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It has been known for decades that a magnetic field can deflect phonons as they flow in response to
a thermal gradient, producing a thermal Hall effect. Several recent experiments have revealed ratios
of the phonon Hall conductivity kg to the phonon longitudinal conductivity 7, in oxide dielectrics
that are larger than 10~% when phonon mean-free-paths exceed phonon wavelengths. At the same
time kg /KL is not strongly temperature dependent. We argue that these two properties together
imply a mechanism related to phonon scattering from defects that break time-reversal symmetry,
and we show that Lorentz forces acting on charged defects can produce substantial skew-scattering

amplitudes and related thermal Hall effects.

Introduction— In recent years the thermal Hall ef-
fect has frequently been employed as an informative
probe of strongly correlated materials [1-20]. In the pro-
cess, it has become clear that relatively large thermal
Hall conductivities (kp) that are linearly proportional
to magnetic field B are common in oxide dielectrics.
The linear dependence of kg on B is expected since
this non-reciprocal transport coefficient requires time-
reversal symmetry breaking. What is surprising is not
that kg /B # 0, but that it is relatively large. For mag-
netic fields ~ 10 Tesla, the ratio of kg to the longitudinal
thermal conductivity xr, is often larger than 1073 over a
wide range of temperatures [1-4].

Large thermal Hall conductivities are not limited to
magnetic materials, and even in magnetic materials usu-
ally have an onset that is not related to that of mag-
netic order [1]. In LapCuO, the thermal Hall conduc-
tivity is almost isotropic [3], like the phonon spectrum,
whereas the magnon spectrum is quasi-two-dimensional.
Although there must be a magnon Hall effect, whose the-
oretical description is of interest [21-25], it is therefore
not typically the dominant source of the thermal Hall
effect. Phonons, the dominant heat carriers in most di-
electrics, must also have a Hall effect [12].

Large thermal Hall effects are normally observed in
a temperature range over which the the phonon mean-
free-path ¢ exceeds the typical wavelength of thermally
active phonons, Ay ~ he/kpT, where ¢ is the mode ve-
locity. When this condition is satisfied, phonon trans-
port can be described using a Boltzmann equation, and
the phonon conductivity is limited by phonon scattering.
The non-reciprocity could in principle originate from an
intrinsic mechanism that acts between scattering events,
or from a non-reciprocal property of the extrinsic scat-
terers. Mechanisms responsible for intrinsic chirality in
phonon transport have been extensively investigated [6—
8,12, 26, 27]. Coupling to a spin environment can, for ex-
ample, provide phonon bands with a finite Hall viscosity,
N, [19, 20] which characterizes the strength of the time-
reversal symmetry breaking inherited from the spin sys-
tem. Magnetic fields also influence the lattice dynamics

of ionic crystals directly through the Lorentz forces that
act on moving ions [28]. The Lorentz force couples longi-
tudinal in-phase motion of the cations and anions to out-
of-phase transverse motion. At small k the chiral compo-
nents of acoustic phonon polarization vectors vanish like
(ka)?. Tt follows that 1z has a Lorentz force contribution
~ Z*eB/(ca) = MQ.;/a, where w.; = Z*eB/Mc is the
ion cyclotron frequency, Z* is the effective ion charge,
M is the ion mass and a is the crystal lattice constant.
Whatever its origin, Hall viscosity combined with non-
chiral phonon scattering always produces a thermal Hall
conductivity. Because the chirality of the active phonons
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FIG. 1. Left side: Longitudinal thermal conductivity Kz (top
panel) and the thermal Hall to longitudinal conductivity ra-
ti0 Kay/Kze (bottom panel) of a model in which scattering
off charge defects is weakly non-reciprocal in the presence of
a magnetic field. Right side: Schematic illustration of scat-
tering of acoustic waves on charged defects. Parameters have
been chosen to fit the data (blue dots) reported in Ref. [15].
The yellow, blue, and red shading in the bottom panel iden-
tifies the temperature ranges in which boundary, defect, and
umklapp scattering are respectively dominant. Similarly high
quality fits can be achieved in all systems that we have exam-
ined.



is proportional to k2, and the typical k ~ )\;1 x T,
this mechanism always yields a kg /kp ratio that de-
clines with decreasing temperature. (Guo et al. have
recently concluded that the intrinsic mechanism yields
ku/kr ~ T* [20] behavior.) Experimentally g /ky is
weakly temperature dependent except at the lowest tem-
peratures where boundary scattering starts to play a role,
pointing to an extrinsic mechanism. In order to retain its
impact at low temperatures, time-reversal-breaking must
be embedded in the properties of the phonon scatterers,
not the phonon medium.

Our model for phonon Hall effects applies when the
phonon mean free path ¢ exceeds the thermal wavelength
Ar of acoustic phonons with energy hw ~ kpT, i.e.,
¢ > Ap. The mean free path can be estimated from
measured thermal conductivities and heat capacities us-
ing the relationship ¢ ~ k/cC, where C' is the heat capac-
ity. The thermal wavelength is of order ~ aTp /T, where
Tp is the acoustic phonon Debye temperature, and a is
the crystal lattice constant. It has been understood for
decades [29-31] that phonon transport in this regime,
which is commonly attained in good crystals, can be de-
scribed using a Boltzmann equation. In the temperature
range of interest, scattering of long-wavelength longitu-
dinal acoustic (LA) phonons by defects, for example oxy-
gen vacancies, limits thermal transport [31]. The removal
or the addition of an atom from a lattice site disrupts
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where we have restricted attention to the longitudinal
phonon mode with frequency wyk. Here, Wy _,q is the rate
of elastic scattering from initial state (k) to final state
(q). For temperatures well below the Debye temperature,
the phonon Hall conductivity is largest, wy & c|k|, where
¢ is the longitudinal phonon velocity. Non-reciprocal
(skew) phonon scattering (Wq_kx # Wk_q) requires bro-
ken time-reversal symmetry that is, in the case of inter-
est, supplied by an external magnetic field B = Bnp,
where g is a unit vector along the direction of the field.
For a cubic crystal with short-range scatterers,

{1 — A, np - (l; X 61)} 0(w — cq),
(2)

where V' is the system volume, 7, is the phonon re-
laxation time, v, is the phonon density of states, and
A, < 1is a small parameter, calculated explicitly below,
that characterizes the ratio of nonreciprocal to recipro-
cal phonon scattering. When inserted in the Boltzmann
equation, Eq. (2) yields the longitudinal (k) and Hall
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the local bonding, yielding strain fields that produce a
crudely spherical defect with elastic properties that dif-
fer from those of the surrounding medium, as depicted
in Fig. 1. Since oxygen vacancies and interstitials are
dopants, the ions in its neighborhood have a net charge
when the donor bound electronic levels are not occupied,
and will therefore experience a local Lorentz force. In this
Letter we propose that the thermal Hall effect in many
oxide dielectrics is due to non-reciprocal phonon scatter-
ing from charged defects. Specifically, we show that a
contribution to phonon skew scattering that is linear in
magnetic field results from interference between Lorentz
force and acoustic potential scattering processes. As il-
lustrated in Fig. 1, this physical picture is able to account
for many observations.

Phonon Boltzmann FEquation— We consider the
steady-state phonon distribution function fy s of a sys-
tem driven from equilibrium by a temperature gradi-
ent VI'. (Here k is the phonon wavevector and s the
mode label.) We write fx s = flios) + gk,s, where flios) is
the equilibrium Bose-Einstein distribution function and
Jks 18 linear in VT. At low temperatures the thermal
conductivity is limited by elastic scattering of longitudi-
nal phonons [30, 31]. The Boltzmann equation therefore
reads

Z (Wak 9q = Wisq 9K)
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with fw = kpTz. It follows that ky/k;, ~ A, at

w ~ kpT. The goal of the next section is to estimate the
parameter A, by investigating the interference between
conventional long-wavelength acoustic and Lorentz scat-
tering processes.

Low-Temperature Phonon Scattering — Since the ions
in the vicinity of a dopant complex have a net charge,
the local Lorentz force does not vanish in the interior of
the scattering center, as sketched in Fig. 1. Below we
show that a contribution to phonon skew scattering that
is linear in magnetic field results from the interference
between this Lorentz force and the acoustic scattering
potential. The strength of the effect can be characterized
by the ion-cyclotron frequency w,., which is ~ 10° Hz at
B =10 T, depending on the ion charge and mass.



In order to obtain an explicit form for the scattering
amplitude we first examine acoustic scattering in the ab-
sence of a magnetic field. It is convenient to rewrite the
acoustic wave equation in this limit as

K2
2 2

)
where K,, = w/cp, and k:n = w/cpy, where n = 1(2)
labels the region outside (inside) the defect. Here c%, =
pn/pn and ¢z, = (A, + 2un)/pn are, respectively, the
squares of the transverse and longitudinal phonon veloc-
ities, p, is the mass density, and A\, and p, are Lamé
constants. It is known that ionic compounds, including
high-T. superconductors, display acoustic wave attenua-
tion [32-36] that survives to T' = 0. Several experimen-
tal studies have observed a correlation between acoustic
wave attenuation and the density of oxygen defects [35-
37]. Inelastic relaxation effects in solids can appear, for
example, where the strain fields of the probing elastic
wave differentially alters the energies of the atomic sites
available to mobile species [38]. We account for these
small absorption losses by including a kinetic viscosity co-
efficient 7y 2)w < Ay(2), p1(2) [39], in the acoustic model
of the the homogeneous and defect region, letting

H1(2) = H1(2) — 1(2)W
Al2) = A1) — M)W - (6)

When a longitudinal wave propagating in the z-
direction (k = kz [40]) impinges on the surface of the
spherical scatterer, it can be scattered either as a lon-
gitudinal wave or as a transverse wave. The scattering
problem (5) can be conveniently solved in spherical coor-
dinates by introducing the scalar functions 7, and 77,
defined by [41-47]

1
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The scalar potentials corresponding to incident (), trans-
mitted (%), and scattered (*) waves can be written as [46]
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where Jj41/2(x) and Hl(l)(a:) are the half-order cylindri-
cal Bessel and Hankel functions, P;(cos #) is the Legendre
function of degree [, and 6 is the scattering angle. The
coefficients A;, B;,C; and D; are obtained by imposing
the continuity of the displacement field and the stress
tensor at the boundary radius r = a:

Ulgy = Unoy FUS@DY s Trr(re) = Ovrre) T Ton(roy » (14)
where the stress tensor components
orr = AV - u + 2001, (15)
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If the difference in mass density and Lamé constants be-
tween the two regions is small, i.e., p1/pa, p1/ 12, A1/ A2 ~
1, one can safely neglect wave interconversion, i.e., D; <
C; for each I. Thus, most of the incident longitudinal
acoustic wave amplitude will be scattered as a longitu-
dinal wave. In the Rayleigh scattering regime [48], the
wavelength of acoustic waves is much larger than the de-
fect size, i.e., ka < 1. To leading order in ka the scat-
tered wave is dominated by its [ = 0 component
eikr
llk/L(I') = éL ,

fxr—wr, (17)

where &7, = (cos¢sinf, singsinf, cosd) and k' = kéy,
are, respectively, the polarization and the wavevector of
the outgoing LA wave. Here fixr k1, is the longitudinal
scattering amplitude from k to k’:
ImCy — iReC

farowr = —2— z o, (18)
with (ImC)” 4 (ReCp)?
extinction theorem [49].
the small parameters 7;(2)w/fi1(2)

= —ReC), as dictated by the
Retaining only terms linear in
, we find
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Interference between Rayleigh and Lorentz Scatter-

ing— Working in the continuum elasticity theory limit

valid at low temperatures, we describe the phonons by a

displacement vector field u(r) that satisfies the following
wave equation:

> {A%‘FA%‘FA%*

J=z,y,2

w25ij]uj(r) = O, (21)

where A, is the acoustic differential operator in the ab-
sence of a magnetic field, A% is the difference between
the acoustic differential operator inside and outside the



defect region, accounted for in the previous section, and
Al is a Lorentz force term that acts only inside the de-
fect. For a uniform isotropic medium

k2 + & k? 3kyky 2 kok,
AY = ctkyiky A k% + c%kz cikyk, ,
Akyk, ctkyk, k2 + 2 k2
(22)
where k; = —iVy, k* = k2 4+ k2 4+ k2, and ¢} = ¢}, — 7.

For a given frequency w, there are three independent solu-
tions unperturbed elastic waves with vector displacement
fields uga(r) = €, cos(k - r), where |k| = w/cpy for the
longitudinal mode (k x &ér; = 0) and |k| = w/cpy for two
degenerate transverse (k - &, = 0) modes.

The ions that surround a charged defect are subject
to a Lorentz force that is perpendicular to the applied
magnetic field and to the ion velocity. Our goal is to cal-
culate the corrections to the phonon scattering rate that
are linear in Lorentz force, and hence in magnetic field.
This correction is guaranteed by time-reversal symmetry
to be non-reciprocal. The Lorentz force contribution to
the acoustic differential operator

AiLj = lww:(j x 1) -np, (23)
is non-zero inside the defect sphere. Here w. = p.B/p2 is
the effective ion cyclotron frequency and p. is the charge
density of the defect region.

The scattering rate from an incoming longitudinal
wave with wavevector k to an outgoing unperturbed wave
with wavevector k' is related to the acoustic scattering
T-matrix by

27
V2
where T = (AF + AL) + (AR + AL)GOT is the total
acoustic scattering T-matrix and

-1
GO = (855 (w+ im)? — A7 (25)
is the unperturbed acoustic Greens function. To first
order in AL, T = TEHTR(AR)"LAL(AR)=ITE | [50],
where TR = AR + ARGOTT is the Rayleigh scattering
T-matrix, which is related to the scattering amplitude
calculated above by

Wy = (K| T]k)|* 6(wie — w), (24)

_ 1 1 , R
fxrowr = 47TC%1<k,L|T |k, L). (26)

Because the B = 0 long-wavelength phonon scattering
is weak, in the long-wavelength Rayleigh limit we can
approximate T®(A®)~! ~ I, which yields T ~ T# + AL
where

(k',LIA"|k, L) = iww, (2 x é1) - fig
X /d3r e KRG (q — 1)

~ iVSpwwc (2 X éL) . ﬁB s (27)
ka1
and O(z) is the Heaviside step function and Vi, = 47a3/3

is the defect volume.

Phonon Hall Effect— Combining Egs. (27), (24), (26),
and (18), and assuming that the dielectric contains a
density ng of randomly distributed charged defects, we
obtain the expression employed below to estimate the
phonon Hall effect:

27N
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(28)
Random Lorentz forces would on their own yield a
phonon scattering rate proportional to B2, and a skew
scattering rate proportional to B3. The linear in B effect
observed experimentally must therefore arise from inter-
ference between Rayleigh and Lorentz scattering terms.
Retaining only the linear terms and setting w = cp1k,
we obtain an expression for the dimensionless skewness
parameter employed in Eq. (4):

Wen (%—l—%—!—%—@ — 5wene (1+2)\L11>
2
A 2
W)t -)
(29)

The right-hand-side of Eq. (29) is energy-independent,
implying that in the Rayleigh scattering regime, the Hall
to longitudinal conductivity ratio is temperature inde-
pendent, with both quantities oc 771
We estimate the typical values of A, at magnetic field
H = 15 T and temperature T' = 15 K by setting w.
to the oxygen ion cyclotron frequency, with p. > 0 for
oxygen vacancies [51], and assuming a 1% difference for
the Lamé constants inside and outside the defect re-
gion with A1, u1 > Ao, p2, ft12) ~ 0.8A1(2) and setting
Mw/ A > mw/A ~ 10~2. These estimates yield
BH 1078, (30)
RL
which is consistent with the order of magnitude observed
in experiment [1-3]. Note that the skewness in these
estimates is larger than the ratio of the ion cyclotron
frequency at 15 T to the thermal phonon frequency at
T = 15 K because the elastic constant jump near the de-
fect is assumed to be small in relative terms; skew scat-
tering is larger in relative terms because the reciprocal
scattering processes are weak. The sign of the thermal
Hall conductivity is negative in many systems - also in
agreement with our result (30). It must be noted, how-
ever, that the sign of Eq. (30), as well as its magnitude,
is very sensitive to the relative strength of elastic and
attenuation constants. Both positive and negative signs
are possible in our interpretation. When elastic scat-
tering from electrically neutral defects plays a more im-
portant role, the xp/kr (30) ratio should decline. The
emergence of an important role for boundary scattering,
which normally dominates in the low-temperature limit,

~
w =




is signaled experimentally by a maximum in k1 (7T) at a
finite temperature T},,,. The explanation for the phonon
Hall effect predicts, in agreement with experiment, that
kg /KL begins to decrease rapidly for T < Tz
Discussion— The dominant phonon scattering process
in good crystals is generally expected to switch from
boundary scattering, to defect scattering, to umklapp
phonon-phonon scattering as temperatures increase and
typical phonon wavelengths shorten [29, 30]. In compar-
ing our theory with experimental data, we must account
for these additional scattering processes, which are not
expected to be strongly non-reciprocal. If we assume
that the heat capacity has its asymptotic 72 form over
the temperature range of interest, we find by applying
Mattheisen’s rule [29] to phonon scattering that

AT?
KL = , (31)
Cy+ CyT*+ C, T3 exp(—T*/T)
Ry AdeT4 (32)

KL - Cy + CyT* + C, /T3 exp(—T*/T)"

The constants Cy, Cy, and C,, parameterize the strengths
of boundary, defect, and umklapp phonon-phonon scat-
tering respectively, and are multiplied by characteristic
temperature dependences and summed to obtain the to-
tal phonon scattering rate. Here T is the umklapp scat-
tering cut-off temperature [29]. At higher temperatures
the phonon Hall conductivity in good crystals is insensi-
tive to disorder or boundaries, and it can in principle be
accurately described using ab initio methods that cap-
ture all relevant microscopic details [52-55]. Where this
information is available, it can be used to improve the
interpretation.

We have explicitly noted in Eq. (32) that the thermal
phonon mean-free path ¢ = cr,, oc T-% [30, 31] when lim-
ited by defect scattering alone because phonon scattering
from bulk defects declines when phonon wavelengths ex-
ceed defect sizes. We fit Eq. (31) to the experimental xp,
data of Ref. [15]. This fit then fixes kK /KL, up to a sin-
gle dimensionless skewness scaling parameter A, whose
value is close to the maximum value of this ratio.

Figure 1 shows that excellent agreement can be
achieved between our model and the experimental data.
Our results reveal that defect scattering on charge defects
can lead to a substantial £y, /K, even further away from
the temperature regime dominated by Rayleigh scatter-
ing, i.e., in the red-shaded region in Fig. 1.

Large thermal Hall conductivity signals have been
observed in high-temperature superconductors over a
wide range of doping between insulating and over-doped
states [1-3]. Since phonon chirality is observed to change
continously, decreasing gradually with increases in dop-
ing, it is natural to assume that the same mechanism ap-
plies in insulating and pseudogap states. If the phonon
Hall effect is indeed due to scattering from charged de-
fects, these would have to retain a local effective charge

in the pseudogap state. That is to say that local screen-
ing by mobile electronic quasiparticles would have to
be imperfect at the thermal phonon time scale, on the
length scale of the defect. In cuprates phonon chirality
drops upon exiting the pseudogap state, which is consis-
tent with strengthening screening. Note that the Lorentz
force on an ion in a doped ionic crystal vanishes only if
ionic charges are perfectly screened locally, a condition
that is approached only in good metals.

In summary, we have constructed a model of thermal
transport by chiral phonons. The phonon conductivity is
limited by scattering from charged defects. In our model
long-wavelength acoustic phonons experience both
elastic and Lorentz force, due to the unscreened charge
of the bound dopants. We have shown that the puzzling
giant thermal Hall signal observed recently in many
dielectric oxides can be explained by the interference
between elastic and Lorentz acoustic potentials. The
estimated magnitude and sign of the effect is consistent
with the low-temperature experimental observations [1-
3]. Kinetic viscosity in the crystal is required to get a
thermal Hall effect that is linear in field. Future studies
should address more systematically the parameters
describing the elastic properties of oxygen vacancies as
well as their effective charge in insulating and pseudogap
phases. We hope that our work will stimulate further
experimental investigations of the role of charged defects
in phonon-driven thermal transport.
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