
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonlinear spin Hall effect in math
xmlns="http://www.w3.org/1998/Math/MathML">mi

mathvariant="script">PT/mi>/math>-symmetric collinear
magnets

Satoru Hayami, Megumi Yatsushiro, and Hiroaki Kusunose
Phys. Rev. B 106, 024405 — Published 11 July 2022

DOI: 10.1103/PhysRevB.106.024405

https://dx.doi.org/10.1103/PhysRevB.106.024405


Nonlinear spin Hall effect in PT -symmetric collinear magnets

Satoru Hayami1,2, Megumi Yatsushiro1,2, and Hiroaki Kusunose3
1Department of Applied Physics, the University of Tokyo, Tokyo 113-8656, Japan

2Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
3Department of Physics, Meiji University, Kawasaki 214-8571, Japan

We theoretically investigate a nonlinear spin Hall effect in PT -symmetric antiferromagnetic met-
als, which serve as an efficient spin current generator. We elucidate that an emergent spin-dependent
Berry curvature dipole is a microscopic origin of the nonlinear spin Hall effect, which becomes
nonzero with neither relativistic spin-orbit coupling, uniform magnetization, nor spin-split band
structure. By analyzing a microscopic antiferromagnetic model without spin-orbit coupling for an
intuitive understanding of the phenomena, we elucidate essential hopping processes and a condition
to enhance the nonlinear spin Hall conductivity. We also provide a complete table to include useful
correspondence among the Néel vector, odd-parity multipoles, nonlinear spin conductivity tensor,
and candidate materials in all the PT -symmetric black-and-white magnetic point groups.

I. INTRODUCTION

The interplay between charge and spin degrees of free-
dom of electrons has long been studied in condensed mat-
ter physics, as it gives rise to rich physical phenomena,
such as the anomalous Hall effect [1–8] and magneto-
electric effect [9–12]. Especially, the recent rapid devel-
opment of controlling and detecting spin dynamics has
opened up a field of spintronics [13–16]. The electric ma-
nipulation of spins as information carrier brings about
the great potential for realizing high-speed, low-power,
and high-capacity devices.

One of the central issues in spintronics is to explore
an efficient way of generating spin current. Although a
metallic ferromagnetic system is a typical example to di-
rectly generate spin current [17–20], recent studies have
clarified that noncentrosymmetric nonmagnetic systems
with the relativistic spin-orbit coupling (SOC) are its
good platform, since the latter is free from charge current
and stray magnetic field. Indeed, a variety of mechanisms
to induce pure spin current have been found so far, e.g.,
the spin Hall effect [21–27], circular photogalvanic effect
[28, 29], spin battery [30–34], and spin-rotation coupling
effect [35, 36]. In addition, nonlinear spin (Hall) current
generation beyond the linear response regime has been
formulated in noncentrosymmetric nonmagnetic systems
with the SOC [37–41]. These SOC-based mechanisms
have been successfully applied to a variety of materials.

Meanwhile, another mechanism to generate spin cur-
rent has been demonstrated in collinear antiferromagnets
(AFMs) with neither the SOC nor uniform magnetiza-
tion (stray magnetic field) [42–46]. The microscopic ori-
gin is attributed to an emergent k-symmetric spin split-
ting in the band structure (k is the wave vector), which
arises from an effective spin-dependent kinetic motion
of electrons in AFM materials [42–45, 47–52]. Subse-
quently, the microscopic and macroscopic conditions in
general AFMs inclduing noncollinear spin configurations
have been clarified in terms of electronic-multipole de-
scription [43, 53–55], perturbative approach [56], and
magnetic symmetry argument [44, 57–59]. These findings
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FIG. 1. Staggered collinear z-spin alignment on the (a) uni-
form and (b) dimerized chains. (c) Collinear AFM on the
two-dimensional orthorhombic system, where the hoppings in
the model in Eq. (2) are also shown. In (b) and (c), the AFM
accompanies the uniform magnetic toroidal dipole, Ty, along
the y direction.

open up a new direction to explore further functional ma-
terials with negligibly small SOC, such as light-element
materials, molecular organic metals, and 3d transition
metal oxides, out of conventional ones with strong SOC.
In particular, collinear AFMs with negligibly small SOC
are suitable for an efficient spin-current generator owing
to their spin conservation.

In the present study, we propose a new type of spin cur-
rent generation in collinear AFMs with PT symmetry via
the nonlinear spin Hall effect, where P and T represent
spatial inversion and time-reversal operations, respec-
tively, which is qualitatively distinct from the linear spin-
current generation from the symmetry viewpoint [42–45].
We find that a spin-dependent Berry curvature dipole
(BCD), which is induced by an effective spin-dependent
hopping under AFM orderings, is a microscopic origin
of a pure second-order spin current generation in metals
without relying on the SOC, uniform magnetization, and
any spin-split band structures. By analyzing a typical
AFM system under mm′m symmetry, we show that a
large response is expected in the vicinity of the AFM
phase transition, where the order parameter is small.
Furthermore, we summarize general symmetry and AFM
structures for nonzero nonlinear spin current conductiv-
ity under PT -symmetric black-and-white magnetic point
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groups (MPGs) based on electronic odd-parity multi-
poles. Our results provide an alternative guideline to
generate spin current in AFMs with neither the SOC nor
spin-split band structures.

The rest of this paper is organized as follows. In Sec. II,
we show that the collinear magnets with a magnetic
toroidal dipole moment lead to the nonlinear spin Hall
conductivity. In Sec. III, we demonstrate the emergence
of the nonlinear spin Hall conductivity by considering
the specific lattice model. We also discuss the impor-
tant hopping parameters to induce it based on the real-
space picture. Finally, we show the candidate materials
to exhibit the nonlinear spin Hall conductivity under 16
black-and-white MPGs in Sec. IV. Section V is devoted
to a summary. In Appendix A, we show the influence of
the SOC on the nonlinear spin Hall conductivity. In Ap-
pendix B, we list the irreducible representations of elec-
tric dipole and electric quadrupole to make the present
paper self-contained.

II. NONLINEAR SPIN HALL CONDUCTIVITY

Let us start with a two-sublattice AFM structure with
PT symmetry in the one-dimensional chain in Figs. 1(a)
and 1(b); magnetic moments at sublattices ζ = A and
B, mζ , satisfy mA = −mB. P and T symmetries are
preserved on the uniform chain [Fig. 1(a)], while both
are broken in the dimerized chain consisting of the stag-
gered bond [Fig. 1(b)]. Such breakings of P and T sym-
metries lead to an emergent uniform magnetic toroidal
dipole (MTD) T = (Tx, Ty, Tz) characterized by a T -odd
polar vector in the dimerized chain [60–63]. When the

Néel vector, ĥ ‖ (mA − mB), lies in the z direction,
the collinear AFM in Fig. 1(b) accommodates Ty defined
by the staggered magnetization Ty ≡ mz

A −mz
B [64, 65],

which is a source of nonlinear spin conductivity while
vanishing linear one; no linear contribution is owing to
the PT -symmetric collinear AFM in the absence of the
SOC. Hereafter, we consider the collinear AFM struc-
ture accompanying uniform Ty in the two-dimensional
system, where the dimerized chains along the x direc-
tion are stacked in the y direction as shown in Fig. 1(c).
The situation is straightforwardly generalized to the cases
with any Néel vectors under any point groups as shown
in Table I.

First, we show an intuitive picture of the nonlinear

spin Hall conductivity σ
(s)
η;µν in J

(s)
η = σ

(s)
η;µνEµEν in the

presence of T , where J
(s)
η and Eµ,ν are a spin current

and an electric field for the η, µ, ν = x, y, z direction,

respectively, and σ
(s)
η;µν = σ

(s)
η;νµ. It is noted that the

direction of the spin polarization in J
(s)
η is parallel to

that of the Néel vector owing to the absence of the SOC;

J
(s)
η = Jησ with an electric current Jη and spin σ parallel

to ĥ. σ
(s)
x;yy has the same symmetry as Ty; both quantities

are invariant under the symmetry operations of MPG

mm′m. Thus, the resultant J
(s)
x is independent of +Ey
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FIG. 2. (a) Schematics of the nonlinear spin Hall effect when

supposing σ
(s)
x;yy > 0 (the sign itself depends on material),

where the spin current J
(s)
x is unchanged under the reversal of

Ey. The green arrows represent the magnetic toroidal dipole
Ty. (b) Field-angle dependence of the nonlinear spin current

J (s) (red arrows) by the electric field E (gray arrows) when

σ
(s)
x;yy > 0.

and −Ey, where the case of σ
(s)
x;yy > 0 is schematically

shown in Fig. 2(a). Similarly, σ
(s)
y;xy also becomes nonzero

under Ty.

Microscopically, the nonlinear spin Hall conductivity is

described by the spin-dependent BCD D
µν(s)
n (k), which

is given by the second-order Kubo formula under the re-
laxation time approximation as [66]

σ(s)
η;µν =

e3τ

2~2N
∑
k,n

fnkεηµλD
νλ(s)
n (k) + [µ↔ ν], (1)

where e, τ , ~, and N are the electron charge, relaxation
time, the reduced Planck constant, and the number of
sites, respectively; we take e = τ = ~ = 1. fnk is the
Fermi distribution function with the band index n and
εηµλ is the Levi-Civita tensor. In Eq. (1), D

µν(s)
n (k) is

related to the spin-dependent Berry curvature Ω
ν(s)
n (k)

as D
µν(s)
n (k) = ∂µΩ

ν(s)
n (k) [46, 66]. Since we consider

the collinear AFM structure, D
µν(s)
n (k) is expressed as

the difference between up-spin and down-spin compo-
nents similar to the spin Hall effect given by the spin-
dependent Berry curvature [67]. From the antisymmetric

nature of σ
(s)
η;µν with respect to η and µ(ν), σ

(s)
x;yy is re-

lated to σ
(s)
y;xy as 2σ

(s)
x;yy = −σ(s)

y;xy; the factor 2 arises from
the symmetrization regarding the input electric field. It
determines an angle dependence of the spin current gen-
eration against an electric field, as shown in Fig. 2(b).
Remarkably, pure spin current occurs in the x direc-
tion when the electric field is applied in the MTD (y)

direction. Nonzero σ
(s)
η;µν requires both the T - and P-

symmetry breaking, which indicates relevance to MTD
and magnetic quadrupole (MQ), as detailed below, which
is qualitatively different from the linear spin conductiv-
ity based on the magnetic toroidal quadrupole in the
inversion-symmetric systems [68].
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FIG. 3. (a) Contour plots of σ
(s)
x;yy while changing ne and h at

t′x = 0.8, ty = 0.7, txy = 0.3, and t′xy = 0.24. (b) ne depen-

dence of σ
(s)
x;yy at h = 0.1 and h = 3. (c) The band structure

at h = 0.1. Each band is doubly degenerate owing to PT
symmetry. The horizontal solid (dashed) lines in (c) repre-
sent the chemical potential that gives the largest (smallest)

σ
(s)
x;yy in (b).

III. ANALYSIS FOR THE LATTICE MODEL

To demonstrate the above consideration explicitly, we
investigate the tight-binding model with Ty as shown in
Fig. 1(c), which is given by

H = −
∑
ijσ

tijc
†
iσcjσ −

∑
iσσ′

hi · c†iσσσσ′ciσ′ , (2)

where c†iσ (ciσ) is the creation (annihilation) operator for
site i and spin σ =↑, ↓. The first term represents the ki-
netic term; tij includes the neighboring hoppings along
the x and y directions, (tx, t

′
x, ty), and the diagonal hop-

pings, (txy, t
′
xy) in Fig. 1(c). The second term represents

the AFM mean-field term to satisfy hA = −hB with the
magnitude |hA| = h (σ is the vector of the Pauli matri-
ces). We suppose the Néel vector along the z direction as
hA = (0, 0, h) and hB = (0, 0,−h) without loss of gener-
ality; there is no spin-split band structure owing to PT
symmetry. In the following, we set tx = 1 as the energy
unit, and set ty = 0.7, txy = 0.3, t′x = αtx, t′xy = αtxy,
and α = 0.8. We take the lattice constants as a = a′ = 1
and b = 1 in Fig. 1(c).

Figure 3(a) shows σ
(s)
x;yy calculated by Eq. (1) while

changing the electron density ne (ne = 2 corresponds
to full filling) and h at the temperature T = 0.01 and

N = 2 × 24002. We also show ne dependence of σ
(s)
x;yy

at h = 0.1 and h = 3 in Fig. 3(b). The results clearly

show nonzero σ
(s)
x;yy except for the insulating region at

ne = 1 and h & 1.6 in contrast to the Zener-tunneling

mechanism [69]. Especially, |σ(s)
x;yy| is largely enhanced in

the small h region, as shown in Fig. 3(a), since its micro-
scopic process in Eq. (1) consists of the mutual interplay
between the interband and intraband processes; both the
small gap between the energy bands at the same k ow-

A B A By
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FIG. 4. Hopping paths contributing to the spin current J
σ(ζ)
x

(σ =↑, ↓ and ζ =A and B) for the sublattices (a) A and (b) B
under the AFM ordering with Ey. The inequivalence between
the paths denoted by the solid and dashed arrows results in

nonzero J
σ(ζ)
x . The red and blue spheres represent up and

down spins along the Néel vector, respectively.

ing to small h and large density of states is important to

obtain large |σ(s)
x;yy|. Indeed, the maximum (minimum)

value of σ
(s)
x;yy at h = 0.1 is obtained when the chemi-

cal potential denoted as solid (dashed) lines lies on the
band top (bottom) with a small separation from the other
band so that the above conditions are satisfied, as shown
in Fig. 3(c). In such a situation, the dipole-like struc-
ture of the Berry curvature is remarkable; the monopole
and anti-monopole in momentum space approach each
other. Meanwhile, in the large h region where the upper

and lower bands are well-separated, σ
(s)
x;yy is suppressed

and shows an almost symmetric behavior against ne in
Fig. 3(b).

The appearance of σ
(s)
x;yy depends on the type of

the hopping parameters at the microscopic level. To

obtain the essential model parameters for σ
(s)
x;yy, we

adopt an expansion method in the nonlinear conduc-

tivity tensor [70], where σ
(s)
x;yy is expanded as a poly-

nomial form of products among the ith power of the
Hamiltonian matrix at wave vector k, Hi(k), and

the velocity operator, vk = ∂H(k)/∂k, as σ
(s)
x;yy =∑

ijk C
ijk
∑

k Tr[vxkσH
i(k)vykH

j(k)vykH
k(k)]; Cijk is

the model-independent coefficient. σ
(s)
x;yy is obtained as

the imaginary part after taking the trace.

The lowest-order contribution to σ
(s)
x;yy is given for

i = j = 0 and k = 1 in the form of hty(txtxy − t′xt′xy).
In a similar way, the expansion includes various
terms including the other hopping combinations, e.g.,
h
[
2(t2xy − t′2xy)F1 + (t2x − t′2x )F2 + (txtxy − t′xt′xy)F3

]
in

the second-lowest-order contribution for i = 0 and
j = k = 1, where F1 = t2y + t2xy + t′2xy, F2 = t2xy + t′2xy,
and F3 = txtxy + t′xt

′
xy. The important observation is

that σ
(s)
x;yy becomes nonzero for txy 6= t′xy when tx = t′x

and txy 6= 0 or t′xy 6= 0 when tx 6= t′x in addition to
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h 6= 0. Hence, either txy or t′xy in the diagonal hoppings

is essential to give rise to σ
(s)
x;yy.

The importance of the diagonal hopping is under-
stood from the matrix analysis in the trace. When
considering the lowest-order process (i = j = 0 and
k = 1), the contribution in the trace is simplified as
Tr[vxkσvykvykH(k)] = −hTr[vxkvykvykρz] where ρ =
(ρx, ρy, ρz) represents the vector of the Pauli matrices

in A-B sublattice space. Thus, σ
(s)
x;yy remains finite only

when an effective current vxkvykvyk has the same sym-
metry as ρz. As the ty (tx, t′x, txy, and t′xy) term is
proportional to ρ0 (c1ρx + c2ρy where c1 and c2 are k-
dependent constants), txy or t′xy must be included in
vyk for Tr[vxkvykvykρz] 6= 0. Moreover, one also finds

that σ
(s)
x;yy vanishes after taking the kx summation when

txy = t′xy = 0. A similar argument holds for any higher-
order contributions. In this way, the diagonal hopping is

necessary for σ
(s)
x;yy in the present system.

We further discuss the real-space hopping processes to
get a more intuitive physical understanding in Fig. 4.
In Figs. 4(a) and 4(b), we exhibit representative lowest-

order hopping processes contributing to σ
(s)
x;yy for the

sublattice A and B, respectively. Owing to the PT -
symmetric AFM mean field, the role of the electrons with
up spin (↑) at the A sublattice is equivalent to that of
down spin (↓) at the B sublattice from the symmetry
point of view. For the A sublattice in Fig. 4(a), the pro-
cesses denoted as solid arrows and dashed arrows give
different contributions proportional to (txtxy − t′xt

′
xy),

which results in the local up-spin current in the x di-

rection J
↑(A)
x . Similarly, for the B sublattice in Fig. 4(b),

the local down-spin current with the same magnitude

but the opposite direction, i.e., J
↓(B)
x = −J↑(A)

x , occurs.
Thus, pure spin current without charge current is gener-
ated in the x direction.

Let us briefly discuss the influence of the SOC on σ
(s)
x;yy.

By calculating σ
(s)
x;yy for the model in Eq. (2) with the

SOC, we found that the contribution from the SOC is
comparable to that from the present mechanism for weak
h, while there is almost no influence of the SOC for large
h, as detailed in Appendix B. In other words, the present
mechanism is important even when considering the SOC.
This is because our mechanism depends on the magni-
tudes of the order parameter of the magnetism and hop-
ping integrals, which are usually much larger than the
SOCs.

IV. OTHER MAGNETIC POINT GROUPS

Finally, we generalize our discussion to any types
of PT -symmetric collinear AFMs. In the presence of

PT symmetry, σ
(s)
η;µν in Eq. (1) can be finite when

any of multipoles out of three MTDs (Tx, Ty, Tz) and
five MQs (Mu,Mv,Myz,Mzx,Mxy) are activated under
the AFM orderings. Namely, this situation is provided

in 16 black-and-white MPGs [65]. We list the corre-
spondence between MPGs and multipoles in Table I.

Nonzero components of σ
(s)
η;µν depend on the direction

of the Néel vector ĥ and types of associated active mul-
tipoles. To extract such a dependence, we decompose

σ
(s)
η;µν as σ

(s)
η;µν = γη;µνσ, where γη;µν is represented for

EµEν → (E2
x, E

2
y , E

2
z , EyEz, EzEx, ExEy) as

γη;µν ∝


0 2(Qy −Gzx) 2(Qz +Gxy)

2(Qx +Gyz) 0 2(Qz −Gxy)
2(Qx −Gyz) 2(Qy +Gzx) 0
Gu +Gv −Qz +Gxy −Qy −Gzx
−Qz −Gxy −Gu +Gv −Qx +Gyz
−Qy +Gzx −Qx −Gyz −2Gv



T

,

(3)

where T denotes the transpose of a matrix. Here,
(Qx, Qy, Qz) and (Gu, Gv, Gyz, Gzx, Gxy) symbolically
represent the T -even polar vector with the same symme-
try property as electric dipole and T -even axial second-
rank tensor components as electric toroidal quadrupole,
respectively [64, 65]; their irreducible representation is
listed in Appendix B.

Combining Table I and Eq. (3) provides information

regarding nonzero σ
(s)
η;µν . For example, when consid-

ering the 4/m′m′m′ system with ĥx (ĥz), one obtains

2σ
(s)
x;yy = −σ(s)

y;xy and 2σ
(s)
x;zz = −σ(s)

z;zx (2σ
(s)
z;xx = 2σ

(s)
z;yy =

−σ(s)
x;zx = −σ(s)

y;yz). In addition, it is noteworthy that the

direction of the Néel vector ĥ is independent of tensor
components. For instance, by changing the Néel vector

from ĥ = (0, 0, 1) to ĥ = (1, 0, 0) in Fig. 1(c), the sys-
tem symmetry changes from mm′m to m′m′m′. Then,

by looking at the column ĥ ‖ x̂ and the row m′m′m′

in Table I, one finds that the same multipoles, Qx and

Gyz, contribute to σ
(s)
η;µν , which results in the same ten-

sor in the case of ĥ = (0, 0, 1). We list up the candidate

materials to obtain finite σ
(s)
η;µν in accordance with MAG-

NDATA [136], magnetic structures database, and other
references [137, 138]. Although some materials in Ta-

ble I are categorized into insulators, nonzero σ
(s)
η;µν is still

expected with a small insulating gap and/or by doping
carriers. In addition, although the materials in Table I
have a considerable magnitude of the SOC, such an influ-

ence on σ
(s)
η;µν is expected to be negligibly small when the

spontaneous staggered magnetization is well developed,
as discussed above. Furthermore, as the symmetry con-
ditions for the linear and nonlinear spin conductivity are
different from each other [139], one finds the situation
where the pure nonlinear spin Hall conductivity driven
by antiferromagnetic orderings can be observed depend-
ing on the direction. In particular, no linear contribution
is expected in the PT -symmetric collinear AFM in the
absence of the SOC, as demonstrated in Sec. III.
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TABLE I. Conditions of the Néel vector ĥ to obtain nonlinear spin-current conductivity σ
(s)
η;µν in Eq. (1) in the PT -symmetric

MPG except for 1̄′. See also Eq. (3) for the symbols (Qx, Qy, Qz) and (Gu, Gv, Gyz, Gzx, Gxy). The active MTD (Tx, Ty, Tz)

and MQ (Mu,Mv,Myz,Mzx,Mxy) and the candidate materials are also shown. In 4′/m′, 4/m′, 6/m′, and 3̄′, ĥ ‖ x̂ and ĥ ‖ ŷ
are common.

MPG ĥ ‖ x̂ ĥ ‖ ŷ ĥ ‖ ẑ MTD, MQ Materials
4/m′m′m′ Qx, Gyz Qy, Gzx Qz Mu Fe2TeO6 [71], UBi2 [72], UGeSe [73], UPt2Si2 [74, 75]
4′/m′m′m Qx, Gyz Qy, Gzx Gxy Mv BaMn2(As,Bi,P,Sb)2 [76–81], EuMnBi2 [82], CoAl2O4 [83]

(Ca,Sr)MnBi2 [84], Ce2PdGe3 [85], CeMnAsO [86]
4/m′mm Qy, Gzx Qx, Gyz Gu Tz Co3Al2Si3O12 [87]a

4′/m′ Qx, Gyz Qy, Gzx Gv, Gxy Mv, Mxy K(Os,Ru)O4 [88–91]
4/m′ Qx, Gyz Qy, Gzx Qz, Gu Tz, Mu (K,Rb)yFe2−xSe2 [92], TlFe1.6Se2 [93], K0.8Fe1.8Se2 [94]
mmm′ Qy, Gzx Qx, Gyz Gu, Gv Tz, Mxy CuMnAs [95, 96], Mn2Au [97, 98], Cr2(W,Te)O6 [71, 99],

CeCoSi [100–104], MnPd2 [105], Gd5Ge4 [106], (Dy,Er)B4 [107, 108]
m′m′m′ Qx, Gyz Qy, Gzx Qz, Gxy Mu, Mv LiMnPO4 [109], GdAlO3 [110], EuMnSb2 [111, 112], TbB4 [108]
2′/m Qy, Gu Qx, Qz Qy, Gu Tz, Tx CaMnSb2 [113], MnPS3 [114], MnGeO3 [115], LiCoPO4 [116]

Gv, Gzx Gyz, Gxy Gv, Gzx Mxy, Myz YbCl3 [117], SrMn2As2 [118], (K,Rb)FeS2 [119]
2/m′ Qx, Qz Qy, Gu Qx, Qz Ty, Mu LiFePO4 [120], (Co, Fe)4Nb2O9 [121–125], ErGe3 [126]

Gyz, Gxy Gv, Gzx Gyz, Gxy Mv, Mzx CaMnGe [127], KFeSe2 [119], Fe2Co2Nb2O9 [128]
6/m′m′m′ Qx, Gyz Qy, Gzx Qz Mu

6/m′mm Qy, Gzx Qx, Gyz Gu Tz
6/m′ Qx, Gyz Qy, Gzx Qz, Gu Tz, Mu U14Al51 [129]a

3̄′m′ Qx, Gyz Qy, Gzx Qz Mu Cr2O3 [130, 131], Mn4Ta2O9 [132], AgRuO3 [133]
3̄′m Qy, Gzx Qx, Gyz Gu Tz Ca2(Y,La)Zr2Fe3O12 [134]a

3̄′ Qx, Gyz Qy, Gzx Qz, Gu Tz, Mu MgMnO3 [135]

a Noncollinear spin textures have been reported.

V. SUMMARY

To summarize, we have proposed spin current genera-
tion via the nonlinear spin Hall effect in PT -symmetric
collinear magnets. We clarified that its microscopic
essence lies in nonzero spin-dependent Berry curvature
dipole arising from the AFM phase transition accom-
panying the uniform magnetic toroidal dipole. As the
present mechanism does not require any of the SOC, uni-
form magnetization, and any spin-split band structures,
our results significantly broaden the scope of potential
materials for next-generation spintronic devices based on
AFMs. To stimulate further exploration of such func-
tional materials, we provide a comprehensive table about
the symmetry and AFM conditions for nonzero nonlinear
spin current conductivity by using the concept of elec-
tronic odd-parity multipoles.

Appendix A: Nonlinear spin Hall effect with the
spin-orbit coupling

In this Appendix, we investigate the influence of the

SOC on the nonlinear spin Hall conductivity σ
(s)
x;yy. For

that purpose, we additionally consider the SOC Hamilto-
nian allowed from the symmetry of the lattice structure
in Fig. 1 (c), which is represented by

HSOC = αSOC
∑

k,σ,σ′

sin kyσ
z
σσ′(c

†
kAσckAσ′ − c†kBσckBσ′),

(A1)

where ckζσ is the Fourier transform of ciσ with wave vec-
tor k, sublattice ζ, and spin σ.

Figures 5(a) and 5(b) show the ne dependence of σ
(s)
x;yy

for several values of αSOC = 0.1, 0.2 in the case of the
small mean field h = 0.1 and large meand field h = 3,
respectively. As a result, we found that the contribution
of the SOC depends on the electron filling for small h,
but their magnitude is in the same order as that from
the result at αSOC = 0, as shown in Fig. S1(a). Further-
more, we found that there is almost no influence of the
SOC for large h, as shown in Fig. S1(b). These results
indicate that the present mechanism is important even
when considering the SOC.

Appendix B: Irreducible representations of electric
dipole and electric quadrupole

As discussed in the main text, the rank-1 polar-
vector quantity and rank-2 axial-tensor quantity have
the same symmetry property as the electric dipole
(Qx, Qy, Qz) and the electric toroidal quadrupole
(Gu, Gv, Gyz, Gzx, Gxy), respectively. In this Appendix,
we show the correspondence between these multi-
poles and their irreducible representation under cu-
bic, tetragonal, orthorhombic, and monoclinic crys-
tals in Table II and under hexagonal and trigonal
crystals in Table III [64]. Similarly, the irreducible
representations in magnetic point groups are given
by considering their unitary subgroup and antiuni-
tary operation [65]. The irreducible representation of
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FIG. 5. ne dependence of σ
(s)
x;yy in the presence of the SOC at

(a) h = 0.1 and (b) h = 3. The SOC paramteres are taken at
αSOC = 0.1 and 0.2, where the data at αSOC = 0.1 in (b) is
almost overlapperd with those at αSOC = 0.

(Qx, Qy, Qz) and (Gu, Gv, Gyz, Gzx, Gxy) gives informa-
tion about the nonzero components of the nonlinear

spin conductivity tensor since the direct product be-
tween the irreducible representations of (Qx, Qy, Qz) [or
(Gu, Gv, Gyz, Gzx, Gxy)] and the Néel vector belongs to
the totally symmetric representation in the magnetic
point groups.

We have used the notations of the electric dipole
(Qx, Qy, Qz) and the electric toroidal quadrupole
(Gu, Gv, Gyz, Gzx, Gxy) to represent symbolically any
electronic degree of freedom in terms of the polar-vector
and second-rank axial-tensor quantities in the Hamilto-
nian matrix in a broader sense. For example, the electric
toroidal quadrupole as the bond degree of freedom in the
Hamiltonian has been discussed in the spin-orbit-coupled
metal Cd2Re2O7 [140]. Thus, the symbolic notation of
(Qx, Qy, Qz) and (Gu, Gv, Gyz, Gzx, Gxy) is applied to
both metals and insulators.
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