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The pursuit for clearly identifiable signatures of viscous electron flow in the solid state systems has
been a paramount task in the search of the hydrodynamic electron transport behavior. In this work,
we investigate theoretically the nonlocal electric and thermal resistances for the generic non-Galilean-
invariant electron liquids in the multiterminal Hall-bar devices in the hydrodynamic regime. The
role of the device inhomogeneity is carefully addressed in the model of the disorder potential with
the long-range correlation radius. We obtain analytic expressions for the thermoelectric resistances
that are applicable in the full crossover regime from charge neutrality to high electron density. We
show that the vortical component of the electron flow manifests in the thermal transport mode close
to the charge neutrality where vorticity is already suppressed by the intrinsic conductivity in the
electric current. This behavior can be tested by the high-resolution thermal imaging probes.

I. INTRODUCTION

The electron liquids in solids can exhibit hydrodynamic
transport behavior provided sufficient sample purity and
proper regime of temperatures [1]. These special condi-
tions are required to ensure that the equilibration length
of electron collisions is short compared to the momentum
relaxation length scales associated with the scattering off
impurities and phonons. In this regime macroscopic de-
scription applies and the flow of electrons through a crys-
tal can be described within the limits of hydrodynamic
theory.

For a long time, the key manifestation of electron hy-
drodynamics in the transport properties of solids was at-
tributed to the prediction made by Gurzhi of negative
differential resistivity, ∂ρ/∂T < 0, namely the decrease
of sample resistance with the increase of temperature [2].
It is noteworthy to mention that this result is counter-
intuitive at the first glance. Indeed, lattice degrees of
freedom are activated with the increase of temperature,
electron scattering probability grows, which must lead
to an increase of resistivity. However, it can be shown
that if electrons attain hydrodynamic limit via frequent
electron-electron collisions, the resistive flow is deter-
mined by viscosity with momentum relaxation occurring
at the sample boundaries. For Fermi liquids, viscosity
decreases with the increase of temperature [3], therefore
resistivity diminishes as well. This signature behavior
was observed in the high-mobility semiconductor quan-
tum wires and two-dimensional quantum wells [4, 5].

In recent years, the advent of boron nitride encapsu-
lated graphene renewed interest to the topics of elec-
tron hydrodynamics, see reviews [6–8]. This stimu-
lated research activities and lead to insightful predic-
tions, many of which were already validated experimen-
tally. For instance, the Dirac fluid in graphene was
expected to display anomalous thermoelectric responses
most pronounced near charge neutrality [9–13]. This was
confirmed by the observation of gross violation of the
Wiedemann-Franz law, which manifests by the signifi-
cant increase in the Lorenz ratio [14] and the Seebeck
coefficient [15] as a function of carrier concentration in

the carefully controlled domain of the phase diagram de-
fined by temperature and particle density. The collec-
tive character of the viscous flow was predicted to en-
hance conductance in the electron transport through mi-
croconstrictions as compared to its value in the ballis-
tic limit [16]. This effect was clearly demonstrated in
graphene devices with engineered quantum point con-
tacts [17] and electrostatic dams defined by lateral p-n
junction barriers [18]. Another peculiar aspect of the hy-
drodynamic transport is defined by its nonlocality that
may result in the formation of current vortices concomi-
tant with the appearance of the negative nonlocal re-
sistances [19, 20]. These features attracted significant
theoretical attention [21–25] and affirmative experimen-
tal tests [26, 27]. Furthermore, scanning tunneling and
magnetic imaging probes were successfully applied to di-
rectly visualize electronic flows in restricted geometries
[28–31]. The compelling evidences for the characteristic
Poiseuille flow profile were identified in the Hall-bar de-
vices as manifestations of electronic viscous effects. In
contrast, the whirlpool character of the electronic flow
remained elusive up until very recently when geometrical
decoration of the device combined with an elaborate su-
perconducting quantum interference device (SQUID)-on-
tip imaging technique confirmed the existence of current
vortices [32].

In this work, we dwell further into the issues related
to the emergence of thermoelectric current vortices and
sign-alternating value of the corresponding nonlocal re-
sistances. The focal point of our study concerns the role
of Galilean invariance. To set the stage for the topic,
we remind the basic fact that in the Galilean-invariant
liquids, the particle current is given by the momentum
density divided by the particle mass [33]. For electron
liquids in crystals, this is possible only in the case of a
single partially occupied band with a strictly parabolic
dispersion, which can be a valid approximation only in
some cases. Thus generically, in most physical systems
including graphene, the electron liquid does not possess
Galilean invariance. Therefore, particle and entropy cur-
rents are described not only by the hydrodynamic mode
associated with the onset of fluid motion, but also by



2

a relative mode described by a dissipative matrix of in-
trinsic thermoelectric coefficients. We aim to trace the
evolution of the vortical component of viscous electron
flow as the system is tuned towards the charge neutral-
ity point where intrinsic dissipative processes dominate
over the hydrodynamic mode. We concurrently study the
changes in the nonlocal resistances characteristic to the
particular flow pattern.

The rest of the paper is organized as follows. In Sec. II,
we briefly introduce main ingredients of the hydrody-
namic formalism. In Sec. III, we study transport in a
long Hall-bar device. We consider geometry with trans-
verse injection of the current in two measurement se-
tups including electrical and thermal biasing scenarios.
For each case we derive the corresponding nonlocal resis-
tance in the multiterminal measurement configuration.
In Sec. IV, we provide a summary of the main results
and concluding remarks.

II. HYDRODYNAMIC FORMALISM

The hydrodynamic equations are concerned with the
conservation of the electron density n, entropy density s
and momentum flux of the electron liquid. The first two
conservation laws in linear response are expressed by the
continuity equation

∂{n, s}
∂t

+ ∇ · j{n,s} = 0. (1)

The particle current density jn and entropy current den-
sity js can be written as the sum of two contributions:
(i) current densities carried by the hydrodynamic velocity
v(r), and (ii) current densities carried by the transport
relative to the electron liquid as driven by the gradients of
the electrostatic potential φ and temperature T . There-
fore, we express the constitutive relations for jn and js
as follows:

jn = nv − σ

e2
e∇φ− γ

T
∇T, (2a)

js = sv − γ

T
e∇φ− κ

T
∇T, (2b)

with κ, σ, γ being the thermal conductivity, the intrin-
sic conductivity, and the thermoelectric coefficient of the
electron liquid, respectively. In the constitutive rela-
tions, we do not assume Galilean invariance, wherein
σ = 0, γ = 0. In the regime of low doping n � s, the
thermoelectric coefficient may be estimated to scale as
γ/T ∼ n/s. In the same limit, the intrinsic conductivity
σ is nearly a constant modulo logarithmic renormaliza-
tions in the weak-coupling theory [34, 35].

The conservation of momentum density is expressed
in terms of the electronic Navier-Stokes (N-S) equation.
The latter, in the steady-state and the linear response to
the applied forces, is written as

η∇2v − αv = ne∇φ+ s∇T, (3)

where η is the shear viscosity. For systems tuned suffi-
ciently close to charge neutrality, it scales as η ∝ T 2 [36].
The terms on the right hand side are the driving forces
of the hydrodynamic flow. The first term on the left
hand side is the viscous stress, while the second term cap-
tures the friction force due to disorder. One of the main
sources of disorder originates from charge impurities in
the substrate on which the graphene flake is deposited
[37, 38]. These impurities induce spatial fluctuations in
the chemical potential and lead to local regions of posi-
tive and negative charge density, commonly referred to as
charge puddles. Averaging the flow of the electron fluid
over the spatial inhomogeneities leads to an appearance
of the effective friction force Ff = −αv, with the friction
coefficient α given by [12]

α =
〈(sδn− nδs)2〉

2
(
n2κ
T −

2nsγ
T + s2σ

e2

) , (4)

where δn(r) and δs(r) denote local fluctuations of the
particle and entropy density, respectively, and brackets
〈· · · 〉 define spatial averages. In this macroscopic de-
scription, namely upon spatial averaging over the dis-
tances larger than the correlation radius of the disorder
potential, the number density and the entropy density in
Eq. (3) can be taken to be spatially uniform. It should
be noted though, that averaging also leads to an effective
renormalizations of both these densities, as well as intrin-
sic kinetic coefficients. In the treatment that follows, we
assumed that all these renormalizations were absorbed
into correspondingly redefined quantities. For the bulk
samples and Hall-bar devices, this analysis was carried
out in the recent work of Refs. [12, 13]. For instance,
the renormalized intrinsic conductivity, σ+e2χ, acquires

positive correction with χ = 1
2η
〈U2〉

(2πe2)2 , where U is ran-

dom potential. This signifies the conductivity enhance-
ment by the correlated effects of electron and disorder
scattering.

III. THERMOELECTRIC RESISTANCES

In the present paper, we in part revisit the hydrody-
namic flow proposed in Ref. [19], i.e. the flow in a strip
of finite width w (−∞ < x <∞, 0 < y < w) with source
and drain contacts placed at the opposite edges of the
strip (x = 0, y = 0, w), see Fig. 1. We further extend
previous considerations Refs. [19–22] to include thermal
effects and highlight the difference in the emergence of
the vortical effects.

A. Electrically Biased Setup

In this section, we consider the flow pattern driven by
the transverse current injected and drained through the
contacts. Since the system is purely electrically biased,
there is no temperature gradient ∇T . The viscous flow is
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FIG. 1. The geometric setup: the electric (thermal) current
I(IQ) is injected at x = 0, y = 0 and drained at the opposite
end x = 0, y = w. The nonlocal electrical (thermal) resistance
is measured at a distance x away from the injection site.

described by the N-S equation and the continuity equa-
tion

∇2v − 1

l2G
v =

ne

η
∇φ, (5)

∇ · j = 0, j = ejn = nev − σ∇φ, (6)

where lG =
√
η/α is the generalized Gurzhi length. We

remind that the conventional definition of the Gurzhi
length is given by the geometrical mean between the
momentum-conserving electron mean free path and the
momentum-relaxing one on the point-like quenched dis-
order. Therefore, its temperature dependence is governed
by the former length scale. In the present case, the fric-
tional processes are captured by the coefficient α(n, T )
that exhibits a rather complex density and temperature
dependence as should be clear from Eq. (4). Therefore,
the Gurzhi crossover from the flow in the restricted ge-
ometry to that in the bulk, which is described by the
relative importance of the Laplacian and local friction
term in Eq. (3), is more intricate in the present model.

Introducing the stream function ψ via v = z ×∇ψ =
(−∂yψ, ∂xψ), it is evident from the N-S equation (5) that
the stream function satisfies(

∇4 − 1

l2G
∇2

)
ψ = 0. (7)

To solve for ψ, boundary conditions (b.c.) must be spec-
ified. One of the b.c. is the no-slip boundary condition
vt = 0, where the subscript “t” stands for the tangen-
tial component. In terms of the stream function, this is
equivalent to ∂nψ = 0, where the subscript “n” stands
for the normal component. The second b.c. is imposed
on the normal component of the velocity by the injected
and drained current I(r) flowing in and out through the
contacts. With the constitutive relation in Eq. (6), this
reads,

I(r) = nevn − σ∂nφ = ne

[(
1 +

l2n
l2G

)
vn − l2n∇2vn

]
,

(8)

where ln =
√
ησ/ne, and we have used the N-S equa-

tion (3) to relate the potential gradient ∂nφ to the flow
velocity vn.

Similar to Ref. [19], we express ψ in a mixed
coordinate-momentum representation,

ψ(x, y) =

∫
dk

2π
eikxψk(y), (9)

and find that the function ψk(y) satisfies the equation

(∂2y − k2)(∂2y − q2)ψk(y) = 0, q =
√
k2 + l−2G , (10)

coupled with the no-slip b.c.

∂yψk(y)|y=0,w = 0, (11)

and the b.c. of current injection

I

ikne
= (1 + `)ψk(y)|y=0,w − l2n(∂2y − k2)ψk(y)|y=0,w.

(12)

The dimensionless parameter ` is defined as ` = l2n/l
2
G

and we assume point-like contacts I(x) = Iδ(x). The
solution of Eq. (10) is straightforwardly written by a sum
of four exponents,

ψk(y) =
I

ikne

(
a+e

ky + a−e
−ky + b+e

qy + b−e
−qy) .

(13)

Combining such a solution with Eqs. (11) and (12), and
solving for the expansion coefficients a± and b±, we get

a+ =
(eqw − 1) q

(1 + `)q (eqw − 1) (ekw + 1)− k (eqw + 1) (ekw − 1)
,

(14a)

a−=
ekw (eqw − 1) q

(1 + `)q (eqw − 1) (ekw + 1)− k (eqw + 1) (ekw − 1)
,

(14b)

b+ =−
(
ekw − 1

)
k

(1 + `)q (eqw − 1) (ekw + 1)− k (eqw + 1) (ekw − 1)
,

(14c)

b−=−
eqw

(
ekw − 1

)
k

(1 + `)q (eqw − 1) (ekw + 1)− k (eqw + 1) (ekw − 1)
.

(14d)

The electric potential can be found from the N-S
Eq. (5), which gives ∇iφ =

(
η∇2vi − αvi

)
/ne. Upon

substituting the solution Eq. (13) into the N-S Eq. (5),
we find the potential

φ(x, y) = − I

2πσ

+∞∫
−∞

dk

k
eikx

×
` q
[
eky − ek(w−y)

]
(1 + `) q (ekw + 1)− k (ekw − 1) coth qw

2

,

(15)
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and the nonlocal voltage, ∆V (x) ≡ φ(x, y = 0) −
φ(x, y = w). Consequently, the nonlocal electric resis-
tance, Rnl(x) ≡ ∆V (x)/I is

Rnl(x) =
1

πσ

+∞∫
−∞

dk

k

`qeikx

(1 + `) q coth kw
2 − k coth qw

2

. (16)

We consider limiting cases. For the wide Hall-bar strip,
lG � w, the nonlocal resistance in the region |x| . w at
different densities is given by the following expressions.

(1) Low density: ln � lG or n�
√
ασ/e2

Rnl(x) =


2
πσ ln

(
2w
π|x|

)
, |x| � lG

2
πσ

l2n
l2n+l

2
G

ln
(

2w
π|x|

)
, lG � |x| � w

. (17)

(2) High density: ln � lG or n�
√
ασ/e2

Rnl(x) =


2
πσ ln

(
2w
π|x|

)
, |x| � ln

− 2η
πn2e2

2
x2 , ln � |x| � lG

2
πσ

l2n
l2n+l

2
G

ln
(

2w
π|x|

)
, lG � |x| � w

. (18)

Conversely, for the narrow strip, lG � w, the nonlocal
resistance for different densities is given by the following
expressions.

(1) Low density: ln � w or n�
√
ησ/w2e2

Rnl(x) ≈ 2

πσ
ln

(
2w

π|x|

)
, |x| � w. (19)

(2) High density: ln � w or n�
√
ησ/w2e2

Rnl(x) =

{
2
πσ ln

(
2w
π|x|

)
, |x| � ln

− 2η
πn2e2

2
x2 , ln � |x| � w

. (20)

In the low density limit, Rnl(x) is everywhere positive
in the region |x| � w and formally identical to that in the
Ohmic regime. At high density, we reproduce the results
obtained in [19] in the spatial region ln � |x| � w.
Whereas in the region |x| � ln, Rnl is again formally
identical to the Ohmic form. This can be understood
from the fact that the constitutive relation is j ≈ σE for
|x| < ln.

B. Thermally Biased Setup

In this section, we consider the case in which the pair of
contacts at x = 0, y = 0, w are kept at different temper-
atures, so that a transverse entropy current Is is injected
and drained. Since there is no electric current in the bulk,
we set jn to zero in Eq. (2a) and obtain the relation be-
tween the potential, the flow velocity, and temperature
gradient:

e∇φ =
e2

σ

(
nv − γ

T
∇T

)
. (21)

Substituting this relation into the N-S equation (3) and
the constitutive relation for js (2b), we have

∇2v −
(

1

l2G
+

1

l2n

)
v =

ς

η
∇T, (22)

∇ · js = 0, js = ςv − κ
T
∇T, (23)

where ς = s − ne2γ/σT and κ = κ − e2γ2/σT are the
redefined entropy density and thermal conductivity, re-
spectively. Introducing the stream function ψ in the
same mixed coordinate-momentum representation as in
Eq. (9), we get

(∂2y − k2)(∂2y − q2)ψk(y) = 0, q =
√
k2 + l−2G + l−2n ,

(24)

coupled with the no-slip b.c.

∂yψk(y)|y=0,w = 0, (25)

and the b.c. for thermal current injection

Is
ikς

= (1 + `)ψk(y)|y=0,w − l2s(∂2y − k2)ψk(y)|y=0,w, ,

(26)

where ls =
√
ηκ/T ς2. The modified dimensionless pa-

rameter ` acquires the form ` =
l2s
l2n

(
1 +

l2n
l2G

)
. In analogy

with the electrically biased case, we obtain the tempera-
ture distribution

T (x, y) = − IQ
2πκ

+∞∫
−∞

dk

k
eikx

×
` q
[
eky − ek(w−y)

]
(1 + `) q (ekw + 1)− k (ekw − 1) coth qw

2

(27)

and the nonlocal temperature difference, ∆T (x) ≡
T (x, y = 0) − T (x, y = w). Consequently, the nonlo-
cal thermal resistance, Rth(x) ≡ ∆T (x)/IQ, is cast in
the form

Rth(x) =
1

πκ

+∞∫
−∞

dk

k

` qeikx

(1 + `) q coth kw
2 − k coth qw

2

. (28)

For simplicity, we consider analytically the limiting
cases for the nonlocal thermal resistance at zero friction
α = 0 at different densities. We find for

(1) the low density: ls � w � ln

Rth ≈

{
2
πκ ln

(
2w
π|x|

)
, |x| � ls

− 2η
πTς2

2
x2 , ls � |x| � w

. (29)

(2) The intermediate density: ls � ln � w

Rth ≈


2
πκ ln

(
2w
π|x|

)
, |x| � ls

− 2η
πTς2

2
x2 , ls � |x| � ln

2
πκ

l2s
l2n

ln
(

2w
π|x|

)
, ln � |x| � w

. (30)
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FIG. 2. A comparative set of plots for the electric and thermal current stream lines at different densities in a Hall-bar device.
The stream plot for the flow profile is superimposed on the colored plots for potential or temperature, adjacent to the nonlocal
resistance. In each regime the corresponding resistance is computed as a function of distance away from the central line of
source-drain contacts. The parameters used in the plots are identical to those in the main text.

(3) High density: ln � ls � w

Rth ≈
2

πκ
ln

(
2w

π|x|

)
, |x| � w. (31)

The nonlocal thermal resistance is everywhere nega-
tive (viscous flow) in the low density limit and every-
where positive (Ohmic flow) for high density. In the
regime sufficiently close to neutrality η ∼ (T/v)2 and
ς ≈ s ∼ (T/v)2 since ne2γ/σsT ∼ (e2/σ)(n/s)2 � 1.
Therefore from Eq. (29) we conclude that |Rth| ∝ 1/T 3

at x � ls. The growth of the resistance, in absolute
value, with lowering of the temperature is limited by the
applicability condition of hydrodynamic regime. Coinci-
dently, the temperature dependence of Rth is the same
as in Kapitza thermal boundary resistance, RK = A/T 3,
although the physical mechanism is completely different
[39]. Finally, it is worthwhile to note that the nonlocal
response of the injected thermal current can also be de-
tected by electric probes. Indeed, the built-in electric
potential, which is given by Eq. (21), leads to a nonlocal
voltage difference

∆V (x) = −e
2γ

σT

∆T (x)

e
. (32)

This can be experimentally probed by the scanning tun-
neling potentiometry (STP) technique, e.g. see Ref.[18].

IV. SUMMARY AND CONCLUSIONS

In this work we consider thermoelectric transport in
graphene Hall-bar devices in the hydrodynamic regime.
The most peculiar aspect of electron hydrodynamics in

graphene is that at charge neutrality the hydrodynamic
flow corresponds to a pure heat transport as it carries no
charge. The decoupling of charge and heat fluxes was
previously explored primarily in light of the observed
anomalously large Lorenz ratio. In this study, we pro-
vide a comparative analysis for the thermal and electrical
transport in the geometry that enables current vorticity.
In particular, we trace density evolution of the vortical
flow and concomitant nonlocal resistance in both charge
and heat transport modes. In addition, we study how
this flow changes across the Gurzhi crossover, namely for
narrow and wide samples as compared to lG.

The main result of our findings is summarized in Fig.
2. We can see that in the charge mode viscous shear flow
generates vorticity and a back flow on the side of the main
current path in the high density regime. As a result, the
region of negative nonlocal resistance is clear once the
measuring contacts are placed in the region of the coun-
terflow. The resistance is proportional to the electron
fluid viscosity and inversely proportional to the square
of particle density (see Eqs. (18) and (20) for wide and
narrow strips, respectively). This result is in agreement
with the previous conclusions presented in Ref. [19], al-
beit we provide an extension for the Hall-bar devices with
long-range disorder. When the density is varied towards
the charge neutrality, this vortical picture gradually dis-
appears. In the regime of vanishing carrier doping, the
transport is dominated by the relative mode with the
finite intrinsic conductivity σ, and the overall current
profile resembles that in the Ohmic limit. The two ex-
treme cases are depicted in the left panels (a) and (b) of
Fig. 2. In contrast, the thermal transport picture evolves
with the opposite trend. Heat current whirlpools become
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more pronounced close to the charge neutrality where
thermal current is dominated by the convective part of
the flow, sv, as depicted in the right panels (c) and (d) of
Fig. 2. The resulting negative thermal resistance falls off
quadratically with the distance away from the current in-
jection and also scales inversely proportional to the cube
of temperature Eq. (29). The temperature dependence
originates from both electron viscosity and entropy den-
sity.

We highlight that high-resolution thermal imaging
and scanning gate microscopes [40, 41] and Johnson-
Nyquist nonlocal noise thermometry [42, 43] may pro-
vide exquisite tools to probe viscous electron vorticity in
parameter domains where these signatures are no longer
present in the charge transport mode.
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