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We present a scalable machine learning (ML) model to predict local electronic properties such
as on-site electron number and double occupation for disordered correlated electron systems. Our
approach is based on the locality principle, or the nearsightedness nature, of many-electron sys-
tems, which means local electronic properties depend mainly on the immediate environment. A
ML model is developed to encode this complex dependence of local quantities on the neighbor-
hood. We demonstrate our approach using the square-lattice Anderson-Hubbard model, which is a
paradigmatic system for studying the interplay between Mott transition and Anderson localization.
We develop a lattice descriptor based on group-theoretical method to represent the on-site random
potentials within a finite region. The resultant feature variables are used as input to a multi-layer
fully connected neural network, which is trained from datasets of variational Monte Carlo (VMC)
simulations on small systems. We show that the ML predictions agree reasonably well with the
VMC data. Our work underscores the promising potential of ML methods for multi-scale modeling

of correlated electron systems.

I. INTRODUCTION

The growing field of machine learning (ML) is rapidly
revolutionizing the scientific research. In materials sci-
ence and condensed-matter physics, the ML methods
have opened up many research possibilities which are
beyond conventional approaches. In particular, the in-
troduction of ML techniques has reinvigorated the field
of multi-scale modeling of complex materials. A funda-
mental issue in multi-scale simulations is the trade-off
between efficiency and accuracy of the numerical meth-
ods. In particular, an accurate treatment of complex
quantum materials often requires time-consuming cal-
culations, which significantly limit the accessible sys-
tem sizes and time scales. Recent advances in super-
vised learning are able to bridge this gap by provid-
ing an efficient, yet accurate, model to approximate the
outcomes of complicated quantum calculations, thus en-
abling large-scale simulations. A supervised ML model
is essentially a complex high-dimensional function with
numerous tunable parameters, whose optimal values can
be determined from large number of training datasets.
Among the various ML models, deep neural networks
(NN) [5, 6] represent the most powerful and versatile
tools, which, in principle, can approximate any contin-
uous function with arbitrary accuracy [7-9].

Perhaps the best example of large-scale modeling en-
abled by ML is ab initio molecular dynamics (MD) sim-
ulations that are based on ML force-field models [10-22].
Contrary to classical MD simulations with empirical force
fields, the atomic forces in quantum MD are computed
by integrating out electrons on-the-fly as the atomic tra-
jectories are generated [23]. Over the past decade, var-
ious ML models have been developed to emulate the
time-consuming first-principles electronic structure cal-

culations based on, e.g. the density functional theory
(DFT). It is worth noting that an ML model here is es-
sentially a complicated classical force-field model, trained
from the DFT solutions. ML-based MD simulations thus
enjoy the efficiency of classical MD, while maintaining
the accuracy of first-principles calculations.

The success of ML method in quantum MD simula-
tions has further motivated similar ML approaches to
achieve large-scale dynamical simulations in correlated
electron systems [24-26]. For example, ML methods
have been applied to enable large-scale quantum Landau-
Lifshitz dynamics simulations of the double-exchange
model [24, 25], which describes itinerant electrons inter-
acting with magnetic moments of localized d electrons.
In such simulations, the exchange forces acting on spins
are obtained by solving a tight-binding electron Hamil-
tonian at every time-step, which could be prohibitively
expensive for large systems. ML-based exchange-force
models is developed to achieve large-scale dynamical sim-
ulations of double-exchange systems [24, 25]. In another
recent work [26], a multi-layer NN is employed to en-
able large-scale quantum kinetic Monte Carlo simulations
of the Falicov-Kimball model, which is another canoni-
cal example of correlated electron systems. Furthermore,
NN has been employed to learn the Gutzwiller solution
of Hubbard-type models [22, 27], thus enabling large-
scale MD simulations of Mott metal-insulator transition
in atomic liquids [22].

It is worth noting that the unprecedented efficiency of
ML based multi-scale modeling is due to the linear scala-
bility of electronic structure calculations enabled by ML
methods. This is in stark contrast to most conventional
approaches which scale rather poorly with the system
size. For example, exact diagonalization, which is central
to effective single-particle methods including Hartree-



Fock, Gutzwiller, and DFT, scales cubically O(N?) with
the system size N. More sophisticated many-body tech-
niques, such as quantum Monte Carlo and configuration
interaction, scale even more poorly with increasing sys-
tem size.

Fundamentally, as first pointed out by W. Kohn,
linear-scaling electronic structure methods are possible
mainly because of the locality nature or “nearsighted-
ness” principle [28, 29] of many-electron systems. Indeed,
in the pioneering work of Behler and Parrinello [10], the
locality principle was tacitly assumed in their construc-
tion of the NN interatomic potential model. The near-
sightedness of electronic systems here does not rely on the
existence of well localized Wannier-type wave functions,
which only exist in large-gap insulators. Instead, Kohn’s
locality principle mainly refers to observable quantities
such as the correlation function of many-particle sys-
tems; the principle is generally a consequence of wave-
mechanical destructive interference. It requires the pres-
ence of many particles, which need not be interacting.

Although other linear-scaling methods, notably the
kernel polynomial method (KPM) [30, 31], have been
developed for electronic structure calculation, they are
mostly restricted to solving effective single-electron prob-
lem. As a result, they cannot be directly applied to
strongly interacting or correlated systems, such as the
Hubbard or t-J models. Further approximations are re-
quired to reduce the many-body Hamiltonian to a single-
particle one, which can then be solved by the O(N) meth-
ods such as KPM. On the other hand, assuming near-
sightedness for many-electron systems, ML offers a gen-
eral approach to achieve linear scalability without further
approximation. The key is to develop a ML model that
can efficiently and accurately emulate the many-body cal-
culations based on a finite local environment.

In this paper, we demonstrate such a scalable ML
model for a disordered electron system with Hubbard
repulsion. Specifically, we consider the type of on-site
potential disorder as described by the Anderson model
of localization. Similar on-site disorder can also arise dy-
namically as in the adiabatic Holstein model. A neural
network (NN) model is developed to directly predict local
electronic properties such as electron occupation number
and double occupancy, based on the disorder configura-
tion in the immediate neighborhood. The NN model is
trained from quantum variational Monte Carlo simula-
tions on small lattices. We show that the trained NN
model gives accurate predictions on much larger systems
of varying Hubbard repulsion and disorder strength. Our
work demonstrates the transferability and scalability of
the ML approach to Hubbard-type models, paving the
way for their applications to multi-scale modelings of cor-
related electron systems.

The remainder of the paper is organized as follows. In
Sec. II, we present the variational Monte Carlo (VMC)
method and details of its implementation to the disor-
dered Hubbard model. Our focus is on the real-space
electronic inhomogeneity, and how the local electronic

properties depend on the neighborhood disorder configu-
ration. The structure of the NN and the training process
are discussed in Sec. III. A lattice descriptor, based on
the group-theoretical method, is developed to incorpo-
rate the discrete lattice symmetry into the NN model.
Comparisons of the ML predictions versus the VMC re-
sults on validation datasets are presented in Sec. IV.
Moreover, we discuss the application of the ML model
to Mott transition of the Anderson-Hubbard model. Fi-
nally, a summary and discussion for future work are given
in Sec. V.

II. VARIATIONAL MONTE CARLO METHOD
FOR HUBBARD MODEL

We consider the following two-dimensional Hubbard
model with an on-site disorder, also known as the
Anderson-Hubbard (AH) model [32-34],

H=—tY ¢l ¢, +> ein,+> Uhipiip. (1)
(ij),0 @ i
Here t is the nearest-neighbor electron hopping constant,

éj,a is the electron creation operator with spin o =71, ] at

site-1, N 5 = éjﬂci_a is the corresponding number oper-
ator, and n; = fzn + 7,y is the total number operator.
The on-site Coulomb repulsion is described by the last
term where U is the Hubbard parameter. The second
term describes an on-site or potential disorder consid-
ered by P. W. Anderson; ¢; denotes the on-site potential,
which is a random number drawn uniformly from the in-
terval [-W/2,+W/2]. The strength of the disorder is
thus characterized by the parameter W.

It is worth noting that such on-site disorder can also
be of dynamical origin, e.g. due to lattice distortions. A
canonical example is the Holstein-Hubbard model [35-
37] in which a scalar dynamical variable @Q; is introduced
to describe local lattice distortion of A; symmetry, such
as the breathing mode of oxygen octahedron, associated
with site-i. The random on-site potential ¢; = —g@Q;
comes from the deformation potential coupling between
electrons and lattice: Hel-ph = —g >, s @i, where g is
the coupling constant [35]. As will be discussed below,
the NN model developed for the AH Hamiltonian can
also be used to predict the effective forces acting on @;
in the adiabatic limit.

The AH model is one of the canonical electron sys-
tems. In addition to exhibiting rich phase diagrams [38—
44], the AH model offers a simple platform to study the
interplay between two important mechanisms of metal-
insulator transition, namely the Anderson-localization
versus correlation-induced Mott transition. The AH
model has been extensively studied by a wide variety of
numerical methods. Depending on the numerical treat-
ments of the spatial disorder, there are two types of ap-
proaches to this problem: the self-consistent theories and
the real-space methods. The most representative exam-



ple of the former approach is the generalization of dy-
namical mean field theory (DMFT) [45] to include the
disorder effects. While several self-consistent theories
have been developed for disordered electronic systems,
the typical medium theory (TMT) [46] proves success-
ful to capture the Anderson localization phenomena and
can be readily combined with DMFT [38, 39]. As such
self-consistent methods are free of finite-size effect, they
provide an overall theoretical picture of the AH model in
the thermodynamic limit.

The non-magnetic phase diagram of AH model ob-
tained from the TMT-DMFT method includes three dis-
tinct phases: a correlated metallic phase, a Mott insu-
lating phase, and an Anderson insulating phase [38, 39].
Importantly, the two insulating phases of the AH model
have very different characters. The Mott insulator results
from the strong correlation effect which prohibits elec-
trons from hopping to the neighboring sites. On the other
hand, strong disorder weakens the constructive interfer-
ence that allows an electron wave packet to propagate
coherently in a periodic potential, leading to the Ander-
son insulator. TMT-DMFT calculation shows that these
two insulating phases are continuously connected [38, 39].

On the other hand, the real-space approach, although
limited by finite-size effect, can better describe the spa-
tial fluctuations and correlations of the inhomogeneous
electronic state due to the disorder, especially for low-
dimensional systems. In this real-space approach, the
AH Hamiltonian for a particular disorder configuration
on a finite lattice is solved by many-body techniques
ranging from unrestricted Hartree-Fock [40, 47-49] and
Gutzwiller [41, 50] mean-field type theories to small-
cluster exact diagonalization [51-53], inhomogeneous or
statistical DMFT [33, 54-56], and quantum determinent
Monte Carlo [57-60] as well as variational Monte Carlo
simulations [61-64]. The calculation results are then
averaged over different disorder realizations. In par-
ticular, extensive large-scale simulations based on the
Gutzwiller/slave-boson methods showed that the strong
spatial inhomogeneity gives rise to an electronic Griffiths
phase that precedes the metal-insulator transition [41].

In this work, we are interested in the locality of elec-
tronic properties and collective behaviors such as the
double-occupancy. Specifically, our goal is to develop a
NN model that can accurately predict on-site quantities
based on disorder configuration within a finite neighbor-
hood. To capture these spatial inhomogeneity, we employ
the real-space variational Monte Carlo (VMC) method to
solve the square-lattice AH model. As we are interested
mainly in the competition between localization effect and
electron correlation, we restrict ourselves to the param-
agnetic phases to avoid complications due to long-range
magnetic order. We note that a similar ML approach
to disordered Hubbard models has been demonstrated
based on dataset from the real-space Gutzwiller/slave-
boson method [27]. However, the spatial correlation be-
tween local electronic properties is ignored due to the
Gutzwiller approximation. The VMC method, on the

other hand, can properly take into account these spatial
correlations, which are important to test the locality of
the ML models.

Next we outline the VMC method for the square-lattice
AH model. Following the previous works developed for
Hubbard-type models, we consider a variational wave
function obtained by applying a Gutzwiller factor G and a
Jastrow factor J to a Slater determinant |®) [61, 62, 65]:

) =G |Po). (2)

The uncorrelated Slater determinant state |®g) is com-
puted from the eigenstates of the following quadratic
Hamiltonian

Hyp = —t Z &l e+ Z Eivo Ty g (3)
1,0

17,0

which can be viewed as a mean-field approximation to
the AH model. The on-site energies &; , are part of the
variational parameters. As mentioned above, we focus on
the paramagnetic phases and assume spin-independent
local energies €; + = &; | = &;. To account for the crucial
on-site electron correlation, the Gutzwiller correlator is
introduced [65-67]

g = H[l — (1= gi) Py |
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where g; are another set of variational parameters that
control the on-site double occupancy; as g; — 0, double-
occupied states are completely projected out. The long-
range Jastrow factor is defined as [65]

7o)y S0 0] 6)

The Jastrow operator, parameterized by another set
of variational parameters v;;, introduces correlation of
charge fluctuations én; = n; — 1 at different sites. For
an arbitrary inhomogeneous state, the parameter v;; in
principle depends on both site-i and j, giving rise to
a total of N? parameters to be optimized. In order to
make the numerical calculation feasible [61, 62], we as-
sume translational invariance for these parameters, i.e.
v;j = v(|r; — r;|), and consider v;; for different pairs up
to the 8th nearest-neighbors.

The optimal variational parameters €&;,g;, and v
are obtained by minimizing the variational energy
Eyar = (P|H|P)/(T|P) using the stochastic reconfigura-
tion method [68, 69]. The evaluation of the various expec-
tation values computed from |¥) is computed based on
Monte Carlo simulations. In the following we apply the
VMC methods to study the ground state of the AH model
with various disorder strength W = 6¢, 10¢, 14¢, 18¢ and
Hubbard parameter U = 4t,8t,10¢t,12t,16t. We focus
on the case of half-filling where the number of electrons
N, = N. Periodic and anti-periodic boundary condi-
tions along x and y directions, respectively, are used. De-
pending on the convergence, 500—2000 iterations of the



FIG. 1. Summary of the VMC solution for the AH model
on a 16 x 16 square lattice. The four panels show the scatter
diagram of (a) on-site electron number n;, (b) variational local
self-energy ¥;, (c) double occupancy D;, and (d) effective
quasi-particle weight ¢; versus the random on-site potential
€i. The data points were obtained from calculations with
random strength W/t = 6,10, 14,18 and three different U =
4t,10t, and 16t. The overall dependence of the various local
quantities on the on-site potential is highlighted by the three
colored curves obtained using polynomial regression with up
to 16th-order polynomials. The red, blue, and green curves
correspond to U = 4t, 10t, and 16t, respectively.

stochastic reconfiguration were used to optimize the vari-
ational parameters. For each iteration, the various ex-
pectation values were obtained from approximately 10°
Monte Carlo samplings. For each U and W combina-
tion, 50 independent realizations were used to generate
the training datasets.

The results of the VMC simulation are summarized
in Fig. 1, which shows the scatter plots of various local
quantities versus on-site potentials ¢; for three different
Hubbard U. Here we are interested in the following lo-
cal quantities: (a) the local electron filling fraction f;,
(b) the electron on-site self-energy %;, (c) the double-
occupancy D;, and (d) the local quasi-particle weight g;.
Each point in the scatter plots corresponds to the data of
a lattice site from the VMC solution of a given disorder
realization. The local electron number is defined as

n; = (fi) = (i) + (Riy)- (6)

for paramagnetic phases, we have (f;4+) = (f; ). As
shown in Fig. 1(a), this local electron density is reduced
with increasing on-site potential, which is expected. At
large U = 16t, the electron number develops a plateau
at n; = 1 for small on-site energies |g;| < 6¢. The
plateau thus represents lattice sites with localized elec-
trons, where the corresponding double occupancy also
tends to zero. The electronic properties outside the
plateau is dominated by the strong local potential, lead-
ing to either almost filled or empty sites. For systems
with large W 2 U, the interplay between electron cor-
relation and disorder thus gives rise to a spatially very

inhomogeneous states with coexisting Mott regions and
Anderson insulator, consistent with the two-fluid behav-
ior of the Mott-Anderson insulator [39, 41, 55]

Another quantity of interest is the local self-energy,
which is defined as the difference between the renormal-
ized and bare on-site potentials:

Ei = é:i — &;. (7)

As shown in Fig. 1(b), this self-energy clearly anti-
correlates with the random on-site potential ¢;, meaning
that the renormalization due to X; is such that the ef-
fective potential €; tends to vanish. Indeed, screening of
impurity potential by the electron gas has been demon-
strated even in the weak interaction regime. As demon-
strated in both real-space DMFT and slave-boson studies
on the 2D AH model [41, 50, 54], the disorder screening
persists also in the strong correlation regime, albeit with
a rather different nature. In particular, this interplay
leads to the enhancement of metallicity in an intermedi-
ate regime where the interactions and the disorder are of
comparable magnitude.

To detect the correlation-induced electron localization,
we compute the local double occupancy from VMC:

D; = (N 17iy), (8)

As expected, the average double occupation is reduced
with increasing Hubbard U; see Fig. 1(c). It should be
noted that the large D; persists even at large U is due
to the deep on-site potential which traps two electrons
of opposite spins. On the other hand, the small value of
double-occupancy at large positive € is a result of empty
site, instead of strong correlation. To properly distin-
guish these two scenarios, we also compute an effective
local quasi-particle weight defined as

49i
Ol (9)
where g; is obtained from the VMC optimization. For
homogeneous electron liquids, the quantity g character-
izes the discontinuity of the momentum distribution func-
tion at the Fermi surface in the Gutzwiller approxima-
tion [66, 67]. And for inhomogeneous systems, ¢; plays
the role of renormalizing the electron hopping. We em-
phasize that ¢; is not an exact definition, but is meant
to be a qualitative indicator of the local quasi-particle
weight. As shown in Fig. 1(d), overall the quasi-particle
weights decrease with increasing Hubbard U. On the
other hand, stronger disorder, e.g. sites with |g;] < U
preserves the itinerant nature of electrons.

The results summarized in Fig. 1 also indicate con-
tinuous trend with respect to increasing disorder for a
fixed Hubbard parameter. We note that these scatter
plots include VMC data from various disorder strengths
W/t = 6, 10, 14, and 18. As a result, some of the
data points correspond to the Mott-dominated insulat-
ing phase, i.e. those W < U, while others belong to the
Anderson insulator (W > U). Nonetheless, the collec-
tion of all data points clearly exhibit an overall trend as
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FIG. 2. Schematic diagram of the ML model for the vector function F(C;; U) defined in Eq. (11) for the AH model. The input
of the ML model is the disorder configuration C; in the neighborhood of a given site-i up to a cutoff radius r.. The output are
local electron properties including on-site electron number n;, self-energy 3;, double-occupancy D;, and Gutzwiller parameter
gi- There are two central components of the MLL model: the descriptor and the learning model, which is based on a multi-layer
neural network. The ReLU activation function is used in the five hidden-feature extraction layers with 256 x 128 x 64 x 32
nodes. Note the special input node corresponding to the Hubbard parameter U.

a function of the on-site potential ¢ as highlighted by the
smooth curves in Fig. 1, which are obtained using poly-
nomial regression up to 18th order. These continuous
functions relating the local quantities n;, D;, --- to the
on-site potential &; thus provides the zeroth order pre-
diction. Deviations from this smooth curve, as clearly
indicated by the scattered points in the figure, thus can
be viewed as due to the influence of neighboring random
potentials. The effects of the neighborhood disorder are
accounted for by the ML model to be described below.

III. MACHINE LEARNING MODEL

We next describe the framework of a scalable ML
model for predicting the local electronic properties of dis-
ordered Hubbard systems. Our approach is similar to
the ML modeling of structure-property relationships in
materials science, which play an increasingly important
role in accelerated materials discovery. A particularly
important application, as mentioned in Sec. I, is the ML
modeling of force-field for ab initio MD simulations. The
central idea is to develop a ML model which can accu-
rately predict the force acting on individual atoms and
other local properties based on the immediate chemical
environment,.

A widely used scheme, first pioneered by Behler and
Parrinello [10], focuses on local energies. First, the total
energy of the system is partitioned into local contribu-
tions, E = ) . E;, where E; is called the atomic energy
associated with the i-th atom. Next, based on locality
principle, the atomic energy FE; is assumed to depend
on the atomic configuration C; in the neighborhood of
atom-i. Specifically, this local chemical environment is
given by C; = {(Z;,R;) ‘ IR; — R;| < rc}, where Z; is
the atomic number of atom-j at position R;, and . is
a cutoff radius (soft cutoff is often used). Finally, the
complex dependence of atomic energy on the local envi-

ronment, E; = f(C;), is to be approximated by an ML
model, which is trained from electronic structure calcu-
lations such as DFT on small systems.

The atomic forces in this scheme is obtained from
the derivatives of the total energy: F, = —0E/0R,.
It is worth noting that, instead of direct prediction of
atomic forces, which are vectors, the Behler—Parrinello
type scheme focuses on the local atomic energy. The fact
that the atomic energy, as a scalar, is readily invariant
under transformations such as rotations and translations
of the system makes it easier to incorporate the symmetry
properties into the ML model. Moreover, as forces are de-
rived from an effective energy, this approach also ensures
a conservative force field, which is important for quan-
tum MD under Born-Oppenheimer approximation [23].
Most importantly, this ML method is both transferrable
and scalable as exactly the same ML model can be used
for much larger systems. We note in passing that a simi-
lar approach has recently been developed for generalized
force fields in condensed matter systems [70].

Here we adapt this ML approach to develop a neural-
network (NN) model for the prediction of local electronic
properties of the AH model. Again, based on the near-
sightedness of many-electron systems [28, 29], we assume
local electronic properties such as electron density and
double-occupancy at site-i only depends on the neighbor-
hood disorder configuration C;. Explicitly, it is defined as

Ci:{Ej‘|Rj—Ri| <T‘c}, (10)
where r. is a predefined cutoff radius. The complex de-
pendence of local electronic properties on local energies
C; in the neighborhood is represented by a vector func-
tion F(-):

For convenience, here we arrange the local quantities as-
sociated with site-i into a vector or array Q;. The def-

.7:(Ci; U).



initions of these quantities are discussed in Sec. II. Al-
though the approach discussed here can be straightfor-
wardly generalized to include more local properties, here
we mainly concern the four quantities shown in Fig. 1.
Moreover, we have explicitly included the dependence
on the Hubbard parameter U. By setting the nearest-
hopping constant ¢ = 1, which serves as the unit for
energy, the vector function F(-) is universal for the AH
model of a given electron filling fraction n = N./N. A
ML model, shown in Fig. 2, is developed to approximate
this universal function for the case of half-filling. The
input of the model, which is the disorder configuration
C; in the neighborhood of site-7, is first transformed into
a set of feature variables {x1, za,- -,z } called the de-
scriptor. These feature variables, along with the Hub-
bard parameter U, are then fed into the neural network
which produces an array of the local quantities Q; at the
output. Details of these two central components, namely
the descriptor and the neural network, are discussed in
the following.

A. Lattice Descriptor

It is worth noting that, despite the powerful approx-
imation capability of NNs, symmetries of the electron
Hamiltonian are not automatically included in the ML
model. One approach to incorporate the required sym-
metry into ML model is through the construction of a
proper representation of the local environment, which is
then used as input to the learning model. A good rep-
resentation is invariant with respect to transformations
of the symmetry group of the system. This crucial step
of the ML model, namely the construction of the proper
representation, is often referred to as feature engineer-
ing and the resultant feature variables, also called the
generalized coordinates, are termed a descriptor [71-73].

Descriptor is also crucial to the ML interatomic po-
tentials for quantum MD simulations. a proper descrip-
tion of the chemical environment should respect the fun-
damental symmetries of interatomic interactions, which
are invariant under translational, rotational, and per-
mutational transformations. Over the past decade, a
number of descriptors have been proposed together with
the learning models based on them [10, 11, 16, 71-81].
A popular atomic descriptor used in many ML mod-
els is the atom-centered symmetry functions (ACSFSs)
built from the two-body (relative distances) and three-
body (relative angles) invariants of the atomic config-
urations [10, 76]. The group-theoretical method, on the
other hand, offers a more controlled approach to the con-
struction of atomic representation based on the power-
spectrum and bispectrum coefficients [11, 72]. It is worth
noting that the research of atomic descriptor is an active
ongoing field.

A general theory and several specific implementations
of descriptors in condensed matter systems, especially for
lattice models, have recently been presented in Ref. [70].
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FIG. 3. Schematic diagrams of (a) 4-sites and (b) 8-sites
blocks of neighbor sites.

In particular, the group-theoretical bispectrum method
was generalized to systematically generate feature vari-
ables that are invariant under symmetry operations of the
on-site point group [27, 70]. Here we apply this method
to develop a descriptor of the AH model. To this end,
we first note that the on-site potentials in the neighbor-
hood C; form a high-dimensional reducible representation
of the site-symmetry group, which in the case of square
lattice is equivalent to the point group D4. The first step
of finding invariants under site-symmetry is to decom-
pose the neighborhood C; into irreducible representations
(IRs) of the symmetry group.

While this decomposition can be done following stan-
dard procedure in group theory, the calculation here can
be greatly simplified by noting that neighboring sites-j
with the same distance R;; = |R; — R;| from the cen-
ter site-i form a closed representation of the point group.
In the case of Dy, the size of these invariant neighbor
blocks is either 4 or 8; see Fig. 3. The 4-sites block can
be decomposed as: 4 =14, & 1B $ 1E. The expansion
coefficients of each IR are

fA1 =Eq T+ Ep + Ec T+ Eq,
fB, =€a— &b +éec—€ds (12)
e = (ea —&c, &b — €a).
The decomposition of the 8-sites block is: 8 = 14; +
1By +1A5+ 1By 4+ 2F, with the following coefficients for
each TR
fa, =€atep+ecteqateeterteg+en,
fa, =€a—cp+ec—€a+ec—€f+eg—en,
fBL =¢€a—¢cpy—ecteqgtec—cf—eg+en,
fB, =€at+epy—ec—€q+ect+er—eg—en,
f(E,l) = (Ea +Ep—€Ee — Efy —E€c —E&d +Eg +€h)7
fg2) = (ec —€ad—€g+€n, €a —€b —cc+€y). (13)
As the neighborhood C; contains several such invariant
blocks, we expect same IRs appear multiple times in the
overall decomposition of C;. In the following, we label
each IR in the decomposition of C; as I' = (T, ), where
T = Ay, As,--- denotes the symmetry type of the IR,
and r indicates different occurrence of the same IR. For
convenience, we arrange the expansion coeflicients of an

IR I into a vector fr = (fr.1, fr,2, -+, fr,nr), Where np
is the dimension of T'.



The power spectrum of the representation are given by
the amplitudes of the IR coefficients
2
pr = |fr| (14)
Since the power spectrum coefficients are obviously in-
variant under symmetry transformations, they can be
used as feature variables for the ML models. However,
a descriptor composed only of power spectrum is incom-
plete since the relative phases between different IRs are
ignored. This also means that descriptor contains spuri-
ous symmetries as the transformation of each IR is inde-
pendent of each other without the phase information. A
complete set of feature variables can be obtained from the
bispectrum coefficients br, r, r,, which are triple prod-
ucts of the expansion coefficients fr,,, based on the
Clebsch-Gordan coefficients of the point group. Intu-
itively, they can be viewed as the analog of scalar triple
product of 3-dimensional vectors. Not only are the bis-
pectrum coefficients invariant under symmetry transfor-
mations, they can also be used to faithfully reconstruct
the original disorder configuration [72, 82].

However, a descriptor based on all the bispectrum co-
efficients is in fact over-complete as many of them are
redundant. Moreover, since the dimension of most IRs of
point groups is rather small, the number of bispectrum
coefficients is often a very large number, which makes
the implementation infeasible. Instead, here we employ
the method of reference IR discussed in Ref. [70] to re-
tain the phase information. The central idea is to first
construct an 8-dimensional representation of the neigh-
borhood C; based on average of on-site potentials over
symmetry-related finite regions. As shown in Fig. 2, an
example is given by (4,Zp, -+ ,Ex) where each £k is
given by the average of all on-site ¢; within wedge-K.

The decomposition of this 8-dimensional representa-
tion £ then gives coefficients f} , fi,, -, fi for each
symmetry type. These coefficients fi are termed the ref-
erence IR coefficients. For each IR, an effective phase can
be defined by the following inner product

ne = (fr- f5.)/| ]| £ (15)

where Tr is the symmetry type of IR I'. The phase
nr, which is an inner product of two IR coefficients, is
naturally invariant with respect to symmetry operations.
More importantly, by including nr in the descriptor, the
relative phases between different fr are now be inferred
through the intermediate reference IR coefficients.

B. Neural Network

The various steps of the descriptor discussed above can
be summarized as: C; — fr — (pr,nr). Crucially, as-
suming the various local quantities Q; of interest depend
on the neighborhood through these feature variables,

Q= F({pr.r}t:s;U). (16)

the resultant ML model is ensured to preserve the site
symmetry of the AH Hamiltonian. As discussed above,
this vector function F(-) is to be implemented using a
NN. The basic unit of a NN is a perceptron or artificial
neuron. And a NN is essentially a set of nested linear re-
gression functions with non-linear activation performed
by the neurons; see Fig. 2. For a neuron with m input
signals, arranged in a vector & = (z1,22, - ,Zm), its
output is given by y = o(w - & + b), where o(-) is a non-
linear activation function, w = (wy,ws, - ,wy,) speci-
fies weights for each input, and b denotes a bias. Here
each signal x; is the output of a neuron from previous
layer. In a NN, each line is associated with a weight,
while each node (neuron) is assigned a bias. These
weight and bias variables are parameters to be optimized
through training processes.

We design a fully-connected NN with four hidden lay-
ers consisting of N = 256 x 128 x 64 x 32 rectified linear
units (ReLU) neurons, i.e. with an activation function
o(x) = max(0,z). We choose these numbers of neurons
in order to optimize the memory access in CUDA-based
GPU computation. The input layer, specified by a vector
X = (X1, Xo,---, X ), are given by the standard-scalar
transformation, i.e. by removing the mean and scaling to
unit variance, of the power spectrum coefficients pr and
the relative phases nr. In addition, the Hubbard param-
eter U is also used as an input to the NN; see Fig. 2. The
neurons in the hidden layers perform a series of nonlinear
transformations described above on the input data. The
outcome is fed forward to be processed by the output
neuron with sigmoid activation function for n, D, and
g (whose domain is [0,1]) and linear activation function
for 2. The mean squared error (MSE) is used as the loss
function:

N
1 .
L= 57 2 (Walm = ue” + W[ D1 = i (17)
k=1
W Dy = D"+ Wolgw = aul* 4+,

where N is the number of training data, symbols with a
hat refer to the predicted values, the various W denote
the weights of each output. The method of batch nor-
malization is used to avoid overfitting, with a minimum
batch size of 32. We use randomly mixed 36 x 256 x
4 x 5 = 184320 data samples as the training set. The
Adam optimizer with learning rate of 0.001 is applied for
training process. Once the training process is success-
ful, the trained neural network can rapidly predict the
4 x 256 x 4 x 5 = 20480 test data samples. Equal weights
for the output are used in the current model.

It is worth noting that, instead of developing an inde-
pendent NN for each of the local quantities, here adopt
a multi-task ML framework [83, 84]. As shown in Fig. 2
our approach is to build one NN that can simultaneously
and consistently predict different local electronic prop-
erties. This common NN is trained via a loss function
L that includes MSE from all four local quantities in-
troduced in Eq. (11). Such multitask learning approach



allows inductive bias to be acquired via the training sig-
nals for related additional tasks drawn from the same
domain [83]. The benefit of multitask learning is the ad-
ditional constraints due to the interdependences between
the multiple outputs; what is learned for each task can
help other tasks to be learned better.

IV. RESULTS AND DISCUSSION

We first benchmark the trained ML model by compar-
ing its predictions against the results from VMC simula-
tions for all disorder configurations, including both the
training and the validation datasets. As shown in Fig. 4,
for all four local quantities, the ML predictions agree
reasonably well with the VMC calculations. More quan-
titatively, we plot the histograms of the prediction error
defined as 0 = Ay, — Avame in the insets of Fig. 4. In
all cases, the error is rather narrowly distributed with a
MAE, given by the width of the distribution, of the order
of less than one percent of the mean values.

It should be noted that the VMC dataset is itself
noisy, since the quantities computed from VMC simula-
tions are based on Monte Carlo samplings, for example,
n; = 37 Z£1<Wz\ﬁ,|\lll>/<\llz|\l'1> for local electron occu-
pation number, where |®;) is a trial wave function among
the Markov chain samplings. The values from VMC thus
depend on the number of samplings and other stochas-
tic factors. Similarly, as the optimization of variational
parameters, such as local energy renormalization ¥; and
Gutzwiller parameter g;, are based on derivatives which
are computed stochastically, these quantities are also not
without uncertainty. The randomness in the datasets
thus partially contributes to the error § in the ML pre-
dictions. Of course, the error due to VMC can be sys-
tematically reduced by increasing the number of Monte
Carlo samplings.

We note in passing that for Hubbard-type models
with electron-lattice coupling through the deformation
potential, the ML prediction of the local electron num-
ber n; also provides the forces acting on the atomic
displacements or lattice distortions. Our approach is
thus an alternative to the more general Behler-Parrinello
ML scheme [10]. These include both the Holstein and
Jahn-Teller lattice models. For example, the electron-
phonon coupling in the Holstein model is described by
Hel-ph = —g Y ; 1;Q;, where @Q); denotes the amplitude of
local structural distortion. The lattice degrees of freedom
play an important role in the emergence of complex elec-
tronic textures driven by electron correlation in Hubbard-
type models. In such applications, the lattice distortions
@; can be treated as classical dynamical variables, and
the electronic forces acting on @; can be obtained from
Hellmann-Feynman theorem: F; = —(0He-pn/0Qi) =
g{f;). The ML model developed here thus can also be
combined with the Langevin dynamics method to enable
large-scale dynamical simulations of Hubbard-Holstein
model.
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FIG. 4. Comparison of the ML predictions with references
obtained from the VMC simulations. (a) local electron num-
ber n, (b) on-site electron self-energy X, (c) local double-
occupancy D, and (d) the Gutzwiller variational parameter g.
The blue and orange data points denote predictions for train-
ing and test data sets, respectively. The insets show the nor-
malized count of the error § = Ay, — Avmc defined as the
difference between prediction and reference values.

To demonstrate the scalability of our ML approach, we
apply the ML model, trained from VMC solutions on a
small 16 x 16 lattice, to compute the real-space electronic
properties of the AH model on a 100 x 100 lattice. Fig. 5
shows the profiles of local double-occupancy D; at vari-
ous Hubbard U for some random realizations of a large
disorder with W = 18. Based on the locality of electronic
systems, the ML model only depends on on-site poten-
tials of a fixed finite spatial region, e.g. determined by the
cutoff radius ., independent of the system size N. Con-
sequently, the time complexity of ML method for com-
puting local electronic properties scales linearly with N.
The efficiency is thus significantly improved compared
with the polynomial scaling O(N?®) of VMC, where the
exponent s ranges from 3 to 6 depending on the specific
optimization techniques [69].

The results shown in Fig. 5 are also consistent with the
picture of disorder screening discussed previously [41, 50,
54]. At small U, the strong disorder results in a highly
inhomogeneous distribution of electron double occupa-
tion, as demonstrated in Fig. 5(a). With increasing U, in
addition to a reduced double occupancy due to Coulomb
repulsion, the spatial inhomogeneity of D; is also reduced
due to the renormalization ¥; of the on-site potential by
electron correlation. By applying the ML model to in-
dependent realizations of disorder, Fig. 6(a) shows the
double-occupancy D, averaged over all lattice sites and
different disorder configurations, as a function of U for
different disorder strength W. Also shown for compari-
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FIG. 5. Distributions of local double-occupancy D; obtained
by applying the trained ML model to a large 100 x 100 square
lattice at various Hubbard parameters.

son is the VMC results on a smaller 16 x 16 system. The
ML predictions not only are consistent with the VMC
calculations, but also exhibit a consistent trend towards
Mott transition with increasing Hubbard parameter U.
In the presence of strong disorder, our results show a con-
tinuous crossover from Anderson insulator to the Mott
insulating phase [55, 62].

As shown in Fig. 5, the rather inhomogeneous states
indicate a rather wide distribution of the local double-
occupancy, especially at small U. In addition to the
mean value, our ML model also captures this spatial in-
homogeneity of the electron state. To demonstrate this,
we plot in Fig. 6(b) the spatial variation of the double-

occupancy op = [% > (D — 5)2]1/2, averaged over
several independent disorder realizations, as a function
of U. The amount of variation computed from ML pre-
dicted local double-occupancy agree very well with the
VMC simulations. The ML model also consistently pre-
dicts the decrease of the dispersion op as U is increased,
which is indicative of the screening of disorder induced

by strong electron correlation [41, 50, 54].

Finally, it is worth pointing out that the nontrivial U-
dependence, which encapsulates the electron correlation
effect, can be incorporated in the ML model by simply
adding the Hubbard parameter U at the input node; see
Fig. 2. The feasibility of this approach can be partly
attributed to the smooth dependence of electronic prop-
erties on the Hubbard U in the presence of disorder. In-
deed, as discussed in previous works, the first-order Mott
transition is smeared by the strong disorder in 2D, lead-
ing to a continuous crossover to the Anderson-Mott in-
sulator [55, 62]. Moreover, even through a single input
node, highly nonlinear dependence on U can be achieved
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FIG. 6. (a) The double occupancy D, averaged spatially
over sites of the 100 x 100 lattice and averaged over 50 in-
dependent realizations of disorder, as a function of Hubbard
parameter U. Panel (b) shows the spatial standard deviation
of the double-occupancy op = [, (D; — D)?/N]"/?, aver-
aged over 50 different disorder realizations. The black dots
are the VMC data while the colored dots are predictions by
the trained ML model.

through the fully connected neurons with nonlinear acti-
vations.

V. SUMMARY AND OUTLOOK

To summarize, we present a comprehensive ML frame-
work for the predictions of local electronic properties of
disordered Hubbard models. By exploiting the univer-
sal approximation capability of neural networks, a ML
model is developed to encode the complex dependence
of local quantities, such as electron number and double
occupancy, on the local environment. Based on group-
theoretical method, a descriptor is proposed to repre-
sent the neighborhood random potentials with the lattice
symmetry properly taken into account. We use the AH
model as an example to demonstrate our ML framework.
By training the NN with datasets from small-scale VMC
simulations, we show that consistent results are obtained
by applying the ML model to large systems with approx-
imately 10% lattice sites.

Our approach emphasizes the scalability and trans-
ferability of the ML model, which are essential in or-
der to achieve the goal of multi-scale modeling of cor-
related electron systems. The fact that most electronic
structure methods and many-body techniques for solving
strongly correlated models have a polynomial complex-



ity O(N®) with « > 1 significantly restricts the accessi-
ble size and time scales. On the other hand, as pointed
out by W. Kohn [28, 29], the locality nature of most elec-
tronic systems, namely, local physical observables are de-
termined by the immediate environment, underpins the
possibility of linear-scaling electronic structure methods.
The ML approach proposed in this work takes advantage
of this feature to enable linear-scaling calculations for lo-
cal electronic properties of correlated electron systems.

The assumption of locality also means that long-ranged
interactions such as Coulomb or dipolar interactions are
beyond the proposed ML approach. Nonetheless, such
slowly-decaying long-range interactions are often of clas-
sical origin and can be described by explicit analytical
formulas. Their effect can thus be included indepen-
dently of the ML model, which is designed to model the
effects of electrons. Moreover, efficient methods such as
Ewald summation have been developed to deal with such
long-range interactions (Coulomb, or dipolar). However,
the presence of such long-range interactions does increase
the overall computational complexity and, as a result, ex-
act linear-scaling might not be possible.

It should also be noted that, despite the generality of
the nearsightedness of many-electron systems [28, 29],
the effective range of influence could be rather large, es-
pecially for electronic systems close to criticality. The
prediction accuracy of the proposed ML approach then
depends crucially on the cut-off radius of the local envi-
ronment. One thus needs to strike a balance between
accuracy and feasibility in practical implementations.
Nonetheless, the ML model is developed with the main
purpose of modeling spatially inhomogeneous electronic
states, of which the electron correlation decays exponen-
tially with a short correlation length. This is because
even the electron wave functions are short-ranged due
to, e.g. Anderson localization effect, in such disordered
systems. We thus expect the ML model should perform
well for highly inhomogeneous electron systems.

As discussed in Sec. I, similar approaches have been
employed to develop ML force-field models for quantum
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MD simulations. However, in most prior works [10-
22], the ML models are derived from electronic structure
methods that are based on self-consistent single-particle
calculation, such as DFT or Gutzwiller approximation.
Our work demonstrates that NN can successfully learn
variational Monte Carlo simulation, which is a many-
body method beyond effective single-particle or mean-
field type approximations.

Finally we note that similar ML framework has also
been applied to enable large-scale dynamical simula-
tions of some correlated electron systems, including the
double-exchange and Falicov-Kimball models [24-26].
These electronic models are characterized by dynamical
classical degrees of freedom coupled to free electrons de-
scribed by a tight-binding Hamiltonian. ML models are
constructed for the generalized force fields acting on the
dynamical classical fields. As there is no direct electron-
electron interactions in these models, the electronic struc-
ture problems can be solved by exact diagonalization.
For correlated electron systems with Hubbard-type inter-
actions, sophisticated many-body methods are required
for an accurate solution of the electronic structure prob-
lems. As mentioned above, our ML model can be read-
ily combined with Langevin method to enable large-scale
dynamical simulations of Hubbard-Holstein model. Our
work paves the way toward multi-scale dynamical mod-
eling of strongly correlated systems such as Hubbard or
t-J models.
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