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We show that finite current in superconductors can induce topological phase transitions, as a result
of the deformation of the quasiparticle spectrum by a finite center-of-mass (COM) momentum of
the Cooper pairs. To show the wide applicability of this mechanism, we examine the topological
properties of three prototypical systems, the Kitaev chain, s-wave superconductors, and d-wave
superconductors. We introduce a finite COM momentum as an external field corresponding to
supercurrent and show that all the models exhibit current-induced topological phase transitions.
We also discuss the possibility of observing the phase transitions in experiments and the relation to
the other finite COM momentum pairing states.

I. INTRODUCTION

Controlling quantum states of matter is one of the most
important subjects in condensed matter physics. For ex-
ample, pressure or magnetic fields have been widely used.
Among them, electric fields, including laser light and ac-
companying electric currents, are gathering more atten-
tion in recent years, thanks to the technological develop-
ments for generating electric fields. For instance, driving
with AC electric fields (laser light) opens up a new dy-
namical route to control states of matter, which is called
Floquet engineering [1, 2]. This idea has been applied
to a broad range of quantum materials such as topo-
logical materials [2–4], magnets [5–10], and supercon-
ductors [11–17]. For DC electric fields, control of mag-
netism [18–21] and field-induced superconductivity [22]
has been studied. Electric currents also play an impor-
tant role in controlling various properties of solids, such
as magnetic [23–27] and optical [28–33] properties.

The nature of electric current in superconductors is
much different from the one in normal conductors. For
example, supercurrent appears in equilibrium and is dis-
sipationless [34]. Thus, the effect of the supercurrent
on the electronic state is expected to be different from
the normal metals and may provide another function-
ality in controlling quantum materials. Indeed, several
experiments for the control of superconductors with su-
percurrent have been reported very recently [35–37]. In
Refs. [35–37], after the strong pump by a laser field,
the induced supercurrent effectively breaks the inversion
symmetry and the second harmonic response is observed
in the current-carrying state. This motivates us to study
the control of superconductors via electric current [38–
42]. From the theoretical point of view, we can study the
leading effect of supercurrent within equilibrium states,
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FIG. 1. (a) Schematic picture of the setup. Supercurrent is
carried by Cooper pairs with the center-of-mass momentum
2q. We consider a narrow strip of superconductors to realize
the spatially uniform supercurrent. (b) Quasiparticle spectra
in supercurrent-induced topological phase transitions. Super-
current initially makes the spectrum asymmetric and induces
a band touching at q = qT , corresponding to the topological
phase transition.

and it makes the problem more tractable than the normal
current, which appears in nonequilibrium states.

Also, the physics related to supercurrent has been
gathering renewed attention recently [43–48]. For ex-
ample, the superconducting diode effect, which is the
nonreciprocity of critical current, is observed in exper-
iments [43] and it stimulates the theoretical studies very
recently [45–47]. From the viewpoint of device applica-
tion, superconducting electronics/spintronics, where su-
percurrent plays a principal role, is becoming an impor-
tant research field [44, 49–51]. Thus, the importance of
studying the effect of current on superconductors is in-
creasing. This is another motivation for this study.

In this paper, we study a new possible usage of su-
percurrent, which is to control the topological phases of
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matter. In a clean superconductor with an external cur-
rent source shown in Fig. 1 (a), the Cooper pairs obtain
a center-of-mass (COM) momentum 2q and carry super-
current. This results in the modification of the quasipar-
ticle spectrum, as shown in Fig. 1 (b). It has not been
clear whether this modification can realize topological
phase transitions. Indeed, as we show later, the supercur-
rent only gives energy shift in simple single-band models
as the leading effect and does not induce any topologi-
cal phase transitions. However, in this paper, we show
that the topological phase transitions occur in a broad
range of models with multi-components, such as spin
or orbital degrees of freedom. To show that, we study
several prototypical models. The first one is the Kitaev
chain [52], which is a good toy model to demonstrate our
idea. The second one is an s-wave superconductor with
the Rashba spin-orbit coupling (SOC). We show that this
model undergoes topological phase transitions induced
by supercurrent. The last example is a d-wave super-
conductor with the Rashba SOC. We find that the point
nodes are topologically robust even under the supercur-
rent, although these nodes are known to be gapped out
with breaking both inversion and time-reversal symme-
tries [53]. Then, we identify the symmetry protecting the
nodes and propose a way to gap out the point nodes with
supercurrent. When the symmetry constraint is satisfied,
a fully-gapped topological superconductor (TSC) is real-
ized with an infinitesimal supercurrent, which is feasible
for the experimental realization.

Before moving to the main part, we mention the previ-
ous works related to our results and clarify the difference.
First, the superconducting phases studied in this paper
are formally the same as the Fulde-Ferrell (FF) states,
which is a typical finite COM pairing state [54]. Indeed,
topologically non-trivial FF states in ultracold atoms and
superconductors have been studied theoretically [55–57].
The important difference from these studies is that we
focus on the systems with an external current source. In
other words, the COM momentum of the Cooper pairs
is a control parameter in our setup, whereas the thermo-
dynamic stability uniquely determines the COM momen-
tum in the FF states. Therefore our results contain the
thermodynamically unstabilizable states without an ex-
ternal current source. Second, the effects of supercurrent
on topological phases have been studied [40, 42, 58–66]
and we admit a similar idea can be found in these stud-
ies. To clarify the difference, we list up the points we
want to emphasize in this study. (i) While most of the
previous studies have studied one-dimensional quantum
wires [42, 58–61], we mainly consider two-dimensional
bulk materials as our platform [Secs. IV and V]. We focus
on intrinsic topological phases of bulk materials, different
from previous studies on inhomogeneous systems such
as the Josephson junction [66]. (ii) The supercurrent-
induced gap-opening at the nodes in the d-wave super-
conductor is one of the most striking results in this study.
While a similar phenomenon in a twisted nodal supercon-
ductor has been pointed out in Ref. [40], we newly point

out that it can occur in more general d-wave supercon-
ductors and clarify the symmetry requirement for the
phenomenon. (iii) We reveal the topological origin for
the protection of gap nodes under supercurrent [Sec. VI].
It is helpful to know how to open a gap at the node and
induce topological phase transitions in general cases. (iv)
We discuss the candidate materials and the experimen-
tal setups in detail [Sec. VII A]. It has been less studied
except for the one-dimensional case in artificially engi-
neered systems, and we believe our results will be help-
ful for the experimental search for supercurrent-induced
phase transition in natural materials.

This paper is organized as follows. In Sec. II, we ex-
plain how to describe the current-carrying superconduct-
ing state in this study. We also give remarks on the
application range of our theory. In Sec. III, we study
the Kitaev chain as one of the simplest examples. In
Secs. IV and V, we investigate two-dimensional s-wave
and d-wave superconductors, respectively. We see the
quantization of the Berry phase, indicating the topologi-
cally non-trivial nature, in Secs. IV and V, and the origin
is explained in Sec. VI. In Sec. VII, we discuss the experi-
mental setup to observe the topological phase transitions
and the relevance to the other pairing states with finite
COM momentum. Finally, we summarize this paper in
Sec. VIII.

II. THEORETICAL DESCRIPTION OF
CURRENT-DRIVEN SUPERCONDUCTORS

In this section, we introduce the basic framework to
describe the current-carrying states in superconductors.
There are several mechanisms for the generation of elec-
tric currents in superconductors. In this study, we con-
sider the electric current carried by the Cooper pairs.
Also, we assume that all the Cooper pairs have the same
COM momentum 2q. This assumption is valid in the
narrow strip superconductors, as shown in Fig. 1 (a), be-
cause the current runs near the sample edge due to the
Meissner effect [34]. The detail of the experimental setup
will be discussed in Sec. VII A. With the above assump-
tion, the mean-field Hamiltonian with finite supercurrent
is given by

H =
∑
k,s,s′

c†k,s[HN (k)]s,s′ck,s′

+
1

2

∑
k,s,s′

{
c†k+q,s[∆(k)]s,s′c

†
−k+q,s′ + h.c.

}
, (1)

where ck,s (c†k,s) is the annihilation (creation) operator of

electrons with momentum k and spin s and ∆(k) is the
superconducting order parameter [44–46, 48]. While the
order parameter is actually determined self-consistently
with the gap equation, we do not explicitly solve the gap
equation. Instead, we assume specific forms of the gap
function for each system. This assumption is expected to



3

- π 0 π
- 4

- 2

0

2

4

kx
- π 0 π

- 4

- 2

0

2

4

kx
- π 0 π

- 4

- 2

0

2

4

kx

- π 0 π
- 4

- 2

0

2

4

kx
- π 0 π - π 0 π

- 4

- 2

0

2

4 2

1

0

-1

-2

kx
- π 0 π

- 4

- 2

0

2

4

kx

(a) qx = 0.0 (b) qx = 0.35 (g) qx = 0.0

(i) qx = π

qx

(j) 

(h) qx = π/2(c) qx = 0.7

(d) qx = π/2 (e) qx = 2.4 (f) qx = π

0 20 40 60 80
- 4

- 2

0

2

4

n
0 20 40 60 80

- 4

- 2

0

2

4

n

OBC
PBC

OBC
PBC

OBC
PBC

0 20 40 60 80
- 4

- 2

0

2

4

n

ν = 1

ν = 0

E

E

E

E

E

μ

FIG. 2. Results for the Kitaev chain, Eqs. (4) and (5). (a)-(f) Quasiparticle spectra for qx = 0.0, 0.35, 0.7, π/2, 2.4, π. (g)-(i)
Energy eigenvalues for qx = 0.0, π/2, π with a finite size (40 sites). The number n denotes the n-th eigenvalue from the largest
value. The red (blue) symbols correspond to the open (periodic) boundary condition. (f) Topological phase diagram, where
the Z2 invariant ν [Eq. (6)] is plotted. Here, hopping amplitude t is used as the energy unit. For (a)-(i), the parameters are
set as µ = −1.5 and ∆p = 1.0.

be valid with small supercurrent [67]. The COM momen-
tum q is related to the current density j as j = ensq/me

where e, ns, and me are the elementary charge, the su-
perfluid density, and the electron mass, respectively. We
have to pay attention to that q (=|q|) cannot be arbitrary
large in experiments because there is an upper bound qc
corresponding to the critical current jc, where the su-
perconducting order breaks down. Thus, our main focus
is on the small-q regime, though we will also study the
large-q regime to clarify the mathematical structure of
the models in the several cases discussed later.

Topological phases in superconductors are character-
ized by the topologically non-trivial ground state of the
Bogoliubov–de Gennes (BdG) Hamiltonian. The mean-
field Hamiltonian (1) is rewritten into the BdG Hamilto-
nian,

H =
1

2

∑
k

Ψ†k;qHBdG(k; q)Ψk;q, (2)

HBdG(k; q) =

(
HN (k + q) ∆(k)

∆†(k) −HT
N (−k + q)

)
, (3)

where Ψk;q = (ck+q,↑, ck+q,↓, c
†
−k+q,↑, c

†
−k+q,↓)

T . Diago-
nalizing this BdG Hamiltonian, we obtain the quasiparti-
cle spectrum under a supercurrent. Below, we study the
topological properties of this Hamiltonian for specific ex-
amples.

Before moving to the specific cases, using Eq. (2),
we reveal that current-induced topological phase tran-
sition is difficult to occur in simple single-band models.
Let us consider a single-band spin-1/2 system with the
normal Hamiltonian HN (k) = ξ(k)σ0 = {ε(k) − µ}σ0,
where ε(k) is a symmetric dispersion, µ is the chemi-

cal potential, and σ0 is the identity matrix in the spin
space. We do not assume a specific form for the super-
conducting order parameter ∆(k). Since HN (±k+ q) =
ξ(k)σ0 ± q · (∂ξ/∂k)σ0 + O(q2), the BdG Hamiltonian
with supercurrent becomes HBdG(k; q) = HBdG(k; 0) +
{q·(∂ξ/∂k)}I+O(q2) where I(= σ0⊗τ0) is the 4×4 iden-
tity matrix with the identity matrix in the Nambu space
τ0. Therefore, the supercurrent only gives the energy
shift as the leading effect in this case, and thus topolog-
ical phase transition does not occur. This energy shift is
known as the Doppler shift [68].

III. KITAEV CHAIN

In this section, we consider the current-carrying state
in the Kitaev chain [52], which is defined with the normal
part Hamiltonian and the order parameter,

HN (kx) = −2t cos kx − µ, (4)

∆(kx) = −2∆pi sin kx, (5)

where t, µ, and ∆p are the hopping amplitude, the chem-
ical potential and the p-wave pairing strength, respec-
tively. Without current, the ground state of this model
becomes a TSC for |µ/t| < 2 which hosts Majorana end
modes [52, 69].

Let us consider the effect of supercurrent. The quasi-
particle spectrum with finite qx is shown in Figs. 2 (a)-
(f). With small qx, the spectrum becomes asymmetric
respecting the inversion symmetry breaking by the super-
current [Fig. 2 (b)]. A band touching appears at qx ∼ 0.7
and then the gap reopens [Figs. 2 (c) and (d)]. With
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FIG. 3. Quasiparticle spectra of the s-wave superconductors, Eqs. (7) and (8) for (a) q=(0,0), (b) q= (0.15,0), (c) q= (0.32,0),
and (d) q= (0.5,0). We set the hopping amplitude t as the energy unit and the other parameters are µ = −3.8, α = 1.0, and
∆s = 0.3.

larger qx, the gap closes at qx ∼ 2.4 and then it opens
again [Figs. 2 (e) and (f)]. This behavior suggests that
topological phase transitions occur two times at the band
touching points in this sequence. Indeed, the number of
the Majorana end modes is changed at these points as
shown in Figs. 2 (g)-(i). This is direct evidence of the
topological phase transitions induced by supercurrent.

Next, we clarify the topological index for this model.
The BdG Hamiltonian is written as HBdG(k) =
h0(kx)τ0 + h(kx) · τ with h0 = 2t sin qx sin kx and h =
(0, 2∆p sin kx,−2t cos qx cos kx−µ) where τ = (τx, τy, τz)
denotes the Pauli matrix in the Nambu space. The
term proportional to σ0 does not affect to the topological
properties, and thus the BdG Hamiltonian is essentially
the same as the original Kitaev chain with a replace-
ment of t → t cos qx. The topological index is given by
ν = sgn[hz(0)]sgn[hz(π)] [69] and thus

ν = sgn(µ2 − 4t2 cos2 qx). (6)

Plotting this for the different values of qx and µ, we ob-
tain the topological phase diagram shown in Fig. 2 (j).
We can see that the supercurrent-induced topological
phase transition occurs in a broad range of the parame-
ter space. Note that we can use the original Z2 index for
the Kitaev chain because the particle-hole (PH) symme-
try is only needed to define this index [69] and the PH
symmetry is preserved even under supercurrent.

The phase diagram suggests that the current-induced
topological phase transitions only occur in the parame-
ter range where the topologically non-trivial ground state

is already realized. This means that it is impossible
to induce topologically non-trivial phase starting from
the trivial phase. However, this feature depends on the
details of models, and we show that it is possible for
other models in Secs. IV and V. The advantage of the
Kitaev chain is that we can easily see the mechanism of
supercurrent-induced phase transitions. The bare elec-
tron and hole bands are shown with the gray dashed lines
in Figs. 2 (a)-(f). The convex downward (upward) curve
is the electron (hole) band. The figures clearly repre-
sent that the origin of the topological phase transitions
is the band inversion driven by the COM momentum qx,
which horizontally shifts the electron and hole bands in
the opposite directions. While the other examples below
are more complex and difficult to see the band inversion
directly, the mechanism is the same as in this case.

IV. S-WAVE SUPERCONDUCTORS

In this section, we consider a model for s-wave super-
conductors in two dimensions as a simple but more re-
alistic example. As shown in Fig. 1 (a), we consider the
sample fabricated on a substrate. The heterostructure
breaks the inversion symmetry, and the effect is taken
into account as the Rashba-type SOC. The model is de-
fined as

HN (k) = ξ(k)σ0 + αgR(k) · σ, (7)

∆(k) = ∆siσy, (8)
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FIG. 4. Results for the s-wave superconductors, Eqs. (7) and (8). (a) Quasiparticle spectra for q = (0.5, 0) with a finite
size only in the y-direction (100 sites). The red (blue) symbols correspond to the open (periodic) boundary condition. (b)
Topological phase diagram, where the winding number [Eq. (11)] is plotted. Different colors correspond to the different sets of
(w(0),w(π)) as shown in the legend. (c) The energy gap E3(k)−E2(k) for q = (0.5, 0), where En(k) is the energy eigenvalues of
the BdG Hamiltonian (n = 1, 2, 3, 4 and En > En′ for n > n′). The intense two spots represent the nodes shown in Fig. 3 (d).
(d) Berry phase [Eq. (13)] for q = (0.5, 0). The plotted value is divided by π. The integration path is each square denoted by
the dotted lines. For all panels, we set the hopping amplitude t as the energy unit and the other parameters are µ = −3.8,
α = 1.0, and ∆s = 0.3.

with ξ(k) = −2t(cos kx + cos ky) − µ and gR(k) =
(− sin ky, sin kx, 0). Here, σ = (σx, σy, σz) is the Pauli
matrices in the spin space. This model with the Zee-
man magnetic field is known as a prototypical model of
TSCs [70]. Since supercurrent breaks the time-reversal
symmetry as the Zeeman field does, it is natural to ask if
the topological superconductivity is realized with super-
current or not. As shown below, topologically non-trivial
phases are induced by supercurrent, though the phases
are different from those in the Zeeman field case.

The quasiparticle spectra under finite current are
shown in Figs. 3 (a)-(d). For simplicity, we consider the
current parallel to the x-axis. First, for small q ≡ |q|, the
spectrum becomes distorted and asymmetric [Fig. 3 (b)].
Then, at q ∼ 0.32, a band touching occurs [Fig. 3 (c)].
These behaviors are the same as what we have seen in
the Kitaev chain (see the previous section). In contrast,
the next step is different from the case of the Kitaev
chain, where the system becomes fully gapped again. For
q > 0.32, the quasiparticle spectrum is still gapless, and
there exist two gapless points [Fig. 3 (d)]. These point
nodes are robust under small changes of the parameters,

and thus these are expected to be topologically protected.
Indeed, there appear chiral Majorana edge modes con-
necting these two point nodes, as shown in the energy
spectrum calculated with the open boundary condition
in the y-direction [Fig. 4 (a)]. This suggests that the
nodes are topologically protected and the system is in
a topologically non-trivial phase. The chiral Majorana
modes in the different edges propagate in the same direc-
tion, as seen from the spectrum shown in Fig. 4 (a). This
is known as the unidirectional Majorana state appearing
under a tilted magnetic field [71]. Seeing Fig. 4 (a), the
Majorana states are buried in the bulk spectrum due to
the finite density of states at the Fermi level, and thus
it might seem that the TSC becomes ill-defined and the
Majorana modes are not able to be observed. However,
the TSC can be defined with topological indices as shown
below, and the Majorana state is observable with choos-
ing the adequate sides of the surfaces. We will discuss
experimental methods further in Sec. VII A.

Next, we explain the topological index characterizing
these gapless points. There exist two topological indices,
which are related to each other and essentially have the



6

same information in the limited cases as we mention be-
low. The first one is the winding number. When the
current is parallel to the x-axis, the following chiral sym-
metry,

Γ = MxTCph, (9)

exists only at kx = 0 and kx = π. Here, Mx, T , and Cph
are the operators for mirror symmetry in the x-direction,
time-reversal symmetry, and PH symmetry, respectively.
Note that this is different from the widely-used chiral
symmetry TCph. In our notation, they are explicitly
given as

Mx=

(
iσx 0
0−iσx

)
, T =

(
iσy 0
0 iσy

)
K, Cph=

(
0 σ0

σ0 0

)
K,

(10)
where K is the complex conjugation. Using this chiral
symmetry Γ, we can define the winding number as below,

w(kx) =
1

2π
Im

[∫ π

−π
dky∂ky ln det q̂(k)

]
, (11)

where q̂(k) is a 2× 2 matrix defined via

U†ΓHBdG(k)UΓ =

(
0 q̂(k)

q̂†(k) 0

)
, (12)

and UΓ is a unitary matrix satisfying U†ΓΓUΓ =
diag(1, 1,−1,−1) [72]. The integration paths for kx =
0, π are shown by red and blue dashed lines respectively
in Figs. 3 (a)-(d). We calculate w(0) and w(π) for differ-
ent parameters and the results are summarized as a topo-
logical phase diagram in Fig. 4 (b). There appear sev-
eral distinct phases characterized by the winding number.
When w(0) [w(π)] is nonzero, there appear edge modes
around kx = 0 [kx = π] when we take the open boundary
condition in the y-direction.

The other index is the Berry phase γ defined as

γ =
1

i

∑
n=1,2

∮
C

dki 〈un(k)| ∂ki |un(k)〉 (mod 2π), (13)

where |un(k)〉 is the Bloch state and C is a closed path
in the Brillouin zone. The bands of n = 1, 2 are taken
as the two lowest energy eigenstates for each momen-
tum. We numerically calculated the Berry phase using a
method for the discretized Brillouin zone [73] and the re-
sults are summarized in Fig. 4 (d). This figure shows that
the Berry phase takes a non-zero quantized value when
the path C encloses the point node. This result directly
shows that the point nodes are topologically protected.
The Berry phase is same as the parity of the winding
number when both are well-defined as discussed in Ap-
pendix A. However, the sharp difference appears when
the COM momentum q is not parallel to the x-axis or the
y-axis. In such cases, the chiral symmetry [Eq. (9)] does
not exist, and thus we cannot define the winding number.
On the other hand, the quantized Berry phase is always

well-defined. Indeed, we can confirm the quantization of
the Berry phase and the appearance of the edge modes
for any current direction. This quantization of the Berry
phases is understood from the classification of topological
phases. We will discuss this point in Sec. VI.

V. D-WAVE SUPERCONDUCTORS

Next, let us consider d-wave superconductors as an-
other example. The results in this section are important
from the viewpoint of experimental realization. In the
examples presented so far, the transition momenta qT ,
where the topological phase transition occurs, are non-
zero. As mentioned in Sec. II, q must be smaller than the
critical momentum qc. Thus, qT also needs to be smaller
than qc. This means that we need to find the parameters
to make qT sufficiently small. We can avoid the difficulty
if we can find the case where topological phase transi-
tions occur with infinitesimal momentum (i.e., qT = 0).
Below, we will see that the d-wave superconductor with
a certain perturbation is such a fascinating case.

We consider a two-dimensional d-wave superconductor
on a substrate, whose effect is taken into account as the
Rashba SOC as in Sec. IV. This can be regarded as a
model for cuprate superconductor thin films [74, 75]. The
model is defined as

HN (k) = ξ(k)σ0 + αgR(k) · σ, (14)

∆(k) = {ψd(k)σ0 + d(k) · σ}iσy, (15)

with ξ(k) = −2t(cos kx+cos ky)+4t′ cos kx cos ky−µ and
gR(k) = (− sin ky, sin kx, 0). The order parameter con-
sists of the spin-singlet sector ψd(k) = ∆d(cos kx−cos ky)
and the spin-triplet sector d(k) = ∆p(sin ky, sin kx, 0)
where ∆d � ∆p. The spin-triplet component is admixed
to the dominant d-wave component because of the in-
version symmetry breaking by the substrate or intrinsic
crystal structure [53, 76].

As discussed in Ref. [53], breaking both inversion and
time-reversal symmetry in this model induces TSCs. Fol-
lowing this idea, it is expected that supercurrent can also
induce topological phase transitions from the symmetry
viewpoint. However, against this naive guess, we can
show that the application of finite current to this model
does not cause topological phase transitions. In other
words, the gap nodes in d-wave superconductors are ro-
bust against supercurrent. Indeed, as shown in Fig. 5 (b)
and Figs. 6 (a) and (c), the quasiparticle spectrum be-
comes asymmetric but the nodes still exist with a finite
q.

The mechanism of the protection can be understood in
two ways. One is based on the perturbation theory. As
presented in Appendix B, the size of the current-induced
energy gap at the nodal points k0, which we denote by
∆node(q), is estimated with the perturbation theory as

∆node(q) = 2

∣∣∣∣g′q(k0) · ĝ(k0)× d(k0)

g(k0)

∣∣∣∣+O(q2), (16)
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(a)  β = 0,  (qx, qy) = (0, 0) (b)  β = 0,  (qx, qy) = (0.1, 0)

(c)  β = 0.3,  (qx, qy) = (0, 0) (d)  β = 0.3,  (qx, qy) = (0.1, 0) (b)  β = 0.3,  (qx, qy) = (0.1, 0) (d)  β = 0.3,  (qx, qy) = (0.1, 0)

E

E

(a)  β = 0,  (qx, qy) = (0.1, 0) (c)  β = 0,  (qx, qy) = (0.1, 0)

E

E

FIG. 5. Quasiparticle spectra of the d-wave superconductors [Eqs. (14) and (15)] for (a, c) q = (0, 0) and (b, d) q = (0.1, 0).
We set β = 0 [β = 0.3] in (a) and (b) [(c) and (d)]. The hopping amplitude t is set as the energy unit and the other parameters
are t′ = 0.2, µ = −0.7, α = 0.3, ∆d = 0.5 and ∆p = 0.2.

where g(k) = αgR(k), ĝ(k) = g(k)/|g(k)| and g′q(k) =∑
i=x,y qi(∂g(k)/∂ki) = α(−qy cos ky, qx cos kx, 0). In

our case, all the vectors g′q(k), ĝ(k), and d(k) in Eq. (16)
are in the x-y plane, and thus this value must be zero.
Therefore, no energy gap is induced, and the nodes are
robust to current. The other approach is based on the
band topology. As in the s-wave case, we calculate the
Berry phase with respect to the path enclosing the nodes
and find that this takes a quantized value not changed
even under a finite current, as shown in Fig. 7 (b). This
means that the nodes are topologically protected even
under finite current.

From the above discussion about the protection of the
gap nodes, we notice how to induce a finite gap by super-
current. From Eq. (16), we see that the energy gap can
be finite when the g-vector g(k) has the z-component.
Also, as we will discuss later in Sec. VI, for topological
protection, the quantization of the Berry phase is pro-
tected by symmetry. In our case, a composite symmetry
TC2z protects the nodes even under finite current. Here,
T and C2z represent the time-reversal symmetry and the
two-fold rotational symmetry along the z-axis, respec-
tively. Thus, the perturbation breaking this symmetry is
expected to violate the topological protection and open
a finite gap at the nodal points. Following the above
arguments, we consider

H ′N (k) = βgZ(k) · σ = β sin kxσz, (17)

as an example of the perturbation. This term is called
Zeeman-type (or, Ising-type) SOC and is known to play
an important role in two-dimensional transition metal
dichalcogenides [22, 77–81]. Although there is no evi-
dence for this SOC in the d-wave superconductors to the
best of our knowledge, it can be induced by using a sub-
strate with lower symmetry. We will discuss this point
later in Sec. VII A.

Let us see the effect of the perturbation (17). The
quasiparticle spectra with this perturbation are shown in
Figs. 5 (c) and (d). Even with the Zeeman SOC, the
gap nodes still exist without supercurrent [Fig. 5 (c) and
Figs. 6 (a) and (c)]. In contrast, with both finite Zee-
man SOC and supercurrent, these nodes are gapped out
[Fig. 5 (d) and Figs. 6 (b) and (d)]. In this gapped phase,
we calculate the energy spectrum with OBC and find the
Majorana edge modes as shown in Fig. 7 (c). This sug-
gests that a TSC is realized with supercurrent. As in the
previous proposals of topological d-wave superconductors
with breaking time-reversal symmetry [12, 53], the Chern
number can be used for characterizing the TSC in our
case. The Chern number is defined as

C=
1

2πi

∑
n=1,2,
i,j=x,y

∫
dk(iσy)ij∂ki〈un(k)| ∂kj |un(k)〉 . (18)

The bands of n = 1, 2 are the states having the two low-
est energy eigenstates for each momentum. For numer-
ical calculation, we use the method for the discretized
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(a)  β = 0,  (qx, qy) = (0, 0) (b)  β = 0,  (qx, qy) = (0.1, 0)

(c)  β = 0.3,  (qx, qy) = (0, 0) (d)  β = 0.3,  (qx, qy) = (0.1, 0) (b)  β = 0.3,  (qx, qy) = (0.1, 0) (d)  β = 0.3,  (qx, qy) = (0.1, 0)

E

E

(a)  β = 0,  (qx, qy) = (0.1, 0) (c)  β = 0,  (qx, qy) = (0.1, 0)

E

E

FIG. 6. Quasiparticle spectra of the d-wave superconductors [Eqs. (14) and (15)] for q = (0.1, 0). (a) and (c) [(b) and (d)]
are for β = 0.0 [β = 0.3]. (a) and (b) are enlarged views around the nodes in kx, ky > 0. (c) and (d) are sections of the
quasiparticle spectrum along the node direction. Here, we are plotting the quasiparticle spectrum {En(k)} (n = 1, · · · , 4)

with respect to k = k
(j)

‖ = k
(j)

‖ k̂
(j)
0 around the nodes at k

(j)
0 (j = 1, 2) where k̂

(j)
0 = k

(j)
0 /|k(j)

0 |. Here, we consider the

nodes in the first quadrant (i.e., both kx and ky components are positive) and set k
(1)
0 ' (1.301, 1.303)[(1.269, 1.270)] and

k
(2)
0 = (1.473, 1.471)[(1.504, 1.502)] for β = 0.0 [β = 0.3]. For all panels, we set the hopping amplitude t as the energy unit and

the other parameters are t′ = 0.2, µ = −0.7, α = 0.3, ∆d = 0.5 and ∆p = 0.2.

Brillouin zone [82]. The results of the Chern number are
summarized in Fig. 7 (d). This figure shows that TSCs
with |C| = 4 are realized with infinitesimal supercurrent
in the x-direction. This means that we can induce the
TSC in d-wave superconductors with a certain perturba-
tion by a very small supercurrent. This is one of the most
important results of this study. We emphasize that the
Zeeman-type SOC (17) is just an example of the pertur-
bation breaking the symmetry protecting the nodes. It
can be possible to find other perturbations.

Before closing this section, we briefly mention the topo-
logical phases in the large-q regime, which is difficult to
be achieved in current-driven superconductors but can be
realized in intrinsically finite COM pairing states. With
increasing the COM momentum, topological phase tran-
sitions occur again and several phases with the different
Chern numbers appear. The change of the Chern number
is summarized in Fig. 8 (a) and we can find a C = −1
phase for 2.69 . qx . 2.98 and qy = 0. This phase
is interesting because, in the previous studies for TSCs
in d-wave superconductors [12, 53] and our Fig. 7 (d),
there only appear even Chern numbers. The TSC with
even Chern number can only host even number pairs of

Majorana fermions, not a single pair which is useful for
quantum computation [69]. To realize a single pair, we
need a very large q and thus the candidate may be the
pair density wave state proposed for strongly correlated
electron systems [83]. The relevance of our results in such
finite COM pairing states will be discussed in Sec. VII B.

VI. ORIGIN OF THE QUANTIZED BERRY
PHASE

In the results of s-wave and d-wave superconductors
presented in Secs. IV and V, the point nodes appear in
a wide range of the COM momentum q even under su-
percurrent. We have also shown that they are protected
by the quantized Berry phase. Below, we explain that
the protection can be understood from the classification
of topological phases.

To understand the effect of supercurrent, we need to
consider the spatial symmetry related to the current.
For this purpose, we use the results of AZ+I classifi-
cation, which gives the information of possible topolog-
ical phases under the composite symmetry of Altland-
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(a)  β = 0,  (qx, qy) = (0, 0) (b)  β = 0,  (qx, qy) = (0.1, 0)

(c)  β = 0.3,  (qx, qy) = (0, 0) (d)  β = 0.3,  (qx, qy) = (0.1, 0) (f)  β = 0.3,  (qx, qy) = (0.1, 0) (h)  β = 0.3,  (qx, qy) = (0.1, 0)
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(2) (2)

E
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(e)  β = 0,  (qx, qy) = (0.1, 0) (g)  β = 0,  (qx, qy) = (0.1, 0)

(b) 

(a) (c) 

(d) 

0

0

-0.2
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0.2

0.2

-0.4

-0.4

0.4

0.4

C=-4

C = 0

C = 0

C=4

E3-E2

FIG. 7. Results for the d-wave superconductors [Eqs. (14) and (15)]. (a) The energy gap E3(k)− E2(k) for q = (0.1, 0) and
β = 0, where En(k) is the energy eigenvalues of the BdG Hamiltonian (n = 1, · · · , 4 and En > E′n for n > n′). The intense
two spots represent the nodes shown in the panel (a). (b) Berry phase [Eq. (13)] for q = (0.1, 0) and β = 0. The plotted value
is divided by π. The integration path is each square denoted by the dotted lines. (c) Quasiparticle spectra for q = (0.4, 0)
and β = 0.3 with a finite size only in the y-direction (500 sites). The red (blue) symbols correspond to the open (periodic)
boundary condition. (d) Topological phase diagram for β = 0.3, where the Chern number [Eq. (18)] is plotted. For all panels,
we set the hopping amplitude t as the energy unit and the other parameters are t′ = 0.2, µ = −0.7, α = 0.3, ∆d = 0.5 and
∆p = 0.2.

Zirnbauer-type (onsite) symmetry and inversion symme-
try [84]. Although the inversion symmetry is broken in
our models of s-wave and d-wave superconductors, the
twofold rotational symmetry C2z instead plays an impor-
tant role since it transforms k to −k in two-dimensional
systems, like the inversion symmetry. Indeed, the C2z

symmetry matrix defined by

C2z =

(
iσz 0
0 −iσz

)
,

satisfies that C†2zHBdG(k; q)C2z = HBdG(−k;−q). Fur-
thermore, the time-reversal (T ) and the PH sym-
metry (Cph) are the essential antiunitary symme-
try for the AZ+I classification. We can eas-
ily check that T and Cph defined in Eq. (10)
follow that T †HBdG(k; q)T = HBdG(−k;−q) and

C†phHBdG(k; q)Cph = −HBdG(−k; q), respectively.
Strictly speaking, we should use the word “symmetry”

only for the operators that do not change the COM mo-
mentum q, since we treat q as a parameter representing
the applied supercurrent. In this sense, only Cph is the
real symmetry, whereas C2z and T are not symmetry ex-
cept for q = 0.

Let us move on to the actual AZ+I classification.
In order to characterize the point nodes, we consider
the topological invariant defined on the one-dimensional
closed path encircling the nodes in the Brillouin zone.
Therefore, the information of the symmetry that pre-
serves any k point is necessary. According to the above
discussions, only the combined symmetry TC2z satis-
fies the condition, even when supercurrent is applied:
(TC2z)

†HBdG(k; q)(TC2z) = HBdG(k; q). Also, the
TC2z symmetry squares to +1. Note that there is no
PH-like nor chiral-like symmetry conserving the momen-
tum k under the finite supercurrent. Based on Ref. [84],
the symmetry configuration corresponds to the AI class
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FIG. 8. Results of the d-wave superconductors [Eqs. (14) and (15)] in the large-q regime. (a) Chern number for 0 < qx < π and
qy = 0. (b) Quasiparticle spectrum for q=(2.84, 0) denoted by the red arrow in the panel (a). We set the hopping amplitude t
as the energy unit and the other parameters are t′ = 0.2, µ = −0.7, α = 0.3, ∆d = 0.5 and ∆p = 0.2.

with Z2 topology, which is represented by the quantized
Berry phase in Eq. (13). That is why the point nodes can
be characterized by the quantized Berry phase [Figs. 4
(d) and 7 (b)]. There are other types of phases in the
periodic table, and it will be an interesting direction to
study the other topological phase transitions and non-
trivial nodal structures in current-driven superconduc-
tors based on the classification data.

VII. DISCUSSION

A. Experimental setup

We discuss the experimental setup for the
supercurrent-induced topological phase transitions.
First, we consider the candidate materials. For our
predictions in s-wave and d-wave superconductors,
the Rashba SOC plays an essential role, and thus
two-dimensional thin films of superconductors fabricated
on substrates are good candidates [22]. To realize
fully-gapped TSCs with supercurrent in the d-wave
case, we need to break the TC2z symmetry. In Sec. V,
we have considered a perturbation (17), which breaks
the mirror symmetry in the x-direction. One possible
way to break the mirror symmetry is to use twisted
double-layered cuprate thin films [40, 85]. Also, using
a substrate lacking mirror symmetry might be another
way. Since the symmetry is broken in materials with
lower symmetry or with adding adequate perturbations,
such as external fields, there are various possibilities. It
is an important direction to search for good candidate
materials and setups.

As for the application of supercurrent, we have to pay
attention to the following two points. One is that super-
current runs only near the surface of samples due to the
Meissner effect [34], though we assume in our theory that
the finite COM momentum q arises uniformly in space.
To realize the uniform current, we can use a narrow strip

with a width of 0.1-1.0 µm order. For two-dimensional
superconductors, the length scale of the current-carrying
area is given by the Pearl length Λ = 2λ2/d where λ
is the magnetic penetration depth and d is the sample
thickness [86, 87]. Using a sample narrower than the
Pearl length Λ, the current distributes almost uniformly
in the sample. Although the Pearl length is the order of
0.1-1 µm, it is possible to make a sample smaller than the
length scale thanks to the development of the nanopat-
terning techniques for superconductors [88–90]. Indeed,
in experiments for cuprate superconductors [88] and iron-
based superconductors [89, 90], this type of sample is re-
alized and the results support the spatially uniform cur-
rent. Another way is to see the center region of samples,
narrow but broader than the Pearl length [37]. Due to
the incomplete Meissner effect, a small but finite current
may almost uniformly flow in this region.

The other point is that the transition momentum qT
must be smaller than the critical momentum qc, which
corresponds to the critical current jc. To obtain the
larger effect of supercurrent, systems with larger critical
current are desirable. For this purpose, it is important
to use thin, narrow, and clean samples in order to avoid
the incursion of magnetic vortices. This is because the
vortex flow induces a dissipative current, and jc typi-
cally becomes very small. Indeed, such samples avoiding
vortices are used in experiments, and the large critical
current, called depairing current [34], is observed [88–
90]. However, even if we avoid the above difficulty, there
are still problems. In particular, the depairing current
for s-wave superconductors is determined by the Lan-
dau’s criterion for superfluidity [34, 46], indicating that
the gapless state is unstable. Thus, the s-wave case in
Sec. IV might be difficult to be realized, since the topo-
logical phase transition occurs at the gapless transitions,
i.e., qT ' qc. Though, it is difficult to conclude it from
the following reasons. (i) It is known that the depair-
ing current can depend on the sample detail, such as the
sample geometry [87, 88, 91], and there might be a way
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to obtain a larger critical current. (ii) The s-wave pair-
ing is the most widely realized in superconductors, and
this point can be advantageous for searching the candi-
date materials. On the other hand, to avoid the problem
of qT ' qc, the d-wave case is suitable. This is because
the infinitesimal supercurrent realizes topological phase
transition qT = 0 and thus qT < qc is always satisfied
under the supercurrent flow. For this case, we need to
break the TC2z symmetry to realize the phase transition.

We also discuss the experimental methods. The most
direct evidence for the topological phase transition is the
edge modes. To observe them, scanning tunnel micro-
scope or angle-resolved photoemission spectroscopy work
as useful methods. Also, indirect but strong evidence
is to detect the change in the structure of the super-
conducting gap. To detect it, the transport or optical
measurements, which can capture the information away
from the Fermi level, are expected to be useful. This is
because the change of the gap nodes does not occur at
the Fermi energy due to the Doppler shift. In addition,
the Bogoliubov Fermi surfaces (BFS) can appear under
a supercurrent, and the thermodynamic properties are
expected to be dominated by the BFS. Thus, we need to
access the information of the excited state.

B. Relevance to finite COM pairing states

We briefly comment on the finite COM pairing states.
In this study, we consider the BdG Hamiltonian with a fi-
nite COM momentum q as a model for the current-driven
superconductors and treat q as a controllable external
field. The mean-field Hamiltonian is formally the same
as the finite COM pairing states, spontaneously realized
without using any external current source.

Our mean-field Hamiltonian [Eq. (1)] is the same as the
FF superconductivity [54], where the Cooper pair has a
single COM momentum and the inversion symmetry is
spontaneously broken. Thus, when the FF superconduc-
tivity is realized and the COM momentum exceeds the
transition momentum qT , there occurs the topological
phase transition. Since the COM momentum of the FF
state is typically small in the order of inverse coherence
length, this is a suitable platform for the d-wave super-
conductors, where qT is zero. For this direction, a good
candidate can be CeCoIn5, where the d-wave supercon-
ductivity is established [92] and the Fulde-Ferrel-Larkin-
Ovchinnikov (FFLO) state is expected to be realized [93].
Note that the single-q FF state is expected to be sta-
bilized under the application of a small current to the
double-q Larkin-Ovchinnikov state. Another good can-
didate is odd-parity magnetic multipole systems. Previ-
ous studies have shown that the FF state, rather than
the LO state, coexisting with an odd-parity magnetic
quadrupole order is stabilized without an external mag-
netic field in spin-orbit coupled superconductors [94, 95].
Since the COM momentum can be tuned by the magni-
tude of the magnetic moments, the odd-parity magnetic

multipole systems could also be a good platform to realize
the supercurrent-induced topological phase transition.

To realize a large COM momentum beyond the Lau-
dau’s criterion, the pair-density wave (PDW) supercon-
ductors [83] are promising. The PDW state is essentially
the same as the FFLO state except for one difference
that the pairing amplitude modulates in the scale of the
lattice constant, while the length scale of the modulation
in the FFLO state is the order of the coherence length.
The short length scale means the large COM momentum.
The appearance of the PDW states has been discussed
in strongly correlated materials including cuprates and
CeCoIn5 [83]. Investigating the topologically non-trivial
states predicted in our study, such as the |C| = 1 state
in the large-q regime, will be interesting.

VIII. CONCLUSION AND OUTLOOK

In this paper, we have studied the topological phase
transitions in the quasiparticle spectrum of the current-
driven superconductors. Taking the effect of supercur-
rent into account as the COM momentum q, we have
studied three prototypical examples, the Kitaev chain, s-
wave superconductors, and d-wave superconductors. The
results show that all the models exhibit topological phase
transitions induced by supercurrent. This suggests that
the mechanism of the supercurrent-induced topological
phase transition is generic and widely applicable to var-
ious materials. We have also found that the protection
of the gap nodes under a finite current is related to the
composite symmetry TC2z, and this tells us what kind of
perturbation is useful for controlling the structure of the
nodes with supercurrent. In addition, we have addressed
the experimental setup to verify our prediction and the
relevance to the finite COM pairing states.

In addition to the future issues we already mentioned
in Sec VII, we have two important future directions. One
is to extend our analysis to a wide range of materials.
While we have studied one- and two-dimensional systems,
it is important to study other examples, such as multilay-
ered systems or three-dimensional materials, since they
are also important platforms to study novel supercon-
ductivity. The other is to propose a setup more feasible
in order to realize in experiments. As we discussed in
Sec. VII A, there still exist several difficulties, although
we can consider several possible setup for the experimen-
tal observation of the current-induced topological phase
transitions. It is important to search for a new setup for
overcoming the difficulties. We hope that our work opens
new research directions to control the topological phases
of matter and to realize a novel TSC.
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Appendix A: Relation between the winding number
and the Berry phase

In this Appendix, we show that there exists a rela-
tion between the winding number [Eq. (11)] and the
Berry phase [Eq. (13)], when both indices are well-defined
(i.e., the COM momentum q is parallel to the x- or y-
direction). The relation is given by

γ

π
= w(kx) (mod 2π), (A1)

where the Berry phase in the LHS and the winding num-
ber in the RHS are defined on the same closed path C,
namely, C = {(0, ky)| − π ≤ ky < π} or {(π, ky)| − π ≤
ky < π}. In the following, we prove Eq. (A1) based on
discussions in Ref. [96].

As mentioned in Sec. IV, the chiral symmetry Γ (Γ2 =
+1) is preserved on the path C:

{HBdG(k),Γ} = 0, k ∈ C. (A2)

Therefore, the spectrum of the BdG Hamiltonian for k ∈
C is symmetrical about the zero energy, which indicates
the number of the positive eigenvalues is the same as that
of the negative ones: N+ = N− =: N . In the model of s-
wave superconductors, N is equal to 2. Let {|u±n̂ (k)〉}Nn̂=1
be a set of the positive (negative) eigenstates of the BdG
Hamiltonian. By using this, we define a Q-matrix as

Q(k) :=

N∑
n̂=1

[
|u+
n̂ (k)〉〈u+

n̂ (k)| − |u−n̂ (k)〉〈u−n̂ (k)|
]
, (A3)

which means spectral flattening of the Hamiltonian. Let
us consider a basis set diagonalizing the chiral symmetry,

Γ = diag(

N︷ ︸︸ ︷
+1, . . . ,+1,

N︷ ︸︸ ︷
−1, . . . ,−1). (A4)

Then the Q-matrix becomes off-diagonal,

Q(k) =

(
0 q(k)

q†(k) 0

)
, q(k) ∈ U(N), (A5)

which corresponds to Eq. (12).
Now we consider the Berry connection of the chiral-

symmetric Hamiltonian. Since the equation

Q(k) |u±n̂ (k)〉 = ± |u±n̂ (k)〉 , (A6)

is satisfied, the Bloch state is represented by, after some
algebra,

|u±n̂ (k)〉 =
1√
2

(
±q(k)η±n̂

η±n̂

)
. (A7)

Therefore, the N -dimensional space spanned by the oc-
cupied states {|u−n̂ (k)〉}Nn̂=1 can be obtained by N or-

thonormal vectors η±n̂ . Although η±n̂ in general depends
on k, we can always choose k-independent orthonormal
vectors; for convenience, we choose (η±n̂ )m̂ = δn̂m̂ in the
following discussions. In this gauge, the Berry connection
is calculated as

A±n̂ (k) := 〈u±n̂ (k)|∇ku
±
n̂ (k)〉

=
1

2

[
〈η±n̂ q

†(k)|∇k|q(k)η±n̂ 〉+ 〈η±n̂ |∇k|η±n̂ 〉
]

=
1

2
[q†(k)∇kq(k)]n̂n̂. (A8)

The Berry phase is finally calculated by

γ =
1

i

∑
n̂

∮
C

dk ·A−n̂ (k)

=
1

2i

∫ π

−π
dkytr[q†(k)∂kyq(k)]

=
1

2
Im

[∫ π

−π
dky∂ky ln det q̂(k)

]
= πw(kx) (mod 2π). (A9)

Although we have made the specific choice of the gauge
in the above calculations, the Berry phase modulo 2π
is invariant under gauge transformation. Therefore, we
have proved that the relation (A1) holds for any gauge
choice.

Appendix B: Perturbation theory around the nodes

We evaluate the current-induced gap around the nodes
in d-wave superconductors in a perturbative way, using
the result obtained in Ref. [53]. First, we use the follow-
ing Nambu basis,

Ψ̃k;q = (ck+q,↑, ck+q,↓, c
†
−k+q,↓,−c

†
−k+q,↑)

T . (B1)

Using this basis, the mean-field Hamiltonian Eq. (2) is

written as H = (1/2)
∑

k Ψ̃†k;qH̃BdG(k; q)Ψ̃k;q with

H̃BdG(k; q)=

(
HN (k + q) ∆̃(k)

∆̃†(k) −THN (k + q)T−1

)
, (B2)

where ∆̃(k) = −∆(k)(iσy) and T is the time-reversal
operator acting as THN (k + q)T−1 = iσyH

∗
N (−k +

q)(−iσy). σ = (σx, σy, σz) are the Pauli matrices in the
spin space.

Next, we expand HN (k) and ∆̃(k) as HN (k) =

ξ(k)σ0 + g(k) · σ and ∆̃(k) = ψ(k)σ0 + d(k) · σ, with
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the identity matrix in the spin space σ0. We assume
ξq(k) and gq(k) are parity-even and parity-odd, respec-
tively. This assumption is valid when the time-reversal
symmetry exists before applying supercurrent, which is
the case we consider in this study. Then, we obtain the
BdG Hamiltonian up to the first order of q = |q| as

H̃BdG(k; q) = HN (k)⊗ τz + ∆̃(k)⊗ τx + ξ′q(k)σ0 ⊗ τ0
+ g′q(k) · σ ⊗ τ0 +O(q2), (B3)

where

ξ′q(k) =
∑
i=x,y

qi
∂ξ(k)

∂ki
, g′q(k) =

∑
i=x,y

qi
∂g(k)

∂ki
. (B4)

Here, τ0 and τ = (τx, τy, τz) are the identity matrix
and the Pauli matrices in the Nambu space. Note that
ξ′q(k) and g′q(k) are parity-odd and parity-even, respec-
tively. In Eq. (B3), the third and fourth terms repre-
sent the leading effect of supercurrent. The third term is
proportional to the 4 × 4 identity matrix and gives the
momentum-dependent energy shift. This term deforms
the energy spectrum but does not affect the structure
of nodes. In contrast, the fourth term is spin-dependent
and can give a non-trivial effect on the gap nodes.

For understanding the effect of supercurrent, it is use-
ful to compare it with the effect of the Zeeman magnetic
field. Using the Nambu basis (B1), the BdG Hamiltonian
under the Zeeman field h is given by

H̃BdG(k)=HN (k)⊗ τz + ∆̃(k)⊗ τx + h · σ ⊗ τ0. (B5)

We can see that the third term in Eq. (B5) with re-
placement h → g′q(k) is the same as the fourth term
in Eq. (B3). Using this correspondence, we apply the re-
sults for the Zeeman magnetic field obtained in the pre-
vious works. In Ref. [53], the quasiparticle spectrum of
the BdG Hamiltonian (B5) is obtained based on the per-
turbation theory, and we use it to evaluate the current-
induced gap. As a result with considering the energy shift
by ξ′q(k) in Eq. (B3), the quasiparticle spectrum under

supercurrent is given as

E(+)
q,±(k)=ξ′q(k)−g′q(k)·ĝ(k)±

√
E(+)(k)2 + |∆(+)

q (k)|2,
(B6)

E(−)
q,±(k)=ξ′q(k)+g′q(k)·ĝ(k)±

√
E(−)(k)2 + |∆(−)

q (k)|2,
(B7)

where

E(±)(k) = ξ(k)± |g(k)|, ĝ(k) = g(k)/|g(k)|, (B8)

i∆(±)
q (k) = ψ(k)± d(k) · ĝ(k) + i

g′q(k) · ĝ(k)× d(k)

|g(k)|
.

(B9)

Note that there are four bands E(+)
q,+(k), E(+)

q,−(k), E(−)
q,+(k),

and E(−)
q,−(k), since our BdG Hamiltonian is a 4×4 matrix.

These formulae are derived based on these assumptions,

|ψ(k)| � |g(k)|, |d(k)| � |g(k)|, (B10)

|g′q(k)| � |g(k)|. (B11)

When the SOC gives an essential effect on the supercon-
ducting gap, the two assumptions (B10) are valid except
for the zeros of g(k). Thus, it is expected to be satisfied
near the gap nodes in general. The assumption (B11)
is valid with a sufficiently small supercurrent, which is
nothing but the case we are considering here.

We want to evaluate the current-induced gap around
the nodes. These nodes are characterized by the mo-

menta satisfying E(±)
q=0,+(k0) − E(±)

q=0,−(k0) = 0. With

Eqs. (B6) and (B7), we can show

E(±)(k0) = 0, ψ(k0)± d(k0) · ĝ(k0) = 0. (B12)

Using the momenta of the nodes k0, the current-induced

gap is defined as ∆
(±)
node(q) = |E(±)

q,+(k0)−E(±)
q,−(k0)|. Using

the relations in Eq. (B12), we can evaluate ∆node(q) =

∆
(+)
node(q) = ∆

(−)
node(q) as

∆node(q) = 2

∣∣∣∣g′q(k0) · ĝ(k0)× d(k0)

g(k0)

∣∣∣∣+O(q2). (B13)

This is the formula (16) in the main text.
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