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Abstract

Circular dichroism in resonant elastic x-ray scattering (CD-REXS) has recently been observed in

chiral structures composed of multiferroic materials as well as magnetic moments or electric polar-

ization vectors. In order to comprehensively understand the experimental results of these previous

studies, we present here in detail the analytical formulation of CD-REXS for one-dimensional he-

lices composed of magnetic moments and electric polarization vectors, respectively. In particular,

by comparing CD-REXS for proper-screw-shaped Bloch-type helix and cycloid-shaped Néel-type

helix, we found that CD-REXS for both magnetic and polar helices can discriminate between both

types of helices. We also found that the x-ray polarization factor depending on the scattering ge-

ometry is a significant factor in determining the characteristics of CD-REXS for chiral structures.

The results obtained from the detailed formulas can be intuitively understood using the concept

of mirror reflection. In particular, in this way it can be understood that Bloch- and Néel-type

helices correspond to truly chiral and achiral structures, respectively, and why CD-REXS is able

to distinguish between these two types of helices.
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I. INTRODUCTION

Chirality is an important and interesting topic in physics, chemistry, and biology. Since

chiral structures are either right- and left-handed, whether their presence is balanced, forms

one of the most fascinating topics. The chiral structure that has recently attracted the

most attention in condensed matter physics is the skyrmion with a complicated topological

pattern. In the case of magnetic skyrmion in the form of spirals of continuously rotating

spin magnetic moments, many studies are being conducted for future spintronic applica-

tions because of topological stability and possible manipulation with very low electrical

current densities.1–5 In addition, polar skyrmions composed of electric polarization vectors

corresponding to the electrical counterparts were also recently experimentally discovered.6

Probing the complicated chiral textures of these skyrmions is not only necessary to under-

stand their mechanism, but is also a very challenging research topic in itself.

A well-known method to experimentally characterize magnetic or polar chiral textures

is resonant elastic x-ray scattering (REXS).7 According to the unique x-ray polarization

dependence of the scattering amplitude of REXS, for a chiral structure it shows circular

dichroism (CD), in which the scattering intensities of right- and left-circularly polarized

x-rays are different.8–14 In particular, satellite peaks with diffraction orders of opposite sign

(Friedel pairs) show a reversed sign of the CD. Also, if the handedness of the chiral structure

is reversed, the sign of the CD is reversed. If these characteristics are observed in CD in

REXS (CD-REXS), the material is highly likely to have a chiral structure. Therefore,

the use of CD-REXS is gradually becoming prominent in the investigation of the chiral

structure of electric polarization vectors observed in ferroelectric oxide superlattices15,16 as

well as the chiral magnetic structures observed in skyrmions10–12,17 or magnetic domain

walls8,9. However, since the overall understanding of CD-REXS on polar and magnetic

chiral structures is deficient, it remains challenging to understand why CD-REXS changes

depending on the sign of the diffraction order and the handedness of the chiral structure.

In this paper, we present the analytical formulation of CD-REXS for one-dimensional

(1-D) helices in detail to clearly show how CD appears in the chiral structure. To this end,

we first show that a truly chiral structure like a proper-screw type helix and an achiral

structure like a cycloid type helix are feasible by comparing their mirrored helices. In the

case of magnetic moments, these two chiral structures correspond to Bloch- and Néel-type
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domain walls, respectively, and in the case of electric polarization vectors, both of these chiral

structures can be found in the polar vortex or polar skyrmion expressed in the ferroelectric

superlattice.6,18–21 We use mirror reflection to show that these two helices correspond to

truly chiral and achiral structures, respectively, and for both electric polarization vector and

magnetic moment cases, CD-REXS can discriminate between these two types of helices.

In particular, unlike the magnetic moment explicitly included in the resonant scattering

amplitude,7 for the electric polarization vector the REXS is calculated in the form of the

anisotropy tensor of susceptibility,22,23 so a theoretical calculation method was only recently

published.16 Therefore, there have only been a few studies comparing the REXS for the two

electric and magnetic 1-D helices, and here we compare the two cases to enhance the overall

understanding of the CD-REXS for the chiral structure. To this end, we present a detailed

analytical formulation to calculate the CD-REXS intensity for both cases. In addition, the

change in CD-REXS for scattering geometries with different methods of accessing satellite

peaks diffracted from 1-D helices of periodic array type is also examined in detail. Finally,

we show that the CD-REXS for 1-D helices and their mirrored helices are all consistent for

these various cases.

II. CHIRALITY IN 1-D HELICES

We consider here two types of 1-D helix, namely proper-screw- and cycloid-type helices.

When the helix propagates along the x-axis, the polarization vector or magnetic moment

rotates in the (y-z) and (z-x) planes, respectively, as shown in Figs. 1 and 2. The former

corresponds to a Bloch-type domain wall in ferromagnetic domains, while the latter corre-

sponds to a Néel-type domain wall. According to the definition of chirality, a structure is

said to be chiral when it can not be superimposed with the original shape by any translation

or rotation after mirror reflection. Figure 1 shows mirror images for helices composed of

electric polarization vectors. In the case of the polarization vector ~P , which is an electric

dipole (polar vector), if a mirror is normal to the x-axis, the Px components must be −Px.

A Bloch-type helix of (y-z) plane rotation is a “chiral” structure because the handedness

of the helix is reversed after mirror reflection and the mirrored and original helices are not

superimposable onto each other. Note that the handedness ξ of the helix is denoted as

positive when rotating clockwise in positive direction of the propagation axis. On the other
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FIG. 1. One-dimensional helices consisting of electric polarization vectors with (y-z) and (x-z)

plane rotations and their mirrored helices. Under the mirror reflection along the x-axis, the sign

of the x-component of the electric polarization vector ~P is reversed. True chiral structure is not

superimposed with its mirror image by translation or rotation. A proper-screw type (a) helix is

truly chiral and has opposite handedness as its mirrored helix (b). The handedness ξ of the helix

is denoted as positive when rotating clockwise in positive direction of the propagation axis. On

the other hand, a cycloid type (b) helix is achiral and has the same handedness as its mirrored

counterpart (d).

hand, a Néel-type helix of (x-z) plane rotation does not change the handedness of the helix

after mirror reflection and is therefore an “achiral” structure because the mirrored helix can

be superimposed with the original one.

Figure 2 shows the mirror reflections for helices consisting of magnetic moments, which

are axial vectors. If the mirror reflection is taken along the x-axis for the magnetic moment

~M of the magnetic dipole, the My and Mz components will be −My and −Mz, respectively.

The Bloch-type magnetic helix of (y-z) plane rotation also has a “chiral” structure because

the handedness is reversed after mirror reflection and cannot be superimposed onto the orig-

inal helix. On the other hand, in the Néel-type helix of (x-z) plane rotation, the handedness

of the helix does not change after mirror reflection. The helix of (x-z) plane rotation is

“achiral” because the original and mirror helices are superimposable onto each other when
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FIG. 2. One-dimensional helices consisting of magnetic moments with (y-z) and (x-z) plane ro-

tations and their mirrored helices. Under the mirror reflection along the x-axis, the signs of the

y- and z-components of the magnetic moment ~M are reversed. A proper-screw type (a) helix is

truly chiral and has the opposite sign of handedness as its mirrored helix (b). On the other hand,

a cycloid type (b) helix is achiral and has the same handedness as its mirrored counterpart (d).

translated along the x-axis. In summary, for both electric polarization vectors and magnetic

moments, the Bloch- and Néel-type helices correspond to truly chiral and achiral structures,

respectively. Zhang et al. already showed that ordered spin spiral structures can be fully

determined in a single measurement by CD-REXS,24 which was subsequently used to distin-

guish between Bloch- and Néel-type skyrmions and to determine the helicity angle of twisted

surface skyrmions.12 Chauleau et al. presented a distinction between Bloch- and Néel-type

magnetic domain walls using CD-REXS.11 In this paper, we comprehensively present how

CD-REXS can distinguish between these chiral and achiral structures for both polar and

magnetic chiral configurations.
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III. SCATTERING AMPLITUDES IN REXS

A. Scattering amplitude for a resonant atom

In the electric-dipole approximation, in which dipole transitions between the core state

|ζν〉 with energy Eν and the unoccupied valence state |ψη〉 with Eη are present in both the

absorption and emission channel, the resonant scattering amplitude from a resonant atom

can be written as25

fres (E) =
∑
ij

ε′iεj
∑
η

〈ζv |Ri|ψη〉 〈ψη |Rj| ζv〉
E − (Eη − Ev) + iΓ

=
∑
ij

ε′iεjTij, (1)

where ε′i and εj in the polarization factor are the components of unit polarization vectors for

scattered and incident x-rays, respectively. R is the position operator. When the resonant

atom has a parity-even magnetic moment M̂ , assuming cylindrical symmetry, the amplitude

can be expressed as follows in an explicit form with respect to M̂7,14

fres, mag (E) = (ε̂′ · ε̂) f0(E)− i (ε̂′ × ε̂) · M̂f1(E) + (ε̂′ · M̂)(ε̂ · M̂)f2(E). (2)

On the other hand, in the case of a polarization vector which is parity-odd, the dipole-dipole

resonant scattering amplitude is parity-even as in Eq. (1), so it cannot be expressed in this

form. As in Eq. (1), the anisotropic tensor (AT) Tij must be obtained directly. Instead, we

first choose a resonant atom at a specific position as the basis atom with diagonal matrix

elements, so that its AT can be easily calculated using its site symmetry in the crystal. The

ATs of the remaining resonant atoms having a polarization vector in an arbitrary direction

can then be obtained using the rotation of the AT of the basis atom. For example, in

ferroelectric ABO3 perovskites, we can choose a B-site ion having ~P0 polarization along the

±ĉ-axis direction as the basis atom. In this case, since the basis atom such as Ti4+ ion in

PbTiO3 has a fourfold rotational symmetry about the ĉ-axis and mirror symmetry about

the â- and (â+ b̂)-axes, its AT T0 has the simple form

T0 =


Txx 0 0

0 Txx 0

0 0 Tzz

 . (3)

Since the polarization vector ~Pn = R (φn,x, φn,z) ~P0 of the remaining resonant atoms is

obtained by rotating the basis vector ~P0 about the x- and z-axis by the angles φn,x and φn,z,
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respectively, where R is the rotation matrix, its corresponding AT Tn can be expressed by26

Tn = R (φn,x, φn,z)T0R (φn,x, φn,z)
T , (4)

where RT denotes a transpose of R. One point worth noting is that the AT Tij defined in

Eq. (1) can be divided into irreducible parts as follows25

Tij =
1

3
tr (Tij) δij + TAij + T SijT

A
ij =

1

2
(Tij − Tji) , T sij =

1

2

(
Tij + Tji −

2

3
δij tr (Tij)

)
, (5)

where tr (Tij) is the trace term summing over all diagonal components, TAij is an antisym-

metric tensor, and T Sij is a traceless symmetric tensor. For a magnetic moment and with

cylindrical symmetry, TAij corresponds to the second term of Eq. (2). However, if there is no

magnetic moment, TAij vanishes and only the symmetric tensor remains. Therefore, the AT

of Eqs. (3) and (4) for the polarization vector always corresponds to a symmetric tensor,

satisfying Tij = Tji.

B. Structure factor of 1-D helices

The structure factor Fhelix for the unit cell of 1-D helix is

Fhelix =
Nx−1∑
n=0

ei~q·~rnfres ,n =
∑
ij

ε′iεj

Nx−1∑
n=0

ei~q·~rn (Tn)ij , (6)

where Nx is the numbers of lattices in the unit cell of the helix.

1. Electric polarization vectors

The electric polarization vector appears due to the displacement of the resonant ion from

the center of the surrounding ions with opposite charge, so when calculating the structure

factor for the 1-D helix of the unit cell, the displacement of the resonant ion must be

considered. As shown in Fig. 3, if the displacement is ∆ and it rotates by ξφ in the (y-z)

plane for each resonant ion position, ~rn = (na,∆ sin(nξφ),∆ cos(nξφ)) in the phase factor

of Eq. (6), where ξ is the handedness of the helix. This helix corresponds to a Bloch- or

proper-screw-type helix, which is truly chiral. Since we discuss here how CD-REXS appears

at the lateral satellite peak due to the period of the 1-D helix along the x-axis, we only

deal with the case where ~q = (2πτ/(Nxa), 0, qz) in Eq. (6). τ is the diffraction order of the
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FIG. 3. Schematic drawing of a unit cell of 1-D helix with electric polarization vectors due to the

displacement of resonant atoms from the unit cell center. Nx is the number of lattices in a unit cell

of the helix, ∆ is the magnitude of the displacement of the resonant atom, and ξ is the handedness

of the helix. At each position the resonant atom rotates by ξφ.

satellite along the qx-axis. Then, for the case where the polarization vector rotates in the

(y-z) plane, the structure factor in Eq. (6) is given as

F
(y-z)
helix =

∑
ij

ε′iεj
1

Nx

Nx−1∑
n=0

ei(τφn+qz∆ cos(nξφ))Rx(−nξφ) (T0)ijR
T
x (−nξφ). (7)

Since the magnitude of the displacement of the resonant atom, ∆, in ferroelectric perovskites

is an order of magnitude smaller than the lattice parameter18, qz∆ in the soft x-ray regime,

where typical CD-REXS experiments are conducted, is sufficiently small (qz∆� 1). Equa-

tion (7) can be then approximated as eiqz∆ cos(nξφ) ≈ 1+iqz∆ cos(nξφ), so it can be expressed

by

F
(y-z)
helix ≈

∑
ij

ε′iεj
1

Nx

Nx−1∑
n=0

eiτφn
(

1 +
iqz∆

2

(
einξφ + e−inξφ

))
Rx(−nξφ) (T0)ijR

T
x (−nξφ). (8)

When the matrix component of the AT T0 of the basis atom in Eq. (8) is simply ex-

pressed as Tij(i, j = x, y, z) from now on, the AT for the (y-z) plane rotation, T (y-z) =
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Rx(−nξφ)T0RT
x (−nξφ), can be expressed as

T (y-z)
xx = Txx,

T (y-z)
yy = Tyy cos2(nξφ) + Tzz sin2(nξφ)− 2Tyz sin(nξφ) cos(nξφ),

T (y-z)
zz = Tyy sin2(nξφ) + Tzz cos2(nξφ) + 2Tyz sin(nξφ) cos(nξφ),

T (y-z)
xy = T (y-z)

yx = Txy cos(nξφ)− Txz sin(nξφ),

T (y-z)
xz = T (y-z)

zx = Txy sin(nξφ) + Txz cos(nξφ),

T (y-z)
yz = T (y-z)

zy = (Tyy − Tzz) cos(nξφ) sin(nξφ) + Tyz cos(2nξφ).

(9)

Here, since the AT is for a polarization vector without a magnetic moment, there is no

antisymmetric tensor term in Eq. (5) and the AT is a symmetric tensor, so Tij = Tji for all

its components. Since the AT T (y-z) in Eq. (9) always includes a trigonometric function, Eq.

(8) always has the form einφx for all matrix components. In this case, if Nx is sufficiently

large, the following relational expression can be considered.

1

Nx

Nx−1∑
n=0

einφx =
1

Nx

Nx−1∑
n=0

ei
2π
Nx

nx ∼= δ(x). (10)

Introducing the helix-only structure factor Sij excluding the x-ray polarization factor ε′iεj,

the structure factor in Eq. (8) is expressed by

Fhelix =
∑
ij

ε′iεjSij. (11)

Then S
(y-z)
ij for the (y-z) plane rotation is given by

S
(y-z)
ij ≈ 1

Nx

Nx−1∑
n=0

eiτφn
(

1 +
iqz∆

2

(
einξφ + e−inξφ

))
T

(y-z)
ij . (12)

Looking at Eq. (9) by components, first of all, the diagonal components T
(y-z)
xx , T

(y-z)
yy , and

T
(y-z)
zz consist of only terms that include e(±2inξφ) or have no relation to (nξφ). There-

fore, considering the eiτφn factor in Eq. (12), all S
(y-z)
xx , S

(y-z)
yy , and S

(y-z)
zz must have δ(τ)

or δ(τ ± 2) according to Eq. (10). However, since the eiτφn factor in Eq. (12) is actually

eiτφn
(
1 + iqz∆

2

(
einξφ + e−inξφ

))
, δ(τ) and δ(τ ± 2) should with δ

(y-z)
ξ (τ) and δ

(y-z)
ξ (τ ± 2ξ)

when δ
(y-z)
ξ (x) is expressed in a simpler form as

δ
(y-z)
ξ (x) ≡ δ(x) + i

(
qz∆

2

)
{δ(x+ ξ) + δ(x− ξ)}. (13)
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On the other hand, among the off-diagonal components of Eq. (9), T
(y-z)
xy

(
= T

(y-z)
yx

)
and

T
(y-z)
xz

(
= T

(y-z)
zx

)
include the term e(±inξφ), so S

(y-z)
xy

(
= S

(y-z)
yx

)
and S

(y-z)
xz

(
= S

(y-z)
zx

)
contain

only the term δ
(y-z)
ξ (τ ± ξ). However, since T

(y-z)
yz

(
= T

(y-z)
zy

)
related to the (y-z) rotation

plane include the term e(±2inξφ), S
(y-z)
yz

(
= S

(y-z)
zy

)
in Eq. (12) includes only the δ

(y-z)
ξ (τ ± 2ξ)

term. Finally, S
(y-z)
ij for the (y-z) plane rotation can be described for each matrix component

as

S(y-z)
xx = Txxδ

(y-z)
ξ (τ),

S(y-z)
yy =

1

4

{
2T0δ

(y-z)
ξ (τ) + T2+δ

(y-z)
ξ (τ + 2ξ) + T2−δ

(y-z)
ξ (τ − 2ξ)

}
,

S(y-z)
zz =

1

4

{
2T0δ

(y-z)
ξ (τ)− T2+δ

(y-z)
ξ (τ + 2ξ)− T2−δ

(y-z)
ξ (τ − 2ξ)

}
,

S(y-z)
xy = S(y-z)

yx =
1

2

{
T1+δ

(y-z)
ξ (τ + ξ) + T1−δ

(y-z)
ξ (τ − ξ)

}
,

S(y-z)
xz = S(y-z)

zx =
1

2i

{
T1+δ

(y-z)
ξ (τ + ξ)− T1−δ

(y-z)
ξ (τ − ξ)

}
,

S(y-z)
yz = S(y-z)

zy =
1

4i

{
T2+δ

(y-z)
ξ (τ + 2ξ)− T2−δ

(y-z)
ξ (τ − 2ξ)

}
,

(14)

where T0, T(1±), and T(2±) are defined as

T0 ≡ Tyy + Tzz,

T1+ ≡ Txy + iTxz,

T1− ≡ Txy − iTxz,

T2+ ≡ Tyy − Tzz + 2iTyz,

T2− ≡ Tyy − Tzz − 2iTyz.

(15)

From Eqs. (13)-(15), two special situations can be considered. (i) When there is no displace-

ment of the polarization vector (∆ = 0), (ii) When the off-diagonal components of the AT of

the basis atom are all zero due to crystal symmetry as in Eq. (3) (Tij(i 6= j) = 0). We only

deal with the second case, which is more practical, below. (Refer to Appendix A for the

first case.) If there are no off-diagonal components as in Eq. (3), since T1± = 0 in Eq. (15),

S
(y-z)
xy = S

(y-z)
yx = S

(y-z)
xz = S

(y-z)
zx = 0 in Eq. (14). On the other hand, T2± = Tyy − Tzz.

Now, since we are interested in CD-REXS of the first-order satellite among the lateral

satellite peak τ , consider only the case where τ = ±ξ. In this case, only the terms including

δ(τ ± ξ) in Eq. (14) need to be considered. As mentioned above, considering the zero off-

diagonal components, the helix-only structure factor in Eq. (14) is reduced as follows when
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τ = ±ξ,
S(y-z)
xx = (iA)Txx,

S(y-z)
yy =

1

4
(iA) (3Tyy + Tzz) ,

S(y-z)
zz =

1

4
(iA) (Tyy + 3Tzz) ,

S(y-z)
xy = S(y-z)

yx = S(y-z)
xz = S(y-z)

zx = 0,

S(y-z)
yz = S(y-z)

zy = ∓1

4
A (Tyy − Tzz) = (−τξ)1

4
A (Tyy − Tzz) ,

(16)

where A ≡ (qz∆)/2, and the upper and lower signs correspond to the cases of τ = +ξ

and τ = −ξ, respectively, and (±) can be expressed as (τξ) when the first-order satellite

peaks (τ = ±1) are considered. In Eq. (16), we should note two things. First, all S
(y-z)
ij

terms include a factor A proportional to the displacement ∆. When analyzing CD-REXS

measured in the experiment, the asymmetry ratio (AR) [= (I+− I−)/(I+ + I−)] obtained by

dividing the difference intensity CD (= I+−I−) by the sum intensity is used most frequently.

I± corresponds to the scattering intensities for right- and left-circular x-rays, respectively.

Since the factor A cancels out in the denominator and numerator, quantitative analysis is

possible without detailed information on the magnitude of the displacement.

The next thing to note is that only S
(y-z)
yz = S

(y-z)
zy has a (τξ)-dependence associated

with chirality. This (τξ)-dependence is a well-known characteristic of CD-REXS for chiral

structures. That is, when the sign of the diffraction order of the satellite peak is reversed

(τ = ±1) or the sign of the handedness of the helix is reversed (ξ = ±1), it can be expected

that the sign of the CD is changed. However, among the terms S
(y-z)
ij , the reason that only

S
(y-z)
yz = S

(y-z)
zy has (τξ)-dependence is because the polarization vector rotates in the (y-z)

plane. Therefore, it can be expected that these results will be similar to the other type of

helix shown in Fig. 1. That is, does the (τξ)-dependence appear only in S
(x-z)
xz = S

(x-z)
zx also

for a cycloid-type helix rotating in the (x-z) plane? To answer this, we present now the

REXS structure factor for a Néel- or cycloid-type helix.

Similar to a Bloch- or proper-screw-type helix shown in Fig. 3, if there is a rotation by ξφ

in the (x-z) plane at each resonant atom position, ~rn = (na + ∆ sin(nξφ), 0,∆ cos(nξφ)) is

given in the phase factor of Eq. (6). This helix corresponds to a Néel- or cycloid-type helix,

which is achiral. Therefore, the structure factor of Eq. (6) can be written as

F
(x-z)
helix =

∑
ij

ε′iεj
1

Nx

Nx−1∑
n=0

ei(τφn+ ∆
a
τφ sin(nξφ)+qz∆ cos(nξφ))Ry(−nξφ) (T0)ijR

T
y (−nξφ). (17)
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Since the size of the unit cell of the helix is typically about 10 nm in polar vortices and polar

skyrmions6,18, the number of lattices in the unit cell of the helix Nx corresponds to about a

few tens for ferroelectric perovskites, and φ(= 2π/Nx) is smaller than unity. The exponent(
∆
a
τφ sin(nξφ) + qz∆ cos(nξφ)

)
is then sufficiently small in the phase factor of Eq. (17), and

can be approximated as

ei(τφn+ ∆
a
τφ sin(nξφ)+qz∆ cos(nξφ)) ≈ eiτφn

(
1 + i

(
∆

a
τφ

)
sin(nξφ) + i (qz∆) cos(nξφ)

)
= eiτφn

(
1 + einξφ

(
1

2

∆

a
τφ+

i

2
qz∆

)
+ e−inξφ

(
−1

2

∆

a
τφ+

i

2
qz∆

))
.

(18)

In Eq. (18),
(

∆
a
τφ
)

is sufficiently small compared to (qz∆) , (τφ� qza), Eq. (17) can be

expressed as

F
(x-z)
helix ≈

∑
ij

ε′iεj
1

Nx

Nx−1∑
n=0

eiτφn
(

1 +
iqz∆

2

(
einξφ + e−inξφ

))
Ry(−nξφ) (T0)ijR

T
y (−nξφ).

(19)

Equation (19) has the same form as Eq. (8) in the case of y-z plane rotation, except that it is

Ry, which is a rotation about the y-axis, instead of Rx, which is a rotation about the x-axis.

Therefore, if we substitute according to (x→ y, y → z, z → x) from Eqs. (13)-(16) described

for the case of y-z plane rotation, all of them correspond to the case of x-z plane rotation.

It should be noted that in the definition of T0, T1±, and T2± in Eq. (15), substitution should

be also made according to (x→ y, y → z, z → x). However, the definition of Eq. (13) is the

same, so δ
(x-z)
ξ (x) = δ

(y-z)
ξ (x).

When the AT of the basis atom has zero off-diagonal components, the helix-only structure

factor S
(x-z)
ij of (x-z) plane rotation when τ = ±ξ is

S(x-z)
xx =

1

4
(iA) (Tzz + 3Txx) ,

S(x-z)
yy = (iA)Tyy,

S(x-z)
zz =

1

4
(iA) (3Tzz + Txx) ,

S(x-z)
xy = S(x-z)

yx = S(x-z)
yz = S(x-z)

zy = 0,

S(x-z)
zx = S(x-z)

xz = ∓1

4
A (Tzz − Txx) = (−τξ)1

4
A (Tzz − Txx) ,

(20)

where A ≡ (qz∆) /2, upper and lower signs correspond to τ = +ξ and τ = −ξ, respectively,

and (±) can be expressed by (τξ). Finally, we confirm that (τξ)-dependence appears only in

S
(x-z)
xz = S

(x-z)
xz also for a cycloid type helix rotating in the (x-z) plane. As discussed above in

13



Fig. 1, true chirality appears only in the case of (y-z) plane rotation of a Bloch-type helix,

whereas the (τξ)-dependence is common to all helices, so it seems not suitable as a criterion

for classifying true chirality.

2. Magnetic moments

In the case of magnetic moments, there is no displacement of the resonant atom, and

the scattering amplitude has the form of Eq. (2). By virtue of the optical theorem the

second term in Eq. (2) can be related to the x-ray magnetic circular dichroism (XMCD) in

absorption. The third term in the scattering is quadratic in M̂ and is related to the x-ray

magnetic linear dichroism (XMLD), and is proportional to the anisotropy in the spin-orbit

interaction, which is directly related to the magnetocrystalline anisotropy energy.27 Since

the spin-orbit interaction is strongly reduced by the crystalline field in 3d ferromagnetic

metals, the third term is usually much smaller. Considering only the first and second terms,

the structure factor in REXS from the 1-D helix in which the magnetic moment rotates can

be described as

Fmag
helix =

1

Nx

Nx−1∑
n=0

eiτφn
(

(ε̂′ · ε̂) fc − i (ε̂′ × ε̂) · M̂(nξφ)fm

)
, (21)

where the energy-dependent resonant scattering amplitudes f0(E) and f1(E) have been

replaced with fc(E) and fm(E) to emphasize that the first and second terms of Eq. (2)

correspond to purely charge and magnetic contributions, respectively. The photon energy is

taken at resonance in this study, and no explicit mention of the energy dependence of fc and

fm will be used hereafter. In Eq. (21), the term proportional to fc simply has (ε̂′ · ε̂)fcδ(τ)

according to the relational expression of Eq. (10). Considering this, the structure factor of

Eq. (21) can be expressed as

Fmag
helix = (ε̂′ · ε̂) fcδ(τ)− i (ε̂′ × ε̂) · M̃(τ, ξ)fm, (22)

where the helix-only structure factor M̃(τ, ξ) is defined by

M̃(τ, ξ) =
1

Nx

Nx−1∑
n=0

eiτφnM̂(nξφ). (23)

As shown in Figs. 2 and 3, M̂(nξφ) = (0,− sin(nξφ), cos(nξφ)) for a Bloch- or proper-screw-

type helix whose magnetic moment rotates in the (y-z) plane. Nonzero components M̃
(y-z)
i

14



in Eq. (23) are given by

M̃(y-z)
y =

1

Nx

Nx−1∑
n=0

eiτφn(− sin(nξφ)) =
1

Nx

Nx−1∑
n=0

eiτφn
(
i

2

)(
einξφ − e−inξφ

)
,

M̃(y-z)
z =

1

Nx

Nx−1∑
n=0

eiτφn cos(nξφ) =
1

Nx

Nx−1∑
n=0

eiτφn
(

1

2

)(
einξφ + e−inξφ

)
.

(24)

Using the relational expression of Eq. (10), Eq. (24) can be expressed by

M̃(y-z)
x = 0, M̃(y-z)

y =

(
i

2

)
(δ(τ + ξ)−δ(τ − ξ)), M̃(y-z)

z =

(
1

2

)
(δ(τ + ξ)+δ(τ − ξ)). (25)

When τ = ±ξ corresponding to the first order satellite peak, the first term of Eq. (22) is

zero and Eq. (25) is reduced as follows.

M̃(y-z)
x = 0, M̃(y-z)

y = ∓
(
i

2

)
= −(τξ)

(
i

2

)
, M̃(y-z)

z =
1

2
, (26)

where the upper and lower signs correspond to the cases of τ = +ξ and τ = −ξ, respectively,

and (±) can be expressed as (τξ). It can be seen that only M̃
(y-z)
y and M̃

(y-z)
z components on

the y-z plane in which the magnetic moment rotates are nonzero, and one of them always

has (τξ)-dependence and the other has a constant value. Is this result the same for a Néel-

or cycloid-type helix rotating in the (x-z) plane?

Similar to a Bloch-type helix shown in Fig. 3, M̂(nξφ) = (sin(nξφ), 0, cos(nξφ)) for a

Néel-type helix whose magnetic moment rotates in the (x-z) plane. Its helix-only structure

factor M̃
(x-z)
i is then given by

M̃(x-z)
x = −

(
i

2

)
(δ(τ + ξ)− δ(τ − ξ)), M̃(x-z)

y = 0,

M̃(x-z)
z =

(
1

2

)
(δ(τ + ξ) + δ(τ − ξ)).

(27)

When τ = ±ξ, Eq. (27) is reduced as follows.

M̃(x-z)
x = ±

(
i

2

)
= (τξ)

(
i

2

)
, M̃(x-z)

y = 0, M̃(x-z)
z =

1

2
, (28)

where upper and lower signs correspond to τ = +ξ and τ = −ξ, respectively, and (±)

can be expressed as (τξ). We confirm that only M̃
(x-z)
x and M̃

(x-z)
z components on the (x-

z) plane in which the magnetic moment rotates are nonzero, and one of them always has

(τξ)-dependence and the other has a constant value. Therefore, as in the case of Sij for

the electric polarization vector, the helix-only structure factor M̃i of the 1-D helicity of the

magnetic moment is not sufficient to distinguish the true chirality.
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FIG. 4. Sample-tilting (azimuthal-fixed) scattering geometry. The angles θ and χ represent the

incident and the tilting angle, respectively.

C. X-ray polarization factor in scattering amplitude

Previously, we presented the structure factors in REXS from Bloch- or Néel-type helices

with electric polarization vectors or magnetic moments. However, it is found that for both

polar and magnetic helices, the helix-only structure factors are not sufficient to distinguish

between truly chiral and achiral structures. Here we investigate the x-ray polarization factor,

ε̂′iε̂j in Eq. (6), which is also a significant part in the structure factor in REXS.

The x-ray polarization factor depends entirely on the scattering geometry. The most

frequently used scattering geometry in recent soft x-ray resonant scattering experiments is

a sample-fixed mode using a two-dimensional (2-D) detector. This method is widely used

in grazing-incidence small-angle x-ray scattering (GISAXS)28–31 and has the advantage of

effectively reducing the measurement time. However, in GISAXS using a 2-D detector,

effectively both sample rocking and azimuthal scans occur simultaneously, so it is suitable

for nanostructured thin films with random orientation in the in-plane direction. However,

the sample-fixed mode using a 2-D detector is not an optimal method to study epitaxial thin

films with clear ordering in the in-plane direction. In particular, in the case of the 1-D helix

dealt with in this paper, the lateral satellite peak must be accessed while maintaining the
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direction of the propagation axis of the helix, and the qz rod scan must be performed in the

direction of the surface normal. For this, two scattering geometries, namely sample-tilting

and sample-rocking scattering geometry, can be used. The former is a method to obtain

the qx value in the in-plane direction by fixing the azimuthal angle and tilting the sample

with respect to the scattering plane as shown in Fig. 4. On the other hand, the latter is a

method to obtain the qx value by fixing the detector angle and rocking the sample as shown

in Fig. 5. This method is well known as rocking curve scan. Here, the x-ray polarization

factor of the structure factor in REXS from 1-D helices for these two scattering geometries

will be calculated in detail.

1. Sample tilting (azimuthal-fixed) scattering geometry

The unit polarization vectors for scattered and incident x-rays in the sample-tilting scat-

tering geometry, ε̂′ and ε̂, are as follows for the σ- and π-channels as shown in Fig. 4,

ε̂′σ = (cosχ, 0,− sinχ), ε̂′π = (− cos θ sinχ, sin θ,− cos θ cosχ),

ε̂σ = ε̂′σ, ε̂π = (− cos θ sinχ,− sin θ,− cos θ cosχ).
(29)

The structure factor in REXS from the 1-D helix of the electric polarization vectors can be

obtained for each polarization channel by using Eqs. (11) and (29) as

Fσ′σ = cos2 χ Sxx + sin2 χ Szz − 2 cosχ sinχ Sxz′

Fσ′π = cos θ cosχ sinχ (Szz − Sxx)− sin θ cosχ Sxy + sin θ sinχ Syz − cos θ cos 2χ Sxz,

Fπ′σ = cos θ cosχ sinχ (Szz − Sxx) + sin θ cosχ Sxy − sin θ sinχ Syz − cos θ cos 2χ Sxz,

Fπ′π = cos2 θ sin2 χ Sxx − sin2 θ Syy + cos2 θ cos2 χ Szz + 2 cos2 θ cosχ sinχ Sxz,

(30)

where the subscript of the structure factor Fα′β represents the polarization channels of

scattered and incident x-rays, respectively. Previously, it has been shown that the helix-

only structure factor Sij has (τξ)-dependence only in components related to the rotation

plane of the helix. For example, in the case of a helix rotating in the (y-z) plane, only

the Syz = Szy component has (τξ)-dependence. On the other hand, the x-ray polarization

factors in Eq. (30) show an explicit τ -dependence additionally. In Eq. (30), sinχ, which

is an odd function for χ angle, changes according to the sign of the diffraction order τ of

the lateral satellite peak, so sinχ can be expressed as τ | sinχ| at the first order satellites
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(τ = ±ξ). Interestingly, in Eq. (30), the terms odd for χ are allowed only in the terms

containing Sxx, Szz, Sxz, and Syz.

The structure factor in REXS from the 1-D helix consisting of magnetic moments can be

obtained for each polarization channel by using Eqs. (22) and (29) as

Fσ′σ = 0,

Fσ′π = fm

(
− sin θ sinχ M̃x + cos θ M̃y − sin θ cosχ M̃z

)
,

Fπ′σ = fm

(
− sin θ sinχ M̃x − cos θ M̃y − sin θ cosχ M̃z

)
,

Fπ′π = fm

(
− sin 2θ cosχ M̃x + sin 2θ sinχ M̃z

)
.

(31)

Here, the first term in Eq. (22), which contributes only to the zeroth order peak, is excluded.

A constant factor (−i) in the second term of Eq. (22) is also factored out. In the sample-

tilting scattering geometry, the sign of the tilting angle χ should be reversed to reverse the

sign of the diffraction order τ of the lateral satellite peak, so all odd functions for χ angle

such as sinχ have a τ -dependence. The x-ray polarization factors in Eq. (31) then show

an explicit τ -dependence additionally. Interestingly, in Eq. (31), the terms odd for χ are

allowed only in the terms containing M̃x and M̃z.

2. Sample rocking scattering geometry

The unit polarization vectors for the sample-rocking scattering geometry are as follows

for the σ- and π-channels in Fig. 5.

ε̂′σ = (0, 1, 0), ε̂′π = (− sin θf , 0, cos θf ) ,

ε̂σ = ε̂′σ, ε̂π = (sin θi, 0, cos θi) .
(32)

In this case, the structure factor in REXS from the electric polarization vectors is as

follows for each polarization channel according to Eqs. (11) and (32).

Fσ′σ = Syy,

Fσ′π = sin θi Sxy + cos θi Syz,

Fπ′σ = − sin θf Sxy + cos θf Syz,

Fπ′π = sin 2ω Sxz + cos θi cos θf Szz,

(33)

where ω = (θi− θf )/2, and as shown in Fig. 5, when the sign of ω is changed, the sign of the

diffraction order τ of the lateral satellite peak is reversed. Therefore, only terms that are
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FIG. 5. Sample-rocking scattering geometry. In-plane component of ~q is given by the angle

ω = (θi − θf )/2, where θi and θf are the incident and scattered angles, respectively.

odd in ω have τ -dependence, and in Eq. (33) the terms containing Sxz correspond to this

case.

The structure factor in REXS from magnetic moments is as follows for each polarization

channel according to Eqs. (22) and (32).

Fσ′σ = 0,

Fσ′π = fm

(
− cos θi M̃x − sin θi M̃z

)
,

Fπ′σ = fm

(
− cos θf M̃x − sin θf M̃z

)
,

Fπ′π = fm sin (θi + θf ) M̃y.

(34)

Here, there is no ω-dependence that can change the sign of the diffraction order τ .

IV. CIRCULAR DICHROISM IN REXS FROM 1-D HELICES

CD in REXS can be obtained with scattering amplitudes of σ- and π-channel as32

I+ − I− = 2 Im [F ∗σ′πFσ′σ + F ∗π′πFπ′σ] (35)

A. Electric polarization vectors

The detailed evaluation of Eq. (35) using Eq. (30), which is the calculated REXS structure

factor for the electric polarization vectors in the sample-tilting scattering geometry, is shown
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in Eq. (B1) in Appendix B. First, we discuss a Bloch-type helix that rotates in the (y-z)

plane. When all off-diagonal components of the AT T0 for the basis atom are zero, the

helix-only structure factor S
(y-z)
ij in Eq. (16) for the first order satellite (τ = ±ξ) is applied

to Eq. (B1) in Appendix B, and CD- REXS is then given by

(I+ − I−)

2
=

3A2

2
Im [T ∗zzTxx]

(
cos θ sin2 θ cosχ

)
sinχ

±A
2

42
|Txx|2

(
3 sin2 θ sin2 χ+ sin2 θ − 5

)
sin θ sinχ

±A
2

42
|Tzz|2

(
3 sin2 θ sin2 χ− 4 sin2 θ + 3

)
sin θ sinχ

±A
2

8
Re [T ∗zzTxx]

(
−3 sin2 θ sin2 χ+ 1

)
sin θ sinχ.

(36)

As discussed in the previous sections, sinχ, an odd function for the χ angle, can be expressed

as τ | sinχ| for the first order satellite (τ = ±ξ). In addition, since the sign (±) can be

expressed by (τξ), Eq. (36) can be expressed as

(I+ − I−)(y-z) = τA(y-z) + τ(τξ)B(y-z) = τA(y-z) + ξB(y-z) (37)

where the terms A(y-z) and B(y-z) are independent of both the diffraction order τ and the

handedness of the helix ξ. This is an unexpected result different from that of previous

studies of CD-REXS on the chiral structure stating that the sign of CD-REXS is reversed

when the handedness of the chiral structure is reversed or the sign of the diffraction order

is reversed. According to Eq. (37), even when the sign of the diffraction order τ is reversed,

the CD-REXS intensity does not simply change sign, and when the second term of Eq. (37)

is dominant, the sign of the CD-REXS intensity may not change.

Next, CD-REXS for a Néel-type helix rotating in the (x-z) plane for the first-order

satellite (τ = ±ξ) can be obtained by applying Eq. (20) to Eq. (B1) in Appendix B and is

given by
(I+ − I−)

2
= A2 Im [T ∗zzTxx]

(
cos θ sin2 θ cosχ

)
sinχ

±A
2

42
|Txx|2

(
12 sin2 θ sin2 χ− 5 sin2 θ − 2

)
cos θ

±A
2

42
|Tzz|2

(
−4 sin2 θ sin2 χ+ 3 sin2 θ − 2

)
cos θ

±A
2

8
Re [T ∗zzTxx]

(
−4 sin2 θ sin2 χ+ sin2 θ + 2

)
cos θ.

(38)

In the sample-tilting scattering geometry, (sinχ) and (±) can be expressed as τ | sinχ| and

(τξ), respectively, for the first order satellite (τ = ±ξ). Equation (38) can be then expressed
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as

(I+ − I−)(x-z) = τA(x-z) + (τξ)D(x-z), (39)

where the terms A(x-z) and D(x-z) are independent of both the diffraction order τ and hand-

edness of the helix ξ. Unlike Eq. (37) for the Bloch-type helix discussed above, the result

of Eq. (39) for the Néel-type helix is consistent with that of previous studies, where the

CD-REXS intensity is exactly reversed in sign when the sign of the diffraction order τ is

reversed.

Now, the results of Eqs. (37) and (39) make it possible to distinguish a Bloch-type helix of

(y-z) rotation showing true chirality from a Néel-type helix of (x-z) rotation corresponding to

achiral structure, as shown in Fig. 1. This is different from the previous result that the helix-

only structure factor Sij does not discriminate between these two helix types. Considering

these results, it has been revealed that the main cause for CD-REXS to distinguish the true

chirality is the x-ray polarization factor in a specific scattering geometry. These results are

also the same for CD-REXS for helix of magnetic moment, which will be discussed later.

The key characteristics of CD-REXS from chiral structures is that the sign of the CD

is reversed when the chirality of the material, which corresponds to the helix handedness ξ

here, is reversed or when measured from a satellite peak whose diffraction order τ is opposite.

This characteristics corresponds to the case where CD-REXS is proportional to (τξ), and

the helix-only structure factor Sij has been found to contain this (τξ)-dependence for both

Bloch- and Néel-type helices, regardless of true chirality. However, the x-ray polarization

factor in the sample-tilting scattering geometry changes the (τξ)-dependence of the helix-

only structure factor Sij to ξ-dependence of the CD-REXS only for the Bloch-type helix of

(y-z) rotation showing true chirality. Therefore, according to Eq. (37), two satellite peaks

having opposite signs of diffraction order τ may have the same sign of CD intensities, and

may not replicate each other when one of them is upside down even though they have the

opposite sign. On the other hand, for the Néel-type helix rotating in the (x-z) plane without

true chirality, according to Eq. (39), the CD intensities at two satellite peaks having opposite

signs of diffraction order τ exactly replicate when one of them is upside down.

Considering the mirrored images as shown in Fig. 1, we can understand the results of Eqs.

(37) and (39) more clearly. First, the mirrored image of the x-ray beams in the sample-tilting

scattering geometry can be considered, as shown in Fig. 6. In the mirrored image of the

scattering geometry where the sign of qx is reversed, the sign of the diffraction order τ of the
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FIG. 6. Original (left panel) and mirrored (right panel) images of sample-tilting scattering geome-

try. Under the mirror reflection along the x-axis, the signs of the x-components of the wavevector

~k and the scattering vector ~q are reversed, and then the sign of the diffraction order τ is reversed.

lateral satellite is then reversed. In the case of a Bloch-type helix of (y-z) plane rotation with

ξ = +1 at the satellite peak with τ = +1, the CD intensity is (I+ − I−)(y-z) = A(y-z) +B(y-z)

according to Eq. (37). In its mirrored situation, since τ = −1 and ξ = −1, the CD intensity

is then (I+ − I−)(y-z) = −
(
A(y-z) + B(y-z)

)
. On the other hand, in the case of a Néel-type

helix of (x-z) plane rotation with ξ = +1 at the satellite peak with τ = +1, the CD intensity

is (I+ − I−)(x-z) = A(x-z) + D(x-z) according to Eq. (39). In its mirrored situation, τ = −1,

but ξ = +1 as shown in Fig. 1 , so the CD intensity is (I+ − I−)(x-z) = −
(
A(x-z) +D(x-z)

)
.

These results are summarized in Table I.

Interestingly, in both the (y-z) and (x-z) plane rotation cases, the CD intensities in the

mirrored condition show a reversed sign of those in the original condition. This can also

be understood in terms of a mirrored situation of the circularly polarized x-rays. Figure 7

shows that when circularly polarized x-rays are mirrored along the x-axis, the helicity (or

handedness) of circular polarization in the mirrored situation is reversed compared to the

original situation. Therefore, regardless of the type of helix, the sign of the CD intensity in

the mirrored situation should be opposite to that of the original. As will be discussed later,
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FIG. 7. Mirrored image of circularly polarized x-rays. Under the mirror reflection along the x-axis,

the sign of circular polarization is reversed.

this also applies to the helix of magnetic moments.

Next, the detailed evaluation of Eq. (35) using Eq. (33), which is the calculated REXS

structure factor for the electric polarization vectors in the sample-rocking scattering geom-

etry, is shown in Eq. (C1) in Appendix C. First, we discuss a Bloch-type helix that rotates

in the (y-z) plane. When all off-diagonal components of the AT T0 for the basis atom are

zero, the helix-only structure factor S
(y-z)
ij in Eq. (16) for the first order satellite (τ = ±ξ)

TABLE I. Summary of the diffraction order τ , handedness ξ, and circular dichroism intensities for

the original and mirrored helices with electric polarization vectors in the sample-tilting scattering

geometry. Equations (37) and (39) correspond to Bloch-type and Néel-type helices, respectively.

Original Mirrored

Sample-tilting scattering geometry τ = +1 τ = −1

Bloch-type helix with (y-z) plane rotation ξ = +1 ξ = −1

(I+ − I−)(y-z) = τA(y-z) + ξB(y-z) (Eq. (37)) A(y-z) + B(y-z) −
(
A(y-z) + B(y-z)

)
Néel-type helix with (x-z) plane rotation ξ = +1 ξ = +1

(I+ − I−)(x-z) = τA(x-z) + (τξ)D(x-z) (Eq. (39)) A(x-z) +D(x-z) −
(
A(x-z) +D(x-z)

)
23



is applied to Eq. (C1) in Appendix C, and CD- REXS is then given by

(I+ − I−)

2
= ±A

2

42
|Txx|2

(
−3 cos θi − 4 sin θi sin θf cos θf + cos θi cos2 θf

)
±A

2

42
|Tzz|2

(
cos θi − 3 cos θi cos2 θf

)
±A

2

8
Re [T ∗zzTxx]

(
cos θi + 2 sin θi sin θf cos θf + cos θi cos2 θf

)
,

(40)

As shown in Fig. 5, in order to reverse the sign of the diffraction order at the first order

satellite (τ = ±ξ) in the sample-rocking scattering geometry, there should be an odd function

for the angle ω [= (θi−θf )/2], but it does not appear in Eq. (40). Since (±) can be expressed

by (τξ) at the first order satellite (τ = ±ξ), Eq. (40) can be expressed as

(I+ − I−)
(y-z)
rock = (τξ)D(y-z)

rock , (41)

where the term D(y-z)
rock is independent of both the diffraction order τ and the handedness of

the helix ξ. Similarly, CD-REXS for a Néel-type helix rotating in the (x-z) plane for the

first order satellite (τ = ±ξ) can be obtained by applying Eq. (20) to Eq. (C1) in Appendix

C and is then given by

(I+ − I−)
(x-z)
rock = 0, (42)

because all terms in Eq. (C1) contain S
(x-z)
xy = S

(x-z)
yx = S

(x-z)
yz = S

(x-z)
zy = 0 in Eq. (20).

Equations (41)-(42) show that in the sample-rocking scattering geometry, the Bloch-type

helix of (y-z) plane rotation has a (τξ)-dependence in CD-REXS intensity, while the Néel-

type helix of the (x-z) plane rotation has no CD in REXS. This result allows the sample-

rocking scattering geometry to discriminate between truly chiral Bloch-type and achiral

Néel-type helices through CD-REXS intensity. However, as shown in Fig. 8, the mirror

situation of sample-rocking scattering is different from the actual scattering geometry that

reverses the sign of the diffraction order τ of the lateral satellite peak. Therefore, it is difficult

to apply the analysis using the mirror situation as discussed earlier in the sample-tilting

scattering geometry. One further interesting result is that in the sample-rocking scattering

geometry, CD in REXS is zero in the case of a helix in which the electric polarization vector

rotates in the (x-z) plane corresponding to the scattering plane. The same is true for the

magnetic moments, which will be discussed later.
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FIG. 8. Original (upper left panel) and mirrored (upper right panel) images of sample-rocking

scattering geometry. Under the mirror reflection along the x-axis, the signs of the x-components

of the wavevector ~k and the scattering vector ~q is reversed. However, the mirrored situation of

sample-rocking scattering is different from the actual scattering configuration (bottom panel) where

the sign of the diffraction order τ of the lateral satellite peak is reversed.

B. Magnetic moments

The detailed evaluation of Eq. (35) using Eq. (31), which is the calculated REXS

structure factor for magnetic moments in the sample-tilting scattering geometry, is given by

(I+ − I−)

2
= |fm|2

(
sin 2θ cos θ cosχ Im

[
M̃∗xM̃y

]
+ sin 2θ sin θ Im

[
M̃∗xM̃z

]
− sin 2θ cos θ sinχ Im

[
M̃∗zM̃y

])
.

(43)

First, we discuss a Bloch-type helix that rotates in the (y-z) plane. When all off-diagonal

components of the AT T0 for the basis atom are zero and the magnetic structure factor

M̃
(y-z)
i of Eq. (26) for first order satellite (τ = ±ξ) is applied to Eq. (43), the CD- REXS is

given as

I+ − I−
2

= ±1

4
|fm|2 sin 2θ cos θ sinχ, (44)
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In the sample-tilting scattering geometry, sinχ and (±) can be expressed as τ | sinχ| and

(τξ), respectively, for the first order satellite (τ = ±ξ). Equation (44) can be expressed as

(I+ − I−)(y-z)
mag = τ(τξ)B(y-z)

mag = ξB(y-z)
mag , (45)

where the term B(y-z)
mag is independent of both the diffraction order τ and the handedness of

the helix ξ. The result of Eq. (45) shows that the CD-REXS intensity for the Bloch-type

helix of magnetic moments in the sample-tilting scattering geometry does not change its

sign or magnitude even when the sign of the diffraction order is reversed.

Next, CD-REXS for a Néel-type helix rotating in the (x-z) plane for the first order

satellite (τ = ±ξ) can be obtained by applying Eq. (28) to Eq. (43) and is then given as

I+ − I−
2

= ∓1

4
|fm|2 sin 2θ sin θ. (46)

Since in the sample-tilting scattering geometry, (±) can be expressed as (τξ) for the first

order satellite (τ = ±ξ), Eq. (46) can be expressed as

(I+ − I−)(x-z)
mag = (τξ)D(x-z)

mag , (47)

where the term D(x-z)
mag is independent of both the diffraction order τ and the handedness of

the helix ξ. The result of Eq. (47) is the behavior of CD-REXS for the chiral structure

predicted by previous studies. The CD-REXS intensity for Néel-type helix of magnetic

moments in sample-tilting scattering geometry is reversed when the sign of the diffraction

order is reversed or the handedness of the helix is reversed.

Now, the results of Eqs. (45) and (47) for magnetic moments make it possible to dis-

tinguish a Bloch-type helix of (y-z) rotation showing true chirality from a Néel-type helix

of (x-z) rotation corresponding to achiral structure, as shown in Fig. 2. This result is

consistent with the previous result for the electric polarization vectors.

As discussed for electric polarization vectors, we can understand the results of Eqs. (45)

and (47) intuitively by considering the mirrored situations. In the case of a Bloch-type helix

of (y-z) plane rotation with ξ = +1 at the satellite peak with τ = +1, the CD intensity is

(I+ − I−)(y-z)
mag = B(y-z)

mag according to Eq. (45). In the mirrored image of the sample-tilting

scattering geometry, the sign of the diffraction order τ of the lateral satellite is reversed

(τ = −1), as shown in Fig. 6 , and in the mirrored Bloch-type helix, its handedness is also

reversed (ξ = −1), as shown in Fig. 2. The CD intensity in the mirrored situation is then
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(I+ − I−)(y-z)
mag = −B(y-z)

mag according to Eq. (45). However, in the case of a Néel-type helix

of (x-z) plane rotation with ξ = +1 at the satellite peak with τ = +1, the CD intensity is

(I+ − I−)(x-z)
mag = D(x-z)

mag according to Eq. (47). On the other hand, in the mirror situation,

τ = −1, but ξ = +1 as in Fig. 2, so the CD intensity is (I+ − I−)(x-z)
mag = −D(x-z)

mag . These

results are summarized in Table II.

Similarly to the electric polarization vectors, in both Bloch- and Néel-type helices with

magnetic moments, the CD intensities in the mirror condition show the opposite sign of those

in the original condition, as shown in Table II. This result is consistent with the fact that the

helicity (or handedness) of circular polarization in the mirror situation is reversed compared

to the original situation, as shown in Fig. 7. Therefore, in the sample-tilting scattering

geometry, where the sign of the diffraction order τ is reversed in the mirrored situation and

then it allows for discussion using the mirror reflection, the CD-REXS intensities for both

electric polarization vectors and magnetic moments show a consistent behavior, as shown in

Tables I and II.

Finally, the detailed evaluation of Eq. (34) using Eq. (31), which is the calculated REXS

structure factor for magnetic moments in the sample-rocking scattering geometry, is given

by

I+ − I−
2

= |fm|2
(
− sin (θi + θf ) cos θf Im

[
M̃∗yM̃x

]
− sin (θi + θf ) sin θf Im

[
M̃∗yM̃z

])
.

(48)

First, we discuss a Bloch-type helix that rotates in the (y-z) plane. When all off-diagonal

components of the AT T0 for the basis atom are zero and the magnetic structure factor

TABLE II. Summary of the diffraction order τ , the handedness ξ, and the circular dichroism inten-

sities for the original and mirrored helices with magnetic moments in the sample-tilting scattering

geometry. Equations (45) and (47) correspond to Bloch-type and Néel-type helices, respectively.

Original Mirrored

Sample-tilting scattering geometry τ = +1 τ = −1

Bloch-type helix with (y-z) plane rotation ξ = +1 ξ = −1

(I+ − I−)(y-z)
mag = ξB(y-z)

mag (Eq. (45)) +B(y-z)
mag −B(y-z)

mag

Néel-type helix with (x-z) plane rotation ξ = +1 ξ = +1

(I+ − I−)(x-z)
mag = (τξ)D(x-z)

mag (Eq. (47)) +D(x-z)
mag −D(x-z)

mag
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M̃
(y-z)
i of Eq. (26) for first order satellite (τ = ±ξ) is applied to Eq. (48), CD- REXS is

given as
I+ − I−

2
= ∓1

4
|fm|2 sin (θi + θf ) sin θf . (49)

Since (±) can be expressed by (τξ) at the first order satellite (τ = ±ξ), Eq. (49) can be

expressed as

(I+ − I−)
(y-z)
mag-rock = (τξ)D(y-z)

mag-rock , (50)

where the term D(y-z)
mag-rock is independent of both the diffraction order τ and the handedness

of the helix ξ. Similarly, CD-REXS for a Néel-type helix rotating in the (x-z) plane for the

first order satellite (τ = ±ξ) can be obtained by applying Eq. (28) to Eq. (48) and is then

given by

(I+ − I−)
(x-z)
mag-rock = 0. (51)

because all terms in Eq. (48) contain M̃
(x-z)
y = 0 in Eq. (28).

Equations (50)-(51) show that in the sample-rocking scattering geometry, the Bloch-

type helix of (y-z) plane rotation has a (τξ)-dependence in CD-REXS intensity, while the

Néel-type helix of (x-z) plane rotation has no CD in REXS. This behavior is the same as

for CD-REXS from electric polarization vectors in the sample-rocking scattering geometry.

These results are summarized in Table III.

C. Simulations

In real systems, polar or magnetic helices emerge in an array form with a certain degree of

disorder in ferroelectric superlattices or ferromagnetic domain walls. To describe quantita-

TABLE III. Summary of the circular dichroism intensities for Bloch- and Néel-type helices with

electrical polarization vectors and magnetic moments in the sample-rocking scattering geometry.

Bloch-type helix Néel-type helix

with (y-z) plane rotation with (x-z) plane rotation

Electric polarization vectors (I+ − I−)
(y-z)
rock = (τξ)D(y-z)

rock (I+ − I−)
(x-z)
rock = 0

[Eq. (41)] [Eq. (42)]

Magnetic moments (I+ − I−)
(y-z)
mag-rock = (τξ)D(y-z)

mag-rock (I+ − I−)
(x-z)
mag-rock = 0

[Eq. (50)] [Eq. (51)]
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tively a degree of disorder in periodicity of helices, we introduce 1-D paracrystal model33,34.

When the paracrystal has a Gaussian distribution for the periodicity D with the width σ,

the interference function due to a disordered array of helices can be given by

Sarray(qx) =
1− g̃(qx)

2

1 + g̃(qx)2 − 2g̃(qx) cos(qxD)
, (52)

where g̃(qx) = exp[πq2
xσ

2]. We note that all the CD intensities previously shown represent

the calculations for the first order satellite, where qx = 2πτ/(Nxa) and τ = ±1. Considering

a disorder in the helicity period D(= Nxa), the CD intensity distribution in the reciprocal

space will be described as

(I+ − I−)(qx) = (I+ − I−)τ=±1 Sarray(qx). (53)

Figure 9 shows the simulated CD intensities for a polar helix. The energy dependent AT

values for Ti4+ ion in ferroelectric PbTiO3 are shown in Figs. 9(a) and 9(b). The diagonal

elements Txx and Tzz in Eq. (3) for the basis atom have been obtained from the x-ray linear

dichroism data.35 Detailed values of other parameters used for the calculation are found in

the figure caption. On the other hand, Fig. 10 shows the simulated CD intensities for a

magnetic helix. The energy dependent atomic factors, fc and fm, for Co metals are shown

in Figs. 10(a) and 10(b). The period of magnetic helices typically observed in ferromagnetic

domain walls is about hundreds of nanometers. On the other hand, the period of polar

helices emerging in ferroelectric superlattices is an order of magnitude smaller than the

magnetic one.

V. CONCLUSION

We have presented detailed analytic formulas of CD-REXS for two types of 1-D helices,

Bloch- and Néel-type helices, consisting of electric polarization vectors and magnetic mo-

ments. In particular, it has been shown in detail that a helix of electric polarization vectors

has a completely different REXS structure factor from that for the magnetic moments, since

not only the resonant scattering amplitude, which is an anisotropy tensor, but also an addi-

tional phase factor due to the displacement of the resonant atom itself should be considered.

Interestingly, however, it was found that the CD-REXS intensities for the two types of he-

lices show almost the same characteristics despite the structure factors being different. In
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FIG. 9. (a)-(b) Real and imaginary parts of the diagonal elements Txx and Tzz in the AT of the

basis atom Ti4+ in ferroelectric PbTiO3. The energy dependences are shown around Ti L2,3 edge.

(c)-(d) CD intensities for polar helices with Bloch- and Néel-type rotations in the sample-tilting

and sample-rocking scattering geometries at the opposite satellite peaks (τ = ±1). The energy was

chosen as the Ti t2g energy indicated by the vertical dotted lines in (a)-(b). The lattice parameter

a = 3.94 Å, the number of lattices in the unit cell of the helix Nx = 28, the period of the helicity

D ≈ 11 nm, the handedness of the helicity ξ = +1, σ/D = 0.1, and qz = 0.2 Å−1 were used for the

calculations.

particular, CD-REXS intensity could discriminate Bloch- and Néel-type helices for both

polar and magnetic vectors. We have also shown that not only the chiral structure itself

but also the x-ray polarization factor depending on the scattering geometry is a significant

cause of the characteristics of CD-REXS for the chiral structure. Therefore, based on this
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FIG. 10. (a)-(b) Charge and magnetic atomic factors, fc and fm, across the Co L2,3 edge for

Co metal. (c)-(d) CD intensities for magnetic helices with Bloch- and Néel-type rotations in the

sample-tilting and sample-rocking scattering geometries at the opposite satellite peaks (τ = ±1).

The energy for the calculations is indicated by the vertical dotted lines in (a)-(b). The lattice

parameter a = 3.48 Å, the number of lattices in the unit cell of the helix Nx = 517, the period of

the helicity D ≈ 180 nm, the handedness of the helicity ξ = +1, σ/D = 0.1, and qz = 0.2 Å−1

were used for the calculations.

comprehensive understanding of CD-REXS, it is expected that an appropriate strategy can

be established to elucidate the chiral structure appearing in polar, magnetic, or multiferroic

thin films.

We have also shown that the characteristics of CD-REXS obtained quantitatively in

various cases can be intuitively and consistently explained using mirror reflection. This

method is not limited to the 1-D helix discussed here, but can also be applied to CD-REXS

for 3-D chiral structures. For example, in the case of a polar skyrmion composed of electric

polarization vectors,6 the top and bottom parts have a Néel-type chiral structure, while the
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middle part has a Bloch-type chiral structure. Therefore, by using the mirror reflection

method, the characteristics of CD-REXS for this 3-D chiral structure can be predicted

intuitively.
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Appendix A: No displacement (∆ = 0) of electrical polarization vector in Eq. (14)

First, in Eq. (13), δ
(y-z)
ξ (x) is reduced to δ(x). In the case of (y-z) plane rotation, the

helix-only structure factor S
(y-z)
ij in Eq. (14) can be written as

S(y-z)
xx = Txxδ(τ),

S(y-z)
yy =

1

4
{2T0δ(τ) + T2+δ(τ + 2ξ) + T2−δ(τ − 2ξ)} ,

S(y-z)
zz =

1

4
{2T0δ(τ)− T2+δ(τ + 2ξ)− T2−δ(τ − 2ξ)} ,

S(y-z)
xy = S(y-z)

yx =
1

2
{T1+δ(τ + ξ) + T1−δ(τ − ξ)} ,

S(y-z)
xz = S(y-z)

zx =
1

2i
{T1+δ(τ + ξ)− T1−δ(τ − ξ)} ,

S(y-z)
yz = S(y-z)

zy =
1

4i
{T2+δ(τ + 2ξ)− T2−δ(τ − 2ξ)} .

(A1)

In the case of τ = ±ξ corresponding to the first-order satellite, all components in Eq. (A1)

become zero except the matrix components below.

S(y-z)
xy = S(y-z)

yx =
1

2
(Txy ∓ iTxz) =

1

2
(Txy − (τξ) (iTxz)) ,

S(y-z)
xz = S(y-z)

zx =
1

2
(∓Txy + iTxz) =

1

2
(−(τξ)Txy + iTxz) .

(A2)

If the off-diagonal components of the basis atom are all zero, the matrix components of the

helix-only structure factor S
(y-z)
ij at the first-order satellite become all zero. These results

are the same for Néel-type helix with (x-z) plane rotation.
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Appendix B: Evaluation of Eq. (35) for electrical polarization vectors in the sample-

tilting scattering geometry

The result of applying the structure factor in Eq. (30) for electrical polarization vectors

to Eq. (35) for CD-REXS is

(I+ − I−) /2 = Im [F ∗σ′πFσ′σ + F ∗π′πFπ′σ]

= 2 cos θ cos2 χ sin2 χ Im [S∗xxSxz]− cos θ cosχ sin3 χ Im [S∗xxSzz]− sin θ cos3 χ Im
[
S∗xySxx

]
+2 sin θ cos2 χ sinχ Im

[
S∗xySxz

]
− sin θ cosχ sin2 χ Im

[
S∗xySzz

]
− cos θ cos 2χ cos2 χ Im [S∗xzSxx]

− cos θ cos 2χ sin2 χ Im [S∗xzSzz] + sin θ sinχ cos2 χ Im
[
S∗yzSxx

]
− 2 sin θ cosχ sin2 χ Im

[
S∗yzSxz

]
+ sin θ sin3 χ Im

[
S∗yzSzz

]
+ cos θ cos3 χ sinχ Im [S∗zzSxx]− 2 cos θ cos2 χ sin2 χ Im [S∗zzSxz]

− cos3 θ sin2 χ cos 2χ Im [S∗xxSxz] + cos2 θ sin θ sin2 χ cosχ Im [S∗xxSxy]− cos2 θ sin θ sin3 χ Im [S∗xxSyz]

+ cos3 θ sin3 χ cosχ Im [S∗xxSzz]− 2 cos3 θ cos2 χ sin2 χ Im [S∗xzSxx]

+2 cos2 θ sin θ cos2 χ sinχ Im [S∗xzSxy]− 2 cos2 θ sin θ cosχ sin2 χ Im [S∗xzSyz]

+2 cos3 θ cos2 χ sin2 χ Im [S∗xzSzz] + sin2 θ cos θ cosχ sinχ Im
[
S∗yySxx

]
+ sin2 θ cos θ cos 2χ Im

[
S∗yySxz

]
− sin3 θ cosχ Im

[
S∗yySxy

]
+ sin3 θ sinχ Im

[
S∗yySyz

]
− sin2 θ cos θ cosχ sinχ Im

[
S∗yySzz

]
− cos3 θ cos3 χ sinχ Im [S∗zzSxx]− cos3 θ cos2 χ cos 2χ Im [S∗zzSxz]

+ Im [S∗zzSxy]− cos2 θ sin θ cos2 χ sinχ Im [S∗zzSyz] .

(B1)

Appendix C: Evaluation of Eq. (35) for electrical polarization vectors in the sample-

rocking scattering geometry

The result of applying the structure factor in Eq. (33) for electrical polarization vectors

to Eq. (35) for CD is

(I+ − I−) /2 = Im [F ∗σ′πFσ′σ + F ∗π′πFπ′σ]

= sin θi Im
[
S∗xySyy

]
+ cos θi Im

[
S∗yzSyy

]
+ sin θi sin

2 θf Im [S∗xxSxy]

− sin θi sin θf cos θf Im [S∗xxSyz]− cos θf sin θf cos θi Im [S∗zzSxy]

+ cos2 θf cos θi Im [S∗zzSyz]− sin 2ω sin θf Im [S∗xzSxy]

+ sin 2ω cos θf Im [S∗xzSyz] .

(C1)
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