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We study the dynamical behavior of the mean-square displacement of height fluctuations of free-
standing graphene using a phase-field-crystal model introduced recently. We find that the dynamic
scaling behavior obtained numerically at long times is well described by scaling theory of polymerized
membranes. The critical exponent characterizing the power-law increases with time and depends
only on the equilibrium roughening exponent € as a = £/(1+¢). For sufficiently long times it crosses
over to linear behavior for finite-size systems. The critical exponent « is in good agreement with the
anomalous diffusion exponent observed experimentally in graphene, suggesting this is a property
that could also be observable in other two-dimensional crystalline materials.

I. INTRODUCTION

The dynamics of flexible two-dimensional (2D) materi-
als has recently received considerable attention. Of par-
ticular interest is free-standing graphene, which has many
potential technological applications [1-5]. Its high de-
gree of mechanical deformability induces significant flex-
ural modes that can e.g. control thermal conduction in
free-standing pristine graphene [6]. While the effects of
thermal fluctuations have been studied by different ap-
proaches [1, 2, 5, 7-11], there is still lack of detailed and
fundamental understanding of the dynamical behavior of
such fluctuations [1, 3-5, 12, 13]. Accurate measurements
have been performed on the mean-square height displace-
ment [1] induced by thermal fluctuations, with scanning
tunneling microscopy (STM). Surprisingly, the time de-
pendence of height fluctuations has revealed anomalous
sub-diffusive behavior at long times ¢, with a power law
behavior t* and « =~ 0.3. Since out-of-plane fluctuations
of graphene can be well described by elastic membrane
models [7, 8, 14], an interesting question concerns the
possible universality of such dynamic behavior. If this
were the case, this behavior should not depend on the
microscopic details. The value of a would then be con-
strained by the more fundamental roughening and dy-
namical critical exponents £ and z. They characterize
the power-law increase of the mean-square out-of-plane
fluctuations as L%, and their crossover time as L?, for a
system of linear size L.

To examine these phenomena we use here a phase-field-
crystal (PFC) model of 2D graphene that incorporates
out-of-plane deformations in addition to in-plane defor-
mations while still maintaining atomic resolution. Pre-
viously 2D PFC models have been used to study a va-
riety of phenomena of atomistically thin films, including
Moiré patterns, grain boundary energies, triple junction
energies and polycrystals in graphene [15-17], and in-
version boundaries and the formation and dynamics of
defects in hexagonal boron nitride (hBN) [18, 19]. Such

models have also been used to study thermal fluctua-
tions effects in adsorbed layers [20, 21]. These models
were able to predict grain boundary energies and struc-
tures, dislocation and inversion boundary energies and
motion in overall agreement with molecular dynamics,
quantum-mechanical density functional theory and ex-
periments. Recently, a PFC model of layered materials
was introduced specifically for graphene and hBN and
bilayers of such systems [22]. For an atomistically thin
layer, the PFC model with out-of-plane deformations de-
scribes the system by two coupled continuous fields, one
representing the particle density and the other height
fluctuations with a small amplitude. Thus, such a model
is particularly suitable for the study of universal dynam-
ical properties of crystalline membranes, such as free-
standing graphene.

In the present work we thus focus on the dynamical
behavior of free-standing graphene using the PFC model
with out-of-plane deformations as mentioned above. The
numerical simulations of the mean-square height dis-
placement fluctuations show that at sufficient long times
in finite systems the behavior is diffusive with a = 1,
but at intermediate times the exponent corresponds to
sub-diffusive behavior with a < 1. We find that this
behavior can be described by a dynamic scaling theory
already developed for polymerized membranes [23]. The
data for different system sizes collapse as predicted by
the theory. For sufficient large systems, only the short-
time and intermediate-time behavior would be observed
within a limited time scale. Remarkably, the scaling the-
ory also predicts that the exponent « is given analytically
as o = £/(14€), being independent on the particular type
of dynamics. The results are in good agreement with
the experimental observation of sub-diffusive behavior at
long times in free-standing graphene [1]. It indicates that
it is a universal property resulting from thermal fluctu-
ations and the nonlinear coupling between in-plane and
out-of-plane fluctuations that could also be observable in
other 2D crystalline materials.



II. PFC MODEL WITH OUT-OF-PLANE
DEFORMATIONS

We use the PFC approach to describe the free-standing
graphene as a 2D membrane in thermal equilibrium, al-
lowing for deformations out of the plane, in addition to
in-plane deformations. The model is described by the
effective Hamiltonian [22]
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where n(7) is density field and h(7) is the height dis-
placement measured from a base plane with ¥ = (z,y),
and cg is an energy-scale parameter. In Fourier space,
C(k) = k* for k < kmax and C(k) = Chax for k > kupax.
Values of Clhax and knax are chosen to eliminate small
scale fluctuations of h(7). The surface Laplacian is ap-
proximated by
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assuming a small gradient expansion of h(7), where h, =
Oh/0x and h, = Oh/0y. The values of the parameters
entering Eq. (1) were chosen to model graphene [22] and
are given in Sec. IV. The parameter AB largely con-
trols the transition from liquid to crystalline states. The
second term in Eq. (1) leads to the emergence of pe-
riodic equilibrium states and is responsible for in-plane
elasticity. For 7 > 0 (7 < 0), the equilibrium have hon-
eycomb (triangular) symmetry. The last term controls
the bending energy of the sheet.

The time evolution is obtained from dissipative dynam-
ics, which drives the system to the minimum of the free
energy functional. The dynamics of the density field n is
conservative,

H
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while it is non-conservative for the height field h,
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where 7, and 7;, are white noise terms describing the
effects of thermal fluctuations [20] at temperature T', with
zero mean and
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As shown previously [22], the model reduces to the con-
tinuous elastic model used to study flexible sheets [24] in
the limit of small deformations. In this limit and 7" = 0,
the stationary solutions of these equations correspond to
the minimization of the energy functional of Eq. (1),

leading to the von-Karman equation equations for bend-
ing of thin plates [25].

The numerical simulations described in Sec. IV were
performed mainly with conservative dynamics for n(r)
but additional calculations used non conservative dynam-
ics analogous to Eq. (4).

III. DYNAMIC FINITE-SIZE SCALING

The scaling theory for the mean-square displacement
of height fluctuations has already been considered in the
context of polymerized membranes [23]. Fluctuations can
be described by an elasticity theory where the in-plane
and out-of-plane deformations are coupled by a nonlinear
term [24, 26]. The combined effect of this coupling and
thermal fluctuations leads to the mean-square fluctua-
tions out of the plane of the membrane, (h%), increasing
with system size L as a power law (h2) oc L*, with the
roughening exponent & ~ 0.6 significantly different from
its value in absence of the nonlinear coupling, £ = 1.
The time evolution of the mean-square height displace-
ment (Ah(t)?) = ((h(r,to+t) — h(r,t9))?) can be divided
in three different regimes. For short times, the behavior
depends on the details of dynamics at short length scales
and is not expected to be universal. On the other hand,
at intermediate and long times it does not depend on the
microscopic length, although it can still depend on the
type of dynamics. As in critical phenomena, one then
expects that at intermediate and long times it should
satisfy the scaling form [23]

(Ah(t)?) = L*(t/L7), (7)

where z a the dynamic critical exponent. In a finite sys-
tem with free boundary conditions, the center-of-mass
diffusion is the dominant contribution in the long time
regime, leading to a linear behavior (Ah(t)?) ~ Dent,
where D, is the diffusion coefficient and thus the scal-
ing function ®(z) x z for large x. Moreover, since
D o< 1/L2%, the dynamic exponent is constrained to
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In the intermediate time regime, where the behavior is
size-independent, the scaling function should behave as
®(z) ~ 2%/%. Then from Eq. (8) the scaling form implies
that (Ah(t)?) o t%/% ~ t* with the critical exponent
given by

3
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This sub-diffusive behavior corresponding to a@ < 1 re-
sults from the collective effects of internal modes, which
dominate the dynamical behavior at the intermediate
time regime.

A notable feature of the scaling relation of Eq. (9) is
that o depends only the critical exponent &, which is a
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static equilibrium property. This is a consequence of the
scaling relation (8) for the dynamical exponent z, which
is determined by &, rather than being an independent
critical exponent. Therefore, « is independent of the de-
tails of the particular dynamics chosen to model the time
evolution of the system. Other properties, however, may
depend on the dynamics.

We find it useful to include the temperature T' explic-
itly in the scaling form. Assuming that the center-of-
mass diffusion constant obeys the usual Einstein’s re-
lation, D¢y, = Tw, where p is the mobility, and that
(h?) < TL*, as obtained from harmonic elasticity the-
ory [26], the same arguments above lead to the scaling
form

(Ah(t)?) = TL*®(t/L?). (10)

In the Appendix, we demonstrate this scaling form in
absence of the nonlinear coupling between in-plane and
out-of-plane deformations, corresponding to By = 0 in
Eq. (1), and also show that in the presence of this cou-
pling the linear behavior (Ah(t)?) o T t remains valid in
the long-time regime.

For the experiments on graphene, the scaling theory
should be valid in the temperature regime where topo-
logical defects are absent. This condition is well sat-
isfied since experiments are usually performed around
room temperature [1], where the thermal energy is much
smaller than the excitation energy of such defects. More-
over, since from Eqgs. (7) and (10), the crossover time 7,
where the long time behavior of linear diffusion sets in,
scales as

Tox L, (11)

only the intermediate time behavior is observed for large
systems within the limited experimental time scale, with
the power-law behavior (Ah(t)?) ~ t*. Thus the critical
exponent « given by Eq. (9) corresponds to the anoma-
lous diffusion exponent observed at long times in the ex-
periments. Using the value of £ obtained from Monte
Carlo simulations of graphene [7] £ = 0.575, we obtain
a = 0.365, which is in good agreement with the anoma-
lous exponent found experimentally [1]. In the next sec-
tion, we present numerical simulation results from the
PFC model of Eq. (1) providing support to the scaling
forms of Egs. (7) and (10) for free-standing graphene.

IV. NUMERICAL SIMULATIONS

The coupled Eqs. (3) and (4) are solved numerically
in Fourier space [22] with wave vector k, as a function of
time ¢ with time step At. A square lattice is used of linear
size LAz with periodic boundary conditions and mesh
size Ay = Axz. To eliminate small-scale fluctuations of
n(7), nn(k, t) is set to zero for k > kpax. We set the PFC
parameters to AB = —0.15, By = 1, 7 = —0.874818,
v = 1, k = 0.209726 and ¢, = 6.58 eV, which has

FIG. 1. Ground-state configuration (left) and representative
configuration at 7' = 0.004 (right), corresponding to ~ 300K.

been shown previously to describe many properties of
graphene in the ground state [22]. Dimensionless units
are used in the Hamiltonian. The conversion factors for
temperature and length are ¢,/kp and 0.3534, respec-
tively. However, it is not possible to convert time to
physical units because the kinetic coefficients in the phe-
nomenological equations, Eqs. (3) and (4), are arbitrary.
The main results are obtained for mesh size Az = 0.5,
time step At = 0.5 and knax = 0.5. In dimensionless
units, room temperature corresponds to T =~ 0.004. Fig-
ure 1 illustrates the ground-state configuration and a typ-
ical configuration at T = 0.004. The numerical results
described below were obtained at higher temperatures,
T > 0.02, and system sizes up to L = 250 in order to
reach thermal equilibrium and observe crossover behav-
ior within the limited computer time. For this range of
temperatures, the thermal length [27] above which non-
linear thermal fluctuations are expected to dominate cor-
responds to Ly, < 7 A, well below the systems sizes used
in the numerical simulations (~ 50 A) and experiments
(~ 7 pm).

From the time dependence of the height fluctuations
h(r,t) at fixed value of 7, we computed its mean-squared
displacement (Ah(t)?) = (((h(r,tg +t) — h(r,t9))?) for
different system sizes. The time average was performed
after the initial ground-state configuration reached ther-
mal equilibrium, which required typically 10° time steps.
Figure 2 shows the time dependence for small systems
(L < 160)) at T = 0.04. It displays three different
regimes. The intermediate and long-time regimes can
be characterized by power-law behavior (Ah(t)?) ~ t2.
For the smallest system at long times o« ~ 1, which is
the conventional diffusive behavior. For the largest sys-
tem L = 160, at intermediate times o =~ 0.35, before
crossing over to a =~ 1 at long times. For much larger
systems, crossover to the behavior with o =~ 1 is not
observed within the time available in the present calcu-
lation. For the short-time behavior o =~ 0.6. We do not
observe thermally excited topological defects, such as iso-
lated dislocations for these system sizes. However, they
are predicted to occur for sufficiently large systems due
the finite value of the dislocation energy [25].

The crossover from an intermediate time regime with
subdiffusive dynamics to normal diffusion at long times is
consistent with the dynamical scaling theory of equilib-
rium fluctuations [23] described in Sec. IIL. In Fig. 3 we
show a scaling plot of (Ah(t)2) /L% vs. t/L*1 7+ accord-
ing to Egs. (7) and (8), containing a single adjustable
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FIG. 2. Mean-squared height displacement (Ah(t)?) as a
function of time ¢ for different systems sizes L at T = 0.04.
Dotted lines are are power-law fits, at intermediate times for
L = 160 and at long times for L = 50.
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FIG. 3. Scaling plot of the data in the intermediate and long-
time regimes from Fig. 2 according to Eq. (7) with £ = 0.62.

parameter €. The best data collapse is obtained with the
roughening exponent & = 0.62(9) which is comparable
with the previous estimates from Monte Carlo simula-
tions of an atomistic model of graphene [7], £ = 0.575.
Simulations and analytical results for different models of
fluctuating tethered membranes give values in the range
[28] £ = 0.575 — 0.66. The roughening exponent can
also be obtained directly from the mean-square out-of-
plane fluctuations (h2) = (h(r,t)?) — (h(r,t))?, which is
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FIG. 4. Mean-square out-of-plane fluctuation as a function of
system size at 7" = 0.04. The dotted line is a power law fit
(hp(r,t)?) oc L?* with € = 0.53(5).

10°

104 o L=40 O(I.O.Q’Z’ Pie
A 1000 L=80 -0
o~ L=160 ‘."
Z 100
5 s « 1030
v 10 el

\‘-
1 :
0.1
100 1000 10* 105 106 107 108
t
10 P
o L=40 R
X 1 L=80 '
3 L=160 n”
010 o
= g
< ".;»'
v 0.01 ur?
é"’
104 0.001 0.010 0.100 1 10
t/L2(1+8)

FIG. 5. (a) Mean square height displacement (Ah(t)?) as
a function of time ¢ for different systems sizes L, with non-
conserved dynamics for n(r) at T = 0.4. Dotted lines are a
power-law fits at intermediate times for L = 160 and at long
times for L = 40. (b) Scaling plot according to Eq. (7) with
£€=0.72.

an equilibrium quantity and should scale with system size
as [24, 26] (h2) oc TL?*. As shown in Fig. 4, the size de-
pendence of (hf,} can be fitted to a power law giving the
estimate £ = 0.53(5), consistent with the above estimate
from the dynamic scaling. From Fig. 4, we estimate a
1/(h§>%5Afora1um
sample at room temperature, which is in the range of
measured values [1, 2, 7).

Additional results were obtained from simulations with
non-conservative dynamics for n(r), analogous to Eq.
(4). According to the scaling relation of Egs. (8) and (9),
z and a depend only on the critical exponent £, which is
a thermal equilibrium property. Therefore, they should
be independent of the details of the particular dynamics.
Indeed, as shown in Fig. 5 for T = 0.4, & = 0.72(9) and
the scaling plot gives the same results as obtained above
with conservative dynamics within the estimated errors.

From Eq. (9), the anomalous subdiffusion exponent is
in the range o = 0.3 — 0.41 using our above estimates of
&. Tt is consistent with the one observed experimentally
at long times [1], @ ~ 0.3, in measurements of vertical
motion of atoms in free-standing graphene at room tem-
perature. The absence of crossover to linear diffusion
at long times indicates that the crossover time 7 from

typical out-of-plane fluctuation
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FIG. 6. Scaling plot including different temperatures, accord-
ing to Eq. (10) with £ = 0.5.

Eq. (11) is beyond the time scale of the experiment. Al-
though the temperature here is much higher, additional
calculations at different temperatures give similar results.
In fact, data collapse is found for different temperatures
according to Eq. (10) as shown by the scaling plot in
Fig. 6, with £ = 0.5(1). Since the temperature appears
just as a multiplicative factor in the scaling form of Eq.
(10), the same crossover behavior should be observed at
the lower temperature of the experiments.

There is a surprising finding in the experiments, how-
ever, that is not reproduced by the present simulations of
the PFC model. The probability distribution of the mem-
brane velocity obtained from the time dependence of the
height displacement was found to be well described by
a Lorentzian distribution [7]. Instead, we find that the
velocity distribution is better described by a Gaussian,
as shown in Fig. 7. This could be due to the pure re-
laxational dynamics described by Egs. (3) and (4) which
ignore, for example, inertial effects [21]. On the other
hand, if the Lorentzian distribution results from mir-
ror buckling events occurring at very large time scales
[1, 5, 12, 13], as suggested by the atomistic calculations,
these effects would not be observable in the numerical
simulations. In the experimental work it was proposed
that the anomalous exponent « is a consequence of such
particular Lorentzian distribution. Nevertheless, since
we find that o depends only &, which is an equilibrium
property, it indicates that the anomalous « is not neces-
sarily a consequence of a particular velocity distribution.

V. SUMMARY AND CONCLUSIONS

Thermally induced fluctuations of free-standing
graphene were studied by a PFC model introduced re-
cently [22], which incorporates out-of-plane deforma-
tions in addition to in-plane deformations. The mean
square displacement of height fluctuations at sufficient
long times in finite systems shows a linear diffusive be-
havior t* with o = 1, while at intermediate times the be-
havior is sub-diffusive, o < 1. The crossover between the
two different regimes and its dependence on system size
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FIG. 7. Velocity probability distribution for L = 160 at
T = 0.04, fitted to different analytical forms (dotted lines).
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tion e_(“_”f’)z/zdz/a\/ﬂ. Right panel: Lorentzian distri-
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can be described by a dynamic scaling theory developed
for polymerized membranes [23]. We have demonstrated
that the data for different system sizes and temperatures
collapse into a single curve as predicted by the scaling
arguments. For sufficient large systems, only the short-
time and intermediate-time behavior would be observed
within a limited time scale, as found experimentally. If
the experimental conditions prevent the center-of-mass
diffusion at long times, the linear behavior is replaced
by a saturation regime. While the short-time behavior
is non-universal, the intermediate-time behavior is de-
scribed by a universal critical exponent, given analyti-
cally as @ = £/(14&), in terms of the roughening critical
exponents £, being independent on the particular type
of dynamics. These results are in good agreement with
the experimental observation of sub-diffusive behavior at
long times with o & 0.3 in free-standing graphene [1] and
could also be observable in many other two-dimensional
crystalline materials. The model presented in this pa-
per can also be used to study defected systems, such as
polycrystals, as was also done in earlier work [22] and
by Zhang et. al. [29]. It would interesting to examine
the influence of defects on the height fluctuations in such
models.
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Appendix A

To give context to the results presented in this paper
it is convenient to consider the limit in which Eq. (4),
which explicitly reads,

h L.
% = —kVh =2V N + 1, (A1)
where N = [Vh - V(Vn)](1 + V2)n is linearized, i.c.,
oh \
— =— h . A2
o = FV R, (A2)

Equation (A2) has a solution for an initial condition
h(7,0) = 0 in Fourier space

t
B t) = ekt / e (i), (A3)
0
where h and ji, are the Fourier transforms of h and py,
respectively.
The mean square displacement is then

t
(QQT)Q / dk / d’e=2K =) (Ag)
T 0

where (fu, (k' '), (k, t) = 2T, (k' +k)6(t' —t) was used.
Integrating in polar coordinates from k& = 27/L to oo
gives;

(AR*(1)) =

TL?
200\
(ar7®) = 1673k

[a 7 2erf(a) +1 - e*‘ﬂ , (A5)

where o = 4v/2tkn?/L? and erf(z) is the error function.
Thus in the small time limit o < 1,

(AR() =Ty oo

valid in the limit ¢+ < L*/(32k7%). Tt can shown that if
h(r,0) were an equilibrium solution, the same time de-
pendence would emerge. For the £k = 0 mode, which

(A6)

corresponds to the average of h, a different result is ob-
tained. In this case

t t
(AR%(t)) :2Té/ dt’/ dt"5(t —t')
0 0

=2Tt/L?, (A7)
consistent with the temperature scaling shown in Fig. 6.
It is interesting to note that the non-linear contributions
to Eq. (A1) are zero in the k = 0 limit, thus Eq. (A7)
should be valid for Eq. (4). The simplified Eq. (A2) also
has a prediction for the mean average square (h(7,t)?) in
the infinite time limit, i.e.,

dii 1 — e~ 2rk"t

T
i 7) = - [ s

In the infinite time limit, integrating from k = 27 /L to
oo then gives

(A8)

TL?

(7, 00%) = <25 (49)
implying an exponent of £ = 1.
If the more general equation,
oh
i (=12 h 4, (A10)

is considered, where [ is an integer greater than one, it
is straightforward to show that

(h(F,00)%) ~ TL*P~Y /1 (A11)

which gives € = —1. Additionally by dimensional anal-
ysis Eq. (A10) gives,
t ~ L2 ~ [20F8), (A12)

implying an exponent z = 4 and justifying the scaling in
Figs. 3 and 5.

[1] M. Ackerman, P. Kumar, M. Neek-Amal, P. Thibado,
F. Peeters, and S. Singh, Anomalous dynamical behav-
ior of freestanding graphene membranes, Physical Review
Letters 117, 126801 (2016).

[2] J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S.
Novoselov, T. J. Booth, and S. Roth, The structure of
suspended graphene sheets, Nature 446, 60 (2007).

[3] P. G. Steeneken, R. J. Dolleman, D. Davidovikj, F. Ali-
jani, and H. S. Van Der Zant, Dynamics of 2d material
membranes, 2D Materials (2021).

[4] P. Thibado, P. Kumar, S. Singh, M. Ruiz-Garcia, A. Las-
anta, and L. Bonilla, Fluctuation-induced current from
freestanding graphene, Physical Review E 102, 042101
(2020).

[6] M. Neek-Amal, P. Xu, J. Schoelz, M. Ackerman, S. Bar-

ber, P. Thibado, A. Sadeghi, and F. Peeters, Thermal
mirror buckling in freestanding graphene locally con-
trolled by scanning tunnelling microscopy, Nature com-
munications 5, 1 (2014).

[6] Z. Fan, L. F. C. Pereira, P. Hirvonen, M. M. Ervasti,
K. R. Elder, D. Donadio, T. Ala-Nissila, and A. Harju,
Thermal conductivity decomposition in two-dimensional
materials: Application to graphene, Physical Review B
95, 144309 (2017).

[7] J. Los, M. 1. Katsnelson, O. Yazyev, K. Zakharchenko,
and A. Fasolino, Scaling properties of flexible membranes
from atomistic simulations: application to graphene,
Physical Review B 80, 121405 (2009).

[8] A. Fasolino, J. Los, and M. I. Katsnelson, Intrinsic ripples
in graphene, Nature materials 6, 858 (2007).



[9] F. Ahmadpoor, P. Wang, R. Huang, and P. Sharma,
Thermal fluctuations and effective bending stiffness of
elastic thin sheets and graphene: A nonlinear analysis,
Journal of the Mechanics and Physics of Solids 107, 294
(2017).

[10] D. Wan, D. R. Nelson, and M. J. Bowick, Thermal stiff-
ening of clamped elastic ribbons, Physical Review B 96,
014106 (2017).

[11] A. Morshedifard, M. Ruiz-Garcia, M. J. A. Qomi, and
A. KoSmrlj, Buckling of thermalized elastic sheets, Jour-
nal of the Mechanics and Physics of Solids 149, 104296
(2021).

[12] Y. Kai, W. Xu, B. Zheng, N. Yang, K. Zhang, and
P. Thibado, Origin of non-gaussian velocity distribution
found in freestanding graphene membranes, Complexity
2019 (2019).

[13] J. M. Mangum, F. Harerimana, M. N. Gikunda, and
P. M. Thibado, Mechanisms of spontaneous curvature
inversion in compressed graphene ripples for energy har-
vesting applications via molecular dynamics simulations,
Membranes 11, 516 (2021).

[14] D. Nelson, T. Piran, and S. Weinberg, Statistical mechan-
ics of membranes and surfaces (World Scientific, 2004).

[15] M. Smirman, D. Taha, A. K. Singh, Z.-H. Huang, and
K. R. Elder, Phys. Rev. B 95, 085407 (2017).

[16] P. Hirvonen, Z. Fan, M. M. Ervasti, H. Ari, E. K.R., and
T. Ala-Nissila, Sci. Rep. 7, 4754 (2017).

[17] P. Hirvonen, M. M. Ervasti, Z. Fan, M. Jalalvand,
M. Seymour, S. M. V. Allaei, N. Provatas, A. Harju,
K. R. Elder, and T. Ala-Nissila, Multiscale modeling of
polycrystalline graphene: A comparison of structure and
defect energies of realistic samples from phase field crys-
tal models, Physical Review B 94, 035414 (2016).

[18] D. Taha, S. K. Mkhonta, K. R. Elder, and Z.-F. Huang,
Phys. Rev. Lett. 118, 255501 (2017).

[19] D. Taha, S. R. Dlamini, S. K. Mkhonta, K. R. Elder, and
Z.-F. Huang, Phys. Rev. Matt. 3, 095603 (2019).

[20] J. Ramos, E. Granato, C. Achim, S. Ying, K. Elder, and
T. Ala-Nissila, Thermal fluctuations and phase diagrams
of the phase-field crystal model with pinning, Physical
Review E 78, 031109 (2008).

[21] J. Ramos, E. Granato, S. Ying, C. Achim, K. Elder, and
T. Ala-Nissila, Dynamical transitions and sliding friction
of the phase-field-crystal model with pinning, Physical
Review E 81, 011121 (2010).

[22] K. Elder, C. Achim, V. Heinonen, E. Granato, S. Ying,
and T. Ala-Nissila, Modeling buckling and topological
defects in stacked two-dimensional layers of graphene and
hexagonal boron nitride, Physical Review Materials 5,
034004 (2021).

[23] K.-I. Mizuochi, H. Nakanishi, and T. Sakaue, Dynami-
cal scaling of polymerized membranes, EPL (Europhysics
Letters) 107, 38003 (2014).

[24] D. Nelsonand L. Peliti, Fluctuations in membranes with
crystalline and hexatic order, Journal de Physique 48,
1085 (1987).

[25] H. S. Seungand D. R. Nelson, Defects in flexible mem-
branes with crystalline order, Physical Review A 38, 1005
(1988).

[26] P. Chaikinand T. Lubensky, Principles of condensed
matter physics (Cambridge University Press, Cambridge
(GB), 1995).

[27] S. Shankarand D. R. Nelson, Thermalized buckling of
isotropically compressed thin sheets, Physical Review E
104, 054141 (2021).

[28] A. Troster, High-precision fourier monte carlo simulation
of crystalline membranes, Physical Review B 87, 104112
(2013).

[29] T. Zhang, X. Li, and H. Gao, Designing graphene struc-
tures with controlled distributions of topological defects:
A case study of toughness enhancement in graphene ruga,
Extreme Mechanics Letters 1, 3 (2014).



