATBG. MATBG
features eight flat bands arising from spin, valley, and an ad-
ditional orbital degree of freedom “γ = ±.” Crucially, in the
basis where the orbital index transforms naturally under the
space-group symmetries, the four γ = + bands have Chern
number C = 1, while the four γ = − bands have C = −1.

FIG. 1: Schematic depiction of mobile charge-2e skyrmion-
pair excitation over an easy plane antiferromagnetic ground
state in a bilayer with opposite magnetic fields. Pairing of
charge-e skyrmions in opposite layers is induced by local an-
tiferromagnetic exchange J , which is sufficient to overcome
the long-range Coulomb repulsion because of the large spatial

spread of the skyrmions.

Appealing to the equivalence between Chern bands and the
quantum Hall effect, MATBG can thus be viewed as a bilayer
of U(4) quantum Hall systems, but with opposite layers see-
ing opposite magnetic fields (Fig. 1)9,17–20.

By analogy to quantum Hall ferromagnetism, at integer fill-
ings the electrons may spontaneously polarize along axes of
the spin-valley-orbital space and form insulators. Small terms
in the Hamiltonian which break the approximate symmetry
down to the exact symmetries of charge, valley, and spin,
U(4) × U(4) → UC(1) × UV (1) × SUS(2) determine the
precise nature of the symmetry breaking. Regardless of these
details, the enlarged approximate symmetry leaves behind a
signature: soft bosonic modes coming from fluctuations in the
U(4)×U(4) space which are described by a non-linear sigma
model (NLσM) with topological terms9,19–21.

When MATBG is doped away from certain integer fill-
ings, superconductivity is observed22–28. Superconductivity
requires two ingredients: a pairing mechanism, and a su-
perfluid stiffness ρSC to establish phase coherence. Several
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works have recently emphasized how the topology of the
MATBG flat bands might enhance ρSC.29–32 However, this ef-
fect doesn’t provide a reason for electrons to pair in the first
place. In Ref. 9 it is argued that the topology of MATBG may
play a crucial role in the pairing mechanism as well (see also
Ref. 33).

The NLσM describing fluctuations in the U(4) × U(4)
pseudo-spin space admits topological textures, skyrmions,
which carry charge-2e. It was argued that the charge-2e
skyrmion is stable against disassociating into two charge-1e
electrons even in the presence of a long-range, unscreened
Coulomb interaction, providing an all-electronic pairing
mechanism.9 When the system is doped away from electron
filling ν = 0,±2, the charge enters in the form of these
bosonic skyrmions, which may Bose-condense and lead to su-
perconductivity.

The model. In this work we numerically investigate this
proposal in a phenomenological model where the Chern bands
of MATBG are instead modelled as Landau levels. The phys-
ical electron spin, while important for understanding the full
MATBG phase diagram, is not essential for the pairing mech-
anism, so here we neglect it and work with a spinless four-
component model. There are a variety of scenarios for how
this spinless model embeds into the MATBG phase diagram,9

but as one concrete example, MATBG may be spin polarized
in the vicinity of ν = −2, in which case our model describes
the half-occupied spin species. The four remaining bands are
labeled by a “layer” index γz and a “isospin” index ηz . The
precise relation between γ, η and the MATBG degrees of free-
dom is not so important,9 but we note that ηz is in fact the
valley index.

The two essential ingredients for skyrmion superconductiv-
ity are that (1) the bands carry Chern number C = γz = ±1
and (2) there is an anti-ferromagnetic interaction between
the isospin of the two layers in addition to the long-range
Coulomb repulsion. In terms of the electron field operators
ψγη(r), we thus consider the following 2D continuum model:

H = ψ†
(p + eγzA)2

2m
ψ +

1

2

∫
: n(r)VC(r − r′)n(r′) :

− EC`2B
∑

i=x,y,z

Ji :
(
ψ†γzηiψ(r)

)2
: (1)

The layers see opposite magnetic field ∇ × A = B. Here
VC(r) is the Coulomb repulsion, n(r) =

∑
γη ψ

†
γηψγη(r) is

the charge density, and Jx = Jy = J + λ, Jz = J − λ
parameterize an anti-ferromagnetic XXZ interaction between
the two layers. We account for proximate metallic gates at
distance d by taking VC(q) = 2π

q tanh(qd), expressed in
units of the magnetic length `2B = ~/eB and Coulomb energy
EC = e2

4πε`B
. We fix d = 3`B to match typical gate distances

in MATBG devices under the identification 2π`2B = AM ,
where AM is the area of moiré cell.

We note that in the context of MATBG, J arises when treat-
ing the flat-band dispersion within second-order perturbation
theory.9,19,34 In the present model, this dispersion corresponds
to a small tunnel coupling between the two layers, tψ†γxψ,

which can be treated perturbatively near filling ν = 2 to ob-
tain J ∝ t2/EC , in close analogy to super-exchange.19,35 It is
thus a generic feature of tunnel-coupled Chern bands.

The Hamiltonian Eq. (1) is then projected into the low-
est Landau level (LLL) of each component, quenching the
kinetic energy. We note at the outset that the resulting
model is entirely repulsive. Naively, it may look like the J-
term puts in attraction “by hand,” since anti-ferromagnetically
aligned electrons see a short-distance attractive interaction
V+→,−←(r) = VC(r) − 2(J + λ)EC`

2
Bδ

(2)(r). However,
this interaction is smeared-out over the scale `B due to Lan-
dau level projection, and we have verified (App. B) that for
d = 3`B the projected interaction is repulsive in all channels
for J + λ < 3.25, while we work exclusively in the regime
J, λ ≤ 1. So superconductivity in this model requires an all-
electronic pairing mechanism for overcoming the Coulomb
repulsion.

The symmetries of the model play an important role in our
analysis. When J, λ = 0, the model is symmetric under
U(2) × U(2) transformations within each layer, the spinless
analog of MATBG’s U(4) × U(4). Setting J 6= 0, λ = 0
breaks this symmetry down to U(1)× U(1)× SU(2), which
is the spinless analog of MATBG in the “chiral limit.”17,19 Fi-
nally, the easy-plane anisotropy λ further reduces the symme-
try to U(1)3, corresponding to electron charge, layer polariza-
tion, and isospin ηz , (in MATBG, the valley-U(1) symmetry).
The model also has time-reversal symmetry, T = γxηxK,
as well as a “Kramers” time-reversal T ′ = iγxηyK, with
(T ′)2 = −1.

Landau level quantization leads to a finite density of states
(one per component and flux quantum), making this model
amenable to numerical study much like usual fractional quan-
tum Hall systems. Here we study the model using iDMRG to
obtain the ground state of Eq. (1) on an infinitely long cylin-
der of circumference Ly ∼ 8 − 12`B , where the opposite
magnetic fields can be treated using a small modification of
our existing QH-DMRG algorithms36,37. The accuracy of the
DMRG is controlled by the “bond-dimension” χ of the asso-
ciated matrix product state ansatz, with an exact result for the
ground state recovered in the limit χ→∞.

The ν = 2 “correlated insulator.” The phase diagram of
Eq. (1) depends on the density, n = ν

2π`2B
and the magnetic in-

teractions J, λ. The filling runs from 0 < ν < 4, where ν = 2
is analogous to the neutrality point of spinless MATBG. Let us
first consider the state we expect to find at ν = 2, where half
the LLs are filled. By analogy to a quantum Hall ferromagnet,
the Coulomb interaction will prefer to polarize the system into
a spatially uniform occupation of two of the four components,
leading to a charge insulator which spontaneously breaks the
isospin symmetry. There are many ways to do so, but the
anti-ferromagnetic interaction J prefers for electrons to dis-
tribute evenly between the two layers with equal and opposite
isospin, so that

~N(r) = 2π`2B〈ψ†(r)γz~ηψ(r)〉 (2)

orders. For example, the electrons may completely fill the
|+,→〉 , |−,←〉 LLs. This order occurs for any strength J >
0 by consideration of the Stoner criterion: the bands are flat,
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FIG. 2: Phase diagram at density ν = 2 + 1
4 in the plane

of J, λ, calculated at Ly = 10`B . Four color plots show the
strength (in arbitrary units) of: superconductivity (SC), XY
magnetism (XY), charge density wave order (CDW), and XY
magnetism at finite wavevector (qXY). There are two phases:
for large-J the state is a SC, while for small-J the δ = 1/4
doped electrons polarize onto one “layer” and form a CDW
which coexists with the XY order found at ν = 2. The dashed-
white line in the SC panel shows the critical J∗ for which elec-
trons bind in to charge-2e skyrmions, as analyzed in Fig. 4b.
In a small region of the SC near the phase boundary, the SC
coexists with qXY order. For a precise definition of the quan-
tities shown here, see App. A, and for the phase boundary for

other ν = 2 + δ, see App. C

so the density of states is infinite, while polarizing the elec-
trons gains a large exchange energy of order EC . The λ > 0
anisotropy prefers order in the XY-plane,N± = Nx±iNy =
|N |e±iθXY . The XY-order spontaneously breaks ηz-rotations
and time-reversal T , while preserving the Kramers T ′, mak-
ing it the analog of the “Kramers intervalley coherent state”
identified as the ground state of MATBG at even filling in
Ref. 19.

Using iDMRG simulations to find the ground state at
ν = 2, we indeed find a charge-insulator with XY-order,
with one caveat. Because we consider an infinitely long
cylinder, the Mermin-Wagner theorem implies Nx/y can
only order algebraically along the cylinder. Consequently
we find the XY-correlations along the cylinder decay as
〈N+(x, 0)N−(0, 0)〉 ∝ x−ηXY with an exponent ηXY � 1,
as shown in Fig. 3a. Comparing different circumferences,
we find that the exponent ηXY decreases as L−1y , consistent
with the transition to true long-range order in 2D. Using the
excited state DMRG energies we will subsequently discuss,
we find that this state has a charge gap of order EC (e.g.
∆PH = 2.05EC at J = 0.4, λ = 0.4.)

The doped phase diagram. We then dope to density ν =
2 + δ. A-priori the extra charge may prefer to either distribute
evenly between the two layers, ν± = 1 + δ/2 (“layer unpo-
larized”), or to polarize onto one layer, ν+ = 1 + δ, ν− = 1
(“layer polarized”), so we are careful to numerically check the

preferred polarization at each point in the phase diagram.
For dopings −1 ≤ δ ≤ 1, we find two phases in the (J, λ)-

plane (Fig. 2): for large-J a layer-unpolarized superconductor
(SC), and for small-J a layer-polarized state which coexists on
top of the XY-order. The precise nature of the low-J state de-
pends on the doping δ, so for concreteness we discuss δ = 1

4
and refer to App. C for other dopings. In this case, we find a
charge density wave (CDW) order in which density δ of the
electrons form a Wigner crystal in one layer, which can be
detected either by a modulation in the density 〈n(x)〉 along
the cylinder or by inspection of the pair-correlation function
g(r) = 〈n(r)n(0)〉 (Fig. 3d). The CDW order coexists on
top of the same XY-order found at ν = 2. Above a criti-
cal J > Jc(λ, δ, Ly), there is a first-order phase transition at
which the CDW disappears and layer-unpolarized algebraic
superconductivity emerges.

The SC is an isospin singlet, pairing electrons related by the
T ′ Kramers time-reversal symmetry:

∆(r) = iηyijψ
†
+,i(r)ψ†−,j(r) (3)

Similar to the XY-order, we find (see Fig. 3b) that
〈∆†(x, 0)∆(0, 0)〉 ∝ x−ηSC with an exponent ηSC(J, λ, δ, Ly)
that varies as a function of the parameters38. The pair car-
ries zero orbital angular momentum, so is in this sense anal-
ogous to an s-wave SC, and in App. H we further rule out
pairing in higher-angular momentum channels. However, the
s-wave nomenclature is not necessarily appropriate for the po-
tential realization in MATBG, where the electron spin (ne-
glected here) may be polarized.

To verify that the algebraic SC converges to true off-
diagonal long-range order in the 2D limit, we fix a point in
the SC region and examine the scaling of ηSC with Ly , Fig.3c.
The scaling is consistent with ηSC ∝ L−1y , which we can un-
derstand as follows. In 2D, the SC phase fluctuations come
at energy cost E2D = ρSC

2

∫
dxdy(∇φ)2, where ρSC is the su-

perfluid stiffness. When the 2D model is placed on a cylin-
der, the fluctuations around the cylinder become gapped, so
we can integrate y to obtain E1D = Ly

ρSC
2

∫
dx(∂xφ)2. The

effective 1D stiffness LyρSC then determines the exponent
ηSC = 2~v

LyρSC
, where v is a velocity, as observed. This implies

ρSC is finite as Ly →∞.
While the electron pair ∆(r) is gapless, we find that all

single-electron excitations are gapped. As a first check, we
observe that the electron correlation function 〈ψ†i (r)ψj(0)〉
decays exponentially. More directly, we use iDMRG to cal-
culate the energy of a charge e and charge −e excitation on
top of the ν = 2 + δ ground state. We find they are gapped
throughout the SC regime: at J = 1, λ = 0.5, for example,
we find a particle-hole gap of ∆PH ≈ 0.61EC at ν = 2 + 1/4
and ∆PH ≈ 0.55EC at ν = 2 + 1/2, independent of the layer
and isospin index of the added charges (see App. F 5). In con-
trast, the charge-2e excitations must be gapless by virtue of
the algebraic correlations in ∆(r).

As a final confirmation of superconductivity, we use “finite
entanglement scaling”39 to extract the central charge c of the
effective 1D model, Fig. 6. Throughout most of the SC, we
find c = 1, consistent with fluctuations of the SC phase mode
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FIG. 3: (a) XY correlation function at ν = 2, J = 0.5, λ = 0.2. In order to focus on the dependence along the length of
the cylinder, 〈N+(x)N−(0)〉, the fields are averaged around the cylinder, ~N(x) ≡ L−1y

∫
dy ~N(x, y). Data is shown for two

circumferences, Ly = 8, 12`B , with the curves shifted vertically by an arbitrary displacement for clarity. For each Ly , we show
the convergence of the correlations with the MPS bond dimension χ; as χ → ∞, the curves converge to a power-law with an
exponent ηXY ∝ L−1y (b) Analogous plot for the SC order parameter ∆ (Eq. (3)) at ν = 2 + 1

4 , J = 0.9, λ = 0.6. We again find
an exponent ηSC ∝ L−1y , consistent with true long-range SC order in the 2D limit. (c) Quantitative demonstration of the relation
ηSC ∝ L−1y via finite size and entanglement scaling. Here ξ is the correlation length of the DMRG ground state induced by the
finite-χ MPS, and ∆q ≡ ξ−1. S(q) is the Fourier transform of the SC-SC correlation function, from which we form the scaling
function (S(0) − S(∆q))/∆q ∝ ξ2−ηSC . Including a range of ξ(χ) and Ly for a point deep in the SC, the data is well fit by a
single ansatz ηSC = 9.6/Ly . (d) Density-density pair correlation function g(r) = (2π`B)2〈(n(r)− ν)(n(0)− ν)〉 in the CDW
phase (top, ν = 2 + 1

4 , J = 0.3, λ = 0.6 ) and SC phase (bottom, ν = 2 + 1
4 , J = 0.9, λ = 0.6). The CDW shows long-range

order, while the SC shows a short-range attractive correlation.

φ but no other gapless fermionic or bosonic excitations. The
only exception is in a region close to the CDW/SC transition,
where we find c = 2. As we will later discuss, in this region
the SC coexists with a finite wavevector version of the XY-
order (qXY in Fig. 2), with fluctuations in φ, θXY contributing
c = 1 apiece.

Skyrmions. It is already remarkable that we find supercon-
ductivity in a purely repulsive model. But how do we tell
whether this SC is related to skyrmions? To explore this ques-
tion, it will prove helpful to review the NLσM description of
Eq. (1), which predicts the existence of charge-2e skyrmions
which we can then quantitatively compare against our DMRG
numerics. Consider first a single layer (say γz = ±), with
ν± = 1 of its two LLs filled. In isolation each layer is anal-
ogous to a spinful QH system at νT = 1, with ferromagnetic
order parameter n±(r) = 2π`2B〈ψ

†
±(r)~ηψ±(r)〉 given by its

isospin polarization. According to the theory of quantum Hall
ferromagnetism,7,8,40 fluctuations in n± ∈ S2 are governed
by the Lagrangian

LQHFM
± =

∫
r

1

2(2π`2B)
A± · ∂τn± +

g

2
(∇n±)2 + Aµ · jµ±

+
1

2

∫
r,r′

ρ±(r)VC(r − r′)ρ±(r′),

jµ± = ± e

8π
εµνρn± · (∂νn± × ∂ρn±) (4)

where A±[n±] corresponds to the vector potential for the
isospin-half Berry phase40, A is the external vector potential
that couples to the electric current density jµ±, and the isospin

stiffness is g =
`2B

32π2

∫∞
0
dq q3e−q

2/2VC(q). The key fea-
ture is that textures in n± induce an electric charge density
through the relation ρ± = C±

e
4πn± · ∂xn± × ∂yn±, where

C± = ± is the Chern number. The reason for this is that
as an electron moves through the system, its isospin cants to
follow the texture n±, generating a Berry phase. The elec-
tron responds to the Berry phase just like a magnetic field,
and so the resulting Berry curvature is converted into electric
charge via the Hall response σH = C e2

h . Integrating this rela-
tion one finds Q = CQtopo, where Qtopo is the total skyrmion
number and Q is the total charge. The long-range part of the
Coulomb repulsion VC then prefers to make large skyrmions
in order to spread out the charge, lowering the skyrmion en-
ergy relative to the bare electron’s. The lowest energy charged
excitations of a QHFM are thus charge-1e skyrmions, which
has been well established experimentally in a variety of QH
systems.41–43

When considering two layers with opposite C, we can
extend Eq. (4) by coupling the layers through the anti-
ferromagnetic interaction J̄ i = J iEC/(2πAM ) and Coulomb
repulsion,

L =

∫
r

∑
γ

[
1

2(2π`2B)
Aγ · ∂τnγ +

g

2
(∇nγ)2 + Aµ · jµγ

]

+
1

2

∫
r,r′

∑
γ,γ′

ργ(r)VC(r − r′)ργ′(r′)−
J i

(2π`B)2

∫
r

(ni+ − ni−)2

(5)

The behavior of the skyrmions in this model is quite rich,
depending on g/J and λ/J . Skyrmions in layer-“+” carry
charge +1, while skyrmions in layer-“−” carry charge −1,
so Q = Q+

topo − Q−topo. When an electron is added to each
layer, they thus enter as a skyrmion in layer “+” and an anti-
skyrmion in layer “−”. What is the effective interaction be-
tween them? VC(r), of course, would like to push the two



5

charge-e objects apart. However, if the skyrmions separate
then there are regions in which the n+,n− fields are no longer
anti-ferromagnetically aligned, costing J . If they instead sit
right on top of each other J is always satisfied because the
anti-skyrmion solution is obtained by flipping the spin of a
skyrmion solution, na-skyr = −nskyr, thereby generating an at-
tractive interaction.

Remarkably, if λ = 0, a careful analysis of Eq. (5)
in App. E (see also Refs. 9 and 44) shows that charge-1e
skyrmions will prefer to bind into a single charge-2e skyrmion
for any J > 0. This is because the skyrmion can spread out
over an arbitrarily large radius R. Since the Coulomb repul-
sion falls off as VC ∼ 1

R , J eventually wins out. The situa-
tion is more complicated when λ > 0, where the easy-plane
anisotropy deforms the skyrmion into a meron pair. Roughly
speaking, this contributes an elastic energy g log(R) to the
object, cutting off its maximal size R. In this case, there is a
finite critical J ≥ J∗(λ) where the attraction wins out.

To quantitatively understand the energetics of the skyrmion
binding in the (J, λ) plane, we solve for the lowest-energy
charged excitations of Eq. (1) at ν = 2 both semiclassically
and using DMRG. First treating Eq. (5) classically, we numer-
ically solve for its ground state in order to compute the pair
binding energy ∆pair = 2E1e − E2e, where E2e is the energy
of the charge 2e skyrmion / anti-skyrmion pair, while 2E1e is
the energy of a well-separated 1e − 1e pair. In Fig. 4a), we
see that ∆pair(J, λ) has a fan-like structure within which the
interaction is attractive, reminiscent of the region where we
observe superconductivity upon doping. In particular, letting
J∗(λ) denote the critical value of J required for pair forma-
tion at a given anisotropy λ, we see that J∗(λ → 0) → 0.
Pair formation is more favorable on the easy-plane side, re-
quiring a smaller J∗ for the same absolute value of λ. The
physical reason is that for λ > 0 the 2e pair can deform
into a topologically equivalent texture – a confined pair of
charge-e merons8,45 with well-separated cores – thereby low-
ering the electrostatic charging energy at the expense of an ad-
ditional elastic energy cost which is quantitatively small (note
g ≈ 0.025EC ). This deformation mechanism is not allowed
for easy-axis 2e skyrmions, resulting in a steeper slope for J∗
in the (J, λ) plane.

We next go beyond the NLσM by computing the energies
of skyrmion excitations using DMRG. To do so, we start with
the DMRG ground state of Eq. (1) at ν = 2. We then con-
sider an excitation with either a single charge in one layer
(1e), or two charges, one in each layer (2e). Because they
are distinguished by their quantum numbers from each other
and the ν = 2 vacuum, DMRG can be used to target the low-
est energy state in each quantum number sector, resulting in
DMRG energies E1e(ky), E2e(ky) measured relative to the
vacuum, where ky is the momentum around the cylinder. The
excitation energies are obtained from infinite-cylinder DMRG
using the approach of Ref. 46. For numerical details including
the convergence with Ly and χ we refer to App. F. A typical
“dispersion relation” for a J, λ exhibiting superconductivity
is shown in Fig. 4c. We see that E1e(ky) is exactly flat, re-
flecting that this excitation sees a net magnetic field which
quenches its motion. E2e(ky), in contrast, is dispersive and

FIG. 4: ∆pair(J, λ) evaluated numerically using the classical
NLσM (a) and quantum DMRG (b) show qualitative agree-
ment. In (a), the 2e bound state is preferred in the blue region
(∆pair > 0), demarcated by dotted purple lines (Lx, Ly =
21`B). In (b), the blue background indicates ∆pair extrap-
olated to the Ly → ∞ limit, while the dashed lines show
non-extrapolated contours of ∆pair = 0 for different Ly . (c)
Solid-circles denote E2e(ky, Ly) ≡ E2e(ky, Ly)−E2e(0, Ly)
for a typical (J, λ) in the superconducting phase, showing
that charge-2e excitations disperse at small ky with an ef-
fective mass that agrees reasonably well with the classical
estimate (dashed black line). In contrast, E1e(ky, Ly) ≡∑
γ=±E1e,γ(ky, Ly) − E2e(0, Ly) (purple squares) shows

that the charge-1e dispersion is flat. For large ky, Ly , both
approach the Ly-extrapolated value of ∆pair (dashed brown
line), indicating that for ky`B/(2π) & 0.2, the 2e-pair disas-

sociates into two well-separated 1e excitations.

shows a minimum at ky = 0. Our ky-resolution is too coarse
to extract a dispersion relation,47 but for comparison we plot
the expected dispersion of a 2e-skyrmion pair using a classical

estimate9 for the effective massm,
(

~2`−2
B

2m

)
/EC = J/π, and

find that for our largest Ly they agree to within 20% for small
anisotropy λ . 0.1. For ky`B & 1.5 the energy saturates
at E2e(ky) → 2E1e, indicating that the pair disassociates.
We caution the reader that we only expect order of magnitude
agreement between the classical and quantum results because
the mass will be corrected by quantum fluctuations, as ana-
lyzed in App. F 4.

We see both the ingredients for superconductivity: first
pairing (E2e(0) < 2E1e), and second, despite the completely
quenched band dispersion of the electrons, the pairs have a
disperse with scale J so can support a finite superfluid stiff-
ness. There is a beautiful explanation for the finite dispersion
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(a) Total charge density ρtot =
∑
γ=± ργ (b) Layer resolved charge densities ργ (light/dark hues for γ = ±)

FIG. 5: Evolution of charge densities (net and layer-resolved) of a charge 2e excitation as a function of momenta ky = 2πk/Ly
at (J, λ) = (0.5, 0.1) and Ly = 12`B . Note that at ky = 0, the charges in the two layers are exactly on top of each other, but at

finite ky they move away with a separation ∆x = ky`
2
B , thereby losing exchange energy.

which gives an intuitive picture for the previously-discussed
lower bound on the superfluid stiffness.29,48,49 In close anal-
ogy to Gorkov and Dzyaloshinskii’s analysis of a Mott ex-
citon in a finite-field,50 because the two charges in the pair
have opposite Chern number (e.g. B-field), when the pair
drifts at velocity v the charges feel equal and opposite Lorentz
forces ±e|B|v × ẑ, pulling them apart. This force is coun-
teracted by the pairing attraction ∆pair(r), where r is the
distance between the pair. Equating |eBv| = ∂r∆pair(r),
and defining m as ∆pair(r) ≈ ∆pair(0) + ~2r2

2m`4B
, we find

Epair(v) = ∆pair(0) + 1
2mv

2. In a Bloch band, an equivalent
result can be obtained from the k-space Berry curvature Ω(k)
using the semiclassical relation v = − 1

~∇r∆pair(r) × Ω(k).
Either way, m (and hence ρSC) is generated entirely by the
interplay of the interaction ∆pair and the Chern number, and
hence the two ingredients for superconductivity always come
in tandem. Since r = `2B ẑ × k by these relations, the large k
limit rips apart the pair, explaining the limitE2e(ky)→ 2E1e.
Note that this same mechanism is familiar in more conven-
tional quantum Hall contexts: it gives rise to the EC-scale
mass of composite fermions at ν = 1

2
51 and excitons in quan-

tum Hall bilayers52. This intuitive picture is confirmed by our
numerical computation of layer-resolved charge densities ργ
(γ = ±) for a 2e excitation as a function of ky , as shown in
Fig. 5. On inserting charge 2e at momentum ky = 0 on top of
the insulating state, the additional charge density in each layer
lies exactly on top of each other, forming a charge 2e bound
state — the 2e skyrmion. As ky is increased, this 2e excitation
unbinds into two charge e excitations.

We next use DMRG to compute ∆pair at ky = 0 as a func-
tion of parameters J, λ, Ly, χ. We extrapolate the energies
with respect to Ly and χ to obtain the pair binding energy
∆pair(J, λ) (see App. F). The result, shown in Fig. 4b, is in
good qualitative agreement with the NLσM results. Specifi-
cally, J∗(λ) vanishes as λ → 0, and pair-formation requires
smaller J in the easy-plane case. One quantitative discrepancy
is the J∗(λ) boundary found in DMRG is shifted to higher J

relative to the NLσM. In App. F 4, we show that this effect
can be qualitatively reproduced by adding quantum zero-point
fluctuations to the NLσM, which increase the energy of the
charge 2e excitations by an amount proportional to J in the
small anisotropy limit, which deters pairing.

The behavior of ∆pair(J, λ) supports the following explana-
tion for the phase diagram at ν = 2 + δ for low-δ, Fig. 2. The
layer-polarized CDW region corresponds to the case where
∆pair < 0: charges enter as well-separated electrons and form
a CDW pattern for the same reason low-density QH systems
are known to form various Wigner-crystal and stripe phases.53

The SC region corresponds to the regime where ∆pair > 0:
charges instead enter as charge-2e meron-pairs and condense.

An apparent discrepancy in this interpretation we should
first address is the critical Jc of the doped CDW/SC transi-
tion at λ = 0. For the doped phase diagram Jc(λ = 0, δ =
1/4, Ly = 10`B) ∼ 0.3, while for ∆pair we found that
J∗(λ = 0) = 0. This is actually an expected finite size effect.
Note ∆pair was extrapolated to Ly → ∞, while the doped
phase diagram is shown at fixed Ly = 10`B because it was
difficult to doubly extrapolate χ,Ly → ∞ from the available
data (see App. G). So in Fig. 2 and 4b) we also demarcate
the J∗(λ, Ly = 10`B) boundary without Ly extrapolation,
and indeed we find J∗(λ = 0, Ly = 10`B) ≈ 0.25, in de-
cent agreement with Jc. The origin of the finite-size effect is
the behaviour of the NLσM on a cylinder. In 2D, the elastic
energy of a skyrmion is scale invariant, so at λ = 0 it can
grow to arbitrary size in order to reduce its Coulomb energy.
On a cylinder, however, an analytic solution of the NLσM
shows that the skyrmion cannot grow beyond R ∼ Ly , lower-
bounding it’s Coulomb energy by ∼ VC(Ly). Thus at finite
Ly , a finite J is required to overcome Coulomb repulsion.
However note that as δ increases, we don’t expect such quan-
titative agreement between J∗, Jc, because the inter-skyrmion
interaction energy becomes important in addition to ∆pair; this
discrepancy is seen for the large-δ phase diagram, App. C.

Further evidence for skyrmion pairing can be gleaned
from the region where the SC order coexists with a finite-
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FIG. 6: a) Determination of the central charge via finite-
entanglement scaling in the superconducting (J = 0.9, λ =
0.6) and SC/qXY coexistence (J = 0.55, λ = 0.2) phases
at doping δ = 1

4 . By tracking the increase of the entan-
glement entropy SE and MPS correlation length ξ with the
DMRG bond dimension χ, we extract the central charge from
the scaling relation SE = c

6 log(ξ/a)39. Dashed lines show
the expected slopes for c = 1, 2. The SC/qXY phase fits
c = 2 perfectly, while the SC phase approaches c = 1
at the largest length scales. The larger slope observed for
small ξ is consistent with the XY order of the SC/qXY phase
being destroyed at a continuous (Kosterlitz-Thouless) tran-
sition. b) Fourier-transform of the XY-correlation function
SXY(q) = 〈N+(q)N−(0)〉 in the SC/qXY coexistence phase.
The XY order is shifted to finite wavevector q∗ = δLy/4`

2
B ,

where δ is the doping. This wavevector is consistent with a
fluctuating meron gas.

wavevector XY-order, with 1D central charge c = 2 (Fig. 6a).
We call this the qXY-order because the wavevector of the XY-
order is shifted to a finite q∗ along the cylinder, with leading
behavior

〈N+(x, 0)N−(0, 0)〉 ∼ x−ηXY cos(q∗x) + · · · (6)

for x � Ly , as shown in Fig. 6b. Within the range of Ly, δ
we have explored, we find q∗ is always locked to the doping
δ according to the relation δ

2π`2B
Ly

2π
q∗

= 4. In other words,
θXY(x) increments by ∆θXY = π every time x passes charge-
2e worth of doping.

This curious effect is in fact further evidence for skyrmion
superconductivity. Recall that in the easy-plane regime, the
2e-skyrmion deforms into a pair of bound merons, each car-
rying charge 1e. In terms of θXY, this object is a vortex /
anti-vortex pair. In the easy-plane limit, the elastic energy is
E = g

2

∫
d2r(∇θXY)2, and we can solve for the field con-

figuration θ which minimizes E subject to the constraint of
unit vorticity at z0 = x + iy and anti-vorticity at z1. Using a
conformal transformation to map the solution of the Laplace
equation from the plane to the cylinder, we find that

θ(z) = arg [sinh(2π(z − z0)/2Ly) sinh(2π(z̄ − z̄0)/2Ly)]

∆θ = θ(x =∞, y)− θ(−∞, y) = 2π(y1 − y0)/Ly. (7)

We see that the phase jumps by an amount ∆θ in proportion
to vertical displacement ∆y = y1 − y0 between the merons.

Because of the Coulomb repulsion, for small λ the meron-pair
will prefer to spread across the circumference of the cylinder,
∆y = Ly/2, corresponding to ∆θ = π. So if the doping
δ enters as large meron-pairs, θXY(x) should jump by π per
2e passed along the cylinder. This is exactly the wavevec-
tor q∗ we observe in the SC region. In contrast, in the CDW
phase, the XY wavevector remains at q = 0, consistent with
the charge δ entering as electrons.

One might object that if the SC is a condensate of meron-
pairs, then the resulting π-fluctuations in θXY would immedi-
ately destroy the XY-order. But this is not the case on a cylin-
der geometry because the SC order is algebraic, as we demon-
strate using bosonization in App. D. However, as the SC stiff-
ness increases the density fluctuations become larger and the
XY order is eventually destroyed at a BKT transition. This is
consistent with the absence of qXY-order for large-J (Fig. 2),
where the central charge flows from c = 2→ 1 (Fig. 6a). This
also explains how q∗ can depend on Ly , which would other-
wise appear to be unphysical in the 2D limit: the SC stiff-
ness increases linearly with circumference, so as Ly → ∞
the width of the qXY order shrinks to zero. So the qXY does
not exist as a 2D phase, but rather as a unique fingerprint of
the skyrmion SC when placed on the cylinder geometry.

A control experiment. Finally, we confirm the role of topol-
ogy using a “control” experiment: we consider a Hamiltonian
identical to Eq. (1), but with all four components ψγη in the
same magnetic field. The ground state at ν = 2 is still found to
have XY-order, so the system still admits skyrmions in each
layer independently. However the skyrmion-pairing mecha-
nism we have identified is inoperative because a charge-2e ex-
citation now requires the same skyrmion handedness in each
layer, so J does not generate attraction. Running iDMRG for
the same J = 0.9, λ = 0.6 where the opposite-B model is a
strong superconductor, we find the SC correlations now decay
exponentially (by three orders of magnitude per `B).54 Note
that in the control scenario ferromagnetic exchange (J < 0)
could favor the formation of charge-2e skyrmion-pairs, which
has in fact been argued to occur in certain conventional quan-
tum Hall systems.55–57. However, such a pair experiences a
net magnetic field, leading to a flat dispersion which makes
superconductivity via condensation unlikely.

In conclusion, we have shown that a model capturing the
symmetry and topology of twisted bilayer graphene features
a novel all-electronic route to superconductivity. The “mother
state” of the superconductor is an XY-order whose lowest-
energy charged excitations are charge-2e skyrmions, despite
the long-range Coulomb interaction. When doped, the finite
density of skyrmions Bose condense and form a superconduc-
tor.

It is worth commenting on the relation of our findings to the
proposal of Grover and Senthil,11 which was recently explored
numerically, for example, in Ref. 12, where it was found that
doping an interaction-driven quantum spin Hall (QSH) state
lead to a SC. From a topological point of view, this mecha-
nism is analogous to the one discussed here under the identi-
fication of our XY-order with the QSH state (and setting our
λ = 0). However, energetically, the model which was studied
keeps the analog of our “J” term (which generates the QSH
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state), but does not contain the Coulomb repulsion VC , which,
unfortunately, would lead to a sign problem for determinantal
quantum Monte Carlo. On its own, J can be decoupled into
an attractive interaction which then has no competition with
VC , so superconductivity is stabilized at the mean-field level.
This is not to say our work disagrees with their conclusions,
but, by explicitly showing that the skyrmion energetics at inte-
ger filling is predictive of superconductivity upon doping, we
demonstrate that skyrmion pairing is necessary and sufficient
for superconductivity and is robust to both VC and λ > 0.

Where does MATBG lie in the phase diagram? We can very
roughly estimate the values of J, λ realized in MATBG using
the relationAM = 2π`2B . From the MATBG Hartree-Fock re-
sults of Ref. 19, which computed the energy of the layer ferro-
magnet ( “VP”) phase relative the the layer anti-ferromagnet
(“KIVC” and “VH”) phases, we then find λ ∼ 0.1 and
J ∼ 0.05− 0.3 for a dielectric constant of ε = 10ε0, depend-
ing on details like the twist angle and gate distance. It is thus
quite feasible that MATBG is in the regime where the low-
est energy excitations are charge-2e skyrmions. But there are
some important quantitative differences between MATBG and
the model studied here. These include the narrow band disper-
sion (though its most significant effect is already included via
the generation of the superexchange J between layers19), and
the inhomogeneity of the Berry curvature, so this comparison
should be made with caution. Future DMRG studies of the
MATBG Hamiltonian could help decide the issue.58,59

More broadly, while our model is inspired by the physics of
MATBG, the basic ingredients of skyrmion superconductivity
are simple: two spinful (or isospinful) bands with opposite
Chern number. Might these ingredients already be out there
in other solid state systems? Alternating angle twisted trilayer

graphene, which has identical low-energy topological bands
as MATBG60 and has recently been shown to display robust
superconductivity61,62, offers another possible material candi-
date for such a skyrmionic mechanism. Furthermore, a system
where EC was at the atomic, rather than moiré scale, would
provide a new route to high-temperature superconductivity.
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Appendix A: Methods

Here we detail the application of infinite DMRG to the Hamiltonian Eq. (1) and the observables used to determine the phase
diagram. In order to apply our existing DMRG algorithms, it is technically convenient to first apply a unitary PH-symmetry
transformation to the two C = −1 bands of Eq. (1), mapping ψ−,i → iηyijψ

†
−,j . Because C is odd under a unitary PH

transformation, this maps the problem onto a conventional quantum Hall bilayer (i.e., one where both layers have Chern number
C = +1). This transformation yields an exact rewriting of Eq. (1) as

H = ψ†
(p + eA)2

2m
ψ +

1

2

∫
: ψ†(r)γzψ(r)VC(r − r′)ψ†(r′)γzψ(r′) : (A1)

− EC`2B
∑

i=x,y,z

Ji : (ψ†(r)γzηiψ(r))2 : +αN̂ + βP̂ + γNφ (A2)
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Here N̂ is the total charge, P̂ is the total layer polarization, and Nφ is the number of flux quanta. The single-particle shifts
α, β, γ arise from the commutators required to bring H back to normal-ordered form after the PH transformation, and they can
be computed analytically from VC , Ji. Notice that the kinetic term is now γz independent, but Coulomb energy depends on
ψ†γzψ, i.e., the difference between densities in the two layers, rather than the conventional density ψ†ψ.

Eq. (A2) then represents a traditional multicomponent quantum Hall problem, albeit with a peculiar form of Coulomb repul-
sion. The problem can thus be projected to the zeroth Landau level (ZLL) assuming sufficiently large energy gaps to the higher
Landau levels. After ZLL projection, the kinetic term is quenched, the contact interactions Ji are implemented as Haldane V0
pseudopotentials with appropriate component indices, and the Coulomb interaction VC is modified by the ZLL form factor. In
this form, the problem can be tackled with iDMRG36 by placing the system on an infinitely long cylinder of circumference Ly .

The iDMRG method has two built-in cutoffs: the finite cylinder circumference Ly , and the size “χ” of the matrix product state
used to approximate the ground state. The bipartite entanglement of the MPS ansatz is bounded by SE ≤ lnχ, while gapped
ground states have area-law entanglement entropy (SE ∝ Ly in our case), χ should increase exponentially in Ly to maintain a
desired level of accuracy. This is the main numerical limitation on this approach, and is the reason why we consider Ly ≤ 12`B
in this work.

Another limitation is associated to the choice of bulk doping δ. DMRG exactly preserves the three U(1) quantum numbers
associated to charge (C), spin (S), and layer (L). Consequently the state has three well-defined “filling fractions” νC/S/L de-
scribing their quantum numbers per unit length. For rational fillings ν = p/q, the length of the unit cell of an infinite MPS is
lower-bounded by the least-common-multiple of the denominators qC/S/L. So, for instance, a state with equal layer doping of
δ+/− = 1

8 will require an MPS unit cell of at least 8. Since the time and memory requirements scale linearly with the length of
the unit cell, this restricts the granularity of the δ we can feasibly explore.

We now detail the observables shown in Fig. 2. For both the “SC” and “XY” color plots, we compute SXY/SC(q = 0) =∫
d2r O†(r)O(0), where O = N+/∆ respectively, at MPS bond dimension χ = 6000. These quantities are not true order

parameters (they are always non-zero), but quantitatively they are many orders of magnitude larger in the SC and XY phases, so
are convenient heuristics for demarcating the phase boundary. The rigorous criterion for SC or XY order is the finite-size scaling
analysis of the algebraic correlations shown in Fig. 3, which, at the resolution of our J, λ grid, we find perfectly correlates with
the obvious jump in SXY/SC(0).

For the CDW order, we compute the Fourier components of the charge density along the cylinder, n(qx) =∫
dxdy e−iqxx〈n(x, y)〉, and plot the magnitude of the largest qx 6= 0 component.
For the qXY order, we show the finite-q structure factor SXY (qx = q∗, qy = 0) where q∗ = δLy/4. Again, this is not a true

order parameter, but the quantitative jump in this quantity correlates with a scaling analysis of the singularity in SXY (q) at q∗
which can be seen in Fig. 6b.

Finally, a fifth quantity (not shown) is the layer polarization ν+ − ν− = 0 or δ. The polarized case perfectly correlates with
XY / CDW phase, while the SC is unpolarized.

Appendix B: Repulsive nature of the bare interaction

Due to the anti-ferromagnetic interaction, electrons in components ψ+,↑, ψ−,↓ experience an attractive δ(r)-interaction from
the XXZ-interaction:

V↑↓(r) = VC(r)− 2JEC`
2
Bδ

(2)(r) (B1)

So if J is sufficiently large, the bare interaction is attractive in the s-wave channel and the superconductivity would be rather
trivial. Here, we show that the range of J considered in this work is far below this critical value (Jc ∼ 3.25 for gate distance
d = 3`B) .

To do so, we consider the problem of two electrons with opposite magnetic field A = ±B(0, x) interacting through a central
potential V (q). Note that if we apply a particle-hole transformation to one of the particles, the problem maps onto an exciton in
a uniform B-field field (with the sign of V reversed). This problem was solved long ago,50 with the LL-projected result given
in for example Ref. 52, which is equivalent to our Eq. (B8). We repeat the equivalent derivation here without applying the PH
transformation.

Projecting into their lowest LLs, where states are labelled by their Landau-gauge momentum py = ~k, the Hamiltonian on a
torus of volume V takes the form

Ĥ =
1

V
∑
k1,k2,q

|F (q)|2ei`
2
Bqx(k1+k2)V (q)c†k1+qy/2ck1−qy/2d

†
k2−qy/2dk2+qy/2 (B2)

Here c is the field operator for electrons in the +B field, d the field operator for electrons in the −B field, and F (q) = e−
1
4 q

2`2B
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is the “form factor” of the N = 0 LL. In order to diagonalize the Hamiltonian, we consider the two-particle ansatz

|kx, ky〉 =
1√
Nφ

∑
k

ei`
2
Bkkxc†ky/2+kd

†
ky/2−k |0〉 (B3)

which carries momentum kx, ky . Note that while c, d separately transform under a magnetic algebra, so only their ky momentum
is a good quantum number (in Landau-gauge), the composite object cd sees no net field, so can be ascribed definite momentum
kx, ky . By simple state counting, the |kx, ky〉 are in one-to-one correspondence with N2

φ 2-particle states of a torus. Hence they
are eigenstates, with energy

H |kx, ky〉 =
1

2V
√
Nφ

∑
k,q

|F (q)|2ei`
2
Bkkxei`

2
BqxkyV (q)c†ky/2+k+qyd

†
ky/2−k−qy |0〉 (B4)

=
1

V
√
Nφ

∑
k,q

|F (q)|2ei`
2
B(k−qy)kxei`

2
BqxkyV (q)c†ky/2+kd

†
ky/2−k |0〉 (B5)

=

(
1

V
∑
q

|F (q)|2V (q)ei`
2
B(qxky−qykx)

)
|kx, ky〉 (B6)

E(k) = F−1[V |F |2](`2B ẑ × k) (B7)

Here, we note that the exchange kx ↔ −ky is the rotation ẑ×k, so we see that the dispersion is rotation of the inverse 2D-Fourier
transformation F−1 of the effective potential V (q)|F (q)|2.

If the potential is rotationally symmetric,

E(k) =
1

2π

∫ ∞
0

dqq|F (q)|2V (q)J0(kq`2B) (B8)

Note that if we were to drop the |F |2, we would get back the real-space potential: E(k) = V (`2B ẑ × k). The |F |2 factor just
convolves this with the real-space shape of the LL wavefunction, smoothing it out over scale `B . The reason for this form can
be understood from the guiding-center dynamics in the presence of the opposing magnetic fields. If both electrons are moving
in parallel with velocity v and displacement r, then the force F(r) due to V must cancel the Lorentz force, F(r) = −eBẑ × v.
Since v = ∇kE(k) while F = −∇rV (r), we have

∇rV (r) = `2B ẑ ×∇kE(k) (B9)

In a LL the kinetic energy is quenched and V = E. This is solved by fixing r = `2B ẑ × k with E(k) = V (`2B ẑ × k).
For a δ-function interaction `2Bδ

(2)(r), with Fourier transform V (q) = 1, and 1
r interaction, with V (q) = 2π

q , the integral can
be done analytically to obtain

Eδ(k) =
e−k

2/2

2π
(B10)

E 1
r
(k) =

√
π

2
e−k

2/4I0(k2/4) (B11)

In this case, we find that E 1
r
(k) − 2JEδ(k) > 0 for all k so long as

√
π
2 −

J
π > 0, giving Jc =

√
π3/2 ∼ 3.9. For a gate

screened interaction, V (q) = 2π
q tanh(qd) we perform the integral numerically, and find that for d = 3`B , Jc ∼ 3.24. This is

much larger than the region explored in our work (J < 1), indicating the attractive pairing is a collective effect.

Appendix C: Phase diagram for other dopings

Here we discuss the phase diagram for two other representative dopings: ν = 2 + 1
2 , and ν = 2 + 1, see Fig. 7. As before,

there are two phases: for large-J , the state is a layer-unpolarized SC, and for small-J , the doping δ layer polarizes on top of an
XY-order. The large-J SC region has the same properties as demonstrated for δ = 1

4 , e.g. the same pairing symmetry and an
exponent ηSC ∼ L−1y , so we will not discuss it further. We note that for the same J, λ, Ly , we find that ηSC decreases with the
doping δ. Presumably this is because the superfluid density ρSC, and the hence phase stiffness, increases with δ.

The small-J layer polarized phases (ν+ = 1 + δ, ν− = 1) are more complex, but as we’ll see they map onto a very familiar
scenario: fractional filling of a Landau level. In these phases, the ν− = 1 component is essentially inert, and (in 2D) polarizes
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FIG. 7: (a) Phase diagram for doping δ = 1
2 calculated at Ly = 10`B . (b) Phase diagram for doping δ = 1 calculated at

Ly = 10`B . (c) Guiding center density-density structure factor in the layer-polarized phase (J = 0.5, λ = 0.1) at doping
δ = 1

2 , Ly = 10`B . The structure factor shows two singularities at wave-vectors `Bkx = 1.5, 2. These values are exactly
consistent with the 2kF back scattering processes of the ν = 1

2 composite Fermi liquid, as discussed in Ref. 63.

along an isospin axis in the XY plane; for concreteness, let’s say |−,→〉. Due to the anti-ferromagnetic interlayer interaction,
the electrons in layer + then effectively see an isospin Zeeman field of the form (J + λ)ηx. So, from the point of view of layer
+, the problem is qualitatively identical to a spinful Landau level at density ν+ = 1 + δ in the presence of a comparatively large
Zeeman field EZ ∼ J + λ. The resulting phase diagram is well known.40 At ν+ = 1, the electrons spin-polarize into |+,←〉:
this is just the ν = 2 XY-order. For small dopings ν+ = 1 + δ, charge enters as either electrons or small charge-1e skyrmions,
forming CDWs such as Wigner crystals and or various bubble phases. This is the behavior found at δ = 1

4 . As δ increases,
it becomes favorable for the CDW to melt and give rise to various fractional quantum Hall states. At δ = 1

2 , for example, we
find that and the ν+ = 1 + 1

2 electrons form a composite Fermi liquid state! (Fig. 7) Finally, at δ = 1, the + layer is filled and
becomes inert.

As can be seen, the phase boundary Jc(λ, δ) is doping dependent. This is expected. For small δ, the energetics are dominated
by ∆pair, which determines whether charge enters as electrons or layer-unpolarized charge-2e skyrmions. In this limit, Jc ∼ J∗,
as we found at δ = 1

4 . As the doping δ increases, however, the energy of the SC and layer-polarized phases become sensitive
to the interactions between the doped charges. We see that for small λ this causes Jc to increase with δ, disfavoring the SC.
This is presumably because for small λ the charge-2e skyrmions are very large, while the charge-1e electrons are small, so the
interaction energy increases with doping more rapidly in the SC phase. In contrast, for large λ we see that Jc actually decreases
with δ (albeit modestly), favoring the SC!

For small λ, our finding that ∂Jc
∂δ < 0 has an appealing consequence: it naturally leads to a superconducting “dome” as a

function of the doping δ. For small δ, the SC has a low Tc because of the low superfluid weight, so as δ increases we expect that
Tc will at first increase (this is the usual density dependence of the BEC transition, though here the transition is BKT). For large
δ, however, the system will eventually cross the Jc boundary and the SC will be destroyed in favor of the symmetry-breaking
layer polarized state. Depending on the system’s precise location in the (J, λ) plane, this leads to a situation where a SC dome
emerges from ν = 2, but then at some critical δ∗ the SC is destroyed, evolving into the correlated insulator at e.g. ν = 3. This
scenario is reminiscent MATBG samples which show an insulator at neutrality26.

Appendix D: Bosonized description of the qXY/SC coexistence phase.

In the main text we claimed that the finite wave-vector q∗ of the qXY phase is consistent with the charges in the SC entering
as meron-pairs, each of which binds a π-kink in the XY order parameter θXY. However, the reader may object that if the SC
is a condensate of meron pairs, then this effect should actually destroy the XY order. However, because of the finite cylinder
circumference, the system is an algebraic SC and the variance in the number of pairs in a region grows only logarithmically,
〈(
∫ x
0
ρ(x′)dx′)2〉con ∝ log(x). This can be used to infer the behavior of θXY using bosonization. So in this section we present

a bosonized description of the qXY phase in which superconductivity coexists with finite-q XY order and confirm the form of
Eq.(6).

Let ρ(x) denote the linear number density of meron pairs along the length of the cylinder at x, with 1D charge density 2eρ.
We define slowly varying bosonic fields φ and θ̃ which are related to the SC / XY order parameters via ∆(x) =

√
ρeiφ(x) and

θXY(x) = θ̃(x) + π
∫ x

ρ(x′)dx′. The latter expression realizes the constraint that the XY order parameter jumps by π across
each meron pair. In the coexistence phase, both φ and θ̃ are governed by quadratic fluctuations which we assume (at long
distances) decouple, with Luttinger parameters KSC,KXY. We will show that the resulting leading singularities in the SC and
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XY correlations take the form

〈∆†(x)∆(0)〉 ∼ x−
1

2KSC + · · · (D1)

〈eiθXY(x)e−iθXY(0)〉 ∼ x−
1

2KXY 〈eiπ
∫ x
0
ρ(x′)dx′〉 (D2)

∼ x−
1

2KXY
−π

2KSC
2 cos(πρ0x) + · · · (D3)

where ρ0 is the average charge density and we have neglected subleading power laws. As observed, the leading singularity
shifts to finite q∗ = πρ0. As J increases, the SC become stronger (KSC increases), and presumably the XY order is destroyed
at a BKT transition. This is consistent with the absence of XY order for large-J , where the central charge flows from c =
2 → 1. In addition, because KSC increases linearly with the circumference Ly , this causes the width of the qXY to shrink with
circumference, so the qXY order does not survive in the 2D limit.

Because θ̃ and φ are assumed to decouple in the IR, it will be sufficient to compute 〈eiπ
∫ x
0
ρ(x′)dx′〉 in the SC phase. To do so,

we follow the bosonization conventions of Ref. 64 by introducing a phase field ϕl,∫ x

−∞
ρ(x′)dx′ = bϕl(x)/2πc (D4)

eiπ
∫ x
−∞ ρ(x′)dx′ = eiπbϕl(x)/2πc =

∑
p∈odd

2

iπp
eipϕl(x)/2 (D5)

where bxc is the floor function. Expanding ϕl(x) = 2πρ0x− 2ϕ(x), we have

〈eiπ
∫ x
−∞ ρ(x′)dx′〉 =

∑
p,q∈odds

4

π2pq
eiπpρ0x〈eipϕ(x)e−iqϕ(0)〉 (D6)

=
∑
p∈odds

4

π2p2
eiπpρ0x〈eipϕ(x)e−ipϕ(0)〉 (D7)

=
∑

p≥0∈odds

8 cos(πpρ0x)

π2p2
1

xKSCp2π2/2
≈ 8

π2

cos(πρ0x)

xKSCπ2/2
+ · · · (D8)

Note that in these conventions 〈∆†(x)∆(0)〉 ∝ x−
1

2KSC . The desired form then follows.

Appendix E: Non-linear sigma model

In this section, we review and elaborate on aspects of the classical non-linear sigma model (NLσM), including the critical
J∗(λ) required for pairing near half-filling, and its asymmetry between easy-plane (λ > 0) and easy-axis scenario (λ < 0).

We start by recalling the NLσM partition function Z = e−S for coupled (iso)spin-ful lowest Landau levels in opposite
magnetic fields, where the action given in imaginary time by S =

∫ β
0
dτ
∫
d2rL[n+,n−] (Eq. (5) in the main text with the

identification AM = 2π`2B):

L[n+,n−] =
∑
γ=±

[
i

2AM

∫ 1

0

dunγ · (∂τnγ × ∂unγ) +
g

2
(∇nγ)2

]
+

JiEC
2πAM

(ni+ − ni−)2 +
1

2

∫
dr′ρ(r)Vc(r− r′)ρ(r′),

where ρ(r) =
∑
γ=±

ργ(r) =
∑
γ=±

γe

4π
nγ · (∂xnγ × ∂ynγ), EC =

e2

4πε`B
and AM = 2π`2B

(E1)

The first term in Eq. (E1) is the standard Berry’s phase term for an isospin-half field40,65. The isospin-stiffness g can be calculated
in terms of the Coulomb energy scale EC = e2/(4πε`B), for dual-gate-screened Coulomb potential of the form VC(q) =

VC(q) = e2

2εq tanh(qd), as follows:

g =
`2B

32π2

∫ ∞
0

dq q3 VC(q)e−(q`B)2/2 =
EC
16π

∫ ∞
0

dy tanh

(
yd

`B

)
y2e−y

2/2 (E2)

For d = 3`B , we find that g ≈ 0.99g0, where g0 = EC/(16
√

2π) is the value of isospin stiffness for unscreened Coulomb7.
For the numerics, we use this value of stiffness at different J and λ to extract the energy of charge e and charge 2e excitations
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(a) Easy-axis: J = 0.5, λ = −0.3
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FIG. 8: Distribution of spin and charge density in the two layers (γ = ±) for 2e charged excitations obtained by numerics on
the classical NLσM. While the spin-density is always locally antiferromagnetic, the charge density is radially symmetric for

easy-axis skyrmions, but splits into two merons for easy-plane skyrmions at large λ/ρs.

by minimizing the classical Hamiltonian on a 21`B × 21`B square grid, with `B = 19 units of grid spacing. The results for
energetics are plotted in Fig. 9a and the relevant pairing energy ∆pair = 2E1e − E2e is shown in Fig. 4a in the main text.
We indeed find that pairing if favored at low anisotropy λ and large J , which we can understand by using simple analytical
calculations for the skyrmion energetics provided we neglect screening.

Since the easy-plane case has been discussed in detail in Ref. 9, here we focus on the easy-axis case, and show how the phase-
boundary J∗(λ) can be well-captured by a variational texture with a single tunable parameter, the radius R of the skyrmion. We
first consider the following ansatz for a charge e skyrmion in a single layer (and neglect possible weak back-reaction from the
opposite layer).

n+(r) =(sin Θ cos Φ, sin Θ sin Φ, cos Θ), with Θ(r) = θ(r) = 2 arcsin(e−r/2R) and Φ(r) = φ,

n−(r) =(0, 0,−1) (E3)

The total energy of such a texture (for unscreened Coulomb interaction) is given by the sum of its elastic, exchange (Zeeman)
and Coulomb charging energy:

E1e(R) = 4.4πg +
4EC(J + |λ|)R2

AM
+

e2

16εR
(E4)

The optimal size (and consequently energy) is controlled by the competition between the Coulomb charging energy and effective
Zeeman energy penalty due to loss of antiferromagnetic exchange with the opposite layer.

Ropt =

(
π2

16(J + |λ|)

)1/3

`B , and E1e(Ropt) = 4.4πg + 3

(
π(J + |λ|)

4

)1/3

(E5)

.
For the charge 2e-skyrmion, we consider a locally antiferromagnetic ansatz of the form:

n±(r) =(sin Θ± cos Φ±, sin Θ± sin Φ±, cos Θ±), with Θ+(r) = θ+(r) = 2 arcsin(e−r/2R),Φ+(r) = φ

Θ−(r) =π −Θ+(r),Φ−(r) = φ+ π, ⇐⇒ n−(r) = −n+(r) (E6)

The total excitation energy of this texture is independent of J as local antiferromagnetism is perfectly respected, and is given by:

E2e(R) = 8.8πg +
12EC |λ|R2

AM
+

e2

4εR
(E7)

The optimal size is therefore determined by the competition between Coulomb energy and anisotropy, leading to

Ropt =

(
π2

12|λ|

)1/3

`B , and E2e(Ropt) = 8.8πg + 3EC(12π|λ|)1/3. (E8)
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FIG. 9: Energy of charge e and charge 2e excitations, evaluated numerically. Note that E2e is consistently higher in DMRG than
NLσM; we attribute this to quantum fluctuations.

From this, we determine the minimum exchange J for a given anisotropy λ, beyond which charge 2e excitations become lower
in energy: 2E1e ≥ E2e =⇒ J ≥ 5|λ|. Thus, we see that J∗(λ) = 5|λ| for our ansatz. In particular, our calculation implies
that J∗(λ → 0) → 0; in this limit Ropt for the 2e skyrmion diverges and it completely evades any Coulomb energy cost.
For screened Coulomb interaction, we expect the critical J∗(λ) to be lower. This is confirmed by our numerics with screened
Coulomb interaction having d = 3`B , where we find that the dotted purple line on the easy axis side of Fig. 4a is approximately
linear with J∗(|λ|) ≈ 3.5|λ|.

An analogous computation in the easy-axis case9 leads to a smaller slope for critical J∗(λ) = 2λ, indicating that pair-
formation is favorable in the easy-axis case. Roughly speaking, within this variational ansatz this is because canting of isospin
in the direction normal to the ordering vector in the easy-plane scenario does not cost additional anisotropy energy, in contrast
to the easy-axis case where any canting away from the easy-axis incurs an additional anistropy energy cost. However, there is
a more significant reason which is not captured by such an ansatz; for small stiffness g/EC , it is more favorable for the charge
2e object to deform into a topologically equivalent texture consisting of two charge e merons confined by an elastic binding
force, while still maintaining perfect local antiferromagnetism. This is evidenced by the plot of charge density in Fig. 8, clearly
showing the separation of the charge density into merons for the easy-plane case and a radially symmetric distribution for charge
density in the easy axis case, for the same value of (J, |λ|). Indeed, an analytical calculation9 shows that J∗(λ)→ 0 in the limit
of small isospin stiffness relative to the anisotropy (g/λ→ 0).

Appendix F: Details of segment DMRG and comparison with NLσM

In this section, we first elaborate on the details of extracting the energy of charge-2e and charge-e excitations above the
antiferromagnetic insulating ground state at ν = 2. Later, we discuss quantitative differences between the quantum and classical
energetics and discuss quantum fluctuations as a possible origin.

As discussed in the main text, we consider two classes of excitations: either a single electron in one layer (1e), or two
electrons with one in each layer (2e). The minimal excitation energy of each such excitation relative to the ground state at ν = 2
is extracted as follows. For matrix product state (MPS) fixed bond dimension χ and cylinder circumference Ly , we allow the
MPS representation of the quantum wave-function to differ from the ground state on an axial segment that spans Nspan Landau
level orbitals per spin per layer (in the Landau gauge). Within this variational space, DMRG is used to find the minimum energy
excitation with fixed quantum numbers for charge (e or 2e), spin and layer polarization of the excited state wave-function relative
to the ground state. For a given charge and layer polarization, the spin quantum number corresponding to minimum excitation
energy is chosen. Finally, appropriate extrapolations as functions of χ, Nspan and Ly are performed to obtain Ee or E2e in the
thermodynamic limit.

1. Charge-e excitations

We find that the charge e excitation energy E1e (for either layer) does not depend much on Nspan or bond dimension χ, and
depends very weakly on the cylinder circumference Ly . Further, in the easy-plane antiferromagnet (λ > 0) where the ground
state spontaneously breaks ηz , there is negligible dependence on the spin quantum number ηz for E1e in either layer. Therefore,
we work with fixed ηz = 1 in a regime of Nspan and χ where E1e has already converged as a function of segment length
and bond dimension, and extract E1e in the thermodynamic limit Ly → ∞ by extrapolation. Excellent fits are obtained for
E1e(Ly) = E1e + a1/Ly + b1/L

2
y (representative fits are shown in Fig. 11, indicating that the spin-half charge e excitations

are well-localized within the screening length d = 3`B ; consistent with our picture that the excitations are simply localized
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(c) Energy of charge e excitations as a function of spin quantum number ηz in the easy axis scenario (λ < 0), with the minimum
subtracted off to show the symmetric structure about ηz = 0. For larger effective Zeeman coupling to the opposite layer
(proportional to J + |λ|) the energy minima occur at ηz ± 1 for charges in opposite layers. For smaller effective Zeeman field,

the minima shift to ηa = ±3, strongly indicating that charge e excitations are actually topological skyrmions.

FIG. 10: DMRG energy of charge e excitations above the insulator at charge neutrality as functions of χ, Ly , Nspan and ηz

electrons. The extrapolated 2E1e =
∑
γ=±E1e,γ in (J, λ) plane are shown in Fig. 9b.

Qualitatively similar behavior is observed for E1e in the easy-axis antiferromagnet (λ < 0). However, in this case the ground
state conserves total ηz , and consequently E1e for each layer has a marked dependence on the spin ηz , which needs to be aligned
anti-parallel to the spin of the opposite layer to gain energy. Further, we find that for small values of the effective Zeeman field
from the opposite layer, i.e, J + |λ| . 0.06, the minimum energy charge e excitations have |ηz| = 3, providing strong evidence
that these excitations are topological skyrmions (see Fig. 10c). This is also consistent with the predictions of the classical NLσM,
where the size of the skyrmion (and therefore its spin) is determined by the competition between Zeeman and Coulomb energy,
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FIG. 11: Energy of charged excitations as a function of Ly , with best fits and extrapolated values in the thermodynamic limit.
When the dotted yellow line (E2e(Ly →∞)) lies below the dotted purple line (2E1e(Ly →∞)), pair formation is favored.
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FIG. 12: DMRG energy of charge 2e excitations above the insulator at charge neutrality as functions of χ, Ly and Nspan

and therefore decreases with increasing effective Zeeman field.

2. Charge-2e excitations

Next, we turn to the energetics of charge 2e excitations above the ground state. Typically, the dependence on bond-dimension
is negligible beyond a certain minimum χ that depends on J and λ, as shown in Fig. 12a. However, the charge now prefers spread
out over much larger length-scales, indicating the need for larger Nspan and Ly to accurately extract E2e in the thermodynamic
limit. Once again, we find that E2e converges rapidly beyond Nspan = 20 (see Fig. 12b); therefore we fix Nspan = 20 and
extrapolate as a function of Ly . Excellent fits are obtained for E2e(Ly) = E2e + a`e

−Ly/`s (for representative fits see Fig. 11),
indicating that the spin-zero charge 2e excitations are extended well-beyond within the screening length d = 3`B , and therefore
the Coulomb energy goes down exponentially for Ly � d; this is further evidenced by noting that `s ≈ 3`B = d in our fits. This
is consistent with our classical picture that the charge 2e excitations above the ground state are non-trivial topological textures
which can completely avoid Coulomb repulsion by spreading out to a large size for small anisotropy. The extrapolated E2e in
the (J, λ) plane are shown in Fig. 9b.
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FIG. 13: Dispersing 2e charged excitations (filled circles), and non-dispersing 1e charged excitations (empty squares) for dif-
ferent values of (J, λ). The predicted classical isotropic dispersion compares reasonably well with the numerically computed
dispersion at small ky`B , indicating that the effective mass is approximately independent of λ (compare first two panels) and

scales inversely with J (compare last two panels) at small anisotropy.

3. Effective mass

Having discussed the details of energetics at ky = 0, we now elaborate on the extraction of dispersion relations at non-
zero ky . This is achieved by varying the cylinder circumference Ly for the segment DMRG, allowing us to access momenta
ky,n = 2nπ/Ly with n ∈ Z66. As discussed in the main text and shown in Fig. (5), finite ky results in the 2e skyrmion splitting
into two charge e excitations in opposite layers, which move towards opposite edges of the cylinder. This can be seen by noting
that the lowest Landau level wavefunction at momentum ky in the Landau gauge is peaked at 〈x〉 = ±ky`2B , corresponding to
Chern number±1 respectively; a net momenta ky therefore results in a separation ∆x = ky`

2
B . This makes the 2e pair lose local

antiferromagnetic exchange energy, which serves as binding glue, at large ky , and the energetics is now dominated by Coulomb
repulsion between the two charge e excitations. Consequently, the dispersion becomes non-monotonic. In practice, we find that
this physics takes over for ky`B & 1.5. This, behavior, along with significant finite size effects, make it difficult to extract an
effective mass.

Nevertheless, we can still try to compare the energy at small ky and small anisotropy λ, to the semiclassical dispersion expected
from analytic calculations corresponding to Mpair = π~2/(JpA2

M )9 in the isotropic limit (Jp being the antiferromagnetic
coupling between opposite Chern sectors, the equivalent of layers in Ref. 9). In our convention, AM = 2π`2B and JpAM =
ECJ/π, therefore after appropriate conversion Mpair = π~2/(2EC`2BJ) = π/(2J) in the units used in Figs. 4 and 13. To
eliminate finite size effects, we plot E2e(ky, Ly) ≡ E2e(ky, Ly) − E2e(ky = 0, Ly), and see that at small ky`B the expected
isotropic dispersion given by k2y/(2Mpair) matches quite well. We further note from Fig. 13 that while the effective mass roughly
scales as J−1 as predicted by the semiclassical calculations, the dependence on anisotropy λ is quite weak. Finally, we comment
that at large ky`B & 1.5 and large Ly , the energy of the 2e excitation E2e(ky) → 2E1e, as evidenced by E2e(ky) → ∆pair in
Fig. 13.

4. DMRG vs NLσM

Although there is good semi-quantitative agreement between the classical NLσM and the quantum energetics found via seg-
ment DMRG, there are some minor discrepancies. In particular, we find that the DMRG energy of the charge 2e excitation
increases with J at a fixed λ, although there is no dependence of E2e on J in the classical picture due to perfect local antiferro-
magnetism between the layers. To resolve this, we first note that E2e is always found to be minimum at ηz = 0, corresponding
to perfect antiferromagnetic alignment between the opposite layers (see Fig. 9). Therefore, the additional contribution must
come from quantum fluctuations, which we aim to quantify as a function of J . To this end, we proceed by integrating out the
ferromagnetic modes in the quantum NLσM action. The procedure closely resembles integrating out ferromagnetic modes for a
two-dimensional collinear Heisenberg antiferromagnet65,67; we decompose nγ as follows:

nγ(r) = γn(r)
√

1−m2(r) + m(r), |m(r)| � 1, n · n = 1 and n ·m = 0 (F1)

Plugging this into the action in Eq. (E1) and assuming slow variation in space so that we can neglect terms with two or more
derivatives and two or more powers of m (i.e, O(k2m2) terms with k being momenta), we arrive at the following coupled action
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for n and m:

L[n,m] =
i

AM
m · (n× ∂τn) + g(∇n)2 +

2EC
πAM

[
λ(nz)2 + (J + λn2

xy)m2
xy + [J + λ(1 + n2

xy)]m2
z

]
− µρ(r)

+
1

2

∫
dr′ρ(r)VC(r− r′)ρ(r′), where ρ(r) =

2e

4π
n · (∂xn× ∂yn) (F2)

At this point, the action is quadratic in m, and we can integrate out m to find an effective action within the antiferromagnetic
manifold n.

Leff [n] =
1

2A2
M

(n× ∂τn)i[A−1]ij(n× ∂τn)j + g(∇n)2 +
2λEC
πAM

(nz)2 − µρ(r) +
1

2

∫
dr′ρ(r)VC(r− r′)ρ(r′),

where A =
4EC
πAM

(J + λn2
xy) 0 0

0 (J + λn2
xy) 0

0 0 J + λ(1 + n2
xy)

 (F3)

While the Hamiltonian corresponding to this effective action can be found via analytic continuation to real time followed by a
Legendre transform, it is non-illuminating and cumbersome to write down. Since pairing is seen only for small anisotropy, it is
instructive to consider the isotropic limit, in which case the effective Lagrangian reduces to (after analytic continuation to real
time):

Leff [n] =
π

8JAMEC
(∂tn)2 − g(∇n)2 − 2λEC

πAM
(nz)2 + µρ(r)− 1

2

∫
dr′ρ(r)VC(r− r′)ρ(r′), (F4)

In this limit, the conjugate momenta L =
(

π
4JAMEC

)
∂tn, and the effective quantum Hamiltonian density is given by:

Heff [L,n] =

(
2JAMEC

π

)
L2 + g(∇n)2 + 2λ(nz)2 − µρ(r) +

1

2

∫
dr′ρ(r)VC(r− r′)ρ(r′) (F5)

We note that the kinetic term corresponding to quantum fluctuations is proportional to J , which accounts for the increase of
E2e as a function of J at fixed λ that cannot be captured by numerics on the classical model. This is in excellent agreement
with several non-trivial features of our DMRG results. First we note that the energy increase of a 2e skyrmion for fixed (small)
λ is linear in J . For a given λ, the size of the skyrmion remains fixed and the isospins from the two layers maintain local
antiferromagnetism, implying that the classical energy is independent of J . Therefore, the correction to the NLσM energy
comes entirely from quantum fluctuations on the same classical texture, and therefore grows linearly with J . Next, we note
that E2e for DMRG and NLσM are very close when λ is small, corresponding to large skyrmionic textures and small quantum
corrections. As λ grows larger, the 2e skyrmion wave-packet grows smaller in real space, and the kinetic energy contribution
increases in accordance with the Heisenberg uncertainty principle ∆L∆n & 1. Accordingly, we show in Fig. 14 that E2e

increases with J at a faster rate for larger λ. Similar considerations also apply to E1e, which is generally higher in DMRG than
in NLσM — however generally we do not expect the NLσM estimates to be too accurate for charge e excitations on top of the
insulating state, as they are well-localized in real space.

5. Particle-hole gap in superconductor

In order to show that the superconductor obtained in our DMRG study has a spectral gap to single-particle excitations, we
perform segment DMRG in the doped phase. Specifically, we consider a representative point deep in the superconducting phase
at (J, λ) = (1.0, 0.5) at two different fillings ν = 2 + 1/4 and ν = 2 + 1/2; and compute the energy required to add or
remove an electron in a single layer (with given isospin). For Ly = 10 and χ = 2700, we find that the sum of these energies,
which corresponds to the particle-hole gap and is independent of where the chemical potential lies in the gap, is equal to 0.61EC
(0.55EC) for ν − 2 = 1/4 (1/2), as shown in Fig. 15 for the smaller doping. Further, this gap is independent of the layer and
spin quantum numbers of the particle; this is consistent with the superconductor being an isospin singlet.

Appendix G: Ly dependence of Jc

Here we explain why it is difficult to extrapolate the CDW/SC boundary Jc(Ly) of the doped phase diagram to Ly → ∞.
Recall that calculations are actually done at finite MPS bond dimension χ, which (for small χ) introduces a variational bias
against strongly entangled states. We find that the SC has much more entanglement than the CDW. This bias in favor of the
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FIG. 15: Segment DMRG data for energy particle and hole-like excitations in the top layer (γ = +) at (J, λ) = (1.0, 0.5) and
ν = 2 + 1/4, with best exponential fit and extrapolated value at Ly = 10`B and χ = 2700. We find that a much larger Nspan
is required for convergence indicating spatially extended electronic states (see Fig. 15), in contrast to the insulator at ν = 2.

Slightly smaller values may be obtained by Ly extrapolation, which we did not perform for this dataset.

CDW at finite χ results in the critical Jc moving upward. This effect is confirmed in Fig. 16, where we show the behavior
of Jc(Ly, χ) for various Ly . Unfortunately, since the entanglement scales in proportion to the circumference Ly , this finite-χ
bias is more severe at larger Ly (e.g. the curve for Ly = 10`B is steeper than the one for Ly = 8`B). Thus, without careful
extrapolation in χ → ∞, one may spuriously conclude that Jc increases with Ly , possibly indicating an instability of the SC
phase in the planar limit Ly � `B . As can be seen in Fig. 16, however, the critical coupling Jc is still strongly drifting at our
highest accessible bond dimension χ ' 8000, so that a reliable extrapolation does not seem possible with our current data set.

Appendix H: Pair wavefunction and the absence of higher-angular momentum pair correlations

In the main text we show results for the pair order parameter ∆(r) = iηyijψ+,i(r)ψ−,j(r), which has zero orbital angular
momentum. The charges in the pair can thus sit directly on top of each other, and in this sense the superconductor is “s-wave.”
However, to investigate the possibility of higher-order pairing on the same footing, we can consider a generalized pairing function

∆(r,R) = iηyije
i
∫ r+R/2

r−R/2
A.dR

ψ+,i(r + R/2)ψ−,j(r−R/2) (H1)

The phase factor A.dR is included to make the expression gauge invariant. In the symmetric gauge A = B(−y, x)/2 centered
on r = 0, it vanishes, and the angular momentum of the pair is diagnosed by expanding in powers of (Rx + iRy)m as usual.
In the 2D limit, 〈∆(0,R)〉 would measure the pairing wavefunction. Note that because of the inclusion of the layer index ±,
the pairing can in principle of have either even orbital angular momentum (∆(0,R) = ∆(0,−R)), or odd angular momentum
(∆(0,R) = −∆(0,−R)); in the odd case the pair is both an isospin and layer singlet.
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FIG. 17: Pairing wavefunction in the superconductor of Fig 3c.

On the cylinder, where the order is algebraic, we can instead measure P (R) =
∫
d2r〈∆†(r,R)∆(0,R)〉, which is like the

pairing function squared. P (R), shown in Fig. 17, has a maxima at R = 0 consistent with s-wave pairing. Interpreting the

width of P (R) as the coherence length, we find ξ ∼ `B (in fact P (R) = e
− R2

2`2
B ). This corresponds to an LM -scale coherence

length, as observed in MATBG experiments.
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