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Abstract 

We consider a bulk system supporting parity and time reversal (PT) symmetry, and investigate 

how the PT phase transition of edge states is influenced by different truncations of the system. As an 

example, we study a two-dimensional PT-symmetric Su–Schrieffer–Heeger lattice with non-Hermitian 

onsite potentials. We find that when the truncation preserves certain symmetries of the bulk lattice, the 

edge states can remain in the PT-unbroken phase when the non-Hermitian onsite potentials are below a 

non-zero critical value. On the other hand, when the truncation removes such symmetries, edge states 

with complex eigen-energies are observed for infinitesimal non-Hermitian onsite potentials. We 

develop an analytic theory to account for such behaviors. Our results are important in the manipulation 

of the gain and loss behaviors of edge states in non-Hermitian systems, with potential applications in 

the study of topological lasers, quantum sensors and unidirectional invisibility. 
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A finite-sized physical system may support edge states localized at the boundaries of its bulk. 

These states play an important role in determining the physical properties of finite-sized physical 

systems [1-3]. In the field of photonics, edge states can be found in a wide variety of systems including 

photonic crystals, metamaterials, and plasmonic structures [4-7]. These states find applications for the 

guiding of light in information and sensing applications [8,9]. 

Recently, physical systems with parity and time reversal (PT) symmetries have generated 

significant interests [10-14]. In particular, bulk periodic systems with PT symmetries have been 

extensively studied [15-23], and it was noted that these systems can feature a PT phase transition 

between a PT-unbroken phase with a real eigen-spectrum, and a PT-broken phase with a complex eigen-

spectrum [15,16,18-20,23,24]. Since these systems, when truncated, may support edge states, it should 

be of interest to explore the possible PT phase transitions for the edge states, and to contrast the phase-

transition behaviors between the bulk and the edge states. Thus, there have been many results on edge 

(and interface) states in one-dimensional (1D) PT-symmetric systems [25-43]. Edge states in 2D PT-

symmetric systems have also been explored, and both PT-broken and PT-unbroken phases have been 

observed in different systems [44-49]. In two dimensions, different truncations of the same periodic 

system can lead to different boundary geometries. However, there has not been an investigation of how 

the PT phase transition behaviors of edge states in 2D systems are influenced by different truncations. 

In this letter, we show that different PT phase transition behaviors of edge states can be achieved 

by varying the truncation of a 2D periodic system. As an illustration, we study a 2D PT-symmetric Su–

Schrieffer–Heeger (SSH) lattice with non-Hermitian onsite potentials, and we truncate the lattice in 

different orientations. These truncations usually lead to localized edge states. We find that, when the 

truncation features certain symmetries, the associated edge states can be in the PT-unbroken phase when 

the strength of the non-Hermitian onsite potential is small. On the other hand, for a truncation without 

such symmetries, the edge states always have complex eigen-energies for any infinitesimal strength of 

the non-Hermitian onsite potential. Our result provides an understanding of the interplay between 

boundary geometries and eigenstate properties in non-Hermitian systems, and may be useful in the 

design and engineering of edge states in various photonic applications such as the design of topological 

lasers [50-52]. 

We start our theoretical analysis by considering a non-Hermitian 2D SSH lattice, as shown in Fig. 

1(a). The lattice is periodic along both x and y directions, and a primitive cell contains four inequivalent 

lattice sites, which are indicated with coordinates (xa, ya), ((x+1/2)a, ya), (xa, (y+1/2)a), and ((x+1/2)a, 

(y+1/2)a), respectively (𝑥, 𝑦 ∈ ℤ, and a is the lattice constant). The intra-cell and inter-cell coupling 

strengths are denoted by g1 and g2, respectively. Both g1 and g2 are assumed to be real. Gain and loss 

with the same magnitude 𝑈 ≥ 0 in their strength are introduced on each (xa, ya) sites and ((x+1/2)a, 

(y+1/2)a) sites, respectively. The Hamiltonian of such system is 𝐻 = 𝐻0 + 𝑉, where 
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where b (b†) is the bosonic annihilation (creation) operator at the corresponding lattice site. Here H0 (V) 

gives the Hermitian (anti-Hermitian) part of the Hamiltonian, i.e. H0 = H0
† and V = −V†. The full 

Hamiltonian is PT-symmetric, i.e. (PT)−1H(PT) = H, where the parity operator P is defined as the 

inversion operation around the point ((x+1/4)a, (y+1/4)a), and T is the standard time-reversal operation. 

The corresponding band structure of this Hamiltonian is 

      
2 2

22

1 2 1 2, exp exp
4 4

x y x y

U U
E k k g g ik a g g ik a       , (2) 

where kx (ky) is the wavevector along the x (y) axis. The band structure for U = 0, g1 = g, g2 = 5g is 

plotted in Fig. 2(a). Four bands are observed because each primitive cell contains four sites. The two 

middle bands are degenerate at zero energy when 𝑘𝑥 = ±𝑘𝑦, and they are gapped from the other two 

bands. As seen from Eq. (2), there is a phase transition occurring at a critical value of 𝑈𝐶
bulk = 2|𝑔1 −

𝑔2|. When 𝑈 ≤ 2|𝑔1 − 𝑔2|, the energy spectrum is real throughout the entire reciprocal space. When 

𝑈 > 2|𝑔1 − 𝑔2|, the energy spectrum becomes complex for at least some of the wavevectors, and the 

system undergoes a phase transition entering the PT-broken phase. 

A one-dimensional SSH lattice is well known as one of the simplest topological models [53]. With 

certain choices of parameters the periodic lattice exhibits a non-zero Zak phase [54], which guarantees 

localized edge states when the lattice is truncated. For the 2D case as we consider here, there is also a 

non-zero Zak phase along any direction inside the Brillouin zone when 𝑔2 > 𝑔1. Here, the vectorized 

Zak phase for the 2D Hermitian SSH model is defined as [55,56]: 

 𝜽 = −
1

2π
∫ d2𝒌 ∑ 𝑖⟨𝑢𝑛(𝒌)|𝛻𝒌|𝑢𝑛(𝒌)⟩𝑛BZ

, (3) 

where |𝑢𝑛(𝐤)⟩ is the periodic part of the Bloch wavefunction of the 𝑛-th band in the reciprocal space 

[55]. The summation is taken over all bands. The 𝑗-th component of the vectorized Zak phase is 

 𝜃𝑗 = 2 ∫ d𝑘𝑗
𝜕

𝜕𝑘𝑗
arg(𝑔1 + 𝑔2e𝑖𝑘𝑗𝑎)

π/𝑎

−π/𝑎
,  𝑗 = 𝑥, 𝑦, (4) 

The quantity 𝑓(𝑘𝑗) = 𝑔1 + 𝑔2e𝑖𝑘𝑗𝑎 lies in a complex plane. For 𝑔2 < 𝑔1, the origin of the complex 

plane is outside the circle defined by 𝑓(𝑘𝑗) as 𝑘𝑗 varies across the Brillouin Zone from −π/𝑎 to π/𝑎, 

and 𝜃𝑗 is zero, while for 𝑔2 > 𝑔1, the origin is inside the circle, giving rise to a non-zero 𝜃𝑗. Thus, there 

are also localized edge states with a topological origin. In particular, for the lattice that we consider, 

when the Zak phase is non-zero, all the edge states inside the gap in our model have a topological origin. 

Moreover, there is an additional richness in the edge state behaviors since we can choose different 

orientations for the truncation of the lattice. In Figs. 1(b)–1(d), we provide an illustration of three 

truncation configurations as examples. The truncations are set to be (10) surface (Fig. 1(b), parallel to 

the �̂� direction), (11) surface (Fig. 1(c), parallel to the �̂� + �̂� direction) and (21) surface (Fig. 1(d), 
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parallel to the 2�̂� + �̂� direction), respectively. In all of the three truncations, the four-site primitive cell 

structure is preserved on the boundaries of lattices. 

Throughout the paper we present theoretical analysis for semi-infinite structures with a single 

truncation. In the numerical analysis, however, we present results on large finite stripes, which will be 

shown in Fig. 2. The Hamiltonian that we analyze in this paper does not have a non-trivial point gap 

topology, and hence does not exhibit non-Hermitian skin effects [57-60]. Therefore, the results from a 

large finite stripe are rather similar to those from the corresponding semi-infinite system. In the finite 

stripe we have pairs of edge states residing on either end of the stripe, and the spectrum of each member 

of the pair is essentially identical to that of the edge state in the semi-infinite system. 

 

 

Fig. 1 Two-dimensional SSH lattices and different truncation configurations. (a) A primitive cell 

of the 2D SSH lattice, as shaded in grey. Intra-cell (inter-cell) couplings are shown in red (blue), and 

gains (losses) are shown by plus (minus) sign. (b)–(d) 2D SSH lattices with the (b) (10), (c) (11), (d) 

(21) truncation configurations. 

 

The truncated SSH lattices in Figs. 1(b)–1(d) has translational symmetry only in one direction, and 

the associated projected band structures are shown in Figs. 2(b)–2(h), in the topologically nontrivial 

phase (g1 = g, g2 = 5g). Projected band structures of Hermitian systems (U = 0) are plotted in Figs. 2(b), 

2(e) and 2(g) with different truncation configurations. Here 𝑘𝑝  is the wavevector parallel to the 

truncation. In these projected band structures, the bulk states can be obtained by projecting the 2D band 

structure as shown in Fig. 2(a) onto appropriate lines in the reciprocal space and by performing band 

folding if necessary. In such projections 𝑘𝑝 = 𝑘𝑥 for the (10) truncation, 𝑘𝑝 = (𝑘𝑥 + 𝑘𝑦)/√2 for the 

(11) truncation, and 𝑘𝑝 = (2𝑘𝑥 + 𝑘𝑦)/√5 for (21) truncation. These bulk states are separated by band 

gaps. Moreover, isolated edge states are observed inside the band gaps. Both the (10) and (11) 

truncations have two edge states, while the (21) truncation features four, thus the number of edge states 

is dependent on the lattice truncation [61]. 

g1 g2

(xa, ya) ((x+1/2)a, ya)

(xa, (y+1/2)a) ((x+1/2)a, (y+1/2)a)

x

y
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Next, we move onto the non-Hermitian case (U > 0). Above we have shown that the bulk band 

structure undergoes a PT phase transition at 𝑈𝐶
bulk = 2|𝑔1 − 𝑔2|. Here we show that the edge states 

also undergo a phase transition, but the transition behaviors are distinctly different from the bulk and 

dependent critically on the orientations of the truncations. Figs. 2(f) and 2(h) give the projected band 

structures of non-Hermitian lattices for the (10) and (21) truncations, respectively, with U = 10−3g. One 

sees that the energies of edge states exhibit non-zero imaginary parts across the entire k-space. The 

eigen-energies of the bulk states, on the other hand, remain real-valued. In other words, for the edge 

states associated with the (10) and (21) truncations, the phase transition occurs at an infinitesimal 

strength of non-Hermiticity, and the critical values are 𝑈𝐶
(10)

= 𝑈𝐶
(21)

= 0. This result of the (10) 

truncation is consistent with previous literature [48]. 

The projected band structures of the (11) truncation are shown in Figs. 2(c) and 2(d) with different 

values of the non-Hermiticity strength U. In contrast to the (10) and (21) truncations, here the eigen-

energies of all edge states are still real when U = 3g. As the non-Hermiticity strength is further increased 

and reaches 𝑈𝐶
(11)

≈ 5.65𝑔, the edge states merge with the highest-energy bulk states in the middle 

bands near |𝑘𝑝| = ±π/√2𝑎, and a phase transition occurs. In Fig. 2(d), the projected band structure 

when U = 5.7g is plotted, the eigen-energies of the edge states become complex in the wavevector range 

of |𝑘𝑝| < 0.81π/√2𝑎, and exceptional points are found at |𝑘𝑝| ≈ 0.81π/√2𝑎. This phase transition 

with a non-zero critical value is unique to the (11) truncation; for this system any other (mn) boundary 

truncation (𝑚 ≠ 𝑛, 𝑚, 𝑛 ∈ ℤ) has UC = 0. 

 



 

7 

 

 

Fig. 2 Band structures of periodic and truncated 2D SSH lattice when g1 = g, g2 = 5g. (a) Band 

structure of periodic (bulk) 2D SSH lattice. (b)–(d) Projected band structures of a 2D SSH lattice with 

a (11) truncation when (b) U = 0, (c) U = 3g, (d) U = 5.7g. (e)–(f) Projected band structures of a 2D 

SSH lattice with a (10) truncation when (e) U = 0, (f) U = 10−3g. (g)–(h) Projected band structures of a 

2D SSH lattice with a (21) truncation when (g) U = 0, (h) U = 10−3g. In (b)–(h), N = 21 layers of 

primitive cells along the y direction are used for numerical calculations, instead of the semi-infinite 

lattices in Figs. 1(b)–1(d). Eigen-energies with non-zero imaginary parts are in red. 

 

In order to understand the different behaviors of the edge states for different truncations, below we 

provide theoretical arguments from the perspective of symmetry analysis. The semi-infinite non-

Hermitian systems with (10) and (21) truncations are not PT-symmetric for any spatial symmetry 

operation P. Thus generically the energy eigenvalues become complex with infinitesimal non-

Hermiticity strength. On the other hand, for the system with the (11) truncation, although the PT 

symmetry associated with the inversion operation in the 2D bulk SSH lattice disappears, the system has 

an RT symmetry, where R is the mirror symmetry associated with the reflection operation against the 

�̂� − �̂� direction.  
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The behavior of the edge states for the (11) truncation is directly related to the symmetry property 

of the lattice. In the lattice with the (11) truncation, when U = 0, we use |𝜙0⟩ and |𝜙1⟩ to respectively 

denote the edge and the corresponding bulk states involved in the phase transition at a specific 𝑘𝑝 point. 

Here both |𝜙0⟩ and |𝜙1⟩ are eigenstates of the Hermitian part of the Hamiltonian as denoted by 𝐻0
(11)

, 

and the chosen bulk state |𝜙1⟩ is the state exactly at the edge of the gap. In Fig. 3, we plot the 

distributions of |𝜙𝑖⟩ at 𝑘𝑝 = ±π/√2𝑎, where the edge state |𝜙0⟩ has odd RT symmetry, and the bulk 

state |𝜙1⟩ has even RT symmetry. Below, to simplify the notation, we suppress the superscripts (11) 

with the understanding that the Hamiltonian refers to that of truncated lattice rather than the bulk 

Hamiltonian in Eq. (1). 

As a simple model, we describe the phase transition process in the Hilbert space spanned by |𝜙0⟩ 

and |𝜙1⟩, with the matrix elements of the Hamiltonian in this Hilbert space calculated as: 

 𝐻𝑖𝑗 = ⟨𝜙𝑖|𝐻0 + 𝑉|𝜙𝑗⟩ = 𝐸𝑗𝛿𝑖𝑗 + ⟨𝜙𝑖|𝑉|𝜙𝑗⟩, 𝑖, 𝑗 = 0, 1. (5) 

In Eq. (5), 𝐸𝑖 is the eigen-energy for the state |𝜙𝑖⟩. The last term 𝑉𝑖𝑗 = ⟨𝜙𝑖|𝑉|𝜙𝑗⟩ arises from the gain 

or loss added to the lattice sites. By noticing that 𝑉† = −𝑉, one can obtain 

 ⟨𝜙𝑖|𝑉|𝜙𝑗⟩
∗

= ⟨𝜙𝑗|𝑉†|𝜙𝑖⟩ = −⟨𝜙𝑗|𝑉|𝜙𝑖⟩. (6) 

Therefore, we have 𝑉𝑖𝑖
∗ = −𝑉𝑖𝑖 , so 𝑉𝑖𝑖  is purely imaginary. Also, the off-diagonal elements of the 

coupling matrix can be written as 

 𝑉01 = (𝛾 + 𝑖𝜅)𝑈, 𝑉10 = (−𝛾 + 𝑖𝜅)𝑈, 𝛾, 𝜅 ∈ ℝ, (7) 

where 𝛾 and 𝜅 are independent of the strength of the non-Hermiticity U. Since the lattice with the (11) 

truncation has the RT symmetry, we have: 

 (𝑅𝑇)−1𝐻0(𝑅𝑇) = 𝐻0, (8) 

 (𝑅𝑇)−1𝑉(𝑅𝑇) = 𝑉. (9) 

Because of Eq. (8), the non-degenerate eigenstates of 𝐻0 satisfy 

 𝑅𝑇|𝜙𝑖⟩ = 𝑟𝑖|𝜙𝑖⟩, 𝑟𝑖 = ±1, 𝑖 = 0,1. (10) 

By combining Eqs. (9) and (10), we have 

 𝑟𝑗⟨𝜙𝑖|𝑉|𝜙𝑗⟩ = ⟨𝜙𝑖|𝑉𝑅𝑇|𝜙𝑗⟩ = ⟨𝜙𝑖|𝑅𝑇𝑉|𝜙𝑗⟩ = ⟨𝑅𝑇𝜙𝑖|𝑉|𝜙𝑗⟩
∗

= 𝑟𝑖⟨𝜙𝑖|𝑉|𝜙𝑗⟩
∗
, (11) 

which indicates that 𝑉𝑖𝑖 is real. 𝑉𝑖𝑖 is both real and purely imaginary, so one concludes 

 𝑉𝑖𝑖 = 0. (12) 

Also, since for our system 𝑟0 = −𝑟1, we have 𝑉10 = −𝑉10
∗ . Therefore, combining with Eq. (7) we have 

 𝑉01 = 𝑉10 = 𝑖𝜅𝑈. (13) 

Therefore, from Eqs. (5), (12) and (13), we obtain a matrix form of the Hamiltonian: 

 𝐻 = [
𝐸0 𝑖𝜅𝑈

𝑖𝜅𝑈 𝐸1
], (14) 

and its eigenvalues are 

 𝐸± =
𝐸0+𝐸1

2
±

√(𝐸0−𝐸1)2−4𝜅2𝑈2

2
. (15) 
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From Eq. (15), one finds that, when 0 < 𝑈 ≤ 𝑈𝐶 = min
𝑘𝑝

|𝐸0 − 𝐸1|/(2𝜅), both the edge state and bulk 

state remain real-valued energies. Moreover, when the dimerization ratio g2/g1 becomes larger, 

|𝐸0 − 𝐸1| increases, and therefore the critical value of the PT phase transition 𝑈𝐶  increases. 

 

 

Fig. 3 Eigenstate distributions with the (11) truncation with RT symmetry. (a) The edge state at 

Point A in Fig. 2(b). The state is anti-symmetric against to the grey dashed line. (b) The bulk state at 

Point B in Fig. 2(b). The state is symmetric against the grey dashed line. The eigenstate magnitudes on 

lattice sites are normalized with respect to the maximum value in the whole lattice. 

 

Our results above point to a connection between a non-zero critical value of phase transition in Eq. 

(15), and the existence of RT symmetry for both 𝐻0 and 𝑉 (Eqs. (8) and (9)). In our system, lattices 

with truncations other than (11) do not exhibit RT symmetry and hence the phase transition occur at 

infinitesmal strength of the non-Hermiticity. Such an approach based on symmetry analysis could be 

applied to other non-Hermitian 2D systems as well. For example, we can numerically verify the PT 

phase transition of the strained graphene lattice with onsite gains and losses as studied in [47]. With the 

bearded or zigzag truncations, the honeycomb lattice does not feature any RT symmetry, and the lattice 

is in the PT-broken phase for infinitesimal strength of the non-Hermiticity when edge states are present. 

The lattice with the armchair truncation has an additional RT symmetry and hence a non-zero critical 

value 𝑈𝐶  for the phase transition. For the armchair truncation for this system there is no edge state, thus 

the phase transition occurs through the coalescence of two bulk states. The edge states considered here 

have topological origins, but their PT phase transition behaviors are not directly and causally related to 

the topological properties, since the topological properties are determined by the bulk Hamiltonian, 

whereas the properties of the PT phase transition are affected by the symmetries of the truncations. The 

importance of symmetry consideration in PT phase transition has been noted in a number of studies on 

some one-dimensional [30] and two-dimensional [46] lattices, or more generally on the wave equations 

[62] and topological many-body systems [63] with degeneracy. Our work differs in that we use the 

symmetry analysis to study the dependence of the phase transition of the edge states on the lattice 

truncations. 
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In summary, we investigate the truncation dependence of the PT phase transition of edge states in 

a 2D physical system where the bulk periodic system has PT symmetry. Our results show that, with 

specific truncation configurations (such as the (11) truncation), the truncated system preserves certain 

symmetry properties of the bulk periodic system, and consequently the critical value of the PT phase 

transition is non-zero for the edge states. The edge states remain in the PT-unbroken phase when the 

non-Hermiticity is within the critical value. For other configurations where the truncation breaks the 

symmetry of the bulk, the eigen-energies exhibit non-zero imaginary parts and edge states experience 

gain and loss for infinitesimal non-Hermiticity. Our theoretical study here is applicable to a variety of 

experimental platforms that have been used to construct two-dimensional periodic lattice, such as 

photonic waveguide arrays, resonator arrays and cavity arrays [64-68], cold bosonic atoms in optical 

lattices [69,70], superconducting circuits [71-73], and artificial lattices with synthetic dimensions [74-

78]. The results and arguments presented in this letter are expected to provide insights into research that 

requires the engineering of the critical values of the PT phase transition of edge states in multi-

dimensional physical systems, for example, in the studies of sensing, topological lasing and 

unidirectional invisibility near a PT phase transition point [13,14,79,80]. 
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