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We report the structural and magnetic properties of a new spin- 1
2

antiferromagnet
NaZnVOPO4(HPO4) studied via x-ray diffraction, magnetic susceptibility, high-field magnetiza-
tion, specific heat, and 31P nuclear magnetic resonance (NMR) measurements, as well as density-
functional band-structure calculations. While thermodynamic properties of this compound are well
described by the J1 − J2 square-lattice model, ab initio calculations suggest a significant deforma-
tion of the spin lattice. From fits to the magnetic susceptibility we determine the averaged nearest-
neighbor and second-neighbor exchange couplings of J̄1 ≃ −1.3K and J̄2 ≃ 5.6K, respectively,
resulting in the effective frustration ratio α = J̄2/J̄1 ≃ 4.3 that implies columnar antiferromagnetic
order as the ground state. Experimental saturation field of 15.3 T is consistent with these estimates
if 20% spatial anisotropy in J1 is taken into account. Specific heat data signal the onset of a magnetic
long-range order at TN ≃ 2.1 K, which is further supported by a sharp peak in the NMR spin-lattice
relaxation rate. The NMR spectra mark the superposition of two P lines due to two noneqivalent P
sites where the broad line with the strong hyperfine coupling and short T1 is identified as the P(1)
site located within the magnetic planes, while the narrow line with the weak hyperfine coupling and
long T1 is designated as the P(2) site located between the planes.

I. INTRODUCTION

Low-dimensional spin systems augmented with strong
frustration reveal suppression of a conventional magnetic
order and may lead to a quantum disordered ground state
like quantum spin liquid (QSL) [1]. Two-dimensional
(2D) spin-1/2 frustrated square-lattice (FSL) is a well-
known example where frustration appears because of
the competition between nearest-neighbor (NN, J1) and
next-nearest-neighbor (NNN, J2) exchange interactions
along the edges and diagonals of a square, respectively
(J1 − J2 model). Theoretical studies have determined
a global phase diagram with different ground states de-
pending on the sign and relative strength of the ex-
change couplings (α = J2

J1
) [2, 3]. Assuming antiferro-

magnetic J2, ferromagnetic (FM) state is expected for
−0.5 < α < 0, Néel antiferromagnetic state (NAF) state
is expected for 0 < α < 0.5, and columnar antiferro-
magnetic (CAF) state is expected for |α| > 0.5 on the
classical level. Adding quantum corrections can stabi-
lize different disordered phases at the phase boundaries,
leading to novel order parameters or the quantum criti-
cal regimes. For instance, QSL [4–6], plaquette valence-
bond solid (PVBS) [7, 8] or columnar valence-bond solid
(CVBS) [9] states are expected around α ≃ 0.5 while a
spin nematic phase is predicted for α ≃ −0.5 in the phase
diagram [10].
In the recent past, a handful number of Cu2+ (3d9),

V4+ (3d1), and Mo5+ (4d1) based spin-1/2 FSL mag-
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nets have been studied as J1 − J2 model compounds.
The vanadates are the most celebrated ones and in-
clude Li2VOXO4 (X= Si, Ge) with J1, J2 > 0 and
J2 ≫ J1 [11, 12], along with V4+ phosphates that typi-
cally show J1 < 0 and J2 > 0, also resulting in the CAF
ground state [13–18]. A few other vanadates, such as
Zn2VO(PO4)2 [19], VOMoO4 [20–22], and PbVO3 [23],
feature J1 ≫ J2 and lie in the NAF region of the phase
diagram. A further variability becomes possible with
Cu2+ as well as 4d Mo5+ compounds that span both
J2 ≫ J1 and J2 ≪ J1 limits [24–32]. Unfortunately,
none of these compounds fall in the quantum critical
regimes of the phase diagram around α = 1

2 . Moreover,
some of them show intricate deformations of the mag-
netic square lattice, because the underlying crystal sym-
metry is lower than tetragonal [33]. This deformation
was verified experimentally in several V4+ phosphates,
including Pb2VO(PO4)2 [34], SrZnVO(PO4)2 [35], and
BaCdVO(PO4)2 [36]. Each of them showed an interest-
ing pre-saturation phase [35, 37–40], which is reminiscent
of the nematic phase of the J1 − J2 model [10], but devi-
ations from the ideal square lattice put into question the
applicability of this theoretical scenario, and alternative
interpretations were indeed proposed recently [41, 42].

In this context, finding V4+ square-lattice compounds
with different magnitudes of the deformation is impor-
tant. Here, we report low-temperature magnetic be-
havior of the hitherto unexplored NaZnVOPO4(HPO4)
as a spin- 12 square-lattice candidate with a different
spacer separating the magnetic layers and, potentially,
a different regime of exchange couplings compared to
the widely studied AA′VO(PO4)2 phosphates (AA′ =
Pb2, SrZn, BaCd). The monoclinic crystal structure
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FIG. 1. (a) Crystal structure of NaZnVOPO4(HPO4) with the hydrogen position and hydrogen bonds (dashed lines) determined
in this work. (b) Magnetic [VOPO4] layer with the square-lattice-like arrangement of the V4+ ions. (c) Deformed square lattice
with 5 nonequivalent interactions. VESTA software [43] was used for crystal structure visualization.

of NaZnVOPO4(HPO4) features V
4+ ions in the square-

pyramidal coordination. They are joined into layers via
P(1)O4 tetrahedra (Fig. 1), while the interlayer space is
filled with the Na+ and Zn2+ ions, as well as the P(2)O4

tetrahedra that represent the HPO4 groups.

II. METHODS

Pale-blue coloured powder of the titled compound was
synthesized by the conventional hydrothermal method.
0.150 g Na2CO3 (Aldrich, 99.995%), 0.154 g V2O5

(Aldrich, 99.99%), and 0.115 g Zn (Aldrich, 99%) pow-
ders were mixed with 5 ml of a 1.5 M aqueous solution of
H3PO4, sealed in a 23 ml Teflon lined bomb, and heated
at 240oC for 8 days followed by slow cooling (10◦C/hour)
to room temperature. The obtained blue color product
was washed carefully with distilled water and dried in
an oven maintained at 100◦C for 24 hours. To check
the phase purity of the compound, powder x-ray diffrac-
tion (XRD) experiment was performed using a PANalyt-
ical powder diffractometer with Cu Kα radiation (λavg ≃
1.5418 Å) at room temperature. We have also performed
temperature-dependent powder XRD measurements on
the pure phase powder sample in the temperature range
15 K≤ T ≤ 300 K, using a low-temperature attachment
(Oxford PheniX) to the x-ray diffractometer. Le-Bail
fit of the powder XRD patterns was performed using
the FULLPROF software package [44], taking the initial
structural parameters from the previous report [45].
Temperature variation of magnetization (M) was mea-

sured in the temperature range 1.8350 K in different mag-
netic fields (H) using a SQUID magnetometer (MPMS3,
Quantum Design). The isothermal magnetization was
measured at T = 1.8 K from 0 to 7 T. The high-field
magnetization measurement was performed at T = 1.4 K
in pulsed magnetic fields up to 30 T using the facility at
the Dresden High Magnetic Field Laboratory [46, 47].
The temperature dependent specific heat of this sam-

ple was measured on a sintered pellet in a large tem-
perature range (0.5 K≤ T ≤ 200 K) using the Physical
Property Measurement System (PPMS, Quantum De-
sign) and adopting the thermal relaxation technique. For
measurements below 2 K, 3He attachment to the PPMS
was used.

The Nuclear Magnetic Resonance (NMR) measure-
ments were carried out on the 31P nuclei (gyromagnetic
ratio γN

2π = 17.237 MHz/T and nuclear spin I = 1
2 ) in the

temperature range 1.8 K≤ T ≤ 250 K. The NMR spec-
tra at different temperatures were obtained by varying
the magnetic field at a constant frequency of 121 MHz.
The spin-lattice relaxation rate (1/T1) was measured by
the single saturation pulse method at two frequencies
(30.2 MHz and 121 MHz). The temperature-dependent
NMR shift, K(T ) = [Href/H(T )−1], was calculated from
the resonance field of the sample H with respect to the
resonance field of a non-magnetic reference sample (Href).

Magnetic couplings were determined by density-
functional-theory (DFT) band-structure calculations
performed in the FPLO code [48] using experimental
structural parameters from Ref. [45], except the hydro-
gen position that was optimized as further explained in
Sec. III E. The Perdew-Burke-Ernzerhof (PBE) approx-
imation for the exchange-correlation potential was em-
ployed [49]. We used superexchange theory in the vein of
Kugel-Khomskii model [50, 51], as well as the mapping
approach [52, 53] based on total energies of collinear spin
configurations obtained from DFT+U calculations with
the on-site Coulomb repulsion Ud = 4 eV, Hund’s cou-
pling Jd = 1 eV, and double-counting correction in the
atomic limit [54].

Experimental thermodynamic properties were modeled
by high-temperature series expansion (HTSE) for the
J1 − J2 spin- 12 square lattice [55] as well as full diag-
onalization (FD) for the 4 × 4 finite lattice with peri-
odic boundary conditions. Additionally, quantum Monte
Carlo (QMC) simulations were performed for the non-
frustrated spin- 12 square lattice using directed loop algo-
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rithm [56] in the stochastic series expansion (SSE) [57]
representation. QMC simulations were performed for
16× 16 finite lattices with periodic boundary conditions,
using 4× 104 sweeps and 4× 103 thermalization sweeps.
The ALPS package [58] was used for both FD and QMC.

III. RESULTS

A. X-ray Diffraction
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FIG. 2. Powder XRD patterns (open circles) at (a) T = 300 K
and (b) T = 15 K. The solid line is the Le-Bail fit, the vertical
bars mark the expected Bragg peak positions, and the lower
solid line corresponds to the difference between the observed
and calculated intensities. The goodness-of-fit is achieved to
be χ2

∼ 5.4 and ∼ 6.2 for T = 300 K and 15 K, respectively.

The powder XRD patterns of NaZnVOPO4(HPO4) are
analyzed by Le Bail fits. Figure 2 presents the data at two
end temperatures (T = 300 K and 15 K). The entire XRD
pattern down to 15 K could be indexed using the mono-
clinic crystal structure with the space group P21/c. Nei-
ther indications of structural transition nor lattice distor-
tion are found down to 15 K. The refined lattice param-
eters and unit cell volume (Vcell) are [a = 8.5418(4) Å,
b = 8.9937(5) Å, c = 9.0765(5) Å, β = 91.186(3)◦, and
Vcell ≃ 696.46 Å3] and [a = 8.5190(2) Å, b = 8.9281(4) Å,
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FIG. 3. (a) Lattice constants (a, b, and c) as a function of
temperature. (b) Monoclinic angle (β) along with the unit
cell volume (Vcell) are plotted as a function of temperature
from 15 K to 300 K. The solid line represents the fit of Vcell

using Eq. (1).

c = 9.1029(4) Å, β = 92.013(5)◦, and Vcell ≃ 691.73 Å3]
for T = 300 K and 15 K, respectively. The obtained lat-
tice parameters at room temperature are in close agree-
ment with the values reported earlier [45]. The tempera-
ture dependence of the lattice parameters (a, b, c, and β)
and Vcell are presented in Fig. 3. The lattice constants
a and b are found to decrease in a systematic way with
decreasing temperature while c and monoclinic angle β
increase with decreasing temperature and then reach a
plateau. These lead to an overall thermal contraction of
the Vcell with temperature.
The variation of Vcell with temperature can be ex-

pressed in terms of the internal energy [U(T )] of the sys-
tem [59, 60],

Vcell(T ) =
γU(T )

K0
+ V0. (1)

Here, V0 is the unit-cell volume at T = 0 K, γ is the
Grüneisen parameter, and K0 is the bulk modulus of the
system. According to the Debye model, U(T ) can be
written as,

U(T ) = 9NkBT

(

T

θD

)3 ∫ θD
T

0

x3

(ex − 1)
dx, (2)

where N is the total number of atoms per unit cell, kB is
the Boltzmann constant, and θD is the Debye tempera-
ture [61]. The variable x inside the integration stands for
the quantity h̄ω

kBT with phonon frequency ω and Planck
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FIG. 4. (a) χ(T ) measured in the magnetic field of H =
0.5 T. The lines (solid and dashed) are the HTSE fits using
the isotropic spin- 1

2
FSL model, with two different solutions

(solution-a and solution-b). Inset: The simulated χ(T ) using
the FD method taking the J1 and J2 values from solutions-a
and b, respectively. (b) 1/χ vs T . The red solid line is the
CW fit. Inset: χ(T ) in the low-T region measured in different
fields.

constant h̄. Here, θD = h̄ωD

kB
and ωD is the upper limit of

ω. The best fit of the Vcell(T ) data using Eq. (1) [solid
line in Fig. 3(b)] yields the parameters: θD = 312(8) K,
V0 = 691.7(5) Å3, and γ

K0
≃ 8.84× 10−12 Pa−1.

B. Magnetization

The magnetic susceptibility [χ(T ) ≡ M/H ] of
NaZnVOPO4(HPO4) measured in an applied field of
H = 0.5 T is shown in Fig. 4(a). In the high-temperature
region, χ(T ) follows a typical Curie-Weiss (CW) be-
haviour and shows a rounded maximum at Tmax

χ ≃ 4.6 K.
Such a maximum represents the short-range AFM order
in the low-dimensional spin systems. Below about 2.6 K,
a small upturn is likely due to paramagnetic impurities
and/or defects present in the powder sample. No trace
of magnetic long-range-order (LRO) is detected down to
2 K. We have also measured χ(T ) in different applied
fields [inset of Fig. 4(b)] but no obvious features associ-
ated with magnetic LRO is found, except the suppression
of a broad maximum towards low temperatures.

The inverse susceptibility, 1/χ(T ), is shown in
Fig. 4(b). In the paramagnetic regime, 1/χ(T ) was fitted

by the CW law

χ(T ) = χ0 +
C

T − θCW
, (3)

where the first term (χ0) represents the combination
of temperature-independent diamagnetic and Van-Vleck
paramagnetic susceptibilities. The second term is the
CW law where C is the Curie constant and θCW is
the CW temperature. The fit above 25 K returns the
parameters: χ0 ≃ 4.26 × 10−5 cm3/mol-V4+, C ≃
0.393 cm3K/mol-V4+, and θCW = −4.3(3) K. Using the
value of C, the effective moment is calculated to be µeff

[= (3kBC/NAµ
2
B)

1

2 , where NA is the Avogadros number
and µB is the Bohr magneton] ≃ 1.77 µB/V

4+. This
value of µeff is close to the actual value 1.73 µB for a
spin- 12 transition-metal ion with g = 2. The negative
value of θCW indicates the dominant AFM exchange cou-
pling between the V4+ ions. The core diamagnetic sus-
ceptibility (χcore) of the compound caused by the core or-
bital electrons was calculated to be−1.37×10−4 cm3/mol
by adding the χcore of Na+, Zn2+, V4+, P5+, and O2−

ions [62]. The Van-Vleck paramagnetic susceptibility
(χvv) was calculated to be ∼ 1.8×10−4 cm3/mol by sub-
tracting χcore from χ0, which is very close to the value
reported for other V4+ based compounds [63].
As evident from the structural data (Fig. 1), the sys-

tem deviates from the isotropic square lattice. This spa-
tial anisotropy is mainly due to five non-equivalent ex-
change couplings, three between nearest neighbors (J1,
J ′
1, and J ′′

1 ) and two between next-nearest neighbors (J2
and J ′

2). Previous studies suggest that this anisotropy
has only a minor effect on thermodynamic properties
at higher temperatures [33]. Therefore, fits with the
isotropic J1 − J2 model return averaged values of the
NN and NNN couplings, J̄1 = (2J1 + J ′

1 + J ′′
1 )/4 and

J̄2 = (J2 + J ′
2)/2, respectively. We fitted the data with

χ(T ) = χ0 + χspin(T ) (4)

using the temperature-independent term (χ0) and the
9th order HTSE [χspin(T )],

χspin(T ) =
NAg

2µ2
B

kBT

∑

n

(

J̄1
kBT

)n
∑

m

cmn

(

J̄2
J̄1

)m

.(5)

The values of the coefficients cmn are taken from Ref. [55].
Our fit for T ≥ 7 K yields two solutions: solution-a with
χ0 ≃ 6×10−5 cm3/mol-V4+, g ≃ 2.04, J̄1 ≃ 5.18 K, J̄2 ≃
−0.66 K and solution-b with χ0 ≃ 6.6 × 10−5 cm3/mol-
V4+, g ≃ 2.04, J̄1 ≃ −1.28 K, J̄2 ≃ 5.59 K.
The main difficulty of the HTSE fit is choosing the

appropriate T -range. The convergence of the HTSE de-
pends on the J̄2/J̄1 ratio, hence the lower limit of the fit-
ting range (Tmin) should be chosen with caution depend-
ing on the results of the fit [15]. For a precise estimation
of the J values, we varied the lower limit of the fitting
T -range (Tmin) between 5 and 9 K and estimated the ex-
change couplings for both the solutions. Figures 5(a) and
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(b) present the variation of J̄1 and J̄2 with Tmin for the
solutions-a and b, respectively. To check the convergence
of the HTSE, we calculated the ratio of the ninth-order
term to the total susceptibility [χ9(T )/χtotal(T )] using
the parameters obtained from HTSE fits with a different
Tmin. Both solutions are stable above 7K. We also per-
formed the FD simulations of χ(T ) using the values of
χ0, g, J̄1, and J̄2 and found a good agreement with the
experimental data [inset of Fig. 4(a)]. From the depen-
dence on Tmin we estimate the error bar of about 0.2K
for the exchange couplings J̄1 and J̄2.
Discriminating between the solutions-a and b may be

possible using measurements of the saturation field [47].
The M vs H data measured up to 25 T in pulsed mag-
netic fields at T = 1.4 K are shown in Fig. 6. We have
scaled the high-field data with respect to the magnetic
isotherm at T = 1.8 K measured up to 7 T using a SQUID
magnetometer. M increases linearly with H in the low-
field region, shows a positive curvature in the interme-
diate fields, and then saturates at around HS ≃ 15.3 T.
The positive curvature is typical for low-dimensional and
frustrated spin systems [64].
Saturation field of an FSL magnet depends on the

type of magnetic order. In the NAF case (solution-a),
HS = 4J̄1kB/(gµB) ≃ 15.1T in good agreement with
the experiment. On the other hand, in the CAF case
HS = (J1 + 2J̄2)2kB/(gµB) where J1 is the weaker of
the couplings J1 and (J ′

1 + J ′′
1 )/2. In the CAF state,

spins align antiferromagnetically along the direction of
this coupling and ferromagnetically along the orthogonal
direction. Therefore, only the weaker coupling enters the
saturation field. Using J1 = J̄1 leads to HCAF

S ≃ 14.45T
for the solution-b, lower than in the experiment. On
the other hand, the actual value of J1 is reduced ow-
ing to the deformation of the square lattice. Assuming
20% spatial anisotropy in the NN couplings (J1 = 0.8J̄1)
according to the DFT results (Sec. III E), we arrive at
HCAF

S ≃ 15.15T, which is on par with the result for the
solution-a and also matches the experimental value.
Interestingly, the magnetization curve can be also well

described by the simple NN square-lattice model with an
effective coupling Jeff = 5.1K (Fig. 6), which is in good
agreement with the leading exchange couplings extracted
from the HTSE fits.

C. Specific Heat

In Fig. 7(a), we have plotted the temperature-
dependent specific heat [Cp(T )] measured from 0.5 to
140 K in zero applied field. It decreases systematically
with temperature and passes through a broad maximum
at Tmax

C ≃ 3.7 K, typical for low-dimensional oxides. An
anomalous behavior was observed in a narrow tempera-
ture range TN = 2−2.2 K where we couldn’t stabilize the
temperature. This is a possible indication of the onset of
a magnetic LRO.
In a magnetic insulator, the total specific heat Cp(T )
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FIG. 5. Results of the χ(T ) fit using HTSE for isotropic
spin- 1

2
FSL model by varying the minimum temperature of

the fitting range (Tmin). (a) and (b) Averaged exchange in-
teractions (J̄1 and J̄2) vs Tmin for the solutions a and b, re-
spectively. (c) Convergence test of the HTSE fit for both
solutions, χ9(T )/χtotal(T ) vs Tmin. (d) Saturation fields for
the solutions a and b vs Tmin.

is the sum of two main contributions: one is the
phonon/lattice contribution [Cph(T )], which dominates
in the high-temperature region, and another one is the
magnetic contribution [Cmag(T )], which dominates in the
low-temperature region depending upon the strength of
the exchange coupling. In order to bring out the mag-
netic part of the specific heat, we first quantified the
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square-lattice model with Jeff = 5.1 K. The arrow indicates
the position of the saturation field (HS).

lattice contribution and then subtracted it from the to-
tal specific heat. We simulated the high-temperature
Cph(T ) data taking into account the sum of one Debye
[CD(T )] and three Einstein [CE(T )] terms, i.e., Cph(T ) =

CD(T ) +
3
∑

i=1

CEi(T ). The Debye and Einstein terms are

expressed as

CD(T ) = 9nDR

(

T

θD

)3 ∫ θD
T

0

x4ex

(ex − 1)2
dx (6)

and

CEi(T ) = 3nEiR

(

θEi

T

)2
e

(

θEi
T

)

[

e

(

θEi
T

)

− 1

]2 . (7)

Here, the Einstein temperatures θEi =
h̄ωEi

kB
, ωEi are the

respective Einstein frequencies, and R denotes the uni-
versal gas constant. The values of nD and nEi are chosen

in such a way that the sum nD+
3
∑

i=1

nEi matches with the

total number of atoms per formula unit. The best fit of
the Cp data in the high-temperature regime using one De-
bye and three Einstein branches yields the characteristic
temperatures: θD ≃ 122 K, θE1 ≃ 307 K, θE2 ≃ 850 K,
and θE3 ≃ 161 K with nD = 1, nE1 = 5, nE2 = 7, and
nE3 = 2, respectively [65]. The red solid line in Fig. 7(a)
is the total phononic contribution to the specific heat
(Cph) extrapolated down to low temperature, while the
dashed and dash-dotted lines are the Einstein and Debye
contributions, respectively. The average of θD and θE
values reasonably matches θD estimated from the Vcell vs
T analysis.
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FIG. 7. (a) Variation of Cp with temperature in the absence
of magnetic field. The red solid line represents the simu-
lated phonon contribution (Cph) taking into account the De-
bye (dash-dotted line) and Einstein (dashed line) terms. In-
set: Cp/T vs T at low temperatures and in different applied
fields. The blue solid line is the magnetic contribution (Cmag).
(b) Cmag/R vs T (left y-axis). The solid line represents the
change in the magnetic entropy, Smag vs T (right y-axis). The
red (dash-dotted) and blue (solid) lines are the HTSE fits
corresponding to the two solutions, respectively. The green
(dashed) line is the QMC simulation for an isotropic non-
frustrated spin-1/2 square lattice model with Jeff = 6.3 K.

Cmag estimated after subtracting Cph from Cp is plot-
ted in Fig. 7(b) as a function of temperature. The
pronounced broad maximum at Tmax

C ≃ 3.7 K mimics
short-range antiferromagnetic correlations. The change
in magnetic entropy [Smag(T )] is obtained by integrat-
ing Cmag/T over temperature. It saturates to a value of
∼ 5.6 J.mol−1.K−1 at around T ≃ 25 K, which is close
to the expected value R ln 2 = 5.76 J.mol−1.K−1 for a
two-level (spin- 12 ) system, thus justifying our subtraction
procedure and the evaluation of Cmag.

The magnetic LRO is highlighted by plotting Cp/T
vs T in the inset of Fig. 7(a) in different applied fields.
While the anomaly associated with the magnetic LRO is
not pronounced in the zero-field data, the peak at TN ≃
2.1 K becomes more pronounced with increasing the field.
This is due to the transfer of entropy from the broad
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maximum to the transition anomaly. Surprisingly, no
visible shift in TN is perceived even with the field change
of 9 T, indication of a robust AFM transition.
One can estimate the exchange couplings by analyzing

Cmag(T ) using the HTSE of a spin- 12 FSL model [55],

Cmag(T )

R
=

J̄1
kBT

∑

n

(−n)

(

J̄1
kBT

)n
∑

m

emn

(

J̄2
J̄1

)m

(8)

We have fitted the Cmag(T )/R data at T > 6 K [see
Fig. 7(b)] and arrived at two solutions that strongly
resemble the two solutions from the susceptibility fit:
solution-a (J̄1/kB ≃ 5.9 K, J̄2/kB ≃ −0.2 K) and
solution-b (J̄1/kB ≃ −1.6 K, J̄2/kB ≃ 6.1 K). Alter-
natively, we can compare our experimental data with
the QMC simulation for the nonfrustrated square-lattice
model [see Fig. 7(b)]. The position of the maximum
in Cmag is reproduced with Jeff = 6.3K, which is no-
tably higher than in the M(H) fit (Fig. 6). Moreover,
the maximum value of Cmag(T )/R is higher than in
the experiment. The simple NN square-lattice model
is thus insufficient to describe the magnetic behavior of
NaZnVOPO4(HPO4). Both frustration and deformation
of the square lattice affect thermodynamic properties of
this compound.

D. 31 P NMR

NMR is a convenient local probe of both static and dy-
namic properties. In NaZnVOPO4(HPO4), the P(1) site
is strongly coupled to the V4+ ions within the VOP(1)O4

layer, while the P(2) site which is located between the
adjacent layers is weakly coupled to the V4+ ions [see
Fig. 1(a)]. This difference allows a useful comparison
and highlights the magnetic behavior of the square-lattice
planes.

1. 31P NMR Spectra

The field-sweep 31P NMR spectra above TN measured
in a radio frequency of 121 MHz are shown in Fig. 8. Each
spectrum is normalized by its maximum amplitude and
offset vertically by adding a constant. At high tempera-
tures, the line is found to be narrow but asymmetric and
the central peak appears at the zero-shift position. As
the temperature is lowered, the line width increases dras-
tically and becomes more anisotropic with two shoulders
on either side of the central peak. This abnormal spec-
tral shape can be attributed to two nonequivalent P sites
in the crystal structure [45]. Remarkably, the complete
shape of the spectra could be reproduced considering the
superposition of two spectral lines [66, 67]. The inset of
Fig. 8 portrays the spectral fit at T = 12 K. We have
a narrow central line with weak anisotropy and a broad
asymmetric background with two distinct shoulders.
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FIG. 8. Temperature evolution of the 31P NMR spectra of
NaZnVOPO4(HPO4) measured at 121 MHz. The dashed line
indicates the reference field position. Inset: 31P NMR spec-
trum at T = 12 K with the dashed and dotted lines are the
fits of the P(1) and P(2) sites, respectively, and the solid
line (final fit) is the superposition of the P(1) and P(2) fits.
The NMR shift values along the x, y, and z directions, ob-

tained from the fitting are K
(1)
x ≃ 0.48%, K

(1)
y ≃ −0.68%, and

K
(1)
z ≃ 0.24% for P(1) site and K

(2)
x ≃ 0.13%, K

(2)
y ≃ −0.1%,

and K
(2)
z ≃ −0.09% for P(2) site, respectively.

The narrow central peak shifts weakly, whereas the
shoulders move significantly with decreasing tempera-
ture. Thus, the narrow central line with a weak shift
can be assigned to the P(2) site, which is weakly cou-
pled while the broad line with the strong temperature-
dependent behavior corresponds to the in-plane P(1) site,
which is strongly coupled to the V4+ spins. The asym-
metric shape of both P(1) and P(2) sites is likely due
to the anisotropy in χ(T ) or asymmetry in the hyper-
fine coupling constant between the P nuclear spins and
the V4+ electronic spins. The overall spectral shape
matches exactly with the spectral shape reported for
other V4+-based FSL compounds, AA′VO(PO4)2 (AA′

= Pb2, SrZn), on the polycrystalline sample [13, 16].

The nature of the magnetic ordering can also be
gleaned from the analysis of NMR spectra below TN.
Figure 9 shows the normalized 31P NMR spectra mea-
sured at 121 MHz around TN. Neither significant change
in the line shape nor any visible line broadening are ob-
served below TN. This indicates that the 31P site ex-
periences only a weak static field in the ordered state.
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This observation is quite opposite to that reported for
Pb2VO(PO4)2 [13] but similar to the 29Si NMR results
on Li2VOSiO4 where local field on the Si site cancels
out [68]. All these compounds show a similar type of
magnetic layers and a similar mutual arrangement of the
V4+ ions and PO4/SiO4 tetrahedra. However, only in
Pb2VO(PO4)2 the magnetic [VOPO4] layers are strongly
buckled [33]. This may explain why the hyperfine cou-
plings to V4+ spins with the opposite alignment do not
lead to the cancellation of the local field. On the other
hand, in NaZnVOPO4(HPO4) the layers are almost flat
(Fig. 1), and the absence of the 31P NMR line broaden-
ing below TN can be still ascribed to the filtering of the
hyperfine fields due to the AFM spin alignments in the
ground state.

2. 31P NMR Shift

The spectrum at each temperature was fitted follow-
ing the same procedure as described above for T = 12 K.
The estimated temperature-dependent NMR shift [K(T )]
along different orientations (Kx, Ky, and Kz) for both
P(1) and P(2) sites are plotted in Fig. 10(a) and (b), re-
spectively. All the components of K(T ) exhibit a broad
maximum/minimum at around 4.3 K, an indication of
the 2D AFM short-range-ordering. Further, the magni-
tude of K(T ) for the P(2) site is weaker than the P(1)
site, as expected. The isotropic NMR shift was calcu-
lated as Kiso = (Kx +Ky +Kz)/3, which is found to be
almost temperature-independent for both the 31P sites.
This also suggests that the isotropic part of hyperfine
coupling at the P site from the four neighboring V4+

spins is nearly averaged out.
As K(T ) is an intrinsic measure of the spin suscepti-
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FIG. 10. Anisotropic components of K along the x, y, and
z-directions as a function of temperature for (a) P(1) and (b)
P(2) sites, respectively. K vs χ measured at 7 T are plotted
for all the three orientations for (c) P(1) and (d) P(2) sites,
respectively. The solid lines are the straight line fits.

bility χspin(T ) and is free from extrinsic contributions,
one can write

K(T ) = K0 +
Ahf

NA
χspin(T ). (9)

Here, K0 is the temperature-independent chemical (or-
bital) shift and Ahf is the hyperfine coupling constant
between the 31P nucleus and V4+ spins. In order to esti-
mate Ahf , we have plotted K vs χ, assuming temperature
as an implied variable in Fig. 10(c) and (d) for P(1) and
P(2) sites, respectively. In every case, K vs χ plot is
linear in the whole temperature range. A straight line fit

results A
(1)
hf = (1134± 19) Oe/µB, (−1716± 20) Oe/µB,

and (582.59± 11) Oe/µB along the x, y and z-directions

for the P(1) site and A
(2)
hf = (343± 13) Oe/µB, (−248±

4) Oe/µB, and (−192 ± 3) Oe/µB along the x, y and
z-directions for the P(2) site, respectively. Clearly, the

magnitude of A
(1)
hf is almost one order of magnitude larger

than A
(2)
hf in all the three directions proving the stronger

coupling for P(1) than P(2).

For the P1 site, the transferred hyperfine coupling
mainly arises from the interactions with the four nearest-
neighbor V4+ spins in the plane. The isotropic and
anisotropic transferred hyperfine couplings originate
from P(3s)-O(2p)-V(3d) and P(3p)-O(2p)-V(3d) cova-
lent bonds, respectively. Since P1 is surrounded by four
V4+ ions forming a nearly square lattice in the plane,
the experimentally observed asymmetry in hyperfine field
indicates inequivalent P(3p)-O(2p)-V(3d) bonds for the
four NN V4+ ions and hence a distortion in the square
lattice, consistent with the low symmetry of the crystal
structure as pointed out earlier.
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FIG. 11. (a) Longitudinal recovery curves at three selec-
tive temperatures and the solid lines are fits using Eq. (10).
(b) 31P spin-lattice relaxation rates for P(1) (1/T11) and
P(2) (1/T12) sites as a function of temperature measured
in 30.2 MHz and 121 MHz. The data are shown in log-log
scale in order to highlight the peak at TN. The vertical dash-
dotted lines indicate the magnetic LRO at TN ≃ 2.04 K and
TN ≃ 2.2 K for 30.2 MHz and 121 MHz data, respectively.

3. Spin-lattice relaxation rate 311/T1

We have performed 31P spin-lattice relaxation rate
(1/T1) measurements as a function of temperature down
to 1.7 K in two different frequencies, 30.2 MHz and
121 MHz. The recovery of the longitudinal nuclear mag-
netization after a saturation pulse could be fitted by a
double exponential function

1− M(t)

M(∞)
= Ae−t/T11 +Be−t/T12 , (10)

where M(t) is the nuclear magnetization at a time t af-
ter the saturation pulse and M(∞) is the equilibrium
nuclear magnetization. As each NMR spectrum is a su-
perposition of two P-sites, which are inseparable, a dou-
ble exponential function is used to fit the recovery curves.
In Eq. (10), 1/T11 and 1/T12 are the spin-lattice relax-
ation rates for P(1) and P(2) sites, respectively, and A
and B account for their respective weight factors. At
121 MHz, the total spectral width was large and we were
not able to saturate the whole spectrum using a single
saturation pulse. Therefore, 1/T1 is also measured at a

TABLE I. Interatomic V–V distances (in Å) and exchange
couplings (in K). The FM and AFM contributions are ob-
tained from the superexchange model, Eq. (11), whereas total
exchange couplings Ji are calculated via the DFT+U mapping
procedure and thus deviate from JFM

i + JAFM
i .

dV−V JAFM
i JFM

i Ji

J1 4.616 1.4 −5.6 −5.1

J ′
1 4.542 1.4 −7.4 −7.9

J ′′
1 4.785 2.6 −3.1 −1.0

J2 6.380 18.7 −0.4 8.1

J ′
2 6.395 9.1 −0.4 4.6

lower frequency of 30.2 MHz where the spectral width
is reduced significantly and we were able to saturate the
whole spectrum above TN.

The extracted 1/T11 and 1/T12 as a function of tem-
perature at 30.2 MHz and 121 MHz and for both the P-
sites are presented in Fig. 11(b). In the high-temperature
(T ≥ 4.3 K) region, 1/T1 for both the P-sites are al-
most constant, typically expected in the paramagnetic
regime [69]. At low temperatures, 1/T11 and 1/T12 show
sharp peaks at around TN ≃ 2.04 K and 2.36 K for
30.2 MHz and 121 MHz, respectively, indicating the slow-
ing down of fluctuating moments as we approach the
magnetic LRO. Below TN, both 1/T11 and 1/T12 decrease
toward zero due to the scattering of magnons by the nu-
clear spins [70].

E. Microscopic magnetic model

Before discussing the magnetic model, we determine
the position of hydrogen, which may be crucial for the
correct evaluation of exchange couplings [71]. In hy-
drophosphates, one expects a deformation of PO4 tetra-
hedra because one of the oxygens is linked to hydro-
gen and should thus weaken its bond to phosphorous
in order to keep the overall bond valence unchanged.
Such a deformation is observed in the P(2)O4 tetrahe-
dra with the P–O bond distances of 1.490 [O(1)], 1.530
[O(7)], 1.537 [O(2)], and 1.585 Å [O(9)] [45]. We thus
considered different hydrogen positions in the vicinity of
O(9) and found the lowest energy for hydrogen located
at (0.7658,0.2823,0.7588) and separated from oxygen by
0.988 Å. The O–H bond is directed toward the [VOPO4]
layer, with the H atom forming three hydrogen bonds of
2.2 − 2.4 Å to oxygen atoms of the VO5 pyramids and
P(1)O4 tetrahedra (Fig. 1).

We now adopt this hydrogen position in DFT calcula-
tions and evaluate exchange couplings using two comple-
mentary methods. The first one is superexchange model
based on electron hoppings extracted by Wannier fits to
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the PBE band structure, resulting in [50]

Ji =
4t2xy→xy

Ueff
−
∑

α

4t2xy→αJeff

(Ueff +∆α)(Ueff +∆α − Jeff)
, (11)

where dxy is the half-filled orbital of V4+, α labels un-
occupied d-orbitals, and ∆α is the crystal-field split-
ting. The first term stands for AFM superexchange aris-
ing from electron hoppings between the half-filled or-
bitals, whereas the second term is FM superexchange
due to electron hoppings between the half-filled and
empty orbitals. Using the effective Coulomb repulsion
of Ueff = 4 eV and Hund’s coupling of Jeff = 1 eV [72]
from Refs. [51, 53], we arrive at the exchange couplings
JAFM
i and JFM

i listed in Table I. Additionally, we com-
pute total exchange couplings Ji via the DFT+U map-
ping approach [52, 53].
Both methods arrive at qualitatively similar results.

The NN couplings are FM, whereas the NNN cou-
plings are AFM in nature, thus favoring solution-b. The
largest anisotropy is observed between J ′

1 and J ′′
1 . How-

ever, on average these couplings – both running along
c – differ from J1 (along b) by 20% only. The spa-
tial anisotropy of the NNN couplings is more signifi-
cant with J2/J

′
2 ≃ 1.8. The overall energy scale of the

NNN couplings, J̄2 ≃ 5.6K, is similar to Li2VOSiO4

(J2 ≃ 5.9K [55]) and Na1.5VOPO4F0.5 (J̄2 ≃ 6.6K) and
much lower than in Pb2VO(PO4)2 with J̄2 ≃ 9.3K [13]
or SrZnVO(PO4)2 with J̄2 = 8.6K [16]. This difference
can be traced back to the buckling of the magnetic layers
in AA′VO(PO4)2 (AA′ = Pb2, SrZn), while the layers
are almost or even perfectly flat in NaZnVOPO4(HPO4)
(Fig. 1), Li2VOSiO4, and Na1.5VOPO4F0.5.

IV. DISCUSSION

Our data suggest that NaZnVOPO4(HPO4) is well de-
scribed by the spin- 12 FSL model if deformation of the
square lattice is taken into account. Although individual
data sets such as field-dependent magnetization may be
consistent even with a nonfrustrated square lattice, the
reduced size of the specific heat maximum, Cmag

max/R ≃
0.41, indicates the presence of frustration. Indeed, the

value of the frustration parameter f = |θCW|
TN

≃ 2.1 re-
flects a moderate frustration in the compound. The value
of α = J̄2/J̄1 ≃ −4.3 (with J̄1 ≃ −1.3 K, J̄2 ≃ 5.6 K)
locates this compound in the CAF regime of the J1 − J2
phase diagram.
In a spin system, the spin-lattice relaxation rate carries

information on the low-lying excitations or spin dynamics
in the momentum space. Typically, 1

T1T
can be expressed

in terms of the dynamic susceptibility χM (~q, ω0) as [73]

1

T1T
=

2γ2
NkB
N2

A

∑

~q

| A(~q) |2 χ
′′

M (~q, ω0)

ω0
, (12)

where the sum is over the wave vector ~q within the first
Brillouin zone, A(~q) is the form-factor of the hyperfine

interaction, and χ
′′

M (~q, ω0) is the imaginary part of the
dynamic susceptibility at the nuclear Larmor frequency
ω0. The dominance of different q-components [~q = 0
and ~q = (±π/a,±π/b)] is often visible in the 1/T1 data
when plotted against temperature, especially for the low-
dimensional spin systems with strong exchange coupling.
At very high temperatures (T > J/kB), 1/T1 is almost
temperature-independent due to uncorrelated moments
and can be expressed as [13]

(

1

T1

)

T→∞

=
(γNgµB)

2
√
2πz′S(S + 1)

3ωex

×
(

Ax

z′

)2
+
(

Ay

z′

)2

+
(

Az

z′

)2

3
,

(13)

where ωex = [max(|J1|, |J2|)kB/h̄]
√

2zS(S+1)
3 is the

Heisenberg exchange frequency, z is the number of NN
spins of each V4+ ion, and z′ is the number of NN V4+

spins of the P(1) site. In the above expression, the hy-
perfine couplings along different directions are divided by
z′ in order to account for the coupling of P site with the
individual V4+ ion. As the measurements are carried out
on the powder sample, we have taken the rms average of
the couplings along three directions.
For a tentative estimation of the in-plane exchange

coupling between the V4+ ions we took the high tem-
perature value of 1/T11 for the strongly coupled P(1)
site. Using the experimental parameters obtained for
this site (A1

x ≃ 1134 Oe/µB, A1
y ≃ −1716 Oe/µB,

A1
z ≃ 582 Oe/µB, γN = 108.303 × 102 rad.sec−1/Oe,

z′ = 4, z = 4, g = 2.04, S = 1/2, and 1/T11 ≃ 150
sec−1), the magnitude of the maximum exchange cou-
pling strength between V4+ ions is estimated to be
max(|J1|, |J2|) ≃ 4.2 K. This value is indeed very close to
the dominant in-plane AFM exchange coupling for both
the solutions (a and b), obtained from the χ(T ) analysis.
It is also instructive to compare the transition temper-

atures of V4+-based FSL magnets. NaZnVOPO4(HPO4)
and Li2VOSiO4 feature almost the same J̄2 ≃ 6K
but different signs of J1 (FM and AFM, respectively),
while the former compound has a much lower TN ≃
2.1K than the latter (TN ≃ 2.8K [11]). This indi-
cates that FM couplings J1 together with the defor-
mation of the square lattice lead to a visible reduction
in TN in NaZnVOPO4(HPO4). On the other hand,
Pb2VO(PO4)2 shows an even higher TN ≃ 3.65K [13]
because of the 30% increase in the magnitude of J̄2.
This comparison illustrates that buckling of the [VOPO4]
layers caused by variable spacers between the magnetic
layers effectively tunes magnetic interactions in FSL-like
compounds.

V. SUMMARY

We have studied the magnetism of
NaZnVOPO4(HPO4) using wide variety of experimental
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techniques and complementary ab initio calculations.
The unit cell volume as a function of T could be
fitted well using the Debye model with θD ≃ 312 K.
From thermodynamic measurements we infer that the
ideal FSL model captures all main features of the
NaZnVOPO4(HPO4) magnetism. However, including
the spatial anisotropy of nearest-neighbor couplings
is essential to reproduce the experimental saturation
field. The reduced maximum of the magnetic specific
heat further signals this spatial anisotropy, whereas
asymmetric hyperfine couplings of the 31P nuclei with
the V4+ spins provide a direct experimental evidence for
the deformation of the frustrated square lattice.
The averaged exchange couplings extracted from the

magnetic susceptibility and specific heat data are J̄1 ≃
−1.3K and J̄2 ≃ 5.6K, resulting in the effective frustra-
tion ratio α ≃ −4.3. Consequently, the magnetic LRO
transition observed at TN ≃ 2.1 K is expected to lead to
the CAF type order. A slightly larger value of f (> 1)
further implies moderate frustration in the spin system.
With almost flat magnetic layers, this compound shows

weaker next-nearest-neighbor couplings (J̄2) than other

V4+ phosphates. This reduction in J̄2 along with the
deformation of the square lattice lead to a lower magnetic
transition temperature than in most of the other FSL
candidates.
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B. Schmidt, N. Shannon, A. Kriele, A. Senyshyn,
and A. Smerald, Putative spin-nematic phase in
BaCdVO(PO4)2, Phys. Rev. B 100, 014405 (2019).

[40] F. Landolt, S. Bettler, Z. Yan, S. Gvasaliya, A. Zhe-
ludev, S. Mishra, I. Sheikin, S. Krämer, M. Horvatić,
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