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We study higher-spin (S ≥ 1) generalization of the one-dimensional Kondo-Heisenberg model, in which the
local spin-S moments of the Kondo lattice model interact with each other via the antiferromagnetic Heisen-
berg interaction (JH), by analytical and numerical methods. The strong-coupling (i.e., large Kondo-coupling)
expansion maps out an insulating phase at half-filling whose magnetic correlation depends on the parity of 2S
as well as a ferromagnetic metallic phase which dominates the strong-coupling region at generic fillings. Then,
we carried out the Density-Matrix Renormalization Group (DMRG) simulations for S = 1 to closely investi-
gate the phase structure at large but finite Kondo coupling. At half-filling, the Kondo coupling and JH do not
compete and the insulating spin-gapless phase is stable, while the competition of the two leads to a stepwise
collapse of the strong-coupling ferromagnetism via an intervening dimerized insulating phase with power-law
spin correlation at quarter-filling.

I. INTRODUCTION

Heavy fermion systems are typical examples of the strongly
correlated electron systems [1, 2], where the interaction
among electrons plays crucial roles. In heavy fermion sys-
tems, the interaction among electrons results in quasi-particles
with large effective mass, and realizes a variety of ground
states depending on materials. One of the standard minimal
theoretical models of heavy fermion system is the Kondo lat-
tice (KL) model (see, e.g., Refs. [3, 4], for reviews), in which
tight-biding electrons interact with localized spins through the
exchange interaction. Historically, the Kondo lattice model
is derived from the Kondo model, where a single magnetic
impurity exists in conduction electron system. In the ground
state of the Kondo model, the conduction electron strongly
couples to the impurity thereby screening its magnetic mo-
ment by forming the spin-singlet state (the Kondo singlet) [5].
On the other hand, when there are many magnetic impurities,
the competition between the long-range spin-spin interaction
mediated by the conduction electrons (the RKKY interaction
[6–8]) and the Kondo screening is expected. The resulting
global phase structure is summarized in the celebrated Do-
niach phase diagram [9]. The minimal lattice model that al-
lows us to study the competition between the Kondo screen-
ing and the formation of magnetic order is the Kondo lattice
model whose Hamiltonian is given by [9]:

ĤKL = −t
∑
i,α

(
c†i,αci+1,α + H.C.

)
+ JK

∑
i

~si · ~Si

=: Ĥe + ĤK .

(1)

In Eq. (1), ci,α (c†i,α) denotes the annihilation (creation) op-
erator of the conduction electron with spin α =↑, ↓ at site i.
The first term Ĥe is the kinetic energy (the hoping term) of the
conduction electron, while the second describes the exchange
interaction between the spin ~si = c†i,α[~σ]αβci,β/2 of the con-
duction electron (the symbols ~σ denote the Pauli matrices and
the summation over repeated indices is implied) and the local-
ized spin ~Si (spin-S) at the same site, which is known as the

Kondo coupling. Since the localized spins ~Si in the Kondo
lattice model (1) originate from the spin degree of freedom of
d or f -electrons, the case S = 1/2 has been mainly studied
[3, 10]. It has been also proposed that the model (1) itself
can be quantum-simulate in a well-controlled manner using
alkaline-earth-like fermionic cold atoms (e.g., 171Yb) loaded
on optical lattices [11, 12].

Recently, the possibility that the S = 1 Kondo lattice model
with a uniaxial anisotropy under a transverse magnetic field
can describe the coexistence of ferromagnetism and super-
conductivity in materials like URhGe has been pointed out
[13, 14]. This motivates us to study the Kondo lattice model
with spin S larger than 1/2 and broaden the range of materi-
als to which the Kondo lattice model can apply [15]. Another
interesting aspect of considering the higher-spin (S) gener-
alization is that, in one dimension, the magnetically-ordered
region of the Doniach phase diagram may exhibit intrinsically
different properties depending on, e.g., the parity of 2S.

On top of considering higher-spin cases, we shall incorpo-
rate below the direct interaction between the adjacent local-
ized spins. Here, by “direct” we mean that the spin-spin inter-
action is not mediated by the conduction electrons. In order
to incorporate these two generalizations to the Kondo lattice
model, we consider the following spin-S Kondo-Heisenberg
(KH) Hamiltonian [16–18]:

ĤKH =− t
∑
i,α

(
c†i,αci+1,α + H.C.

)
+ JK

∑
i

~si · ~Si

+ JH

∑
i

~Si · ~Si+1

=:Ĥe + ĤK + ĤH .

(2)

The first two terms Ĥe and ĤK are common to the two models
ĤKL (1) and ĤKH (2). The last term ĤH (JH > 0) is the di-
rect antiferromagnetic interaction between the adjacent local-
ized spins mentioned above. Physically, this interaction cor-
responds to the superexchange interaction among f electrons
which would arise when small hopping of the f -electrons is
taken into account.
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In the case S = 1/2 and 0 < n < 1 of the KL model (1),
the electron motion favors ferromagnetism when JK is suf-
ficiently large [19, 20]. One of the important effects of the
JH term is to suppress this ferromagnetic ground state and
stabilize the paramagnetic one [21]. Another interesting ef-
fect is that moderate JH term can open the spin gap even
away from half-filling 0 < n < 1 [22]. The KH model
(2) with the localized spin-1/2 has been studied in the con-
text of, e.g., the uranium-based heavy-fermion superconduc-
tors [23], the pair density wave in superconducting state of
La2−xBaxCuO4 [22], and the topological Kondo insulators
[24–26]. The model ĤKH with S = 1/2 is also used as a
simplest model that may describe the interplay between two
different orders in a certain class of organic compounds [e.g.,
(Per)2Pt(mnt)2] in which the systems consist of partially-filled
metallic part and half-filled insulating one [27–29].

Yet another motivation to study the KH model ĤKH is re-
lated to the physics of open quantum systems. Instead of
viewing it as a generalization of the Kondo lattice model (1),
we can think of the KH model (2) as the spin-S Heisen-
berg chain (ĤH) coupled to the environment (Ĥe) of the con-
duction electrons through the Kondo coupling. In fact, the
ground state of the spin-S Heisenberg chain is known to be
deeply connected to topology [30, 31] and is quite interest-
ing in its own right. For example, the gapped ground state of
the S = 1 Heisenberg chain is one of the typical examples
of the symmetry-protected topological (SPT) phases [32, 33],
which can be used as the resource states of the measurement-
based quantum computation [34]. This motivates us to study
the effects of coupling non-trivial (topological) many-body
states hosted in the localized spin system to a gapless envi-
ronment (i.e., the conduction electrons). The investigation of
the robustness of the SPT states against perturbation from the
environment through the KH model (2) would be a very im-
portant theme also from the quantum-computational point of
view and will be discussed elsewhere. As the first step toward
the understanding of the physics of the genralized KH model
(2), we study in this paper its phase structure in the region of
strong Kondo coupling where we can determine the ground-
state properties accurately (sometimes rigorously).

The organization of the rest of the paper is as follows. In
Sec. II, we derive the low-energy effective Hamiltonian in the
strong-coupling region (i.e., JK � t, JH) both at half-filling
and away from half-filling, which gives an important insight
into the structure of the phase diagram. In particular, we will
show that, in the strong-coupling region, the ferromagnetic
phase is generically stabilized (except at half-filling) through
a mechanism similar to the double-exchange interaction and
that this tendency competes with antiferromagnetism stabi-
lized by the direct antiferromagnetic interaction JH.

In Sec. III, in order to investigate this competition between
the ferromagnetism and the JH-induced antiferromagnetism,
we carry out numerical density-matrix-renormalization-group
(DMRG) simulations [35–37] combined with the sine-square-
deformation (SSD) technique [38–40] for the special case of
S = 1 to find that the competition indeed stabilizes a new
dimerized (i.e., bond-centered) phase with power-law spin
correlation and a finite charge gap. We summarize the main

results in Section IV, and some technical details including the
proof of ferromagnetism are presented in the appendices.

II. STRONG-COUPLING EFFECTIVE HAMILTONIAN

In this section, we carry out the perturbation theory from
the strong-coupling limit (JK →∞) to derive the low-energy
effective Hamiltonian that enables us to map out the strong-
coupling phases. Since ĤKH can commute with the total elec-
tron number Ne =

∑
i,α c

†
i,αci,α =

∑
i ni, the electron den-

sity n = Ne/L (with L being the system size) of the con-
duction electrons is a conserved quantum number to be fixed.
Moreover, since the particle-hole transformation ci,α ↔ c†i,α
maps the KH model at filling n onto the same model at filling
2−n as in the KL model [3], we can safely restrict ourselves to
n ≤ 1 without the loss of generality. Another important con-
served quantum number is: T ztot =

∑
i T

z
i =

∑
i(s

z
i + Szi ).

Throughout this paper, we reserve the notation ~Ti to denote
the composite spin on each site:

~Ti := ~si + ~Si . (3)

To be specific, unless otherwise stated, we set S = 1 in what
follows, although the generalization to arbitrary S is straight-
forward. Some of the generalizations are discussed in appen-
dices.

A. Half-filling (n = 1)

1. Strong-coupling ground state

At half-filling n = 1, the number of conduction electrons
Ne equals to the number of the sites L. In the strong-coupling
limit JK → ∞, where we can ignore the other two terms Ĥe

and ĤH, we can find the ground state of ĤK by minimizing
the Kondo coupling JK~si · ~Si site by site; the ground state has
no doubly-occupied or vacant sites, and at each site the spin-
1/2 from a conduction electron and the localized spin-1 form
a doublet:

|⇑〉i :=

√
2

3

∣∣∣∣ ↓1
〉
i

−
√

1

3

∣∣∣∣ ↑0
〉
i,

|⇓〉i :=

√
2

3

∣∣∣∣ ↑−1

〉
i

−
√

1

3

∣∣∣∣ ↓0
〉
i

.

(4)

On the right-hand sides of (4), we have introduced the sym-
bols

∣∣ α
Sz

〉
i

to denote the tensor-product state |α〉i,c-electron ⊗
|Sz〉i,local spin with |α〉 being one of the four electronic states

|emp〉 = |0〉, | ↑〉 = c†i,↑|0〉, | ↓〉 = c†i,↓|0〉, and | ↑↓〉 =

c†i,↑c
†
i,↓|0〉, and Sz = ±1, 0. From now on, we call this ef-

fective spin-1/2 state as the Kondo doublet. In addition, as
the Kondo doublets at the individual sites do not interact with
each other in this limit, the ground state of the entire system
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is 2L-fold degenerate; all the possible tensor-products of these
local Kondo doublet states⊗i|A〉i (A =⇑,⇓) span the basis of
the huge ground-state eigenspace Hhf in the strong-coupling
limit.

2. Perturbation theory from strong-coupling limit

Now, we consider the parameter region where the Kondo
coupling is finite but still much larger than the other two terms,
i.e. where the hopping term and the Heisenberg term can be
viewed as the small perturbation.

(i) Second-order perturbation in the hopping t. At half-
filling, the first-order perturbation of the hopping term is
prohibited because the application of the hopping to the
unperturbed ground state always gives rise to the states with
exactly one pair of a doubly-occupied and a vacant (“emp”)
sites which is out of the ground-state subspace:

c†i+1,↑ci,↑ |⇑〉i ⊗ |⇑〉i+1 = −
√
2
3

∣∣∣∣ emp
0

〉
i

⊗
∣∣∣∣ ↑↓1

〉
i+1

,

c†i+1,↑ci,↑ |⇑〉i ⊗ |⇓〉i+1 = 1
3

∣∣∣∣ emp
0

〉
i

⊗
∣∣∣∣ ↑↓0

〉
i+1

,

c†i+1,↑ci,↑ |⇓〉i ⊗ |⇑〉i+1 = 2
3

∣∣∣∣ emp
−1

〉
i

⊗
∣∣∣∣ ↑↓1

〉
i+1

,

c†i+1,↑ci,↑ |⇓〉i ⊗ |⇓〉i+1 = −
√
2
3

∣∣∣∣ emp
−1

〉
i

⊗
∣∣∣∣ ↑↓0

〉
i+1

.

(5)

Here, the sign of the right-hand side comes from the definition
of the doubly-occupied state |↑↓〉i = c†i,↑c

†
i,↓ |emp〉i. There-

fore, we need to go to the second-order perturbation in the
hopping t to find the effective interaction among the Kondo
doublets.

As is illustrated in Fig. 1, the second-order process con-
sists of (i) hopping from i to i + 1 (from i + 1 to i) that
excites ĤK to the intermediate state with exactly one pair of
a doubly-occupied and a vacant sites, and (ii) hopping from
i + 1 to i (from i to i + 1). Therefore, the second-order
processes induce the following transitions among the four
states (|⇑⇑〉 |⇑⇓〉 |⇓⇑〉 |⇓⇓〉) of the neighboring Kondo dou-
blets (i, i+ 1):

PG.S.

 ∑
α=↑,↓

c†i,αci+1,α + H.C.


× 1

EG.S. − ĤK

(∑
α

c†i+1,αci,α + H.C.

)
PG.S.

= − t2

9JK

 4 0 0 0
0 5 −1 0
0 −1 5 0
0 0 0 4

 ,

(6)

where EG.S. = −JKL is the ground-state energy of ĤK and
PG.S. is the projector onto the ground-state subspace. In deriv-
ing the above, we have used the fact that we can substitute the
denominatorEG.S.−ĤK on the left-hand side with the constant
−2JK because any allowed intermediate states have exactly

(i) (ii)

(iii-a)

(iii-b)

FIG. 1. A process of second-order perturbation of hopping term.
(i)One of neighboring sites in the non-perturbed ground state. Thick
arrow in an oval descibes a Kondo doublet in the strong-coupling
limit. (ii) shows a possible first-order process. This picture describes
the state after an electron with up-spin hops from the left site to the
right one. This state is not included in vastly degenerated ground
states. (iii)Second-order process. We can take two possible ways to
back to the eigenspace which is spanned by non-perturbed ground
states.

one pair of a doubly-occupied and a vacant sites each of which
contributes the energy cost JK. Similar effective interactions
arise from any neighboring doublet pairs (i, i + 1), and we
finally obtain the following effective antiferromagnetic spin
exchange among the Kondo doublets:

∑
i

(
2t2

9JK
~Di · ~Di+1 −

t2

2JK

)
. (7)

Here, ~Di denotes the spin-1/2 operator for the Kondo doublet
at site i.

(ii) First-order perturbation in the Heisenberg interaction JH.
On top of the second-order kinetic exchange, there is the
contribution from the Heisenberg term ĤH. As the Heisen-
berg interaction JH does not change the electronic state,
it can generate first-order processes within the half-filled
ground-state subspace Hhf. In the basis (4) spanning Hhf, the
matrix elements of the localized spin-1 operators ~Si are:

〈⇑|i S
z
i |⇑〉i = 2/3 = 4/3 〈⇑|iD

z
i |⇑〉i

〈⇑|i S
z
i |⇓〉i = 〈⇓|i S

z
i |⇑〉i = 0

〈⇓|i S
z
i |⇓〉i = −2/3 = 4/3 〈⇓|iD

z
i |⇓〉i ,

(8)

〈⇑|i S
+
i |⇑〉i = 〈⇓|i S

+
i |⇓〉i = 0

〈⇑|i S
+
i |⇓〉i = −4/3

〈⇓|i S
+
i |⇑〉i = 0 ,

(9)

which means that the localized spin ~Si projected onto Hhf is
given by ~Si

Hhf−−→ (4/3) ~Di [see Eq. (A8) for the expression for
general S]. Therefore, the first-order degenerate perturbation
of the Heisenberg term ĤH gives the following effective an-
tiferromagnetic spin exchange among the neighboring Kondo
doublets:

JH

∑
i

~Si · ~Si+1
Hhf−−→ 16

9
JH

∑
i

~Di · ~Di+1 . (10)
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Combining Eqs. (7) and (10), we obtain the following spin-
1/2 antiferromagnetic Heisenberg model for the Kondo dou-
blets as the strong-coupling effective Hamiltonian at half-
filling n = 1:

H
(n=1)
eff =

(
2t2

9JK
+

16

9
JH

) L∑
i=1

~Di · ~Di+1 + E0 . (11)

[with the constantE0 given by−(t2/2JK +JK)L]. Therefore,
the ground state of the half-filled KH model in the strong-
coupling region exhibits the quasi-long-range antiferromag-
netic order with gapless spinon excitations (a spin Luttinger
liquid) [41]. Moreover, as adding an electron or changing
the electron configuration in the ground state costs a finite
energy (∼ JK), the ground state is expected to be insulat-
ing. Hence, we conclude that the ground state of strongly-
coupled spin-1 KH chain at half-filling is an insulator with
power-law antiferromagnetic spin-spin correlation regardless
of the value of JH(� JK) [41]. This is in stark contrast to
the spin-gapped insulating ground state (the Kondo insulator)
found in the S = 1/2 KL model [42, 43].

In general, the spin sector of spin-S half-filled KH chain is
described effectively by the antiferromagnetic spin-(S− 1/2)
Heinseberg model for the partially-screened moments (see
Appendix A for the details):

H
(n=1)
eff

=

{
4t2

(2S + 1)2(S + 1)JK
+

(
2(S + 1)

2S + 1

)2

JH

}∑
i

~Si·~Si+1

(12)

where ~Si is the effective spin-(S−1/2) operator which re-
places the doublet ~Di in the case of S = 1. The ground state
of the above effective Hamiltonian depends on the value of
S [30, 31]; when 2S is even, the insulating ground state has
gapless spin excitations, while the ground state is fully gapped
(i.e., both the charge and spin gaps are finite) when 2S is odd.
This conclusion is consistent with that of a field-theory argu-
ment [44, 45]. In Sec. III A, we will numerically check this
prediction for S = 1 by increasing JH up to∼ JK while keep-
ing JK � t.

B. Other filling (n < 1)

Now let us consider the filling less than half-filling, i.e.,
Ne < L. In this case, the strong-coupling ground state is
LCNe × 2Ne × 3L−Ne -fold degenerate. This degree of degen-
eracy includes the value 2L at half-filling as a spacial case
Ne = L. Unlike at half-filling, there exist some sites with-
out conduction electrons (since n < 1, doubly-occupied sites
are not allowed in the strong-coupling ground state), and elec-
trons can move even in the limit JK → ∞. As we will see,
this difference dramatically changes the magnetism.

In deriving the effective Hamiltonian, we first note that the
Kondo doublets carry the spin degrees of freedom in contrast
to the case of spin-1/2 KL model [3], where the spin degrees of

freedom are quenched at the sites occupied by the conduction
electrons by forming the Kondo singlets. For these reasons,
at n < 1, the electron motion contributes to the magnetism
already at the first-order in t. The first-order effective Hamil-
tonian reads:

H
(n<1)
eff =− t

∑
i

{
d̂†i+1d̂i f

(S=1)
i→i+1( ~Di·~Si+1) n̂d,i(1− n̂d,i+1)

+ d̂†i d̂i+1 f
(S=1)
i+1→i(

~Si· ~Di+1) (1− n̂d,i)n̂d,i+1

}
,

(13)
where n̂d,i (= 0, 1) denotes the number of the Kondo doublets
at site i, which are created (annihilated) by the fermionic op-
erator d̂†i (d̂i), and the effective spin-dependent hopping am-
plitudes of the doublets are given by:

f
(S=1)
i→i+1( ~Di·~Si+1) = (2/3) ~Di · ~Si+1 + 1/3

f
(S=1)
i+1→i(

~Si· ~Di+1) = (2/3)~Si · ~Di+1 + 1/3
(14)

[see Eq. (B7) for the expression for general S]. The deriva-
tion of the above equation (13) and the generalization to the
arbitrary spin-S (≥ 1) are given in Appendix B.

The amplitude of the doublet hopping d̂†i±1d̂i in the Hamil-
tonian (13) takes its maximal value (−2t/3) when a doublet
(D = 1/2) and the localized spin (S = 1) on the adjacent
site are coupled ferromagnetically, which suggests a ferro-
magnetic ground state similar to that of the double-exchange
model [46–49]. In fact, as is discussed in Appendix C, exploit-
ing the non-positivity and the indecomposability of the effec-
tive Hamiltonian (13), we can rigorously show that the ground
state of the effective Hamiltonian (13) is unique (up to triv-
ial degeneracy associated with the rotational symmetry) and
ferromagnetic with the maximal total spin Stot = L − Ne/2
for 1 ≤ Ne ≤ L − 1. Hence, the ground state of the spin-
1 KL model in the strong-coupling region is ferromagnetic
for generic filling 0 < n < 1 (and for 1 < n < 2 by the
particle-hole symmetry) [in fact, the statement can be gener-
alized to arbitrary S ≥ 1 in which the maximal total spin
is Stot = LS − Ne/2 ; see Appendix C]. This is consis-
tent with the recent numerical observation for the spin-1 KL
model [13, 14]. The ferromagnetic phase in the large-JK re-
gion is reminiscent of the situation in the spin-1/2 KL model
[19, 20, 50, 51], but the way how the hopping of conduc-
tion electrons causes ferromagnetism is different from each
other; the mechanism of ferromagnetic ground state of spin-1
KL model (1) rather resembles the double-exchange interac-
tion first-order in t, while, in the latter case, the ferromag-
netism occurs through the second-order (∝ t2) effective in-
teractions [20]. The ferromagnetic-metal phase found in the
strong-coupling region persists down to JK → 0 at least in the
low-density (n → 0) limit as in the S = 1/2 case [52]. In
fact, it is straightforward to generalize the proof in Ref. [19]
to S ≥ 1 to show that the ground state of the single-electron
spin-S KL model is ferromagnetic.

Now let us consider the effects of the Heisenberg term ĤH.
By the same argument as that leading to (10), we see that the

projection ~̃Si of the localized spin ~Si onto the ground-state
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subspace is given by:

~̃
Si =

{
~Si when site-i is unoccuied
(4/3) ~Di when site-i is occuied .

(15)

Then, the first-order perturbation in JH results in the following
antiferromagnetic spin-spin exchange on the adjacent spins
(either S = 1 or S = 1/2 depending on how the individual
sites are occupied by the conduction electrons):

JH

∑
i

~̃
Si ·

~̃
Si+1 . (16)

Therefore, in the strong-coupling region of the KH model
(JH > 0), the ferromagnetic order found above for the KL
model may be destabilized by the antiferromagnetic interac-
tion generated by the Heisenberg term JH. A rough estimate
of the critical value of JH may be obtained by comparing
the spin-dependent hopping amplitude (14) and the projected
Heisenberg interaction (16): J c

H/t ∼ 1/2. A more precise cal-
culation for the two-site system shows that the ferromagnetic
ground state ends at JH/t = 1/6.

Note that the effects of the Heisenberg term ĤH is very dif-
ferent for n = 1 (half-filling) and n < 1; in the former, ĤH
stabilizes the antiferromagnetic correlation in the insulating
phase, while it competes with the hopping-assisted (double-
exchange) ferromagnetism in the latter. We will closely in-
vestigate this competition in the next section.

III. NUMERICAL RESULTS FOR KONDO-HEISENBERG
MODEL

In this section, we report the numerical results for a particu-
lar case of the spin-1 localized moments. To obtain the ground
state of the S = 1 KH model (2), we carried out density-
matrix renormalization group (DMRG) simulations using an
open source library ITenosr [53] for the DMRG algorithm. In
addition, in some DMRG simulations, we adopted the sine-
square-deformed Hamiltonian [38, 39] in order to reduce the
effects of the open boundary condition, in which the DMRG
algorithm works better [35, 36]. Specifically, we simulated
the following Hamiltonian instead of the original one (2):

HKH,SSD

= −t
i=L−1∑
i=1,α

f1(i)
(
c†i,αci,α + H.C.

)
− µ

i=L∑
i=1,α

f0(i)c†i,αci,α

+ JK

i=L∑
i=1

f0(i)~si · ~Si + JH

i=L−1∑
i=1

f1(i)~Si · ~Si+1 ,

(17a)

where the deformation functions are given by:

fl(i) = sin2
[
π

L

(
i+

l − 1

2

)]
(l = 0, 1) (17b)

and l = 0 (l = 1) is used for the on-site (on-bond) operators.
With the Sine-Square Deformation (SSD) [54], the vicinity

of the center of a finite system well approximates the bulk of
the infinite system. In our simulations, we considered finite
systems of the sizes L ≤ 100 under open boundary condition,
and set the block sizes m ≤ 720. In all the cases, we found
that the truncation errors were less than ∼ 10−7. Throughout
this section, we set t = 1 as the unit of energy.

A. half-filling

In Sec. II A, we have studied the ground state in the strong-
coupling limit (JK � t, JH), where the perturbation theory
in t and JH predicts that the ground state is insulating; the
low-energy physics is described, when S = 1, by the spin-
1/2 Heisenberg model (11), which indicates the power-law
antiferromagnetic spin-spin correlation. To check this for in-
creasing JH (0 ≤ JH . JK), we numerically investigate in this
section the ground-state spin-spin correlation at half-filling.
Specifically, we fixed JK/t = 10, and increased JH/t from
the Kondo-lattice limit (JH = 0) up to JH ∼ JK to calcu-
late the spin correlation between distant sites for each JH/t.
In doing so, we used the uniform (i.e., undeformed) Hamil-
tonian (2). The results for the correlation functions of (a) the
composite spins 〈~Ti·~Tj〉 [~Ti is defined in (3)] and (b) the lo-
calized spins 〈~Si·~Sj〉, as well as those for the spin-1 and 1/2
Heisenberg models, are plotted in Fig. 2.

FIG. 2. Correlation functions (log-log plots) of (a) the total spin
〈~Ti · ~Tj〉 := 〈(~si + ~Si) · (~sj + ~Sj)〉 and (b) the S = 1 localized
spins 〈~Si · ~Sj〉 in the ground state of the uniform (i.e., without SSD)
spin-1 KH model (2) at half-filling. Both are calculated at the fixed
JK/t = 10.0 for varying JH/t. For comparison, the spin-spin corre-
lation functions of the S = 1/2, 1 Heisenberg models are also plot-
ted (dashed curves). The zoom-up of the short-range part is shown
in the insets which clearly indicates the antiferromagnetic nature of
the correlation.

From the numerical results, we can first read off that the
composite-spin correlation function 〈~Ti·~Tj〉 essentially coin-
cides with the ordinary spin-spin correlation of the spin-1/2
Heisenberg chain (shown by the dashed line), up to fairly
large JH/t [see Fig. 2(a)]. As the system is insulating and
in the strong-coupling region, this quasi-long-range antiferro-
magnetic correlation is not attributed to the RKKY interaction
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which requires metallicity and is valid in the weak-coupling
regime. Rather, this implies that the strong-coupling picture
discussed in Sec. II A remains valid even for large JH(∼ JK),
suggesting that the Kondo doublets, which are well-defined
when JK � t, JH, are rather robust against the interaction
(JH) among the localized spins.

We can also confirm this persistence of the Kondo doublets
by the results shown in Fig. 2(b). According to the strong-
coupling argument in Sec. II A, the correlation function of the
localized S = 1 spins in the KH model (2) should behave like
that of the spin-1/2 Heisenberg chain (11):

〈~Si·~Sj〉KH
Hhf−−→ (4/3)2〈 ~Di· ~Dj〉Heisenberg . (18)

In fact, the plots in Fig. 2(b) clearly show that the localized-
spin correlation function 〈~Si·~Sj〉KH and the spin-spin corre-
lation function of the spin-1/2 Heisenberg chain (dashed line)
behave similarly [55] even when JH is fairly large; the correla-
tion function 〈~Si·~Sj〉KH exhibits behavior essentially different
from the short-range (i.e., exponentially-decaying) correlation
in the spin-1 Heisenberg chain which describes the physics
of the localized spins when JK = 0. All these suggest that
the exchange interaction JH does not really interfere with the
antiferromagnetism stabilized by the motion of the conduc-
tion electrons, and that the Kondo-doublet physics dominates
a wide range of the parameter space (i.e., 0 ≤ JH . JK) at
half-filling.

B. Away from half-filling

In the last section, we have seen that the inclusion of an-
tiferromagnetic JH does not essentially affect the insulating
ground state with gapless antiferromagnetic spinon excita-
tions at half-filling found in the strong-coupling limit. Away
from half-filling (i.e., 0 < n < 1), on the other hand, the
situation is very different. In fact, the strong-coupling argu-
ment tells us that the electron hopping tends to stabilize the
ferromagnetic ground state which may be eventually destabi-
lized by the antiferromagnetic interaction (16). In this sec-
tion, we consider various ground-state phases resulting from
the competition between the kinetic-energy-driven ferromag-
netism and the JH-induced antiferromagnetism. Specifically,
we fix JK large, i.e., JK/t = 5.0 and numerically investi-
gate the stability of the ferromagnetic order found in the KL-
model limit JH = 0 against the antiferromagnetic interaction
JH. As long as we know from the preliminary calculations,
the quarter-filling case n = 1/2 seems most interesting, and
we mainly focus on the case with n = 1/2 in this subsection
unless otherwise stated.

1. Magnetic properties

To investigate how the magnetic properties change as the
direct antiferromagnetic interaction JH is increased, we cal-
culated the correlation function of the total spin ~Ti(= ~si+ ~Si)
at each site as the probe. First, we show in Fig. 3(a) and (b) the

nearest-neighbor spin-spin correlation functions 〈~Ti · ~Ti+1〉
[(a)] and 〈~Si · ~Si+1〉 [(b)] between neighboring sites for vari-
ous JH/t at a fixed Kondo coupling JK/t = 5.0.

It can be seen from Fig. 3(a) that for sufficiently weak JH,
i.e., 0 ≤ JH/t . 0.053, the value of the neighboring spin cor-
relation 〈~Ti · ~Ti+1〉 is site(i)-independent and takes a positive
constant value (i.e. ferromagnetic) regardless of the value of
JH, while for JH/t & 0.054, it is alternating between two val-
ues. A similar behavior was observed for the localized spins
as well [see Fig. 3(b)]. The period-two behavior in the bond-
centered operators 〈~Ti · ~Ti+1〉 and 〈~Si · ~Si+1〉 suggests that
the localized spins are dimerized for JH/t & 0.054.

If we further increase JH, the clear period-2 behavior dis-
appears at around JH/t ∼ 0.45 and both 〈~Ti · ~Ti+1〉 and
〈~Si · ~Si+1〉 become negatively constant, which means that,
when JH/t & 0.45, the dimerized phase is taken over by a
new phase in which short-range antiferromagnetic correlation
develops [see Figs. 9(a)-(d)]. This is consistent with that the
system asymptotically approach the spin-1 Heisenberg model,
which exhibits short-range antiferromagnetic correlation, if
we increase JH to a large value with JK/t fixed. In contrast
to the naive expectation based on the energetic argument in
Sec. II B, the ferromagnetic phase yields first to the dimerized
one at much smaller value of JH before the antiferromagnetic
tendency due to JH finally wins.

Despite the usual lore that the spin dimerization is ac-
companied by a finite spin gap, the intermediate “dimerized”
phase found above in fact has quasi-long-range antiferromag-
netic correlation, i.e., the correlation function 〈~Si · ~Sj〉 ex-
hibits power-law decay [see Fig. 4 (a)], indicating a vanishing
spin gap [56]. To check whether the spin gap vanishes, we cal-
culated the magnetization 〈M〉 =

∑
i T

z
i /L with increasing

external magnetic field h (in the z-direction). To this end, we
used the SSD Hamiltonian (17a) with the (deformed) Zeeman
term −h

∑
i f0(i)(Szi + szi ) added. The results are shown in

Fig. 4(b). The linear increase of the magnetization 〈M〉 ∝ h
(h � 1) strongly suggests that the spin gap indeed vanishes
in the dimerized phase.

All these properties of the dimerized phase may be best un-
derstood in the strong-coupling limit in which the system is
described only in terms of spin-1/2 (the Kondo doublets ~Di)
and the unscreened localized spin-1 (~Si) [see Eq. (13)]. Let
us consider the situation where JH is much larger than t and
we can neglect the the order-t perturbation (13). Depending
on the configurations, 〈~Ti · ~Ti+1〉 is given by

〈~Ti · ~Ti+1〉 =


〈~Si · ~Si+1〉 when (Ti, Ti+1) = (1, 1)

〈~Si · ~Di+1〉 when (Ti, Ti+1) = (1, 1/2)

〈 ~Di · ~Si+1〉 when (Ti, Ti+1) = (1/2, 1)

〈 ~Di · ~Di+1〉 when (Ti, Ti+1) = (1/2, 1/2) .
(19)

Similarly, for the (projected) localized spins [see Eq. (15)], we
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have:

〈~̃Si ·
~̃
Si+1〉

=


〈~Si · ~Si+1〉 when (Ti, Ti+1) = (1, 1)

(4/3) 〈~Si · ~Di+1〉 when (Ti, Ti+1) = (1, 1/2)

(4/3) 〈 ~Di · ~Si+1〉 when (Ti, Ti+1) = (1/2, 1)

(16/9) 〈 ~Di · ~Di+1〉 when (Ti, Ti+1) = (1/2, 1/2) .

(20)

The value 〈~Ti · ~Ti+1〉 = 1/2 means that neighboring S = 1/2
and S = 1 form spin-3/2 pairs for, e.g., JH = 0.054 [see

Fig. 6(b)]. The expected value 〈~̃Si ·
~̃
Si+1〉 = 2/3 is con-

sistent with the numerical results in Fig. 3(b). On the other
hand, the value 〈~Ti · ~Ti+1〉 = −1 allows the two possibilities
(Ti, Ti+1) = (1, 1) and (1/2, 1) [or (1, 1/2)]. However, look-
ing at the value 〈~Si · ~Si+1〉 ≈ −4/3 [see Fig. 3(b)], we may
conclude that the second realizes for, e.g., JH/t & 0.1 and
that the spin pairs (1/2, 1) form doublets [Fig. 6(c)].

From these observations, the following picture emerges.
First we note that this dimerized state is in fact insulating
as will be shown in the next subsection, which allows us to
treat the spin-1/2 and 1 (there are equal numbers of them at
quarter-filling) as immobile. The numerical results indicate
that these spin-1/2 and 1 alternate in the insulating dimerized
phase. For small values of JH/t (& 0.054), local ferromag-
netic correlation still remains and magnetism is described by
the preformed quartets on the A-B bonds [see the red ovals in
Fig. 6(b)]. The weak fluctuations among these quartets may be
captured by the spin-3/2 Heisenberg chain which eventually
leads to a gapless collective singlet ground state. For larger
values of JH/t (& 0.1), on top of the ferromagnetic correla-
tion on the A-B bonds, short-range antiferromagnetic corre-
lation develops on the B-A bonds, and doublets are formed
on these bonds [see the blue ovals Fig. 6(c)]. Note that, in
contrast to the usual spin-singlet dimerization, these two dif-
ferent kinds of correlation do not interfere with each other,
and the state shown in Fig. 6(b) smoothly crosses over to
Fig. 6(c). Again, the fluctuations among these doublets may
be taken into account by the spin-1/2 Heisenberg chain, which
exhibits power-law antiferromagnetic correlation. A remark is
in order here about the nature of “antiferromagnetic” correla-
tion. As the effective “spin”-1/2s are formed on dimers, the π-
oscillating correlation in the effective model translates to the
period-4 oscillation in the original model. In fact, we numeri-
cally observed such power-law decaying period-4 behavior in
the spin-spin correlation 〈~Ti · ~Tj〉 at JH/t = 0.1.

A similar “gapless dimerized phase” has also been found
recently in the quarter-filled Kondo lattice model (S = 1/2,
JH = 0) at small Kondo coupling JK/t = 0.6 [57]. How-
ever, we would like to stress here that the above dimerized
phase found in the strong-coupling region does not exist in
the S = 1/2 KH model at quarter-filling. In fact, as is seen in
Fig. 5(a) and (b), a similar intermediate spin-dimerized state
is absent in the S = 1/2 case, and instead there seems to be a
jump at JH/t ∼ 0.1 in both 〈~Ti · ~Ti+1〉 and 〈~Si · ~Si+1〉 from
a positive value to a negative one. This sudden suppression of

FIG. 3. The nearest-neighbor spin-spin correlation (a) 〈~Ti · ~Ti+1〉
and (b) 〈~Si · ~Si+1〉 in the ground state of strongly coupled spin-1 KH
model at quarter-filling. 〈~Ti · ~Ti+1〉 and 〈~Si · ~Si+1〉 are calculated
for fixed JK/t = 5.0 and L = 100.

FIG. 4. (a) Spin-spin correlation 〈~Ti · ~Tj〉 and (b) the ground-state
magnetization process of the quarter-filled spin-1 KH model in the
dimerized phase: (JK/t, JH/t) = (5.0, 0.1). The correlation func-
tion seems to decay as | 〈~Ti · ~Tj〉 | ∼ |i− j|−1. In obtaining (b), the
SSD Hamiltonian (17a) was used.

ferromagnetim by JH in the S = 1/2 case is consistent with
the analytic argument in Ref. [21]. Therefore, the existence of
this intermediate gapless dimerized phase is one of the unique
properties of the S = 1 KH model at quarter-filling. In Fig. 6,
we illustrate how the ferromagnetic order is lost via the dimer-
ized phase as we increase the interaction JH among the local-
ized spins.

2. Electrical properties

In the previous subsection, we have investigated the spin
correlation 〈Ti · Ti+1〉 and 〈Si · Si+1〉 and concluded that the
competition between the hopping-induced ferromagnetism
and the direct antiferromagnetic interaction JH leads to two
quantum phase transitions; one at JH/t ≈ 0.054 from the fer-
romagnetic phase to the new gapless dimerized phase, and
another at JH/t ≈ 0.45 from the dimerized phase to a non-
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FIG. 5. The same correlation functions as in Fig. 3 for S = 1/2.
Again JK/t = 5.0 was used. Note that no alternating (period-2)
behavior is observed for S = 1/2.

A A AB B B

(a)

(b)

(c)

(d)

A A AB B B

electron

FIG. 6. Schematic pictures illustrating how magnetic property
changes as JH/t increases. (a) ferromagnetic phase, (b) dimerized
phase for small JH in which spin-3/2s (i.e., local ferromagnetic cor-
relation between T = 1/2 and T = 1) are formed on A-B bonds (red
ovals), (c) dimerized phase for larger JH where doublets develop on
B-A bonds (blue ovals), and (d) metallic phase with short-range an-
tiferromagnetic correlation. Note that there is no transition between
(b) and (c).

dimerized one with short-range antiferromagnetic correlation.
In this subsection, we investigate the phase structure and the
quantum phase transition(s) from the viewpoint of the electri-
cal transport.

To this end, we calculated the charge gap ∆c for various
JH/twith the Kondo coupling JK/t fixed. In doing so, we first
fixed the chemical potential µ and calculated the bulk electron
density 〈n(µ)〉 by averaging the local density 〈ni〉 around the
center of the system. In Fig. 7, we plot the electron density
〈n(µ)〉 obtained at (JK/t, JH/t) = (5.0, 0.1) for several sys-
tem sizes L. There is a clear jump in µ only at 〈n〉 = 0.5,
which suggests that a finite charge gap opens at quarter-filling
and that the system is metallic for other densities around

n = 1/2. This seems consistent with the field-theoretical
prediction in Ref. [45] which concludes that a metallic phase
with collinear spin fluctuations (collinear metal) occupies the
region around n = 1/2 (when JH = 0). Also the size-
dependence seems to be relatively small. The charge gap ∆c is
obtained by appropriately extrapolating the width of the jump
to L→∞ [39].

The value of the charge gap ∆c at n = 1/2 (quarter-
filling) obtained in this way is shown as a function of JH/t
(JK/t = 5.0 is fixed) in Fig. 8. It clrearly shows that for
0 ≤ JH . 0.053 the ground state is metallic with a vanishing
charge gap, while for JH & 0.054 the ground state is an insu-
lator. Moreover, Fig. 8 shows that, after attaining a maximum
at around JH ∼ 0.07, the charge gap ∆c decreases monotoni-
cally until it vanishes at around JH/t = 0.45. Combining all
these with the results of the last subsection, we conclude that
the region where the system has a finite charge gap matches
that of the dimerized phase. To put it another way, the two
magnetic quantum phase transitions into and out of the dimer-
ized phase (at JH/t ≈ 0.054 and JH/t ≈ 0.45), and the metal-
insulator transitions found here occur simultaneously. The fi-
nal phase diagram at quarter-filling along JH/t axis is shown
in Fig. 9. Note that the third phase (“AFM”) is determined
only by the order parameter 〈~Ti · ~Ti+1〉 and the charge gap
∆c, and the precise characterization, e.g., in the light of the
heavy Luttinger liquid [58] is yet to be done.

The mechanism of this dimerization-induced metal-
insulator transitions at quarter-filling is an intriguing question.
One may naively expect that magnetic dimerization some-
how induces the modulation of the hopping amplitude thereby
halving the Brillouin zone and leading to a Mott-insulating
state in the half-filled bonding band [59]. To clarify this point,
we measured the hopping amplitude

〈∑
α c
†
iαci+1,α + h.c.

〉
in the dimerized phase to find no sign of alternation. There-
fore, this appealing scenario does not seem to work in our
situation.

However, once we assume the spin-dimerization in the lo-
cal moments, a combination of bosonization and a mean-field-
like argument seems to reasonably explain the opening of
the charge gap at quarter-filling. When the spin correlation
〈~Si · ~Si+1〉 exhibits alternation, second-order perturbation in
JK induces the following effective interaction among the con-
duction electrons [60]:

(−1)igd(~si · ~si+1) (21)

where the coupling constant gd is proportional to the ampli-
tude of the spin-dimerization. Then, it is straightforward to
treat the above interaction in the framework of bosonization
[41], and we see that, at n = 1/2, the charge sector of the con-
duction electron acquires the interaction cos(

√
8φρ) whose

scaling dimension is 2/Kρ (with φρ and Kρ respectively be-
ing the charge boson field and the corresponding Luttinger-
liquid parameter) [61], which, whenKρ > 1, opens the charge
gap. Note that the period-2 component of the hopping ampli-
tude sin(

√
8φρ) has a zero expectation value consistent with

the above numerical observation. Although this argument
seems reasonable, the spin-dimerization and the opening of
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the charge gap actually occur hand in hand, and a clear ex-
planation of the mechanism of the magnetic dimerization still
remains to be an important open question.

FIG. 7. A typical behavior of µ as a function of the electron density
〈n〉 around n = 1/2 for various system sizes L = 60, 80, 100. The
clear jump at n = 1/2 indicates a finite charge gap at quarter-filling
and the absence of the charge gap for other fillings (around n = 1/2).
(JK/t, JH/t) = (5.0, 0.1) is used.

FIG. 8. Relation between JH/t and the charge gap ∆c for fixed
JK/t = 5.0. The charge gap is obtained by extrapolating the finite-
size values (which are given by the jump in the n-µ plot; see Fig. 7).
Note that the charge gap ∆c is finite only in the dimerized phase
(0.054 < JH/t . 0.45).

IV. SUMMARY AND DISCUSSION

In this paper, we investigated the ground-state phases of the
spin-S Kondo-Heisenberg model in one dimension by means
of analytical calculations in the limit of strong Kondo cou-
pling (JK) and the numerical DMRG simulations for S = 1.
The main results are summarized schematically in Fig. 10.
First, we derived the strong-coupling effective Hamiltonian
both for and away from half-filling to obtain the insight into
the global phase structure. At half-filling, the charge gap of
the order of JK opens and the magnetic sector is described

FM dimerized (gapless) AFM

metal insulator metal

FIG. 9. Phase diagram at quarter-filling (n = 1/2) along the JH/t
axis with fixed JK/t = 5.0. The magnetic and electrical properties
of the phases are determined by 〈Ti · Ti+1〉 (〈Si · Si+1〉) and the
charge gap ∆c. In the dimerized phase, the spin-spin correlation is
power-law decaying with period-4 oscillation.

solely by the partially screened local moments [with spin-
(S−1/2)], whose dynamics is governed by the antiferromag-
netic Heisenberg model. The resulting physics of the mag-
netic sector depends on the parity of 2S; when 2S is odd, the
half-filled ground state is a spin-gapped insulator while when
2S is even the system is an insulator with power-law antifer-
romagnetic correlation (i.e., a spin Luttinger liquid). As far
as the direct interaction JH is much smaller than JK, the two
do not compete with each other and the only effect of JH is to
renormalize the effective antiferromagnetic interaction among
the partially screened local moments. Away from half-filling,
on the other hand, we can prove that the system (at JH = 0)
in strong coupling is generically in the ferromagnetic metallic
phase (see Fig. 10) in which the unscreened moments (spin-
S) and the (partially) screened ones [spin-(S−1/2)] form a
collective ferromagnetic state. Now this ferromagnetic state
is challenged by the direct antiferromagnetic interaction JH
among the local moments.

To substantiate these expectations quantitatively for large
but finite JK, we carried out the DMRG simulations combined
with the SSD method for the case of S = 1. At half-filling
(n = 1), the spin-spin correlation indeed exhibits a power-law
antiferromagnetic behavior, which agrees very well with that
of the spin-1/2 (S−1/2 = 1/2 here) Heisenberg chain up to
fairly large values of JH (& JK). This implies that the picture
of the insulating phase with correlated Kondo-doublets, which
is established in the perturbative regime (i.e., JH � JK), in
fact extends over a wide range of the parameter space (see
“AF-dominant insulator” in Fig. 10). Combining this with the
results of the weak-coupling approach [44, 45], we expect that
the AF-dominant insulator persists all the way down to small
JK.

At quarter-filling (n = 1/2) where ferromagnetism and an-
tiferromagnetic JH compete with each other, the phase dia-
gram is much richer (Figs. 9 and 10). The ferromagnetic metal
which is found for rather small JH is destabilized by increas-
ing JH and yields to a dimerized insulating phase with period-
4 power-law spin-spin correlation (labeled as “dimerized in-
sulator” in Fig. 10). The critical value of JH is much smaller
than we expect from the strong-coupling effective Hamilto-
nian. We also characterized the magnetic structure in the
dimerized phase by a simple phenomenological argument. If
JH is further increased, we encounted another quantum phase
transition at JH/t ≈ 0.45 where the system becomes metallic
again. It remains open to understand how magnetic dimer-
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ization is stabilized by JH and opens a charge gap. Perhaps
direct simulations for the large-JK effective Hamiltonian (13)
might give an important hint. Also, as already noted in sec-
tion III B 2, the third phase with short-range antiferromagnetic
correlation (“AF metal”) is determined only by the behavior
of 〈~Ti · ~Ti+1〉 and the absence of the charge gap, and the full
characterization of it is an important future problem.

In this paper, we have focused on the strong-coupling
phases of the spin-1 KH chain with small JH. On the other
hand, when the spin-1 moments are replaced with spin-1/2s,
the model at weak oupling Jk � JH is known to possess co-
existing CDW and superconducting orders [22], and, when
inter-chain couplings are turned on, it even exhibits a topo-
logically nontrivial ground state [62]. These facts hint at a
possibility that, in the weak-coupling region, our spin-1 KH
model might have a rich phase structure. Therefore, it is also
an important future problem to study whether this is the case
or not for S > 1/2.

ferromagnetic 
metal

dimerized
insulator

AF metal

ferromagnetic metal

AF-dominant 

insulator

(S=1/2 HAF)

topological Haldane, 
metal

FIG. 10. Schematic phase diagram of the spin-1 Kondo-Heisenberg
model obtained from strong-coupling expansions and numerical sim-
ulations. The parameter regions studied in this paper are shown by
the thick lines. On the line JK = ∞, 0 < n < 1, the system is
rigorously shown to be ferromagnetic metal. On the plane n = 1
(half-filling), an insulating phase with power-law antiferromagnetic
spin correlation is stable. At quarter-filling (n = 1/2), we found at
least three different phases at JK/t = 5.0: (i) ferromagnetic metal,
(ii) dimerized insulator with power-law period-4 spin correlation, and
(iii) metallic phase with antiferromagnetic correlation.
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Appendix A: Effective Hamiltonian of spin sector of spin-S KH
chain

In this section, we generalize our observation in Sec. II A
that the strong-coupling effective Hamiltonian for the spin-
1 Kondo lattice model at half-filling is given by the spin-
1/2 Heisenberg model to the case of localized spin-S. As
already mentioned in Sec. II A 2, the low-energy effective
Hamiltonian is the spin-(S−1/2) antiferromagnetic Heisen-
berg model.

Basically, we follow the strategy in Sec. II A. The 4(2S+1)
possible states at site-i are shown in Table I together with the
Kondo energy and the degeneracy. In the strong coupling limit
(JK → ∞) at half-filling (i.e, one electron per site ni = 1),
the conduction electron and spin-S localized spin at each site
form 2S-fold degenerate Stot = (S−1/2) states, in which the
Kondo energy is given by: JK~si · ~Si = −JK(S + 1)/2. The
remaining (2S + 2) states with Stot = (S + 1/2) have higher
energy JKS/2.

On the other hand, the action of the creation operators is
locally written as:

c†i↑ =

S∑
M=−S

{∣∣∣∣ ↑M
〉
i

〈
emp
M

∣∣∣∣
i

+

∣∣∣∣ ↑↓M
〉
i

〈
↓
M

∣∣∣∣
i

}

(A1a)

c†i↓ =

S∑
M=−S

∣∣∣∣ ↓M
〉
i

〈
emp
M

∣∣∣∣
i

−
S∑

M=−S

∣∣∣∣ ↑↓M
〉
i

〈
↑
M

∣∣∣∣
i

,

(A1b)

where we have introduced the notations
∣∣ α
M

〉
i

similar to
those used in Sec. II, and the minus sign in the second equa-
tion comes from the definition of doubly-occupied state as
|↑↓〉i = c†i,↑c

†
i,↓ |emp〉i. Let us rewrite these operator in the

basis where Stot is diagonal. To this end, we note that the



11

relevant states are explicitly written as∣∣∣∣S +
1

2
;M+

1

2

〉
i

=

√
S +M+ 1

2S + 1

∣∣∣∣ ↑M
〉
i

+

√
S −M
2S + 1

∣∣∣∣ ↓
M+ 1

〉
i

(A2a)∣∣∣∣S − 1

2
;M+

1

2

〉
i

=

√
S −M
2S + 1

∣∣∣∣ ↑M
〉
i

−
√
S +M+ 1

2S + 1

∣∣∣∣ ↓
M+ 1

〉
i

(M = −S, · · · , S − 1) .

(A2b)

By inverting these equations, we can express
∣∣ ↑ / ↓
M

〉
i

in
terms of

∣∣S ± 1
2 ;M+ 1

2

〉
i
. Plugging those expressions into

Eqs. (A1a) and (A1b), and dropping the states with Stot =

S + 1/2, we obtain the expressions of c†i,↑/↓ and ci,↑/↓ pro-
jected onto the Stot = S−1/2 states:

Pdc
†
i,↑PS−1/2 = −

S∑
M=−S

√
S +M
2S + 1

∣∣∣∣ ↑↓M
〉〈

S − 1

2
;M− 1

2

∣∣∣∣
Peci,↑PS−1/2 =

S∑
M=−S

√
S −M
2S + 1

∣∣∣∣ emp
M

〉〈
S − 1

2
;M+

1

2

∣∣∣∣
(A3a)

and

Pdc
†
i,↓PS−1/2 =

√
S −M
2S + 1

∣∣∣∣ ↑↓M
〉〈

S − 1

2
;M+

1

2

∣∣∣∣
Peci,↓PS−1/2 = −

√
S +M
2S + 1

∣∣∣∣ emp
M

〉〈
S − 1

2
;M− 1

2

∣∣∣∣ ,
(A3b)

wherePS−1/2 projects the state st site-i onto the space of total
spin S − 1/2, and Pd and Pe respectively are the projectors
onto the doubly-occupied and empty states. Therefore, the
nearest-neighbor hopping on the two adjacent |S − 1/2〉’s are:

PidPi+1
e c†i,↑ci+1,↑PiS−1/2P

i+1
S−1/2

=
1

2S + 1

∑
Mi

∑
Mi+1

√
S +Mi

√
S −Mi+1

×
∣∣∣∣ ↑↓Mi

〉 ∣∣∣∣ emp
Mi+1

〉〈
S − 1

2
;Mi −

1

2

∣∣∣∣ 〈S − 1

2
;Mi+1 +

1

2

∣∣∣∣
(A4a)

PidPi+1
e c†i,↓ci+1,↓PiS−1/2P

i+1
S−1/2

= − 1

2S + 1

∑
Mi

∑
Mi+1

√
S −Mi

√
S +Mi+1

×
∣∣∣∣ ↑↓Mi

〉 ∣∣∣∣ emp
Mi+1

〉〈
S − 1

2
;Mi +

1

2

∣∣∣∣ 〈S − 1

2
;Mi+1 −

1

2

∣∣∣∣
(A4b)

The expressions for c†i+1,↑ci,↑ and c†i+1,↓ci,↓ are obtained
from the above by interchanging i ↔ i + 1. Similarly, we
can write down PiS−1/2P

i+1
S−1/2c

†
i,↑ci+1,↑PiePi+1

d , etc.
Combining all these, we can calculate the matrix elements

of the second-order processes shown in Fig. 11. For example,
the matrix element of the process (i)→ (ii)→ (iii-a) is:

(−t)2

−JK(S + 1)

× PiS−1/2P
i+1
S−1/2c

†
i,↓ci+1,↓PiePi+1

d c†i+1,↑ci,↑P
i
S−1/2P

i+1
S−1/2

=
t2

JK(S + 1)(2S + 1)2
S−i S

+
i+1 ,

(A5)

where ~S are the spin-(S−1/2) operators and we have used

S−i =

S−1/2∑
M=−(S−1/2)

√
{(S−1/2) +Mi} {(S−1/2)−Mi + 1}

× |S−1/2;Mi − 1〉2〈S−1/2;Mi|2 ,

etc. in obtaining the final expression. Similarly, the process
(i)→ (ii)→ (iii-b) gives the diagonal term:

t2

JK(S + 1)(2S + 1)2

{
Sz
iS

z
i+1 −

2S + 1

2

(
Sz
i −Sz

i+1

)}
− t2

4JK(S + 1)
.

(A6)

If we collect all the possible processes, the terms proportional
to
(
Sz
i −Sz

i+1

)
cancel out and we obtain the following ef-

fective Hamiltonian:

Heff =
4t2

(2S + 1)2(S + 1)JK

∑
i

~Si · ~Si+1 + const . (A7)

Putting S = 1 in this equation, we recover Eq. (A9) in
Sec. II A. This effective Hamiltonian indicates that the spin-
S Kondo lattice model with JK > 0 in the strong-coupling
region is an insulator whose spin sector is described by the
spin-(S−1/2) Heisenberg model; according to the Haldane
conjecture [30, 31], the spin correlation is qualitatively differ-
ent when S is integer and when S is half-odd-integer. If S is
integer, then the spin sector exhibits antiferromagnetic quasi-
long-range order, while the ground state is disordered if S is
half-odd. This is consistent with the prediction [44] based on
field-theory mapping.

It is straightforward to take the Heisenberg term JH into
account. To this end, we follow similar steps to find the pro-
jection of the localized spin onto the ground-state subspace:

PiS−1/2 ~Si P
i
S−1/2 =

2(S + 1)

2S + 1
~Si , (A8)

which means that, in the strong-coupling limit, the localized
spin ~Si behaves like the effective spin-(S−1/2) ~Si except for
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the overall normalization factor. From this, one immediately
sees that the Heisenberg term just gives the same Heisenberg
model as before, leading to the total effective Hamiltonian:

H
(n=1)
eff

=

{
4t2

(2S + 1)2(S + 1)JK
+

(
2(S + 1)

2S + 1

)2

JH

}∑
i

~Si·~Si+1 ,

(A9)

which generalizes Eq. (11).

TABLE I. Local states of spin-S KH model. Quantum number of
total spin ~Ti = ~si + ~Si is denoted by T .

conduction electron T Kondo energy degeneracy
ni = 0 (|0〉) S 0 2S + 1

ni = 1 S + 1/2 JKS/2 2S + 2

(ci,↑|0〉, ci,↓|0〉) S − 1/2 −JK(S + 1)/2 2S

ni = 2 (ci,↑ci,↓|0〉) S 0 2S + 1

(i) (ii)

(iii-a)

(iii-b)

FIG. 11. Typical second-order processes in t for generic spin-S.
(i) A pair of adjacent sites in the unperturbed (t = 0) ground state.
(ii) Electron (↑ here) hopping from the site i to i + 1 generates a
pair of sites in excited states. (iii) Second hopping back to the site i
returns the state to the ground-state subspace. Depending on the spin
of the electron going back, different final states are obtained [(iii-a)
and (iii-b)].

Appendix B: Derivation of effective Hamiltonian (13)

Among the 4(2S + 1) possible on-site states listed in Ta-
ble I, the 2S states |n=1, T=S−1/2;T z〉 with a single con-
duction electron, and the (2S + 1)-fold degenerate states
|n=0, T=S;T z〉 without electron are relevant in the strong-
coupling limit (less than half-filling n < 1). As we can dis-
tinguish |n=0, T=S;T z〉 from |n=1, T=S−1/2;T z〉 by the
value of T (S or S−1/2) in the strong-coupling Hilbert space,
we can omit n in specifying the states, and we will abbreviate,
e.g., |n = 0, T = S;T z =M〉i as |S;M〉i from now on. The
low-energy Hilbert space is spanned by the tensor products of
|S;M〉i and |S−1/2;M〉i.

So the action of electron-creation operators on |S;M〉i is

c†i,↑ =

S∑
M=−S

√
S −M
2S + 1

|S−1/2;M+ 1/2〉i 〈S;M|i

(B1a)

c†i,↓ = −
S∑

M=−S

√
S +M
2S + 1

|S−1/2;M− 1/2〉i 〈S;M|i .

(B1b)

Therefore, the action of hopping operators of the conduction electron on |S;Mi〉 ⊗ |S − 1/2;Mi±1〉i±1 is

−tc†i,↑ci±1,↑ =− t

2S + 1

S∑
Mi=−S

S−1/2∑
Mi±1=−(S−1/2)

√
S −Mi

√
S −Mi±1 + 1/2

× |S−1/2;Mi + 1/2〉i ⊗ |S;Mi±1 − 1/2〉i±1
(
〈S;Mi|i ⊗ 〈S−1/2;Mi±1|i±1

) (B2a)
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−tc†i,↓ci±1,↓ =− t

2S + 1

S∑
Mi=−S

S−1/2∑
Mi±1=−(S−1/2)

√
S +Mi

√
S +Mi±1 + 1/2

× |S−1/2;Mi − 1/2〉i ⊗ |S;Mi±1 + 1/2〉i±1
(
〈S;Mi|i ⊗ 〈S−1/2;Mi±1|i±1

) (B2b)

If we introduce the exchange operator Xi,j as

Xi,j |ψ〉i ⊗ |ϕ〉j = |ϕ〉i ⊗ |ψ〉j , (B3)

then (B2a) and (B2b) can be rewritten in the following form:

−tc†i,↑ci±1,↑ =− t

2S + 1
Xi,i±1

{
S∑

Mi=−S

S−1/2∑
Mi±1=−(S−1/2)

√
S −Mi

√
S −Mi±1 + 1/2

× |S;Mi±1 − 1/2〉i ⊗ |S−1/2;Mi + 1/2〉i±1
(
〈S;Mi|i ⊗ 〈S−1/2;Mi±1|i±1

)} (B4a)

−tc†i,↓ci±1,↓ =− t

2S + 1
Xi,i±1

{
S∑

Mi=−S

S−1/2∑
Mi±1=−(S−1/2)

√
S +Mi

√
S +Mi±1 + 1/2

× |S;Mi±1 + 1/2〉i ⊗ |S−1/2;Mi − 1/2〉i±1
(
〈S;Mi|i ⊗ 〈S−1/2;Mi±1|i±1

)}
.

(B4b)

If one changes the basis from |S;Mi〉 ⊗ |S−1/2;Mi±1 + 1/2〉 to the one in which the total spin J (= 1/2, . . . , 2S−1/2) is
diagonal:

|S;Mi〉 ⊗ |S−1/2;Mi±1〉 =

2S−1/2∑
J=1/2

(〈J ;Mi +Mi+1 |S;Mi〉 ⊗ |S−1/2;Mi±1〉) |J ;M =Mi +Mi+1〉 ,

the above can be further recast as:

− t
(
c†i,↑ci+1,↑ + c†i,↓ci+1,↓

)
= −tXi,i+1PiSPi+1

S− 1
2

[
1

2S + 1

2S−1∑
k=0

(−1)k(2S − k)Pi+1→i(2S − k − 1/2)

]
PiSPi+1

S− 1
2

, (B5a)

− t
(
c†i+1,↑ci,↑ + c†i+1,↓ci,↓

)
= −tXi,i+1PiS− 1

2
Pi+1
S

[
1

2S + 1

2S−1∑
k=0

(−1)k(2S − k)Pi→i+1(2S − k − 1/2)

]
PiS− 1

2
Pi+1
S .

(B5b)

This is the generalization of the so-called double-exchange
Hamiltonian [49, 63] to the case of antiferromagnetic
JK. Here we have defined another operator Pi→i+1(J)
[Pi+1→i(J)] that projects the states of a pair of spins S−1/2
at site-i [site-(i + 1)] and S at site-(i + 1) (site-i) onto the
subspace with the total spin J :

P (J) =

J∑
M=−J

|J ;M〉〈J ;M| . (B6)

In both expressions (B5a) and (B5b) of the electron hopping,
the projection operator onto J = 2S − 1/2 = S + (S −
1/2) (i.e., the maximal value of ~Si+~Si+1 or ~Si+~Si+1) has
the largest coefficient suggesting that the ferromagnetic state
optimizes the kinetic energy of the conduction electrons as in

the ferromagnetic Kondo lattice model.

It is not difficult to write down the quantity
1/(2S+1)

∑2S−1
k=0 (−1)k(2S−k)Pi→i+1(2S−k−1/2) as

a polynomial f (S)(~Si·~Si+1) of ~Si·~Si+1. The explicit forms
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of f (S)(X) are given by:

f (1/2)(X) = 1/2

f (1)(X) =
2

3
X +

1

3

f (3/2)(X) =
3

8
X +

1

4
X2 − 3

8

f (2)(X) = −1

3
X +

7

45
X2 +

2

45
X3 − 4

5

f (5/2)(X) =
1

6

{
−305

72
X − 79

144
X2 +

7

36
X3 +

1

36
X4 − 85

48

}
.

(B7)

The polynomial for 1/(2S+1)
∑2S−1
k=0 (−1)k(2S−k)Pi+1→i(2S−

k − 1/2) is given simply by f (S)(~Si·~Si+1). Setting S = 1 in
Eqs. (B5a) and (B5b) and expressing Xi,i+1 and P with d̂i
and n̂di reproduce the results (13) and (14) in Sec. II B.

Appendix C: Rigorous proof of the ferromagnetic ground state
for effective Hamiltonian (13)

In this section, starting from the strong-coupling effective
Hamiltonian (13), we derive the ferromagnetic ground state
of spin-1 Kondo lattice model (i.e., JH = 0) with filling 0 �
n � 1. As we can follow almost the same steps to generalize
the statement to the arbitrary spin-S, we describe the proof
only for S = 1 for simplicity.

For this purpose, let H(l) be the Hamiltonian (13) of l-site
system:

H(l) =− t
l−1∑
i=1

{
d̂†i+1d̂i f

(S=1)
i→i+1( ~Di·~Si+1) n̂d,i(1− n̂d,i+1)

+ d̂†i d̂i+1 f
(S=1)
i+1→i(

~Si· ~Di+1) (1− n̂d,i)n̂d,i+1

}
,

which is block-diagonal in the number of doublets Nd(l) =∑l
i=1 nd,i (which is equal to the number of conduction elec-

trons) and the total Sztot(l) =
∑l
i=1 T

z
i :

H(l) =
⊕

Nd(l),Sztot(l)

H
(l)
Nd(l),Sztot(l)

. (C1)

The first step is to prove that, (A) for 1 ≤ Nd(L) ≤
L − 1 (L: the system size), the matrix representation of
H

(L)
Nd(L),Sztot(L)

is non-positive and indecomposable in the stan-
dard basis [64]:

{|T z1 , . . . , T zL〉 = ⊗i |T zi 〉} (T zi = ±1/2, 0,±1) . (C2)

Note that when T zi = ±1/2, an electron exists at site-i form-
ing a Kondo doublet (|⇑〉i or |⇓〉i), while there is no electron
if T zi = 0,±1. Then, we can use the Perron-Frobenius theo-
rem (see, e.g., Ref. [65] for a physicist-friendly exposition of
the theorem and its applications) to show that the ground state
within each sector is unique and that the ground-state “wave

function” in this basis is strictly positive. The second step is
to show that (B) the above unique ground state has a non-zero
overlap with the state of maximal total spin: Stot = L−Nd/2,
which means that the unique ground state is indeed ferromag-
netic.

The proposition (A) is proven by the mathematical induc-
tion in the system size L. Let us start from the simplest case
L = 2. In this case, it suffices to consider only Nd(2) = 1

since H(L=2)
Nd,Sz

is trivially zero for Nd(2) = 0 and 2(= L).
When Nd(2) = 1, there are twelve states [six spin states for
each of the two possible configurations of S = 1/2 (electron)
and S = 1 (hole)]:

Sztot(2) = 3/2 : |T z1 , T z2 〉 = |1, 1/2〉 , |1/2, 1〉
Sztot(2) = 1/2 :

|T z1 , T z2 〉 = |1/2, 0〉, | − 1/2, 1〉, |0, 1/2〉, |1,−1/2〉
Sztot(2) = −1/2 :

|T z1 , T z2 〉 = | − 1/2, 0〉, |1/2,−1〉, |0,−1/2〉, | − 1, 1/2〉
Sztot(2) = −3/2 : |T z1 , T z2 〉 = | − 1,−1/2〉 , | − 1/2,−1〉 .

The matrix representation of the effective Hamiltonian in the
above basis can be obtained readily from Eqs. (B2a) and
(B2b). For instance, the block Hamiltonian for Sztot(2) = 3/2
and Sztot(2) = 1/2 are respectively given by:

H
(2)
1,3/2 = − t

3

(
0 2

2 0

)
. (C3)

and

H
(2)
1,1/2 = − t

3


0 0 1

√
2

0 0
√

2 0

1
√

2 0 0√
2 0 0 0

 (C4)

(the others are: H(2)
1,−1/2 = H

(2)
1,1/2 and H(2)

1,−3/2 = H
(2)
1,3/2).

Clearly, all the off-diagonal elements of these matrices are
non-positive.

The connectivity of these matrices can be represented by
the connected graph shown in Fig. 12, in which the vertices
represent the basis states and the edges correspond to non-
zero matrix elements among them. It is easy to see that for any
pair of vertices (i.e., basis states) we can go from one to the
other by following the edges (i.e., non-zero matrix elements);
a matrix is said to be indecomposable if the corresponding
graph is connected (as in Fig. 12). Thus, we establish that the
block hamiltonians are non-positive and indecomposable for
L = 2.

Next, suppose that the statement (A) holds for all the
system sizes l up to L, that is, all the block Hamiltonians
{H(l)

Nd(l),Sztot(l)
} [2 ≤ l ≤ L, 2 ≤ Nd(l) ≤ l − 1] are non-

positive and indecomposable in the basis (C2) to prove the
statement for the system size L + 1. Consider the block
H

(L+1)
Nd,Sztot

of the system with size L + 1. According to the five
possible values of T zL+1 (= 1, 0,−1, 1/2,−1/2), we can de-
compose the subspace with (Nd, S

z) into five different sec-
tors, and the hopping between the sites L and L+ 1 connects
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1 2

1 4

2 3

(a) (b)

FIG. 12. Oriented graphs representing the block Hamiltonians(a)
H

(2)

1,3/2 [Eq. (C3)] and (b) H(2)

1,1/2 [Eq. (C4)]. The numbers on the
vertices denote the matrix indices, and the arrows running from the
vertex j to i mean that the (i, j)-elements are non-zero. As the
Hamiltonian is represented by Hermitian matrices, all the arrows are
bi-directional.

these five sectors with each other. From the explicit expres-
sions (B2a) and (B2b) of the hopping term (see also Fig. 13),
we see that the HamiltonianH(L+1)

Nd,Sztot
takes the following block

structure:

H
(L+1)
Nd,Sztot

=


M1 0 0 ∗ 0

0 M2 0 ∗ ∗
0 0 M3 0 ∗
∗ ∗ 0 M4 0

0 ∗ ∗ 0 M5

 , (C5)

where the diagonal blocks M1, M2, M3, M4, and M5 respec-
tively are H(L)

Nd,Sztot−1
, H(L)

Nd,Sztot
, H(L)

Nd,Sztot+1, H(L)

Nd−1,Sztot− 1
2

, and

H
(L)

Nd−1,Sztot+
1
2

, and ∗ denotes non-positive matrices determined
by (B2a) and (B2b). Since Mi (i = 1, . . . , 5) are all non-
positive and indecomposable by the assumption, it is obvious
from the corresponding graph Fig. 14 that the entire matrix
H

(L+1)
Nd,Sztot

itself is indecomposable, too.
A remark is in order about the exceptional cases with Nd =

1 (one electron in the system) and L (one hole in the sys-
tem). In these cases, either (M1,M2,M3) (when Nd = L) or
(M4,M5) (when Nd = 1) are identically zero and we cannot
use the indecomposability of these matrices to prove that of
H

(L+1)
Nd,Sz

. In fact, we can treat these cases without relying on
the mathematical induction. First, we note that, in the case
of a single electron or hole, we can move it to an arbitrary
position by the repeated action of the hopping operators (the
spin configuration is modified, too). Then, we use processes
in which the electron/hole moves to a certain site and comes
back to the starting point to create the spin-flips of the form
T+
i T
−
j , which connect between any two different spin states

in the same (Nd, S
z) sector. This completes the proof of the

statement (A). Then, by the Perron-Frobenius theorem, there
exists a unique lowest-energy state |ψ0;Nd, S

z
tot〉 in each of

the (Nd, S
z)-sectors:

H
(L)
Nd,Sztot

|ψ0;Nd, S
z
tot〉 = Eg.s.(Nd, S

z
tot)|ψ0;Nd, S

z
tot〉 . (C6)

To prove the statement (B) that the unique ground state
found above indeed has the maximal total spin:

Stot = Smax = (L−Nd) + (1/2)Nd = L−Nd/2 ,

(1)

(2)

(2)’

(3)

(4)

(5)

FIG. 13. Projected hopping (B2a) and (B2b) between the sites L and
L+1 connects the five different sectors (1)–(5) with each other [(1)–
(5) correspond respectively to the blocksM1–M5 in Eq. (C5)]. Note
that the hopping Hamiltonian of the size-L sub-system within each
sector is indecomposable by the assumption of the induction.

connected graph

FIG. 14. Diagrammatic representation of the connectivity structure
of the matrix H(L+1)

Nd,S
z in Eq. (C5). The solid squares and the lines

connecting them denote certain connected graphs (representing the
diagonal blocks inH(L+1)

Nd,S
z ) and the non-zero (non-positive) matrices

“∗” in (C5), respectively.

we first apply the Perron-Frobenius theorem to the squared

total spin:
(∑L

i
~Ti

)2
= Stot(Stot + 1). As the local spin

operator ~si + ~Si projected onto the ground-state subspace is
of the following block-diagonal form:

~Ti = ~Si(S = 1)⊕ ~Di(S = 1/2) ,

the projected total spin
∑
i
~Ti is block-diagonal with respect

to the positions of the holes (i.e., spin-S) and Sztot, and so is its

square [66]. Within each block,
(∑L

i
~Ti

)2
is just a squared

total spin of a mixed-spin system (with a given fixed sequence
of spin-S and S−1/2):(

L∑
i

~Ti

)2

=
∑
i,j

1

2
(T+
i T
−
j + T−i T

+
j ) +

∑
i,j

T zi T
z
j , (C7)

in which ~Ti is either spin-1 ~Si (hole) or spin-1/2 ~Di (elec-
tron). Then, it is clear that the squared total spin (C7)
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within each sector is non-negative and indecomposable [in the
standard basis (C2)], which allows us to apply the Perron-
Frobenius theorem once again to show that the maximum

eigenvalue of
(∑L

i
~Ti

)2
is unique. The corresponding eigen-

state is a superposition of all the basis states allowed for the
(given) hole configuration and Sztot with all-positive coeffi-
cients. Since in this Sztot-sector, Stot can take any values in the
range Sztot ≤ Stot ≤ Smax(= LS−Ne/2), the unique maximal
eigenvalue is Smax(Smax + 1).

Due to the peculiar property (guaranteed by the Perron-
Frobenius theorem) of the unique lowest-energy state
|ψ0;Nd, S

z
tot〉, its overlap with the above Stot = Smax state

is non-zero, i.e. P(Smax)|ψ0;Nd, S
z
tot〉 6= 0 with P(Smax)

being the projector onto the space with Stot = Smax [67].
Then, the SU(2)-symmetry of the Hamiltonian implies that
the Stot = Smax state P(Smax)|ψ0;Nd, S

z
tot〉 is another ground

state of H(L)
Nd,Sztot

:

H
(L)
Nd,Sztot

P(Smax)|ψ0;Nd, S
z
tot〉

= Eg.s.(Nd, S
z
tot)P(Smax)|ψ0;Nd, S

z
tot〉 .

(C8)

The uniqueness of the ground state in the (full) Sztot-sector al-
lows the only possibility

P(Smax)|ψ0;Nd, S
z
tot〉 ∝ |ψ0;Nd, S

z
tot〉 ,

i.e., the ground state |ψ0;Nd, S
z
tot〉 itself is ferromagnetic

Stot = Smax for any values of Sztot. In particular, the above
statement for Sztot = 0 (or 1/2) means that the absolute ground
state (i.e., the lowest-energy state in the entire Hilbert space) is
unique (up to the trivial degeneracy associated with the SU(2)-
symmetry) and ferromagnetic. It is evident that we can read-
ily generalize the above argument to arbitrary S ≥ 1 by using
Eqs. (B5a) and (B5b) instead of (13).

[1] P. Fazekas, Electron Correlation and Magnetism (World Sci-
enific, 1999).

[2] P. Coleman, Introduction to Many-Body Physics (Cambridge
University Press, 2015).

[3] H. Tsunetsugu, M. Sigrist, and K. Ueda, Rev. Mod. Phys. 69,
809 (1997).
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J. Voiron, and D. Jérme, Phys. Rev. B 44, 641 (1991).
[29] E. L. Green, J. S. Brooks, P. L. Kuhns, A. P. Reyes, L. L.

Lumata, M. Almeida, M. J. Matos, R. T. Henriques, J. A.
Wright, and S. E. Brown, Phys. Rev. B 84, 121101 (2011).

[30] F. D. M. Haldane, Phys. Rev. Lett. 50, 1153 (1983).
[31] F. Haldane, Phys. Lett. A 93, 464 (1983).
[32] Z.-C. Gu and X.-G. Wen, Phys. Rev. B 80, 155131 (2009).
[33] X. Chen, Z.-C. Gu, Z.-X. Liu, and X.-G. Wen, Phys. Rev. B 87,

155114 (2013).
[34] D. V. Else, I. Schwarz, S. D. Bartlett, and A. C. Doherty, Phys.

Rev. Lett. 108, 240505 (2012).
[35] S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
[36] S. R. White, Phys. Rev. B 48, 10345 (1993).
[37] U. Schollwc̈k, Ann. Phys. 326, 96 (2011).
[38] N. Shibata and C. Hotta, Phys. Rev. B 84, 115116 (2011).
[39] C. Hotta and N. Shibata, Phys. Rev. B 86, 041108 (2012).
[40] T. Hikihara and T. Nishino, Phys. Rev. B 83, 060414 (2011).
[41] T. Giamarchi, Quantum physics in one dimension, Internat. Ser.

Mono. Phys. (Clarendon Press, Oxford, 2004).
[42] H. Tsunetsugu, Y. Hatsugai, K. Ueda, and M. Sigrist, Phys. Rev.

B 46, 3175 (1992).
[43] C. C. Yu and S. R. White, Phys. Rev. Lett. 71, 3866 (1993).
[44] A. M. Tsvelik, Phys. Rev. Lett. 72, 1048 (1994).
[45] A. M. Tsvelik and O. M. Yevtushenko, Phys. Rev. B 100,

165110 (2019).
[46] C. Zener, Phys. Rev. 82, 403 (1951).
[47] P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
[48] P. G. de Gennes, Phys. Rev. 118, 141 (1960).
[49] K. Kubo, J. Phys. Soc. Jpn. 51, 782 (1982).
[50] I. P. McCulloch, A. Juozapavicius, A. Rosengren, and M. Gu-

lacsi, Phys. Rev. B 65, 052410 (2002).
[51] R. Peters and N. Kawakami, Phys. Rev. B 86, 165107 (2012).

https://doi.org/10.1103/RevModPhys.69.809
https://doi.org/10.1103/RevModPhys.69.809
https://doi.org/10.1080/00018730412331313997
https://doi.org/10.1103/PhysRev.147.223
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1016/0378-4363(77)90190-5
https://doi.org/10.1088/0953-8984/9/2/002
https://doi.org/10.1088/0953-8984/9/2/002
http://dx.doi.org/10.1038/nphys1535
http://dx.doi.org/10.1038/nphys1535
https://doi.org/10.1103/PhysRevLett.120.143601
https://doi.org/10.7566/JPSJ.88.024707
https://doi.org/10.7566/JPSJ.89.034703
https://doi.org/10.1103/PhysRevLett.79.929
https://doi.org/10.1103/PhysRevLett.79.929
https://doi.org/10.1103/PhysRevB.63.205104
https://doi.org/10.1103/PhysRevB.64.033103
https://doi.org/10.1103/PhysRevLett.67.2211
https://doi.org/10.1103/PhysRevLett.67.2211
https://doi.org/10.1103/PhysRevB.46.13838
https://doi.org/10.1103/PhysRevB.46.13838
https://doi.org/10.1103/PhysRevB.54.12212
https://doi.org/10.1103/PhysRevLett.105.146403
https://doi.org/10.1103/PhysRevLett.105.146403
https://doi.org/10.1140/epjb/e20020127
https://doi.org/10.1140/epjb/e20020127
https://doi.org/10.1103/PhysRevB.90.115147
https://doi.org/10.1103/PhysRevB.90.115147
https://doi.org/10.1103/PhysRevB.92.205128
https://doi.org/10.1103/PhysRevB.92.205128
https://doi.org/10.1103/PhysRevB.93.165104
https://doi.org/10.1088/0022-3719/17/29/019
https://doi.org/10.1088/0022-3719/17/29/019
https://doi.org/10.1103/PhysRevB.44.641
https://doi.org/10.1103/PhysRevB.84.121101
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1016/0375-9601(83)90631-X
http://link.aps.org/abstract/PRB/v80/e155131
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevB.87.155114
https://doi.org/10.1103/PhysRevLett.108.240505
https://doi.org/10.1103/PhysRevLett.108.240505
https://doi.org/10.1103/PhysRevLett.69.2863
https://doi.org/10.1103/PhysRevB.48.10345
https://doi.org/https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1103/PhysRevB.84.115116
https://doi.org/10.1103/PhysRevB.86.041108
https://doi.org/10.1103/PhysRevB.83.060414
https://doi.org/10.1093/acprof:oso/9780198525004.001.0001
https://doi.org/10.1103/PhysRevB.46.3175
https://doi.org/10.1103/PhysRevB.46.3175
https://doi.org/10.1103/PhysRevLett.71.3866
https://doi.org/10.1103/PhysRevLett.72.1048
https://doi.org/10.1103/PhysRevB.100.165110
https://doi.org/10.1103/PhysRevB.100.165110
https://doi.org/10.1103/PhysRev.82.403
https://doi.org/10.1103/PhysRev.100.675
https://doi.org/10.1103/PhysRev.118.141
https://doi.org/10.1143/jpsj.51.782
https://doi.org/10.1103/PhysRevB.65.052410
https://doi.org/10.1103/PhysRevB.86.165107


17

[52] H. Tsunetsugu, M. Sigrist, and K. Ueda, Phys. Rev. B 47, 8345
(1993).

[53] M. Fishman, S. R. White, and E. M. Stoudenmire, The
ITensor software library for tensor network calculations (2020),
arXiv:2007.14822.

[54] A. Gendiar, R. Krcmar, and T. Nishino, Prog. Theor. Phys. 122,
953 (2009).

[55] Almost parallel shifts of the four curves in Fig. 2(b) suggest that
〈~Si·~Sj〉 and 〈 ~Di· ~Dj〉 differ only by numerical factors.

[56] Although in critical isotropic spin systems, the spin-spin corre-
lation function is generically expected to behaves like (ln |i −
j|)1/2/|i − j| [41] except at the fine-tuned points, we did not
find such logarithmic corrections in our simulations. We do
not know whether this absence of the logarithmic correction is
explained by some effective long-range spin-spin interactions
generated by the electron motion or not.

[57] Y. Huang, D. N. Sheng, and C. S. Ting, Phys. Rev. B 102,
245143 (2020).

[58] I. Khait, P. Azaria, C. Hubig, U. Schollwöck, and A. Auerbach,
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