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We investigate the competition between acoustic-phonon-mediated superconductivity and the
long-range Coulomb interaction in moiréless graphene multilayers, specifically, Bernal bilayer
graphene, rhombohedral trilayer graphene, and ABCA-stacked tetralayer graphene. In these
graphene multilayers, the acoustic phonons can realize, through electron-phonon coupling, both spin-
singlet and spin-triplet pairings, and the intra-sublattice pairings (s-wave spin-singlet and f -wave
spin-triplet) are the dominant channels. Our theory naturally explains the distinct recent experimen-
tal findings in Bernal bilayer graphene and rhombohedral trilayer graphene, and we further predict
existence of superconductivity in ABCA tetralayer graphene arising from electron-phonon interac-
tions. In particular, we demonstrate that the acoustic-phonon-mediated superconductivity prevails
over a wide range of doping in rhombohedral trilayer graphene and ABCA tetralayer graphene while
superconductivity exists only in a narrow range of doping near the Van Hove singularity in Bernal
bilayer graphene. Key features of our theory are the inclusion of realistic band structures with the
appropriate Van Hove singularities and Coulomb repulsion effects (the so-called “µ∗ effect”) oppos-
ing the phonon-induced superconducting pairing. We also discuss how intervalley scatterings can
suppress the spin-triplet spin-polarized superconductivity. Our work provides detailed prediction
based on electron-acoustic-phonon-interaction-induced graphene superconductivity, which should be
investigated in future experiments.

I. INTRODUCTION

Superconductivity is a prominent and extensively-
studied quantum many-body phenomenon because of its
fundamental importance, widespread occurrence in na-
ture, and technological applications. One of the most ac-
tive contemporary research directions in condensed mat-
ter physics is the superconductivity in magic-angle moiré
graphene systems including magic-angle twisted bilayer
graphene [1–4], magic-angle twisted trilayer graphene [5–
8], and magic-angle twisted graphene multilayers (n > 3)
[9–11]. The single-particle bands in such systems are
tuned to be nearly flat [12–14] such that many-body
effects can become significant. It is so worth mention-
ing that robust reproducible superconductivity has not
been systematically established in other moiré systems,
making magic-angle twisted graphene systems distinc-
tive. In addition, the extensively studied regular mono-
layer graphene is not known to be superconducting (be-
cause the electron-phonon coupling [15, 16] is not signif-
icant enough to produce an observable Tc for a doped
monolayer graphene), adding considerable excitement to
the unexpected discovery of superconductivity in moiré
magic angle twisted graphene layers.

Twisting or moiré flatband or magic angle, how-
ever, is not an essential condition for superconductiv-
ity in graphene-based materials as rhombohedral trilayer
graphene (RTG) [17, 18] and Bernal Bilayer graphene
(BBG) [19] also demonstrate robust superconducting be-
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havior in recent experimental studies. There are two dis-
tinct superconducting phases in RTG, termed SC1 and
SC2. The superconductivity in SC1 is suppressed by an
in-plane magnetic field within the Pauli limit, which is
thought to be more consistent with a spin-singlet pairing
(although complicated spin-triplet pairing/singlet-triplet
mixing could in some situations also manifest similar
physics); SC2 is likely to be a (spin-polarized) spin-triplet
pairing since the superconductivity persists under a large
in-plane magnetic field violating the Pauli limit. By con-
trast, superconductivity in BBG is rather mysterious – a
sufficiently large in-plane magnetic field is required to in-
duce a (spin-polarized) spin-triplet superconducting state
in BBG. Since similar spin-singlet/spin-triplet supercon-
ductivity has been observed experimentally in magic-
angle moiré graphene systems [1–11], a reasonable ques-
tion is if there exists a universal pairing mechanism for
superconductivity in all graphene-based materials, with
and without moiré structure. In this context, acoustic
phonons are the most natural candidate for pairing since
Cooper pairings in most superconductors in nature are
caused by acoustic phonons, and in the untwisted systems
with no moiré flat bands, the most obvious arguments
in favor of strong correlation induced superconductivity
become questionable. In the current work, we develop
a detailed theory for acoustic phonon-induced supercon-
ductivity in ‘moiréless’ graphene multilayers, where no
twist is involved between the layers.

Before discussing a potential universal mechanism,
it is important to emphasize that superconductivity in
graphene-based materials is distinct from other systems
(e.g., conventional metals) because of the valley and
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sublattice degrees of freedom. For example, electron-
acoustic-phonon coupling in graphene has an enlarged
SU(2) × SU(2) symmetry due to the approximate val-
ley symmetry [20]. As a result, the acoustic-phonon-
mediated intervalley pairings have a singlet-triplet de-
generacy, and the intrasublattice pairings are typically
favored [20, 21]. Therefore, it is natural to ask if acoustic-
phonon-mediated pairings can account for supercon-
ductivity in graphene-based materials [20, 22]. Pre-
viously, we showed that the acoustic-phonon-mediated
superconductivity can explain qualitatively and semi-
quantitatively the distinct superconducting phenomenol-
ogy reported in RTG [23] and BBG [24]. Since the
band structures of RTG and BBG are simpler and bet-
ter established compared with twisted moiré graphene
systems, it is easier to make direct (semi-)quantitative
comparisons between theory and experiment here. Be-
sides the acoustic-phonon mechanism, which we con-
sider, a number of alternative theoretical ideas focus-
ing on inter-electron interactions have also been proposed
for RTG [25–32] and BBG [33]. We mention here that
the case for robust acoustic phonon mediated supercon-
ductivity in twisted graphene systems has already been
made in the literature, based on the enhancement of the
effective electron-phonon coupling in moiré systems by
virtue of the suppression of the graphene Fermi velocity
[20, 22], but the current work, by contrast, is specifically
on moiréless graphene multilayers.

In this work, we investigate in considerable de-
tails the acoustic-phonon-mediated superconductivity in
moiréless graphene multilayers including BBG, RTG, and
(the experimentally not-yet-studied, and thus, we are
making a prediction) ABCA stacked tetralayer graphene
[34]. We incorporate the k · p band structure and
the Coulomb repulsion in our phonon-induced theory
of superconductivity. For RTG and ABCA tetralayer
graphene, we find that robust observable superconduc-
tivity (Tc > 20mK) can be realized for a wide range
of doping, even for doping away from the Van Hove
singularity (VHS) while observable and rather fragile
superconductivity is obtained only near VHS in BBG.
Thus, we predict the existence of a more generic doping-
independent (and also more robust) superconductivity
in RTG and ABCA than in BBG. Our work, while be-
ing in agreement with the existing experimental obser-
vations, also provides a number of falsifiable predictions
based on electron-acoustic-phonon coupling incorporat-
ing Coulomb repulsion, and we believe, based on our
finding a reasonable agreement between our theory and
experiment, that acoustic phonons are the main medi-
ators of superconductivity for graphene-based materials
in general. A unique feature of graphene is the fact that
acoustic phonons can lead to both singlet and triplet su-
perconductivity because of the enlarged SU(2) × SU(2)
symmetry enabled by the valley degrees of freedom.

The rest of the paper is organized as follows: In Sec. II,
we introduce the k ·p band model, the electron-acoustic-
phonon coupling, and the Coulomb interaction. We dis-

FIG. 1. Lattice structure of ABCA-stacked tetralayer
graphene. (a) Top view. For each layer, we illustrate a
hexagon to specify the relative position in the xy plane. 1A,
2A, 3A, and 4A (1B, 2B, 3B, and 4B) denote the sublattice
A (B) in the layer 1, 2, 3, and 4 respectively. Note that the
lattice points in the first layer and the fourth layer are at the
same xy positions. (b) The cross-section view. At K and −K
points, the intra-layer hybridizations can be ignored, and the
nearest neighbor inter-layer couplings generate dimerization
in 1B-2A, 2B-3A, 3B-4A bonds (black dashed bonds). 1A
and 3B sites are the low-energy sites in this simplified pic-
ture. The BBG (RTG) structure can be derived from ABCA
tetralayer graphene with only the first 2 (3) layers.

cuss how to incorporate Coulomb repulsion in the the-
ory of acoustic-phonon-mediated graphene superconduc-
tivity and present a simplified approach in Sec. III. In
Sec. IV, the main numerical results are presented and
discussed in the context of experimental results. We con-
clude with a brief discussion in Sec. V. A set of six ap-
pendices (A-F) complements the main text by providing
various technical details used in our work.

II. MICROSCOPIC MODEL

Superconductivity is crucially dependent on density of
states (DOS) and microscopic interactions (e.g., electron-
phonon, electron-electron, etc). In this section, we dis-
cuss the single-particle band structures, and interactions
used in this work. We focus on untwisted moiréless pris-
tine BBG, RTG, and ABCA-stacked tetralayer graphene.

A. Single-particle band structure

We are interested, following the experimental systems,
in the low-doping graphene multilayers in the presence
of a displacement field, which induces a tunable band
gap at charge neutrality point. The single-particle bands
near the K and −K valleys can be described by k · p
band models. Generally, the single-particle Hamiltonian
is described by

Ĥn,0 =
∑
τ

∑
k

Ψ̂†n,τ (k)ĥn,τ (k)1̂sΨ̂n,τ (k), (1)
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where ĥn,τ=±(k) is a 2n × 2n low-energy Hamiltonian

near ±K valley, n ≥ 2 is the number of layers, 1̂s is the
identity matrix in the spin space, and Ψ̂n,τ (k) is a 4n-
component column vector with a valley quantum number
τ , made of the fermionic annihilation operator ψτσls with
sublattice σ, spin s, and layer l. In this work, we con-
sider BBG (n = 2), RTG (n = 3), and ABCA tetralayer
graphene (n = 4).

The low-energy bands of the graphene multilayer sys-
tems here have large probability on the A sites of the
top layer (1A) and B sites of the bottom layer (nB).
This property arises from the interlayer nearest-neighbor
tunnelings which tend to form dimerized bonds as illus-
trated in Fig. 1, where ABCA tetralayer graphene is illus-
trated. One can obtain BBG (RTG) by considering just
two (three) layers in Fig. 1. To gain some intuitive un-
derstanding, we construct an effective 2× 2 matrix given
by [35]

ĥ′n,+(k) ≈

[
∆1 Cn

(
Π†k

)n
Cn (Πk)

n −∆1

]
, (2)

where 2∆1 corresponds to the energy difference be-
tween two low-energy sites induced by the displace-
ment field, Cn = vn0 /γ

n−1
1 , v0 is the graphene veloc-

ity, and γ1 corresponds to the interlayer dimerization
energy. The effective energy bands are described by
E ′k = ±

√
C2
n|k|2n + ∆2

1, resulting in a divergent DOS

ρ(E) ∝ |E ±∆1|−1+1/n near the band edge (±∆1). Based
on this heuristic estimate, we expect that the DOS gets
larger for a higher layer number (n). More careful anal-
ysis should include additional hopping terms and crystal
fields, which might substantially alter the results, such as
inducing VHS away from band edges. Regardless of the
detail, the low-energy bands are approximately layer and
sublattice polarized. As a result, the superconducting
states with intralayer intersublattice pairings should be
generically suppressed in the low-energy bands because
one of the sublattices in each layer has higher energy.

To obtain the low-energy band structure, we formally
diagonalize the Hamiltonian in Eq. (1) as follows:

Ĥ0 =
∑
τ=±

2n∑
b=1

∑
s=↑,↓

Eτ,b(k)c†τbs(k)cτbs(k), (3)

where Eτ,b(k) encodes the energy-momentum dispersion
of the bth band and valley τK, and cτbs(k) is an electron
annihilation operator of valley τK, the bth band, spin
s, and momentum k. The microscopic-basis operator
ψτσls and the band-basis operator cτbs obey ψτσls(k) =∑
b Φτb,σl(k)cτbs(k), where Φτb,σl(k) is the wavefunc-

tion of valley τK and band b. In addition, the (spin-
less) time-reversal symmetry imposes further constraints:
E+,b(k) = E−,b(−k) and Φ+b,σl(k) = Φ∗−b,σl(−k).

We use the k · p bands described in Appendix A and
compute DOS numerically for BBG, RTG, and ABCA
tetralayer graphene as shown in Fig. 2. (See Appendix B
for a discussion on the numerical calculations.) Note that

FIG. 2. Density of states based on k · p models. (a) BBG
(b) RTG (c) ABCA. The numerical results are obtained by
computing a 104 × 104 momentum grid with a momentum
spacing ∆k ≈ 2 × 10−5a−1

0 . For a given EF , we determine
ne based on the DOS profiles illustrated here. ∆1 is a band
parameter (defined in Appendix A) which can be tuned by a
displacement field.

the DOS in BBG is much smaller than the DOS in RTG
and ABCA tetralayer graphene. The differences in DOS
imply that the screened Coulomb interaction might show
different behavior since screening depends crucially on
the DOS, as will be discussed in detail later.

B. Electron-phonon coupling

In graphene multilayers, the electron-optical-phonon
couplings [36] are generically suppressed because of the
sublattice polarization in the systems [37]. Thus, we fo-
cus on the in-plane longitudinal acoustic phonon, which
is described by

Ĥph =
∑
l

∑
q

ωqa
†
l,qal,q, (4)

where aq is the phonon annihilation operator with mo-
mentum q, ωq = vph|q| is the acoustic phonon dispersion,
and vph is the sound velocity. For simplicity, we consider
that the acoustic phonon modes are layer decoupled, i.e.,
the same as that in monolayer graphene [15]. However,
our qualitative results do not rely on this assumption.

The electron-acoustic phonon coupling [38] is given by,
within the well-known deformation potential coupling ap-
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proximation,

Ĥep =
D√
A

∑
q,l

√
~

2ρmωq
(−iq · êq)

(
al,q + a†l,−q

)
n̂l(−q),

(5)

where ê∗q = ê−q is the polarization vector, ρm is the
mass density of monolayer graphene, D is the deforma-
tion potential, A is the area of the 2D system, ωq =
vph|q| is the acoustic phonon dispersion, and n̂l(−q) =∑

k

∑
τ,σ,s ψ

†
τ,l,σ,s(k)ψτ,l,σ,s(k− q).

C. Coulomb interaction

In addition to electron-acoustic-phonon couplings, the
electrons are directly interacting via Coulomb repulsion,
which is an important factor in determining the exis-
tence of superconductivity, because no superconductiv-
ity would be possible if the repulsive Coulomb coupling
overwhelms the attractive interaction induced by acous-
tic phonons in the associated pairing channel. We fo-
cus on the long-range component of the instantaneous
Coulomb interaction, described by

ĤC =
1

2A
∑
q

VC(q)
∑
l

n̂l(q)
∑
l′

n̂l′(−q) (6)

where VC(q) encodes the Coulomb potential and n̂l(q) =∑
k

∑
τ,σ,s ψ

†
τ,l,σ,s(k)ψτ,l,σ,s(k + q). The long-range

Coulomb potential given by Eq. (6) has a SU(2)×SU(2)
symmetry, which results in a singlet-triplet degeneracy.
However, the short-range contributions of Coulomb po-
tential might break the SU(2)× SU(2) symmetry down
to a SU(2) symmetry [25].

In the experiments, the graphene multilayer system
is sandwiched between two metallic plates which screen
the Coulomb interaction. After solving the electrostatic
problem using the image charge approximations, we ob-
tain

VC(q) =
2πe2

ε|q|
tanh (|q| d) , (7)

where ε is the dimensionless average background lattice
dielectric constant and d is the distance between the 2D
system and the metallic plates.

In addition to the gate screening, the large DOS in
graphene multilayers (Fig. 2) result in significant intra-
band screenings. To incorporate the intraband screening
by the carriers themselves, we adopt the extensively-used
Thomas-Fermi approximation defined by

VTF(q, EF ) =
1

[VC(q)]
−1

+ ρ(EF )
=

VC(q)

1 + VC(q)ρ(EF )

(8)

where ρ(EF ) is the total DOS at Fermi energy. The
Thomas-Fermi approximation is the static limit of the

random phase approximation, which is exact under
the well-controlled limits of high density and/or many
fermion flavors. When VC(q)ρ(EF ) � 1, VTF(q; EF ) ≈
1/ρ(EF ), which is independent of ε and d (simply because,
in this large DOS limit, the screening by the carriers
themselves dominate). In graphene multilayers discussed
here, the intraband process is the dominating mecha-
nism for the screening of Coulomb repulsion. We will
discuss the interplay between phonon-mediated pairings
and screened Coulomb repulsion next.

III. PHONON-MEDIATED
SUPERCONDUCTIVITY INCORPORATING

COULOMB REPULSION

To achieve a more quantitative understanding, it is
customary to apply the Eliashberg theory [39, 40] with
the full frequency dependence of the problem, which is
typically solved by intensive numerical methods. This
is because the retarded effective attraction can overcome
the instantaneous Coulomb repulsion even though the
bare interaction is repulsive at all frequency [38–41].

In the rest of this section, we present a simplified treat-
ment without carrying out intensive numerics, incorpo-
rating both the acoustic-phonon attraction and Coulomb
repulsion, to solve for superconductivity in moiréless
graphene multilayers. (The full numerical solution is pre-
sented in the Appendix. D.) We first discuss the effec-
tive BCS interaction and examine the retardation effect
by comparing the phonon velocity with the estimated
Fermi velocity, Then, we review the Eliashberg theory
and present a simplified mean-field approach. We sup-
port our results by solving the Eliashberg theory nu-
merically in Appendix D and Fig. 13, where the qual-
itative agreement with our simplified almost-analytical
mean field solution is shown.

A. BCS superconductivity and retardation

Electrons near the Fermi surface can attract each other
via a phonon-mediated interaction. Such an attractive
interaction can overcome the repulsive Coulomb repul-
sion and create Cooper pairs. This is the central idea of
the BCS theory. To derive the phonon-mediated attrac-
tion, we start with the electron-phonon couplings [given
by Eq. (5)] and integrate out the phonon fields in the
imaginary-time path integral. The effective interaction
is described by an action,

Sph = − 1

2βA
∑
νn,q

Vg(νn,q)
∑
l

n̂l(νn,q)n̂l(−νn,−q),

(9)

where νn is the Matsubara frequency, Vg(νn,q) = g
ω2

q

ω2
q+ν2

n

is the phonon-mediated dynamical potential, ωq = vs|q|,
vs is the sound velocity, and g = D2/(ρmv

2
s) is the



5

strength of phonon-mediated attraction. The overall
minus sign indicates the effective attraction mediated
by acoustic phonons, and the effective attraction has a
SU(2)×SU(2) symmetry, resulting in a singlet-triplet de-
generacy in the pairing. To estimate g0, we use D = 30
eV, ρm = 7.6 × 10−8 g/cm2 [15, 16], and vs = 2 × 106

cm/s. We obtain g ≈ 474 meV·nm2 [22, 23]. Here,
D = 30eV is based on the experimentally extracted value
[16], and it might be off by a factor of 2 [15, 20]. In this
work, we use g = g0 ≡ 474 meV·nm2 unless noted oth-
erwise. Our qualitative results are independent of the
choice of D and g.

1. Single-band approximation and pairing symmetry

To simplify the calculations, we adopt the single-band
approximation to where the Fermi energy EF lies. This
is a valid approximation keeping only the band because
low-energy bands of the graphene multilayers are sepa-
rated by a gap ∼ 2|∆1| due to the applied displacement
field, and the high energy bands are also away by at least
∼ 100 meV. The BCS channel of the phonon-mediated
interaction [Eq. (9)] is given by

Sph =
−1

βA
∑
k,k′

V (b)
g (k, k′)c̄+bs,k c̄−bs′,−kc−bs′,−k′c+bs,k′ ,

(10)

where

V (b)
g (k, k′) =g

(b)
k,k′

ω2
k−k′

ω2
k−k′ + (ωn − ω′n)

2 , (11)

g
(b)
k,k′ =g

∑
σ,l

|Φ+b;lσ(k)|2
∣∣Φ+b;lσ(k′)

∣∣2 , (12)

b is the index of the projected band, cτbs,k, c̄τbs,k are the
Grassmann variables representing the fermionic fields,
k = (ωn,k) denotes the frequency-momentum index, and

V
(b)
g (k, k′) is the phonon-mediated BCS attractive poten-

tial after the single-band projection.
Before we proceed, it is worthwhile discussing the pair-

ing symmetry in the low-energy bands of graphene mul-
tilayers. We consider only the intervalley Cooper pairs
here because Eτ,b(k) 6= Eτ,b(−k) generically suppresses
the intravalley superconductivity [42, 43]. Following the
classification scheme based on valley and sublattice de-
grees of freedom [20–23], the intervalley pairing symme-
try (i.e., s-, p-, d-, f - wave) can be determined from C3z
(threefold rotation about hexagon center) and spin SU(2)
symmetry. s-wave spin-singlet and f -wave spin-triplet
pairings are intrasublattice; p-wave spin-triplet and d-
wave spin-singlet are intersublattice. For graphene multi-
layers, we find that the intralayer intersublattice pairings
are strongly suppressed in the low-energy bands since one
of the sublattices in each layer is at high energy. Thus,
we focus only on the intralayer intrasublattice pairings,
i.e., s-wave spin-singlet and f -wave spin-triplet pairings.

In fact, s-wave spin-singlet and f -wave spin-triplet pair-
ings are degenerate due to the SU(2)×SU(2) symmetry
in the acoustic-phonon-mediated attraction.

2. Mean-field approximation

In the standard BCS approximation, the frequency de-

pendence is suppressed completely. As such, V
(b)
g (k, k′)

is reduced to g
(b)
k,k′ . With the mean-field approximation,

we derive the linearized gap equation as follows:

∆s′s(k) =
1

A
∑
k′

g
(b)
k,k′

tanh
[
E+b(k′)−EF

2kBT

]
2E+b(k′)− 2EF

∆s′s(k
′), (13)

where kB is the Boltzmann constant, EF is the Fermi en-
ergy, and the superconducting order parameter is defined
by

∆s′s(k
′) =

1

A
∑
b

∑
k′

g
(b)
k,k′

〈
c−bs′(−k′)c+bs(k′)

〉
. (14)

The transition temperature Tc is determined by the high-
est T such that Eq. (13) is satisfied. The obtained Tc here
is for both the s-wave spin-singlet and f -wave spin-triplet
pairings because of the singlet-triplet degeneracy in the
acoustic-phonon-mediated pairing.

3. Validity of BCS approximation

The validity of BCS theory relies on the retardation
effect, indicating that phonon velocity is smaller than
electron velocity. In such a case, the Migdal theorem
applies, and vertex corrections can be ignored. How-
ever, the graphene multilayer systems contain VHS in
the low energy bands, which can result in a small Fermi
velocity, and our theory incorporating Migdal theorem
would break down for vs exceeding the Femi velocity.
To check this, we estimate the average Fermi velocity,
v̄F = 2

√
|ne|/(~

√
πρ), where ne is the carrier density

and ρ is the total DOS (incorporating spin and valley,
assuming unpolarized states). In Fig. 3, we find that v̄F
is larger than the sound velocity vs (gray dashed line) at
generic dopings, suggesting the validity of Migdal theo-
rem and BCS approximation holding generally in BBG,
RTG, and ABCA tetralayer graphene. For doping den-
sities with v̄F < vs (e.g., near VHS), the non-adiabatic
vertex corrections [44, 45] become important, and Tc is
generically suppressed by these vertex corrections except
for situations that are deep in the anti-adiabatic limit
[45]. In particular, the vertex correction for doping den-
sities close to the VHS can increase Tc [44]. We neglect all
vertex corrections in the current work. For a fixed |∆1|,
one can see that the v̄F away from VHS gets smaller for
a larger n (number of layers). This property is consistent
with the effective two-band model description in Eq. (2),
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FIG. 3. Estimate of averaged Fermi velocity v̄F based on
k · p bands. We use v̄F = 2

√
|ne|/(~

√
πρ). (a) BBG (b)

RTG (c) ABCA stacked tetralayer graphene. ∆1 is a band
parameter (defined in Appendix A) which can be tuned by a
displacement field.

where dispersion is approximately proportional to |k|2n
near the band edge.

4. Superconductivity without Coulomb repulsion

We numerically solve Eq. (13) and plot Tc versus ne in
Fig. 4 for BBG, RTG, and ABCA tetralayer graphene.
The numerical parameters are provided in Appendix B.
The results show that observable Tc is produced for a
wide range of doping for all systems, suggesting that
acoustic phonons can induce superconductivity in these
systems. We emphasize that Tc is determined by a wide
window of energy states near EF but not just the states
precisely at EF [23, 46]. Thus, the Fermi energy pre-
cisely being at the VHS is not crucial for the emergent
superconductivity. Technically, this is due to the kernel
tanh[x/T ]

2x in Eq. (13) having a finite width, which has a
power-law falling off in x for x � T . This is distinct
from the Stoner-type instability where the kernel is re-
duced to a Dirac-delta function at T = 0. Typically, the
Tc values predicted in Fig. 4, without any Coulomb repul-
sion effects, overestimate the actual Tc because Coulomb
effects suppress Tc. To provide quantitative predictions,
Coulomb repulsion has to be incorporated. Next, we turn
to a framework incorporating both the phonon-mediated
attraction and Coulomb repulsion.

FIG. 4. Numerical Tc based on pure electron-acoustic-phonon
pairing. (a) BBG (b) RTG (c) ABCA. We sole Eq. (13) with
5000 energy levels from a fine momentum grid with a spacing
∆k ≈ 0.002a−1

0 . (a) is the same as Ref. [24]. (b) is slightly
different from Ref. [23] (in the low doping) due to the finer
momentum mesh and the way of determining ne. ∆1 is a
band parameter (defined in Appendix A) which can be tuned
by a displacement field.

B. Eliashberg theory and renormalization of
Coulomb interaction

To investigate the interplay between phonon-mediated
attraction and direct Coulomb repulsion, the frequency
dependence, which is ignored in BCS theory, should be
taken into account. We review the celebrated Eliash-
berg theory [39, 40] within the single-band approxima-
tion (projection onto the bth band) in the following.
There are two sets of equations in Eliashberg theory, a
self-consistent equation for determining the Eliashberg
self energy, and another self-consistent equation for de-
termining the order parameter. See Appendix C for a
derivation based on path integral. The main results are
summarized in the following.

1. Eliashberg equations

We focus on T ≈ Tc where the order parameter is in-
finitesimal. In such a situation, the Eliashberg self energy
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FIG. 5. Diagrammatic representation of self-consistent ladder
equation for renormalization from high energy states. The
single wiggly lines denote the bare interaction V ; the double
wiggly lines denote the renormalized interaction Ṽ ; the solid
lines with arrows denote the electron propagators. Note that
k, k′, and p are in valley K while −k, −k′, and −p are in
valley −K.

is determined by

iΞ+s(k
′) =

1

βA
∑
k

−W (k′, k)

−iωn + E+,b(k)− EF + iΞ+s(k)
,

(15)

where iΞ+s(k) is the Eliashberg self energy of valley

+K, spin s, W (k, k′) = V
(b)
g (k, k′) − V

(b)
TF (k, k′), and

V
(b)
TF (k, k′) denotes Eq. (8) after projecting onto the bth

band. The Eliashberg self energy can be written as
iΞ+s(k) = (−Zk + 1) iωn + χk, where Zk is the wave-
function renormalization and χk encodes the dispersion
renormalization and quasiparticle life time. Using the
Eliashberg self energy, the linearized gap equation is ex-
pressed as

∆ss′(k
′) =

1

βA
∑
k

W (k′, k)∆ss′(k)

(Zkωn)
2

+ [E+,b(k)− EF + χk]
2 ,

(16)

where we have ignored the infinitesimal |∆ss′(k)| term in
the denominator. To simply the calculations, we set Zk =
1 and ignore χk. Equation (16) becomes a frequency-
dependent BCS gap equation given by

∆ss′(k
′) =

1

βA
∑
k

W (k′, k)∆ss′(k)

ω2
n + [E+,b(k)− EF ]

2 . (17)

This approximation is valid in the weak electron-phonon
coupling limit, which certainly applied to the multi-
layer graphene systems under consideration in the cur-
rent work. Our qualitative results do not rely on this as-
sumption. Note that Eq. (17) is reduced to the frequency-
independent BCS gap equation Eq. (13) after suppressing

the frequency dependence in ∆ and W̃ .

2. Frequency-dependent gap equation

Solving the integral equation defined by Eq. (16) or
(17) is a highly challenging computational task since
a large momentum mesh and a large frequency mesh

are required. Our goal here is to map the frequency-
dependent Eliashberg theory into an effective frequency-
independent BCS theory incorporating the so-called µ∗

effect of Coulomb repulsion. To derive the µ∗ effect,
we first assume that the phonon-mediated attraction is
only nonzero around the Fermi level in the low frequency
regime (|ωn|, |ω′n| < ωc) while the Coulomb repulsion
is essentially frequency independent. Now, we rewrite
the frequency-dependent BCS gap equation [given by
Eq. (17)] as follows:

∆(k) =
1

βA
∑
k′

[
χC(k;k′) + χph(k; k′)

]
∆(k′), (18)

where

∆(k) =Θ(ωc − |ωn|)∆<(k) + Θ(|ωn| − ωc)∆>(k),

(19)

χC(k; k′) =− V (b)
TF (k, k′)

1

ω′2n + [E+,b(k)− EF ]
2 , (20)

χph(k; k′) =V (b)
g (k, k′)

Θ(ωc − |ωn|)Θ(ωc − |ω′n|)
ω′2n + [E+,b(k)− EF ]

2 . (21)

If we assume that the high frequency (|ωn| > ωc) gap
function does not depend on ωn, i.e., ∆>(k) = ∆∞(k),
equation (18) reduces to two coupled equations as follows:

∆<(k) =
1

βA
∑

k′,|ω′
n|<ωc

[χC(k, k′) + χph(k, k′)] ∆<(k′)

+
1

βA
∑

k′,|ω′
n|>ωc

χC(k, k′)∆∞(k′), for |ωn| < ωc,

(22)

∆∞(k) =
1

βA
∑

k′,|ω′
n|<ωc

χC(k, k′)∆<(k′)

+
1

βA
∑

k′,|ω′
n|>ωc

χC(k, k′)∆∞(k′), for |ωn| > ωc.

(23)

Formally, one can eliminate ∆∞(k) and derive an effec-
tive gap equation [39] as follows:

∆<(k) =
1

βA
∑

k′,|ω′
n|<ωc

[χ̃C(k, k′) + χph(k, k′)] ∆<(k′),

(24)

where χ̃C(k, k′) encodes the Coulomb repulsion after in-
tegrating out the high frequency degrees of freedom.
Note that χph(k, k′) is unchanged during this process as
χph(k, k′) = 0 in the high frequency regime.

3. µ∗ effect

The renormalization from the high energy states can
also reduce the Coulomb repulsion in the BCS chan-
nel, which we treat by solving the ladder self-consistent
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equation [38] shown in Fig. 5. The self-consistent ladder
Dyson equation corresponds to an algebraic equation as
follows:

Ṽ (k′, k) = V (k′, k)− 1

βA
∑
νn,q,

ωc<|νn|<Λ,

|Ẽq|<Λ

Ṽ (k′, q)V (q, k)

ν2
n + Ẽq

,

(25)

where Ẽq = E+(q) − EF , Ṽ is the renormalized interac-
tion, and V is the bare interaction. This is equivalent
to deriving χ̃C in Eq. (24). If we ignore the momentum
dependence of the screened Coulomb interaction and use
U0(EF ) ≡ VTF(kF ; EF ), the renormalized interaction is
given by

UR(EF ) =
U0(EF )

1 + U0(EF )Γ(EF ;ωc; Λ)
, (26)

where Γ(EF ;ωc; Λ) encodes the renormalization from the
energies satisfying ωc < |Eτb(k) − EF | < Λ, ωc = 2vskF ,
and Λ is the energy cutoff. We discuss how to numerically
evaluate Γ for arbitrary band structures in Appendix D.
If we assume a constant DOS (ρ0), the well-established
µ∗ formula [38] is reproduced,

µ∗ =
µ

1 + µ ln(Λ/ωc)
, (27)

where µ∗ = UR(EF )ρ0 and µ = U0(EF )ρ0 are the dimen-
sionless renormalized and bare interaction, respectively.

C. BCS theory with effective attraction

To achieve superconductivity, the phonon-mediated
attraction must be stronger than the renormalized
Coulomb repulsion in the low-energy regime so that ef-
fective Cooper pairing may occur, which then condense
into the symmetry-broken superconducting BCS ground
state. Equation (26) provides a quantitative estimate
of the renormalized Coulomb repulsion within an energy
window [EF −ωc, EF +ωc]. We can construct an effective
BCS theory by replacing g with the effective interaction
g∗ = g−UR(EF ). We note that g∗ > 0 is a necessary con-
dition for superconductivity, and the new gap equation
is given by

∆s′s(k) =
1

A
∑
k′

g∗k,k′

tanh
[
E+b(k′)−EF

2kBT

]
2E+b(k′)− 2EF

∆s′s(k
′), (28)

where

g∗k,k′ =g∗
∑
σ,l

|Φ+b;lσ(k)|2
∣∣Φ+b;lσ(k′)

∣∣2 . (29)

In Eq. (28), we have ignored the explicit frequency
dependence and mapped the frequency-dependent gap

FIG. 6. Effective attraction g∗ in unpolarized normal states.
(a) BBG (b) RTG (c) ABCA tetralayer graphene. We choose
energy cutoff Λ = min(2|∆1|, 100meV) and kF is estimated

by
√

4π|ne|/f , where f is the spin-valley degeneracy factor.
∆1 is a band parameter (defined in Appendix A) which can
be tuned by a displacement field.

equations [Eq. (17)] to an effective BCS (frequency-
independent) gap equation incorporating the µ∗ effect.
We emphasize the obvious fact that any superconduc-
tivity can only emerge if the effective interaction is at-
tractive, i.e., g > UR(EF ). Also, Tc would obviously
depend on the relative strengths of the Coulomb re-
pulsion UR(EF ) and phonon-induced attraction g. The
effective BCS approach here allows us to predict Tc
quantitatively without solving the extremely numerically
demanding frequency-dependent Eliashberg equations.
Strictly speaking, the Coulomb repulsion has a differ-
ent form of matrix element after projecting to a single-
band. However, the difference is negligible because of
the layer-sublattice polarization in the low-energy bands
of graphene multilayers. Thus, we stick to the current
simplified approach, thus also avoiding possible large un-
controlled numerical errors in trying to solve the full fre-
quency dependent self-consistent Eliashberg theory in a
brute-force computational approach.

The value of g∗ depends on the “isospin” polarization
in the normal states. We discuss the unpolarized (four-
fold degenerate) normal states in Fig. 6 and the spin-
polarized (two-fold degenerate) normal states in Fig. 7.
The g∗ with unpolarized normal states is larger than g∗

with spin-polarized normal states because the Thomas-
Fermi screening (intraband screening) crucially depends
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FIG. 7. Effective attraction g∗ in spin-polarized normal
states. (a) BBG (b) RTG (c) ABCA tetralayer graphene.
We choose energy cutoff Λ = min(2|∆1|, 100meV) and kF is

estimated by
√

4π|ne|/f , where f is the spin-valley degener-
acy factor. ∆1 is a band parameter (defined in Appendix A)
which can be tuned by a displacement field.

on DOS in graphene multilayer. For BBG, g∗ is positive
only in the vicinity of VHS, indicating that supercon-
ductivity is most likely found near VHS [24]. For RTG
and ABCA tetralayer graphene, we find that g∗ > 0 for a
wide range of dopings, suggesting that superconductivity
can prevail for a wide range of doping [23].

It is interesting to ask if tuning gate distance (2d) or
dielectric constant (ε) can considerably modify g∗. For
most doping ne, g

∗ is not sensitive to d or ε because
the large DOS strongly screens the Coulomb interac-
tion (and, therefore, any additional screening by the gate
and the background dielectric constant is quantitatively
unimportant). For the regime where g∗ ≤ 0.2eV.nm2, we
find that smaller d (for d < 5nm) and larger ε can consid-
erably increase g∗, implying an enhancement in Tc. We
note that g∗ is not sensitive to d for d > 5nm. Similar
conclusions were reported previously for RTG [26] and for
BBG [24]. In the next section, we show our calculated
superconducting Tc in various cases and discuss the inter-
play between phonon-mediated attraction and Coulomb
repulsion.

FIG. 8. Superconducting Tc for superconductivity incorporat-
ing Coulomb repulsion from unpolarized normal states. We
use a dielectric constant ε = 10 and a gate distance parame-
ter d = 20nm for all the data. (a) BBG (b) RTG (c) ABCA
tetralayer graphene. ∆1 is a band parameter (defined in Ap-
pendix A) which can be tuned by a displacement field.

IV. NUMERICAL RESULTS FOR
SUPERCONDUCTING Tc

In this section, we present our numerical results for su-
perconducting Tc incorporating Coulomb repulsion. The
Tc is obtained by solving Eq. (28) numerically with a
fine momentum mesh as discussed in Appendix B. The
results here are qualitatively consistent with the phonon-
mediated-attraction-only results (i.e., the µ∗ effect unim-
portant) for RTG and ABCA tetralayer graphene in
Fig. 4(b) and 4(c); the Coulomb repulsion significantly
suppresses the superconducting region in BBG [Fig. 4(a)]
because the DOS is not significantly large in BBG, mak-
ing screening less significant and hence producing a rel-
atively large µ∗. A thorough study for BBG has been
done by us in Ref. [24]. In this section, we focus on RTG
and ABCA tetralayer graphene, especially for the exper-
imentally relevant regimes in RTG.

A. Superconductivity from unpolarized normal
states

We first discuss how the superconductivity arises from
four-fold degenerate unpolarized normal states. As we
discussed in the previous section, g∗ remains positive,
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indicating attractive interaction, for a wide range of
doping in all three systems. In Fig. 8, we plot Tc as
a function of ne with varied ∆1 for all three systems.
Fig. 8(b) and 8(c) show that observable superconduc-
tivity (say, Tc > 20mK) occurs in RTG and ABCA
tetralayer graphene for a wide range of dopings, not just
near VHS. However, this is not true for BBG as shown in
Fig. 8(a), where observable superconductivity exists only
near VHS, and the highest Tc is about 0.3K (1.2K) for
the hole (electron) doping. The very different results be-
tween BBG and other cases can be understood as arising
from the quantitative difference in the DOS [24], which
results in different g∗ in Fig. 6 due to the quantitatively
different µ∗ effects.

B. Superconductivity from spin-polarized normal
states

For spin-polarized (two-fold degenerate) normal states,
ρ(EF ) is half of the value of an unpolarized state at the
same EF , so the intraband screening is weaker, resulting
in a smaller g∗. We plot Tc as a function of ne with var-
ied ∆1 for RTG and ABCA tetralayer graphene in Fig. 9.
(The superconducting Tc for BBG, which is simply too
small, is not quite visible with the same scale, and it was
reported previously [24].) As expected, we find that Tc is
smaller in Fig. 9 as compared to Fig. 8(b) and 8(c), due
to larger Coulomb repulsion because of weaker screening.
Despite the reduction in Tc, observable superconductiv-
ity still prevails for a range of dopings, qualitatively sim-
ilar to the unpolarized case. Again, this is quite differ-
ent from spin-polarized normal states in BBG where any
observable superconductivity is only expected near VHS
[24]. In Ref. [24], the highest Tc is around 20mK (0.5K)
in the hole (electron) doping.

C. Superconductivity in RTG: Tuning Coulomb
repulsion

Based on the acoustic-phonon mechanism, suppressing
Coulomb repulsion will boost Tc because of the enhanced
effective attraction near the Fermi surface. This can be
achieved by decreasing the gate distance (2d) and in-
creasing the effective dielectric constant (ε). The main
question is the amount quantitative change in Tc. In our
previous work on BBG [24], we provided the evolution of
Tc with different values of d and ε. Here, we focus on the
regime where superconductivity is observed in RTG [18].

In the RTG experiment, both spin-singlet (coined
SC1) and non-spin-singlet (coined SC2) superconduct-
ing states were observed [18]. We assume ∆1 = 30
meV (∆1 corresponds to the displacement field), ne ≈
−1.9×1012cm−2, and unpolarized normal states for SC1;
we assume ∆1 = 20 meV, ne ≈ −0.5 × 1012cm−2, and
spin-polarized normal states for SC2 regime. First of all,
we do not find observable Tc at ne ≈ −1.9 × 1012cm−2

FIG. 9. Tc for superconductivity incorporating Coulomb re-
pulsion. We use a dielectric constant ε = 10 and a gate dis-
tance parameter d = 20nm for all the data. (a) RTG (b)
ABCA tetralayer graphene. ∆1 is a band parameter (defined
in Appendix A) which can be tuned by a displacement field.

FIG. 10. Tc for RTG with different dielectric constant ε. We
use a gate distance parameter d = 20nm for all the data. (a)
SC1 regime corresponds to ∆1 = 30meV and unpolarized nor-
mal states. (b) SC2 regime corresponds to ∆1 = 20meV and
spin-polarized normal states. ∆1 is a band parameter (de-
fined in Appendix A) which can be tuned by a displacement
field.

for SC1 or ne ≈ −0.5× 1012cm−2 for SC2. This is likely
a quantitative issue due to parameters used in our the-
ory (such as g, band parameters, ne, etc). Therefore, we
investigate the regimes with observable Tc close to SC1
and SC2 dopings. In Fig. 10, Tc with a few representa-
tive dielectric constants (ε) is plotted. Larger ε indeed
enhances Tc, but the enhancement is not significant for
states near SC1 or SC2 regime. In Fig. 11, we vary the
gate distance (2d) and plot the corresponding Tc. Tc gets
larger for a smaller d, but the enhancement is not out-
standing for d > 5nm, consistent with our finding in the
g∗ previously. Note that the Tc remains essentially in-
dependent of ε or d for regimes with Tc > 0.5K. This
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FIG. 11. Tc for RTG with different gate distance parameter d.
We use a dielectric constant ε = 10 for all the data. (a) SC1
regime corresponds to ∆1 = 30meV and unpolarized normal
states. (b) SC2 regime corresponds to ∆1 = 20meV and spin-
polarized normal states. ∆1 is a band parameter (defined in
Appendix A) which can be tuned by a displacement field.

can be understood by the associated large DOS in those
regimes, where Coulomb repulsion is strongly screened by
the graphene carriers themselves, essentially independent
of ε or d.

D. Superconductivity in RTG: Varying g

Based on our theory with g = g0 = 474 meV·nm2,
we cannot reproduce observable Tc in SC1 (ne ≈ −1.9×
1012cm−2) or SC2 regime (ne ≈ −0.5× 1012cm−2). This
is a quantitative issue because the value of g is not pre-
cisely known since the deformation potential coupling is
often unknown [15, 20], and the Tc is quite sensitive to
g. To investigate this issue, we vary the value of g and
plot the corresponding Tc in Fig. 12. We find that com-
parable Tc (to the experiment [18]) can be reproduced
with an enhanced value of phonon-mediated attraction
1.4g0. Since g = D2/(ρmv

2
s), a slightly larger D and/or

a slightly smaller vs can result in a larger g. An inter-
esting finding here is that our predicted Tc for SC1 is
slightly smaller than the Tc for SC2, while it is found
that SC1 is stronger than SC2 in the RTG experiment
[18]. We discuss possible explanations in Sec. V.

V. DISCUSSION

We study acoustic-phonon-mediated superconductiv-
ity in untwisted graphene multilayers– BBG, RTG, and
ABCA tetralayer graphene including effects of direct
Coulomb repulsion. The SU(2) × SU(2) symmetric
acoustic-phonon-mediated attraction naturally favors in-
trasublattice pairings in untwisted graphene multilayers,
making s-wave spin-singlet and f -wave spin-triplet pair-
ings dominant and degenerate. We develop a simpli-

FIG. 12. Superconductivity with different values of phonon-
mediated attraction g. We use a dielectric constant ε = 10
and a gate distance parameter d = 20nm for all the data,
and g0 = 474 meV·nm2. (a) SC1 regime corresponds to
∆1 = 30meV and assume unpolarized normal states. (b)
SC2 regime corresponds to ∆1 = 20meV and assume spin-
polarized normal states. ∆1 is a band parameter (defined in
Appendix A) which can be tuned by a displacement field.

fied, but quantitatively predictive, theory incorporating
both phonon-mediated attraction and direct Coulomb
repulsion. Within mean field approximation, we repro-
duce the recently experimentally-observed superconduc-
tivity phenomenology in BBG and RTG, and we fur-
ther predict the existence of superconductivity in ABCA
tetralayer graphene, which should be experimentally in-
vestigated. Our theory captures the qualitative and semi-
quantitative features of the experiments [18, 19], suggest-
ing that superconductivity in graphene untwisted multi-
layers is likely due to acoustic phonons.

To understand why and how the acoustic-phonon
mechanism can explain the BBG [19] and RTG [18] ex-
periments, one has to take into account the Coulomb
repulsion which causes a suppression of the predicted
Tc leading to agreement with experiments. Because the
BBG band generates a smaller DOS resulting in weaker
screening, the Coulomb repulsion suppresses supercon-
ductivity for most doping densities except near VHS. On
the other hand, the large DOS of RTG efficiently screens
Coulomb repulsion and results in observable supercon-
ducting states for a wide range of doping. Thus, our re-
sults provide natural explanations to the BBG and RTG
experiments without any fine-tuning or arbitrary data
fitting, as we explain in the following.

In the BBG experiment, a sufficiently large in-plane
magnetic field, which suppresses a competing order, is
required to observe superconductivity [19]. Based on our
theory, observable superconductivity (i.e., T > 20mK)
can happen only near VHS. The applied in-plane mag-
netic field likely suppresses the competing order, which,
if presents, preempts superconductivity, and spin-triplet
superconductivity manifests itself in the absence of the
competing order.
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In the RTG experiment, superconductivity is observed
away from VHS without a magnetic field, and spin-
singlet (spin-triplet) superconductivity emerges from un-
polarzied normal states (spin-polarized normal states)
[18]. Our theory can naturally explain the results be-
cause the SU(2)× SU(2) symmetry in acoustic-phonon-
mediated attraction favors s-wave spin-singlet and f -
wave spin-triplet pairings [20, 23]. The s-wave spin-
singlet is usually the dominating pairing for unpolarized
normal states (four-fold degenerate) because the sublead-
ing pairings (e.g., optical phonons [36]) can enhance s-
wave spin-singlet pairings also. For spin-polarized nor-
mal states (two-fold degenerate), spin-singlet pairings are
suppressed, and f -wave spin-triplet pairing becomes the
leading pairing instability. In RTG, the absence of super-
conductivity near VHS or in the regime with large DOS
is due to the competing correlation-induced instabilities
from interaction. Note that the Stoner-type instability
is very sensitive to the value of DOS at EF , but this is
not true for the superconducting instability [46]. As a
result, observable superconducting states can be found
away from VHS in the RTG experiment. Based on our
results, both of the SC1 and SC2 doping density corre-
spond to the tail regions of observable superconductiv-
ity, implying that the majority of superconductivity is
superseded by correlation-induced instabilities (partially
isospin polarized states [18]) except for narrow regions of
SC1 and SC2.

An interesting question is if the predicted supercon-
ductivity is robust against disorder or scatterings intro-
duced at the sample boundary (e.g., Refs. [47] and [48]).
While intervalley scattering can be suppressed in clean
devices near perfect charge neutrality [49], charge impu-
rities at edges can cause intervalley scattering [47]. The
s-wave spin-singlet superconductivity is robust against
weak charge (but, not magnetic) disorder as showed by
the Anderson’s theorem. However, the f -wave spin-
polarized spin-triplet (valley-singlet) pairing, which we
predict for SC2 in RTG and superconductivity in BBG,
is fragile in the presence of intervalley scatterings. This
is mathematically analogous to the suppression of s-wave
spin-singlet pairing due to spin-flipping scatterings [50].
To examine the role of intervalley scattering, we first es-
timate the coherence lengths of SC2 in Ref. [18]. We
obtain the BCS coherence length ξBCS = ~vF

π∆0
≈ 1.38µm

(using Tc = 50mK and vF = 5× 104m/s) and Ginzburg-

Landau coherence length ξGL =
√

h/(2e)
2πBc,⊥

≈ 0.57µm (us-

ing Bc,⊥ = 1mT). The distance between nearby contacts
is around 2µm, which is not significantly larger than the
coherence lengths, suggesting that scatterings at bound-
ary might affect the superconductivity. Assuming an in-
tervalley scattering time τs and following Ref. [51], we

obtain an expression of the pairing potential strength (∆̃)
perturbed by intervalley scatterings (at the second order)

as follows (see Appendix F for derivations):

|∆̃(τs,∆)| = |∆|

[
1− 1

21/3

(
C
|∆|τs

)2/3
]
, (30)

where ∆ is the pairing potential without intervalley scat-
terings and C is a constant encoding the average over
Fermi surface and DOS at EF . Equation (30) describes
the pair breaking effect due to weak intervalley scatter-
ings in spin-polarized spin-triplet superconductivity. As-
suming that the intervalley scattering is strong at the
edges, the intervalley scattering rate is limited by the
sample size (L), i.e. τs ∼ L/vF . This results in the
quantity |∆|τs ∼ L/ξBCS. Thus the superconductivity
can survive for devices that are larger than the coher-
ence length. This can also be understood as supercon-
ductivity in the presence of pair breaking edge disorder,
where the superconducting order parameter goes to zero
at the edges. The superconductivity is expected to re-
vive on the scale of ξ, which can occur if the system is
larger than the coherence length. The results here also
qualitatively apply to superconductivity in BBG.

Since the pairing glue comes from phonons in our the-
ory, suppressing Coulomb repulsion (i.e., increasing ε or
decreasing d) generically enhances superconducting Tc.
As we discussed in Sec. III C and IV C, changing ε and
d might not result in significantly different Tc in RTG
because the Coulomb repulsion is in the strong screen-
ing regime. In particular, the gate distance dependence
is quite weak for d > 5nm. (A similar conclusion was
drawn in Ref. [26].) For BBG, Tc is more sensitive to the
value of ε and d as we pointed out previously in Ref. [24].
This can be understood by the smaller DOS in BBG,
such that the intraband screening is not fully suppress-
ing the dependence of d or ε. The possible enhancement
of Tc by reducing gate/dielectric screening is a testable
theoretical prediction of our theory.

Another important question is whether the electron-
phonon coupling constant is correctly estimated in our
theory as the deformation potential D is not precisely
known [15, 20]. In Sec. IV D, we find that g = 1.4g0

can reproduce the comparable Tc for SC1 and SC2 in
RTG. In the RTG experiments, TBKT ≈ 100mK for SC1
and TBKT < 50mK for SC2 were reported [18]. How-
ever, our theory with g = 1.4g0 gives Tc ≈ 80mK for
SC1 and Tc ≈ 100mK for SC2. This raises a puzzle as
our predicted Tc’s are in the opposite order of the exper-
imental results. The discrepancy might be understood
by the fragile nature of non-spin-singlet superconductiv-
ity (SC2), which can be suppressed easily by disorder or
intervalley scatterings (e.g., scattering at sample bound-
ary) in the experiments. Another possible explanation is
that there exists a subleading pairing mechanism (such
as optical phonons [36] or other interaction-induced pair-
ings [25–30]) that contributes to SC1 but not SC2. Re-
gardless of the possible explanation, the acoustic-phonon-
mediated pairing is still the dominating gluing mecha-
nism. We leave the puzzling discrepancy as an open ques-
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tion for future studies, which also requires the availability
of more experimental results.

Now, we discuss a number of predictions based on the
acoustic-phonon theory. An interesting prediction based
on our theory is that a sufficient large in-plane magnetic
field can destroy the s-wave spin-singlet pairing, and then
the f -wave equal-spin pairing becomes the leading super-
conducting instability [23]. In addition, it is possible that
an applied in-plane magnetic field can induce new super-
conducting phases in RTG by suppressing the competing
ordered states, similar to the field-induced superconduc-
tivity in BBG. Our theory predicts observable supercon-
ductivity not just for hole doping but also for electron
doping for BBG, RTG, and ABCA tetralayer graphene,
and we find that a larger |∆1| generally enhances the
superconducting Tc for electron doping.

One important consequence of strong electron-acoustic
phonon coupling is that the finite-temperature resistiv-
ity should develop a linear-in-T resistivity for T > Tonset

and a T 4 resistivity for T < Tonset [15]. We estimate
that Tonset is above 10K-20K [15, 52] for both BBG and
RTG. The electron-phonon coupling parameter extracted
from such a linear-in-T resistivity should have approxi-
mate consistency with the observed Tc [20, 52–56]. The
same is true for spin or valley fluctuation mediated su-
perconductivity, too. In the RTG experiment [18] (BBG
experiment [19]), a linear-in-T resistivity is not seen for
T ≤ 20K (T ≤ 1.5K), where the highest temperature
appears to be smaller than our estimated Tonset > 20K.
Again, based on our theory, there should be a phonon-
induced linear-in-T resistivity for T > 20K above the su-
perconducting state. This should be investigated experi-
mentally by extending the conductivity measurements to
T = 10K−50K regime.

Finally, we comment on the universal theory for su-
perconductivity in graphene-based materials (including
twisted and untwisted materials). It is likely that
electron-acoustic-phonon mechanism accounts for super-
conductivity in all graphene-based materials provided
that acoustic phonons can explain the distinct super-
conductivity phenomenology in BBG [19], in RTG [18],
and in twisted bilayer graphene [20]. In addition, sev-
eral experiments on magic-angle moiré graphenes show
that superconductivity is more robust [4, 57–59], i.e., it
can exist without any nearby correlated insulating states,
hence arguing against a correlation-induced mechanism.
Thus, it is natural to suspect that superconductivity
and correlated states most likely come from different
origins [20, 36, 60–63], and the acoustic-phonon mecha-
nism can explain the superconductivity phenomenology.
We emphasize that the interactions are still essential as
they can induce competing orders, suppressing and pre-

empting superconductivity. Our qualitative picture is
that all graphene superconductivity is induced by acous-
tic phonons, but competing strongly correlated non-
superconducting phases arising from electron-electron in-
teractions may arise, competing with and occasionally
suppressing the superconducting phase. In summary,
we present a systematic theory, incorporating electron-
phonon couplings and Coulomb repulsion, for supercon-
ductivity in untwisted graphene multilayers. We obtain
Tc in reasonable agreement with the experimental ob-
servation, and we speculate that acoustic phonons are
responsible for all superconductivity in graphene-based
materials in general.
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Appendix A: Band structure

1. BBG band structure

We adopt the k · p Hamiltonian from Ref. [64]. The

ĥτ (k) in the main text is given by

ĥ(2)
τ (k) =


−∆1 v0Π†(k) −v4Π†(k) −v3Π(k)

v0Π(k) ∆′ −∆1 t1 −v4Π†(k)

−v4Π(k) t1 ∆′ + ∆1 v0Π†(k)

−v3Π†(k) −v4Π(k) v0Π(k) ∆1

 ,
(A1)

where Π(k) = τkx + iky, a0 is the lattice constant of
graphene, and ∆1 encodes the electric potential difference
from the displacement field. The other parameters are
given by v0/a0 = 2.261 eV, v3/a0 = 0.245 eV, v4/a0 =
0.12 eV, t1 = 0.361 eV, and ∆′ = 0.015 eV. The basis of
the matrix is (1A,1B,2A,2B).

2. RTG band structure

The 6-by-6 matrix ĥτ (k) is given by [17, 35]
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ĥ(3)
τ (k) =



∆1 + ∆2 + δ 1
2γ2 v0Π†k v4Π†k v3Πk 0

1
2γ2 ∆2 −∆1 + δ 0 v3Π†k v4Πk v0Πk

v0Πk 0 ∆1 + ∆2 γ1 v4Π†k 0

v4Πk v3Πk γ1 −2∆2 v0Π†k v4Π†k

v3Π†k v4Π†k v4Πk v0Πk −2∆2 γ1

0 v0Π†k 0 v4Πk γ1 ∆2 −∆1


, (A2)

where Πk = τkx + iky (τ = 1,−1 for valleys K and

−K respectively), vj =
√

3
2 γja0, γj is the bare hopping

matrix element, and a0 = 0.246nm is the lattice constant

of graphene. The basis of ĥτ (k) is (1A,3B,1B,2A,2B,3A).
Note that the first two elements, 1A and 3B, are the
low-energy sites as discussed in the main text.

We use the same parameters in Ref. [17]. Specifically,
γ0 = 3.1eV, γ1 = 0.38eV, γ2 = −0.015eV, γ3 = −0.29eV,

γ4 = −0.141eV, δ = −0.0105eV, and ∆2 = −0.0023eV.
The value of ∆1 corresponds to the out-of-plane displace-
ment field, and we vary it from 10 to 40meV.

3. ABCA band structure

Building on the k ·p band model for RTG [17, 35], we
obtain a k · p band model for ABCA-stacked tetralayer
graphene, given by

ĥ(4)
τ (k) =



δ −∆1 + ∆2 v0Π†k v4Π†k v3Πk 0 1
2γ2 0 0

v0Πk ∆2 −∆1 γ1 v4Π†k 0 0 0 0

v4Πk γ1 −∆1

3 − 2∆2 v0Π†k v4Π†k v3Πk 0 1
2γ2

v3Π†k v4Πk v0Πk −∆1

3 − 2∆2 + ∆3 γ1 v4Π†k 0 0

0 0 v4Πk γ1
∆1

3 − 2∆2 + ∆3 v0Π†k v4Π†k v3Πk
1
2γ2 0 v3Π†k v4Πk v0Πk

∆1

3 − 2∆2 γ1 v4Π†k
0 0 0 0 v4Πk γ1 ∆1 + ∆2 v0Π†k
0 0 1

2γ2 0 v3Π†k v4Πk v0Πk δ + ∆1 + ∆2


.

(A3)

The parameters in ĥ
(4)
τ (k) are the same as the band

parameters in RTG. The basis of the matrix is
(1A,1B,2A,2B,3A,3B,4A,4B).

The hole-doping low-energy band is qualitatively sim-
ilar to RTG while the electron-doping low-energy band
is distinct from RTG or BBG, i.e., it manifest only one
Fermi pockets (instead of three) for a given valley and
spin. The k · p band structure here is qualitatively simi-
lar to the rhombohedral graphite system [65].

Appendix B: Numerical procedures

The DOS profiles in Fig. 2 are constructed with
104 × 104 momentum mesh with a momentum spacing
∆k ≈ 2 × 10−5a−1

0 . We use these momentum mesh to
construct a map between EF and ne for all the numerical

results. This causes some quantitative difference between
Fig. 4(b) and Ref. [23], where ne is determined by a much
smaller momentum mesh.

The linearized gap equation can be viewed as an eigen-
value problem. The goal is to find the highest temper-
ature such that Eq. (13) or (28) is satisfied. To evalu-
ate this numerically, we consider a fine momentum mesh
with ∆k ≈ 0.002a−1

0 and keep 5000 low-energy states.
We have tested finer momentum mesh with more states
kept, and the results are essentially the same, suggesting
convergence.

In Eq. (28), DOS is needed for estimating g∗. We use
the DOS profiles in Fig. 2 to construct a map between
EF and DOS. Note that the momentum mesh used in the
calculations of Fig. 2 is much finer than the momentum
mesh for extracting Tc.
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Appendix C: Eliashberg theory

In this appendix, we present a derivation of the Eliash-
berg theory with a path integral approach [66]. In the
low-temperature low-doping limit, we focus only on one
of the low-energy bands. The imaginary-time action with
projection to band b (b index is sometimes dropped for
simplicity) is given by S = S0 + SI , where

S0 =
∑
τ,s

∑
k

c̄τs,k [−iωn + Eτ (k)− EF ] cτs,k, (C1)

SI ≈
1

2βA
∑
τ,s

∑
k,k′

W (k, k′)c̄τs,kcτs,k c̄τs,k′cτs,k′

− 1

βA
∑
s,s′

∑
k,k′

W (k, k′)c̄+s,k c̄−s′,−kc−s′,−l′c+s,k′ .

(C2)

In the above expressions, Wk,k′ = V
(b)
g (k, k′)−V (b)

TF (k, k′),

V (b)
g (k, k′) =Vg(ωn − ω′n,k− k′)

×
∑
σ,l

|Φ+,b;l,σ(k)|2
∣∣Φ+,b;l,σ(k′)

∣∣2 , (C3)

V
(b)
TF (k, k′) =VTF(k− k′)

∣∣∣∣∣∣
∑
σ,l

Φ∗+,b;l,σ(k)Φ+,b;l,σ(k′)

∣∣∣∣∣∣
2

.

(C4)

In SI , only the intra-valley u channel and the inter-valley
BCS channel are included. We note that the band pro-
jection matrix elements are the same for the intra-valley
u-channel and the inter-valley BCS channel. This choice
of interaction terms allows us to derive Eliashberg equa-
tions straightforwardly.

To decouple interactions, we introduce Hubbard-
Stratonovich field, and SI becomes

SI →
∑
s,s′

∑
k

[
∆̄ss′(k)c−,s′,−kc+,s,k + c̄+,s,k c̄−,s′,−k∆ss′(k)

]
+
∑
τ

∑
s

∑
k

[iΞτs(k)c̄τ,s,kcτ,s,k]

+ βA
∑
s,s′

∑
k,k′

∆̄ss′(k)W−1(k, k′)∆ss′(k
′)

+
βA
2

∑
τ

∑
s

∑
k,k′

Ξτs(k)W−1(k, k′)Ξτs(k
′), (C5)

where we have introduced Ξτs, ∆ss′ , and ∆̄ss′ for decou-
pling the intra-valley u-channel and the inter-valley BCS
channel, respectively. Altogether with S0 term, we can
express our theory in terms of a BdG form. We focus on

the pairing channel ∆ss′ in the following.

S0 + SI

→
∑
k

[
c̄+s,k c−s′,−k

][ G−1
+s(k) ∆s,s′(k)

∆̄s,s′(k) G−1
−s′(k)

][
c+s,k

c̄−s′,−k

]
+ βA

∑
k,k′

∆̄s,s′(k)W−1(k, k′)∆s,s′(k
′)

+
βA
2

∑
k,k′

Ξ+s(k)W−1(k, k′)Ξ+s(k
′)

+
βA
2

∑
k,k′

Ξ−s′(k)W−1(k, k′)Ξ−s′(k
′) (C6)

where

G−1
+s(k) =− iωn + E+(k)− µ+ iΞ+s(k), (C7)

G−1
−s′(k) =− iωn − E−(−k) + µ− iΞ−s′(−k). (C8)

Then, we formally integrate out the Grassmann vari-
able in the imaginary-time path integral and construct a
free energy density, given by

F =− 1

βA
∑
k

ln
[
G−1

+s(k)G−1
−s′(k)− |∆ss′(k)|2

]
+
∑
k,k′

∆̄ss′(k)W−1(k, k′)∆ss′(k
′)

+
1

2

∑
τ

∑
k,k′

Ξ+s(k)W−1(k, k′)Ξ+s(k
′)

+
1

2

∑
τ

∑
k,k′

Ξ−s′(k)W−1(k, k′)Ξ−s′(k
′). (C9)

Now, we are in the position to derive the self-consistent
equations. We perform functional derivative of F with
respect to Ξ+s(k), Ξ−s′(k), and ∆ss′(k) and obtain sad-
dle point equations as follows:

Ξ+s(k
′) =

1

βA
∑
k

W (k′, k)iG−1
−s′(k)

G−1
+s(k)G−1

−s′(k)− |∆ss′(k)|2
, (C10)

Ξ−s′(k
′) =

1

βA
∑
k

W (k′,−k)(−i)G−1
+s(k)

G−1
+s(k)G−1

−s′(k)− |∆ss′(k)|2
, (C11)

∆ss′(k
′) =

1

βA
∑
k

−W (k′, k)∆ss′(k)

G−1
+s′(k)G−1

−s′(k)− |∆ss′(k)|2
. (C12)

Without loss of generality, we can parametrize the self
energies as follows:

iΞ+s(k) = (−Zk + 1) iωn + χk, (C13)

−iΞ−s(−k) = (−Zk + 1) iωn − χk, (C14)

where Zk is the wavefunction renormalization and χk
contributes to the dispersion renormalization as well as
the quasiparticle life time.
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FIG. 13. Superconducting Tc in RTG based on Eliashberg
theory [Eq. (17)]. (a) Phonon-mediated attraction only. (b)
Superconductivity from unpolarized normal states. (c) Su-
perconductivity from spin-polarized normal states. We use
a dielectric constant ε = 10 and a gate distance parameter
d = 20nm for all the data. ∆1 is a band parameter (defined
in Appendix A) which can be tuned by a displacement field.

Close to Tc, the order parameter ∆ss′ is infinitesimal.
Thus, the above equations can be reduced to

iΞ+s(k
′) =

1

βA
∑
k

−W (k′, k)

−iZkωn + E+(k)− EF + χk
, (C15)

iΞ−s(k
′) =

1

βA
∑
k

−W (k′, k)

−iZkωn + E−(k)− EF + χk
, (C16)

∆ss′(k
′) =

1

βA
∑
k

W (k′, k)∆ss′(k)

(Zkωn)
2

+ [E+,b(k)− EF + χk]
2 .

(C17)

Appendix D: Numerical extracted Tc from
Eliashberg theory

In this appendix, we show numerical results based on
Eq. (17), which is the Eliashberg linearized gap equa-
tion without including the self-energy corrections. We
consider the RTG band and focus on three cases: (a)
Phonon-mediated attraction only. (b) Unpolarized nor-
mal states. (c) Spin-polarized normal states. The results
are summarized in Fig. 13. Despite of the quantitative
differences between Fig. 13 and results in the main text,
they all show the same qualitative features, i.e., observ-

able superconductivity prevails for a wide range of dop-
ings. Here, we use a rather small momentum mesh with
∆k ≈ 0.015a−1

0 and keep 100 low-energy levels as well as
100 Matsubara frequencies. We test the numerical proce-
dure with 200 Matsubara frequencies and find essentially
the same results. At the lowest temperature, T = 0.1K,
the frequency cutoff Λ is around 5meV in our numerical
calculations. (Note that the lowest temperature is 10mK
for results discussed in main text.) We confirm that the
gap function has a Lorentzian-like profile in frequency for
case (a). For case (b) and (c), the gap functions, which
look like shifted Lorentzian functions, change signs at
some particular frequency. The sign changing feature
is consistent with the general expectation for Eliashberg
theory [38, 67].

Appendix E: Evaluating Γ

The function Γ(EF ;ωc; Λ) in Eq. (26) can be evaluated
as follows:

Γ(EF ;ωc; Λ) =
1

βA
∑
ωn,q,

ωc<|ωn|<Λ,

|Ẽp|<Λ

1

ω2
n + Ẽ2

p

. (E1)

To simplify Γ(EF ;ωc; Λ), we consider the zero-
temperature limit (i.e., β →∞) and derive

Γ(EF ;ωc; Λ) =
2

A
∑

p,|Ẽp|<Λ

∫ Λ

ωc

dω

2π

1

ω2 + Ẽ2
p

=
1

A
∑

p,|Ẽp|<Λ

1

π|Ẽp|

[
− tan−1

(
|Ẽp|
Λ

)
+ tan−1

(
|Ẽp|
ωc

)]
.

(E2)

The above expression can be efficiently evaluated numer-
ically, and Γ(EF ;ωc; Λ) converges for the mesh sizes used
in this work.

Appendix F: Effect of intervalley scatterings on
spin-polarized superconductivity

In this section, we discuss how spin-polarized supercon-
ductivity is suppressed by intervalley scatterings. First
of all, we consider a spin-polarized spin-triplet supercon-
ductor described by

H =
∑
k

Ψ†(k)ĥBdG(k)Ψ(k), (F1)

where ΨT (k) =
[
c+,k; c†−,−k

]
and

ĥBdG =

[
E+(k)− EF ∆(k)

∆∗(k) −E−(−k) + EF

]
, (F2)
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where ∆k is the pairing potential. Note that the spin
indices are suppressed in the above expression because
spins are polarized to the same direction. The system
obeys the spinless time-reversal symmetry. As a conse-
quence, E+(k) = E−(−k) is satisfied.

Although the untwisted graphene multilayer systems
are clean, the intervalley scatterings (with large momen-
tum transfer) can take place at the sample boundary.
In principle, one can study superconductivity with an
open boundary condition that exactly facilitates interval-
ley scattering at the sample termination. However, this
is a complicated task as one has to check multiple con-
figurations of the terminated boundary [49]. To simplify
the calculations, we treat the intervalley scattering as a
potential in the bulk, and we treat the potential scatter-
ing perturbatively upto the second order. The intervalley
scattering can be expressed by

V =
1√
A

∑
k,k′

[
Vk,k′c†−,kc+,k′ + H.c.

]
, (F3)

where Vk,k′ encodes the intervalley scatterings. Note that
the spinless time-reversal symmetry gives rise to a con-
dition that Vk,k′ = V ∗−k,−k′ . We can extract the mean
intervalley scattering τs within the Born approximation,

1

τs
=

〈
1

A
∑
p′

|Vk,p′ |2δ(E+(k)− EF )

〉
k∈kF

, (F4)

where we have averaged over k for k on the Fermi surface.

To incorporate the intervalley scattering to supercon-
ductivity, we treat V perturbatively at second order and
construct renormalized Gorkov Green functions as fol-
lows:

Ĝ−1(ω,k) = Ĝ−1
0 (ω,k)− Ξ̂(ω,k), (F5)

where Ĝ is the renormalized Gorkov Green function, Ĝ is
the bare Gorkov Green function, and Ξ̂ is the self energy
due to intervalley scattering. The inverse bare Gorkov
Green function is expressed by

Ĝ−1
0 (ω,k) =

[
ω − E+(k) + EF −∆(k)

−∆∗(k) ω + E−(−k)− EF

]
,

(F6)

and the self energy is expressed by

Ξ̂(ω,k) =
∑
p

[
Ξ++(ω,k) Ξ+−(ω,k)

Ξ−+(ω,k) Ξ−−(ω,k)

]
, (F7)

where

Ξ++(ω,k) =
1

A
∑
p

|Vk,p|2
ω + E+(p)− EF

ω2 − |E+(p)− EF |2 − |∆(p)|2
,

(F8)

Ξ+−(ω,k) =− 1

A
∑
p

Vk,pV
∗
−k,−p|∆(p)|2

ω2 − |E+(p)− EF |2 − |∆(p)|2
,

(F9)

Ξ−+(ω,k) =− 1

A
∑
p

V−k,−pV
∗
k,p|∆(p)|2

ω2 − |E+(p)− EF |2 − |∆(p)|2
,

(F10)

Ξ−−(ω,k) =
1

A
∑
p

|Vk,p|2
ω − E+(p)− EF

ω2 − |E+(p)− EF |2 − |∆(p)|2
.

(F11)

To simplify the expression of the self energy, we adopt a
number of approximations used in Ref. [51]. Specifically,
we assume that Fermi surfaces are circularly symmetric,
Vk,k′ depends only on the relative angle between k and
k′, ∆(k) = ∆, and a constant DOS in the integrated
energy range. With the above approximations, we can
express G−1 as follows:

G−1(ω,k)

=a0(ω,k)1̂κ + az(ω,k)κ̂z + a+(ω,k)κ̂+ + a−(ω,k)κ̂−,
(F12)

where 1̂κ is an identity matrix on the Nambu space, and
κx,y,z represents the Pauli matrices in the Nambu space,
κ± = (κx ± iκy)/2, and

a0(ω,k) ≈ω

[
1 +

α0

τs

1√
|∆|2 − ω2

]
, (F13)

az(ω,k) ≈− E+(k) + EF , (F14)

a+(ω,k) ≈∆

[
1 +

α1

τs

1√
|∆|2 − ω2

]
, (F15)

a−(ω,k) = [a+(ω,k)]
∗

(F16)

In the above expression, α0 and α1 are constants en-
coding the structure of Vk,k′ . With the approximations
stated above, one can easily show that α0 = 1. If we
further impose that 〈Vk,k′〉k′∈kF

= 0 (“statistical valley
symmetry”), α1 = 1 would be obtained.

Now, we are in the position to derive the reduction
of pairing potential (corresponding to the quasiparticle
excitation energy) in the presence of intervalley scatter-
ings. Following Ref. [51], we obtain the similar equation
as follows:

ω

[
1 +

α0

τs

1√
|∆|2 − ω2

]
= |∆|

[
1 +

α1

τs

1√
|∆|2 − ω2

]
.

(F17)
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Assuming x = |∆| − ω � |∆| and using α0 − α1 = C, we obtain

x ≈ |∆|
21/3

(
C
|∆|τs

)2/3

. (F18)

The quasiparticle excitation energy ω equals to the mag-
nitude of the pairing potential in the presence of inter-
valley scattering, as described by Eq. (30).
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[29] A. L. Szabó and B. Roy, Phys. Rev. B 105,

L081407 (2022), URL https://link.aps.org/doi/10.

1103/PhysRevB.105.L081407.
[30] Y.-Z. You and A. Vishwanath, arXiv preprint

arXiv:2109.04669 (2021).
[31] W. Qin, C. Huang, T. Wolf, N. Wei, I. Blinov, and A. H.

MacDonald, arXiv preprint arXiv:2203.09083 (2022).
[32] H. Dai, R. Ma, X. Zhang, and T. Ma, arXiv preprint

arXiv:2204.06222 (2022).
[33] A. Szabo and B. Roy, arXiv preprint arXiv:2111.15673

(2021).
[34] A. Kerelsky, C. Rubio-Verdú, L. Xian, D. M. Kennes,
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