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Electronic materials harbor a plethora of exotic quantum phases, ranging from unconventional
superconductors to non-Fermi liquids, and more recently topological phases of matter. While these
quantum phases in integer dimensions are well characterized by now, their presence in fractional
dimensions remain vastly unexplored. Here we theoretically show that a special class of crystalline,
namely higher-order topological phases that via an extended bulk-boundary correspondence feature
robust gapless modes on lower dimensional boundaries, such as corners and hinges, can be found on
a representative family of fractional materials: Quantum fractals. To anchor this general proposal,
we demonstrate realizations of second-order topological insulators and superconductors, respectively
supporting charged and neutral Majorana corner modes, on planar Siperpenski carpet and triangle
fractals. These predictions can be experimentally tested on designer electronic fractal materials, as
well as on various highly tunable metamaterial platforms, such as photonic and acoustic lattices.

Introduction. Crystals are ubiquitous in nature, man-
ifesting discrete reflection, rotational, and translational
symmetries. On the other hand, quasicrystals and frac-
tals are paradigmatic examples of noncrystalline ma-
terials. While quasicrystals are projections of higher-
dimensional crystals on lower-dimensional branes, re-
alized by completely tilling the physical space in an
aperiodic fashion, thereby exhibiting local discrete, of-
ten crystal forbidden, rotational symmetries [1–3], frac-
tals by contrast display a fourth type of symmetry,
self-similarity, resulting in pattern repetition over many
scales [4]. Fractals appear at macroscale (coastline and
trees), as well as at microscales, with recently engineered
electronic Sierpenski triangle in designer materials open-
ing a paradigm of quantum fractals [5]. Despite being
embedded in integer d-dimensional space, fractals are
characterized by irrational Hausdorff or fractal dimen-
sion dfrac < d. Therefore, when combined with geometry
and topology of electronic wavefunction, quantum frac-
tals give rise to a rich, still vastly unexplored, landscape
of topology in fractional dimensions [5–14].

Here we explore this territory by focusing on a newly
emerged family of crystalline, namely higher-order topo-
logical (HOT) phases, and show realizations of both
HOT insulators and superconductors on Sierpinski car-
pet and glued Sierpinski triangle fractals [Figs. 1-3]. In
general, HOT phases via an extended bulk-boundary
correspondence host robust topological modes on lower-
dimensional boundaries, such as corners and hinges, char-
acterized by respective codimensions dc = d and d−1 [15–
52]. As such, a HOT phase of order n can be constructed
from its conventional first-order counterpart by system-
atically introducing n number of suitable discrete sym-
metry breaking Wilson-Dirac masses that partially gap
out the edge or surface states, for example, with dc = 1,
leaving the modes residing on boundaries with dc = n
gapless [19, 26]. We show that this principle is operative
on fractal lattices as well. In particular, when the global
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FIG. 1. HOT insulator on a Sierpinski carpet fractal. (a)
Energy spectra of the Hamiltonian H [Eqs. (3)] on a Sierpinski
carpet fractal of generation f = 3 (containing 512 sites) for
t = t0 = 1, m0 = 0 and g =

√
2. (b) Local density of states

(LDOS) of the four near zero energy modes, shown in red in
the inset of (a), confirms their sharp corner localization. For
definition of the generation number see Sec. S1 and Fig. S1 of
the Supplementary Materials (SM) [59]. (c) Localization of
four closest to zero, but finite energy states [blue dots in the
inset of (a)] near the innermost corners. See Fig. S4 of SM.

shape of these two fractals are tailored in such a way
that four corners reside along the inversion axes of the
second-order Wilson-Dirac mass, both HOT insulators
and superconductors support robust topological corner
modes [Figs. 1 and 3]. Moreover, the HOT insulators
possess quantized quadrupole moment Qxy = 0.5, which
becomes origin independent in the thermodynamic limit,
indicating their intrinsic nature [Fig. 2]. By contrast,
Qxy in HOT superconductors exhibit a significant origin
dependence, and are thus possibly extrinsic in nature.

The HOT phases on fractals are unique in the sense
that they harbor inner corner modes, besides the con-
ventional outer corner modes which can also be observed
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in crystals. But due to distinct internal geometries such
inner corner modes are at finite but close to zero energy
(still separated from the rest of the states) in Sierpin-
ski carpet fractal [Fig. 1], while they are pinned at zero
energy on glued Sierpinski triangle fractal [Fig. 3].

Model. To outline the general protocol of engineering
HOT phases, here we consider its paradigmatic example
on a square lattice, captured by the Hamiltonian operator

ĥ = ĥ1 + ĥ2, where

ĥ1 = t [sin(kxa)σ3τ1 + sin(kya)σ0τ2] +M(k)σ0τ3,

ĥ2 = g [cos(kxa)− cos(kya)]σ1τ1. (1)

The uniform first-order Wilson-Dirac mass

M(k) = m0 + 2t0 − t0 [cos(kxa) + cos(kya)] (2)

preserves all discrete symmetries. Two sets of the Pauli
matrices {σµ} and {τµ} respectively operate on the spin
and orbital indices, with µ = 0, · · · , 3. Hereafter we set
the lattice spacing a = 1. Only in the parameter regime

−2 < m0/t0 < 4, ĥ1 features two counter-propagating
one dimensional edge modes with dc = 1 for opposite spin
projections, thereby yielding a first-order quantum spin
Hall insulator. Otherwise, the system is a trivial or nor-
mal insulator, devoid of any topological edge states [53].

The second-order Wilson-Dirac mass ĥ2 anticommutes
with ĥ1. It thus acts as a mass to one-dimensional
counter propagating edge modes of ĥ1 by causing hy-

bridization between them. Naturally, ĥ2 gaps out the
edge modes, however, only partially as it assumes the
profile of a domain-wall mass flipping sign four times un-
der 2π rotation and vanishing along the diagonal 〈11〉
directions. Thus ĥ2 breaks four-fold rotational (C4) sym-
metry. As a result, when the corners of a square lattice
reside along its diagonals, four corner modes with dc = 2
get pinned therein, following the spirit of generalized
Jackiw-Rebbi mechanism [54]. We then realize a second-
order topological insulator. These modes appear at zero
energy due to both unitary and anitunitary particle-hole

symmetries of ĥ, respectively generated by C = σ2τ1
and Θ = σ3τ1K, where K is the complex conjugation, as

{ĥ, C} = {ĥ,Θ} = 0 [40]. The model also breaks the
time reversal symmetry, generated by T = σ2τ0K, and
parity, generated by P = σ0τ3 under which k→ −k, thus
preserving composite C4T , C4P and PT symmetries.

Fractal HOT insulators. This mechanism is not re-
stricted to the square lattice. If we maintain the sym-
metry of the model and cleave the system such that four
corners are placed along the inversion axes of the HOT
Wilson-Dirac mass, it can support corner localized zero-
energy modes. To extend the jurisdiction of this model
beyond the realm of topological crystals, we consider a

real space version of ĥ, given by H = H1 +H2, with

H1 =
∑
j 6=k

G(rjk)

2
c†j

[
− it(σ3τ1 cosφjk + σ0τ2 sinφjk)

  

FIG. 2. (a) Origin (x0, y0) dependence of the quadrupole mo-
ment Qxy (modulo 1) of a HOT insulator, supporting corner
modes [Fig. 1] on Sierpinski carpet fractal of generation f = 3
containing N = 512 sites [59] with open boundary condition
for t = t0 = 1, m0 = 0 and g =

√
2. Here x0 and y0 are mea-

sured in units of L, the linear dimension of the system in each
direction. Except for a very few origin choices we indeed find
Qxy = 0.5. (b) Scaling of the fraction of the area (Fr) in the
(x0, y0) plane, displaying Qxy = 0.5, with inverse of the gen-
eration number (f) and site number (N) [inset] in Sierpinski
carpet (blue dots) and glued Siperpinski triangle (red squares)
fractals for the same parameter values as in (a). In the ther-
modynamic limit (f or N → ∞) as Fr → 1, Qxy becomes
origin independent. (c) Global phase diagram in the (m0, |g|)
plane showing HOT (trivial) insulator with Qxy = 0.5 (0.0)
on Sierpinski carpet fractal for t = t0 = 1. (d) Scaling of the
spectral gap (Eg) between the zero energy corner modes and
the closest to zero energy modes that are not outer corner lo-
calized for HOT insulators and superconductors in two fractal
lattices, ensuring that Eg remains finite [inset] in the thermo-
dynamic limit. Here Eg is computed by finding energies of a
few states near zero energy using the Lanczos algorithm (not
an exact diagonalization).

− t0σ0τ3
]
ck +

∑
j

c†j(m0 + 2t0)σ0τ3cj ,

H2 = g
∑
j 6=k

G(rjk)

2
c†j(cos 2φjk)σ1τ1ck, (3)

and cj = [cj↑α, cj↑β , cj↓α, cj↓β ]>. Here cjστ is the elec-
tron annihilation operator at site j, with spin projection
σ =↑, ↓ and on orbital τ = α, β. The azimuthal angle
between the jth and kth lattice sites, respectively lo-
cated at rj and rk, is φjk, measured with respect to the
horizontal direction. For the derivation of Eq. (3) from
Eq. (1) consult Sec. S2 of the Supplementary Materials
(SM) [59]. In order to ensure that the sites in any non-
crystalline lattice remain well connected we replace the
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nearest-neighbor hopping probabilities by a long range
one, described by the rotationally invariant function

G(rjk) = exp

(
1− |rj − rk|

r0

)
. (4)

Here r0 is the decay length, typically set to be the
nearest-neighbor distance. In principle, this generalized
model for HOT insulator can be implemented on any non-
crystalline systems, such as fractals, amorphous materi-
als [55] and quasicrystals [20, 24, 25], as well as on a regu-
lar square lattice. Here we focus on the former most sys-
tem and scrutinize the possibility of realizing HOT insu-
lators with corner modes on quantum fractals. It should
be noted that irrespective of the geometry and internal
structure of the system (such as the connectivity among
the sites), the above model always enjoys both unitary
and antiunitary particle-hole symmetry, now respectively
generated by Clat = σ2τ1I`×` and Θlat = σ3τ1I`×` K,
where I`×` is an `-dimensional identity matrix and ` is
the number of sites in the system.

Results obtained on Sierpinski carpet fractal with
dfrac = ln(8)/ ln(3) ≈ 1.89 are shown in Fig. 1, depicting
four near (due to finite system size) zero energy modes,
which are well separated from the rest of the spectra. For
explicit computation of dfrac see Sec. S1 of the SM [59].
The spatial distribution of the corresponding local den-
sity of states (LDOS) shows that these modes are highly
localized at four outer corners, while the inner corners
are devoid of any such mode, in contrast to Ref. [8]. This
observation strongly suggest a possible realization of elec-
tronic HOT insulator on Sierpinski carpet fractal. Near
zero energy there exist four states [blue dots in Fig. 1(a)
(inset)] that are localized near the innermost corners of
Sierpinski carpet fractal. See Fig. 1(c) and Fig. S4 of
the SM [59]. Notice that outer corners of the Sierpinski
carpet are characterized by the coordination number 2.
But in the interior of Sierpinski carpet there exists no
corner with coordination number 2. Consequently, the
blue colored modes from the inset of Fig. 1(a) never be-
come zero energy states and their local density of states
spread slightly away from the inner corners.

To anchor this claim, we compute the quadrupole mo-
ment (Qxy) for the fractal HOT insulators [55–57]. To
proceed, we first evaluate

n = Re

[
− i

2π
Tr

(
ln

{
U† exp

[
2πi

∑
r

q̂xy(r)

]
U

})]
,

(5)
where q̂xy(r) = xyn̂(r)/L2, n̂(r) is the number operator
at r = (x, y) of an open boundary system of linear dimen-
sion L in each direction, and U is constructed by colum-
nwise arranging the eigenvectors for the negative energy
filled states. The quadrupole moment is then defined as
Qxy = n− nal (modulo 1), where nal = (1/2)

∑
r xy/L

2

represents n in the atomic limit and at half filling. As
each single-particle state is occupied by one particle,
the computation of Qxy rests on the fermionic nature

  

FIG. 3. HOT insulator on a glued Sierpinski triangle fractal.
(a) Number of zero energy modes (ZEM) with the generation
number (insensitive to boundary condition). (b) Energy spec-
tra in generation f = 6 (containing 1394 sites) for t = t0 = 1,
m0 = 0 and g =

√
2 with open boundary condition. Spatial

distribution of LDOS for the sixteen near zero energy modes
in system with (c) open and (d) periodic boundary conditions.

of quasiparticles which has no classical analog. Identi-
fication of HOT insulators from quantized Qxy = 0.5
thus justifies the name quantum fractal. The results
are displayed in Fig. 2(a). We compute Qxy for all ori-
gin choices. When the HOT insulator supports corner
modes, for most of the origin choices Qxy is quantized
to 0.5 within the numerical accuracy. But, in any fi-
nite system there always exist a few origin choices for
which Qxy = 0, despite the presence of the corner modes.
Such an origin dependence can be quantified by Fr, mea-
suring the fraction of all origin choices for which cor-
ner modes corroborate quantized Qxy = 0.5. As the
generation number (f) or number of lattice sites (N)
is increased [59], Fr → 1 in the thermodynamic limit,
corresponding to f → ∞ or N → ∞ [Fig. 2(b)]. The
quadrupolar operator q̂xy(r) is gauge invariant, and the
variation of the charge centers (r) or the origin tanta-
mount a gauge transformation [57], in turn allowing us
to scrutinize gauge invariance of Qxy when computed in a
quantum many-body ground state. Hence, the origin in-
dependence of Qxy in the thermodynamic limit ensures
it gauge independence and it stands as a bonafide or-
der parameter for HOT insulators on quantum fractals.
Thus, the HOT insulator on Sierpinski carpet fractal is
intrinsic in nature.

Ultimate origin independence of Qxy allows us to con-
struct a global phase diagram in the (m0, |g|) plane
[Fig. 2(c)]. It supports two topologically distinct phases:
(a) fractal HOT insulator with Qxy = 0.5 and (b) triv-
ial insulator with Qxy = 0. Small and moderate (large)
values of |m0| and |g| are conducive to HOT (trivial)
insulator. Only the entire fractal HOT insulator phase
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supports four zero energy corner modes. The stability
of the fractal HOT insulator can be established from the
scaling of the gap between corner modes with the closest
finite energy states (not corner localized), respectively
shown in red and blue in Fig. 1(a)[inset], with the gen-
eration and site numbers. This gap remains finite as we
approach the thermodynamic limit [Fig. 2(d)], in turn
assuring that corner modes are separated by a finite gap,
thereby yielding stability to the fractal HOT insulator.

Next we investigate the possibility of realizing HOT
insulators on a glued Sierpinski triangle fractal. In or-
der to obtain four outer corners along the inversion
axes of the second-order Wilson-Dirac mass, we glue
two Sierpinski triangle fractals, each being a right an-
gled triangle, slightly different from its known geome-
try [4]. Consequently, the corresponding fractal dimen-

sion is dfrac = ln(6)/ ln(
√

8) ≈ 1.72 (see Sec. S1 of the
SM [59]). Numerical diagonalizations reveal that the
number of zero energy modes can depend on the genera-
tion number [Fig. 3(a)]. In the sixth generation there are
altogether sixteen such modes [Fig. 3(b)], well separated
from the other nearby states [Fig. 2(d)]. As HOT insula-
tors are crystalline topological phases, the number of zero
energy modes and their spatial distributions depend on
structural details of the system. See, for example Fig. 4
of Ref. [58]. On glued Sierpinski triangle, the number of
zero energy modes increases with generation number (f),
as the number of inner naked corners increases with it.
However, it always describes the same topological phase,
namely HOT insulator, characterized by Qxy = 0.5.

The LDOS of zero energy modes predominantly oc-
cupy four outer corners in a system with open bound-
aries [Fig. 3(c)], qualitatively similar to the situation in
Sierpinski carpet fractal. But, in contrast, the LDOS of
all zero energy modes also displays subdominant localiza-
tion at the inner shared naked corners, that are devoid
of other neighboring sites. Therefore, the manifold of the
zero energy modes does not fragment between the outer
and inner naked corners. See Fig. S5 of the SM [59].
Consequently, in a periodic system, the number of zero
energy modes remains unchanged and the corresponding
LDOS appears only at the inner corners [Fig. 3(d)]. Ad-
ditionally, the LDOS weakly spreads over the inner edges
making π/4 angle with the horizon, since the Wilson-
Dirac mass vanishes in that direction [Fig. 3(c),(d)].

The HOT insulators with outer and naked inner corner
modes on glued Sierpinski triangle fractals possess quan-
tized Qxy = 0.5, which slowly becomes origin indepen-
dent as we approach the thermodynamic limit [Fig. 2(b)].
The slowness of Fr → 1 possibly stems from the inner
edges at π/4 angle, which always absorb a tiny fraction
of the LDOS associated with the zero energy modes. The
global phase diagram of this system in the (m0, |g|) plane
is qualitatively similar to the one from Fig. 2(c). See
Fig. S2 of the SM [59].

Fractal HOT superconductors. Continuing the journey
through the territory of HOT phases on quantum frac-
tals, next we search for HOT superconductors on Sier-

pinski carpet and glued Sierpinski triangle fractals. In
principle, with suitable choices of Hermitian matrices
and the corresponding spinor, which includes both elec-

tron and hole like components (Nambu doubling), ĥ can
also describe a second-order topological superconductor
[Eq. (1)]. Namely, the quantity appearing with t de-
scribes an odd parity p-wave pairing, the term propor-
tional to g represents an even parity dx2−y2 pairing, and
M(k) gives rise to a Fermi surface when −2 < m0/t0 < 4
on a square lattice with only nearest-neighbor hopping
amplitude. The resulting mixed parity, time-reversal
symmetry breaking p + id pairing is a prominent can-
didate for HOT superconductor that supports four cor-
ner localized Majorana zero modes [34, 44]. Naively it
is, therefore, tempting to conclude that quantum fractals
harbor HOT superconductors based on the results shown
in Figs. 1-3, which, however, encounters a few fundamen-
tal as well as practical shortcomings.

Primarily, the Hamiltonian ĥ does not reveal any mi-
croscopic origin of the p+id pairing nor it unveils any po-
tential material platform where such pairing can be real-

ized. Even more importantly, when we extend ĥ to a real
space hopping Hamiltonian [Eq. (3)], the pairing terms
(proportional to t and g) become infinitely long-ranged
connecting all the sites with decaying amplitude of the
Cooper pairs [Eq. (4)], which is uphysical. And finally,
the notion of a Fermi surface in the absence of an underly-
ing translational symmetry, as in fractals, becomes moot.
To circumvent these limitations we search for a suitable
material platform where on site or local pairings can give
rise to HOT superconductors, which do not strictly rely
on a sharp Fermi surface. A class of systems that sat-
isfies all these realistic requisite features is second-order
Dirac insulator, whose normal state is described by the

Hamiltonian ĥ [Eq. (1)]. To accommodate superconduct-
ing orders in this system, we Nambu double the spinor.

The Hamiltonian then reads as ĥNam = η3ĥ1+η0ĥ2. The
newly introduced Pauli matrices {ηµ} with µ = 0, · · · , 3
operate on the Nambu or particle-hole index. Here we
focus only on the local or on site pairings which are obliv-
ious to the underlying lattice structure, and thus possess
natural immunity against the lack of crystalline order.
Due to the Pauli exclusion principle, the number of such
pairings is restricted to be six, which is exactly the num-
ber of purely imaginary four-dimensional Hermitian ma-
trices. See Sec. S4 of the SM [59] for details.

The local second-order topological superconductor can
be unambiguously identified from its requisite symme-
tries. For example, it must anticommute with the Dirac
kinetic energy, captured by the terms proportional to t

in ĥNam, such that the pairing represents a topological
Nambu-Dirac mass. In addition, it must commute with
the first-order Wilson-Dirac mass, so that the boundary
modes of this pairing are not uniformly gapped. Finally,
it must anticommute with the second-order Wilson-Dirac
mass such that the Majorana edge modes are gapped,
but only partially, producing localized zero energy Majo-
rana modes at four corners, when they reside along the
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〈11〉 directions. These constraints select a unique candi-
date for the second-order topological superconductor, for
which the effective single particle Bogoliubov de-Gennes
Hamiltonian reads

ĥpair = ∆ (η1 cosφ+ η2 sinφ)σ1τ2. (6)

Here ∆ is the pairing amplitude and φ is the U(1) su-

perconducting phase. The Nambu Hamiltonian ĥtotalNam =

ĥNam+ĥpair can be implemented on any fractal lattice fol-
lowing Eq. (3). Without loss of generality, we set φ = 0.

The resulting energy spectra and LDOS correspond-
ing to the near zero energy modes are qualitatively sim-
ilar to the ones shown in Figs. 1 and 3 on the Sierpin-
ski carpet and glued Sierpinski triangle fractals, respec-
tively. See Fig. S3 of the SM [59]. These observations
confirm realization of HOT superconductors on quantum
fractals. Furthermore, to attribute the resulting corner
modes solely to the paired state, we choose the normal
state to be topologically trivial. However, the quadrupole
moment associated with a second-order topological su-
perconductor is found to be Qxy = 0.5 for a very few ori-
gin choices and there is no clear indication of Fr → 1 in
the thermodynamic limit, due to strong interband scat-
tering. Therefore, in likelihood the fractal HOT super-
conductors, in contrast to their insulating counterparts,
are extrinsic in nature. Still the spectral gap between
(near) zero energy corner modes and other closest to zero
energy (not corner localized) states approaches a finite
value in the thermodynamic limit [Fig. 2(d)]. So, ex-
trinsic fractal HOT superconductors and their hallmark
corner modes are stable. These outcomes remain quali-
tatively unaltered even when the normal state is a fractal
HOT insulator.

Summary and discussions. Here we construct a con-
crete path to theoretically harness HOT phases on a fam-
ily of fractional materials, quantum fractals, and demon-
strate their realizations on Sierpinski carpet and glued
Sierpinski triangle fractals. While the HOT insulators
are intrinsic in nature, their superconducting cousins are
possibly extrinsic. Nonetheless, the HOT paired state in
a second-order Dirac insulator is energetically most fa-
vored among all symmetry allowed local pairings over a
wide parameter range [59]. This procedure can be gen-
eralized to identify HOT phases on fractals with differ-

ent geometries, as well as on higher-dimensional frac-
tals [4, 10, 60]. Furthermore, by stacking planar HOT
fractals in the out of plane direction one can construct
HOT semimetals in a hybrid dimension. These excit-
ing possibilities, inhabiting the landscape of topological
quantum fractals, will be systematically explored in the
future following our general principle of construction.

Electronic fractal materials, such as the ones recently
engineered in designer electronic [5] and molecular [6]
compounds, constitute the ideal platform where our pro-
posed fractal HOT insulators and superconductors can be
realized in experiments. In these quantum fractals, while
the insulating HOT phases can be unveiled by designing
appropriate hopping elements, their pairing counterparts
should become energetically favored upon chemical dop-
ing. Our predicted fractal HOT insulators can also be
tailored on various classical metamaterials, such as pho-
tonic [61] and phononic or acoustic [62, 63] lattices, with
longer range coupling between the photonic waveguides
and microwave resonators, respectively. Topolectric cir-
cuits constitute yet another promising platform where
our predictions can be tested [64, 65], especially given
that quasicrystalline quadrupole insulators have already
been realized therein [66], as well as HOT insulators
with long range hopping [67]. For practical purposes, it
should be noted that it is not necessary for the hopping
amplitudes to be sufficiently long ranged [Eq. (4)]. As
long as all the sites on fractal lattices stay connected,
all our findings remain qualitatively unchanged. Al-
though topological boundary modes in classical meta-
materials can be detected from the spatial distribution
of on-resonance impedance (topolectric circuits) or two-
point pump probe spectroscopy (photonic lattices) or ab-
sorption spectra (phononic lattices), many-body quan-
tum topological invariants, such as the quadrupole mo-
ment Qxy, cannot be measured in these systems.

Note added. During the final stage of the review, we
became aware of two experimental works [68, 69], where
our predictions on HOT insulators in Sierpinski carpet
fractals have been observed.
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Larsen, L. G. Villanueva, and S. D. Huber, Nature 555,
342 (2018).

[63] C. W. Peterson, W. A. Benalcazar, T. L. Hughes, G.
Bahl, Nature (London) 555, 346 (2018).

[64] S. Imhof, C. Berger, F. Bayer, J. Brehm, L. Molenkamp,
T. Kiessling, F. Schindler, C. H. Lee, M. Greiter, T. Ne-
upert, R. Thomale, Nat. Phys. 14, 925 (2018).
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