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We report the static and dynamic magnetic properties of LaSrCrO4, a seemingly canonical spin-3/2 square-
lattice antiferromagnet that exhibits frustration between magnetic layers – owing to their AB stacking – and
offers a rare testbed to investigate accidental-degeneracy lifting in magnetism. Neutron diffraction experiments
on single-crystal samples uncover a remarkable anticollinear magnetic order below TN = 170 K characterized
by a Néel arrangement of the spins within each layer and an orthogonal arrangement between adjacent layers.
To understand the origin of this unusual magnetic structure, we analyze the spin-wave excitation spectrum by
means of inelastic neutron scattering and bulk measurements. A spectral gap of 0.5 meV, along with a spin-
flop transition at 3.2 T, reflect the energy scale associated with the degeneracy-lifting. A minimal model to
explain these observations requires both a positive biquadratic interlayer exchange and dipolar interactions,
both of which are on the order of 10−4 meV, only a few parts per million of the dominant exchange interaction
J1 ≈ 11 meV. These results provide direct evidence for the selection of a non-collinear magnetic structure by
the combined effect of two distinct degeneracy lifting interactions.

Introduction. The emergence of accidental ground state de-
generacy and its lifting are central to our understanding of
frustrated magnetism [1–3]. The interplay between exchange
interactions and lattice geometry often result in a family of ac-
cidentally degenerate ground states that are unrelated by sym-
metry. The degeneracy is then lifted either by subleading in-
teractions, e.g. magnetic dipolar interaction [4–8], magnetoe-
lastic coupling [9, 10], etc.; or by fluctuations that normally
work against ordering, e.g. quenched disorder, thermal or
quantum fluctuations, through the “order by disorder (ObD)"
mechanism [11–17]. The diverse degeneracy lifting mech-
anisms can stabilize a host of magnetic orders in materials
with similar structures and chemical compositions [18, 19],
and their competition offers flexible tunablity in and out-of-
equilibrium [20, 21]. Yet, experimentally revealing the degen-
eracy lifting mechanism is a challenging task due to the mi-
nuscule energy scales, sometimes in the one part per million
of the dominant exchange interaction, associated with these
subleading interactions and/or the ObD effects [22].

The quasi two-dimensional (2D) square lattice Heisenberg
antiferromagnet with AB stacking is a prominent model sys-
tem to illustrate the diverse degeneracy lifting mechanisms
and the wealth of resulting magnetic orders [15, 29–31]. The
antiferromagnetic intra-layer exchange interaction stablize a
2D Néel order in each layer. However, the inter-layer ex-
change interactions are frustrated owing to the AB stacking.
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FIG. 1. (a) The quasi-2D square lattice antiferromagnet with AB
stacking comprises of two sublattices (dubbed A and B), each host-
ing a 3D Néel order. The two Néel vectors are decoupled at the
mean field level owing to the frustrated interlayer coupling. An
easy-plane single-ion anisotropy forces the Néel vectors to be in
the crystallographic ab plane, which are then parametrized by their
respective azimuthal angles (φa, φb). (b) Collinear spin structure
with φa = φb = π

4
, observed in La2CuO4 [23], Sr2CuO2Cl2 [24],

LaSrFeO4 [25], and La2CoO4 in the orthorhombic phase [26]. (c)
Collinear spin structure with φa = φb = 3π

4
for La2NiO4 [27] and

possibly La2CoO4 in the low temperature tetragonal phase [26, 28].
(d) Anticollinear state with φa = 0, φb = π

2
, for LaSrCrO4 reported

in this work. (e) The other symmetry-inequivalent anticollinear order
with φa = 0, φb = −π

2
.

Consequently, the Néel vectors in two adjacent layers re-
main decoupled at the mean field level, thereby giving rise
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to a continuous manifold of accidentally degenerate ground
states, which can then be selected by various mechanisms. In
particular, the thermal and quantum fluctuations stabilize the
collinear arrangement of Néel vectors through the ObD mech-
anism, whereas the quenched disorder favors anticollinear or-
ders where the Néel vectors are orthogonal [15].

Experimentally, such interlayer frustration exists in a
large family of transition metal oxides with a layered per-
ovskite structure of the K2NiF4 type [space group I4/mmm,
Fig. 2(a)] and easy-plane single-ion anisotropy. Focusing on
simple systems without secondary magnetic lattices or elec-
tron/hole doping, including La2MO4 (M = Cu [23], Ni [27,
32], Co [26, 28, 33]), LaSrFeO4 [25] and Sr2CuO2Cl2 [24],
all of these compounds exhibit collinear orders without ex-
ception [Fig. 1(b)(c)]. In La2MO4 (M = Cu, Ni, Co), the
orthorhombic lattice distortion lifts the degeneracy and sta-
bilizes the collinear order [26, 27, 34]. In LaSrFeO4 and
Sr2CuO2Cl2, the lattice distortion is absent; the degeneracy
lifting mechanism is less clear though thermal or quantum
fluctuations are likely responsible [15, 31].

In this work, we investigate a much less characterized mem-
ber of this material family, LaSrCrO4 (LSCrO) [35–37]. Us-
ing neutron scattering measurements on a single crystal sam-
ple, we reveal a striking anticollinear magnetic ground state
[Fig. 1(d)] that is distinct from all the compounds mentioned
above. Combining theoretical analysis with various experi-
mental measurements, we show that the magnetic dipolar in-
teraction and the biquadratic spin exchange interaction, both
on the order of 10−5 (10 ppm) of the main exchange interac-
tion J1, are responsible for lifting the degeneracy and stabi-
lizing the anticollinear state in this material. Our results thus
establish LSCrO as a rare example where the degeneracy lift-
ing interactions with minuscule energy scales can be exposed
unambiguously.

Anticollinear order. We grow for the first time centimeter-
sized single crystals of LSCrO via the floating zone technique
[40]. X-ray and neutron diffraction measurements confirm
that it crystallizes in the tetragonal space group I4/mmm at
room temperature with lattice constants a = b = 3.853(6) Å,
c = 12.475(4) Å [Fig. 2(a)], consistent with previous reports
[35, 37]. By using Rietveld refinement of the nuclear Bragg
peaks measured at various temperatures, we found no struc-
tural phase transitions down to 4 K. Similar to other quasi-2D
system [41], the magnetic ordering in LSCrO occurs in two
steps. At temperatures below 350 K, short-ranged 2D Néel or-
der develops gradually, evidenced by the increasing magnetic
scattering intensities at the M -point of the square lattice Bril-
louin zone, which are diffuse along the L direction [Fig. 2(b)
and (d)].

Below TN = 170 K, the diffuse scattering quickly con-
centrates into sharp magnetic Bragg peaks at wave vectors
Q = (H + 1

2 ,K + 1
2 , L) in reciprocal space [Fig. 2(b)],

pinpointing a three-dimensional (3D) ordering of Cr3+ spins.
Interestingly, magnetic Bragg peaks are observed at Q with
both even and odd L [Fig. 2(b)(c)]. This observation can not
be explained by the 3D Néel order with a single ordering wave
vector, where the magnetic structure factor would be extinct
at either even or odd L [40, 42]. In other words, the spins

(a) (b)

1 2 3 4 5 6

q (Å)
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FIG. 2. (a) Nuclear and magnetic unit cells (represented by solid and
dotted lines) of LSCrO. Colored spheres present different atoms and
red/black arrows presents Cr3+ spins that are orthogonal between
adjacent layers. Spin interactions J1, J2, D,K in Eqs. (1) and (2)
are labeled for selective Cr-Cr bonds. (b) Elastic neutron scatter-
ing patterns in the (HHL) plane, measured on SEQUOIA (Spallation
Neutron Source, Oak Ridge National Laboratory, Ref. [38]) at T =
240 K, and 5 K, respectively. Intensities are integrated within ±0.1
reciprocal-lattice unit (r.l.u.) in the [KK̄0] direction. (c) Rietveld
refinement of the magnetic reflections collected on HB3a (High Flux
Isotope Reactor, ORNL, Ref. [39]) at 4 K based on the magnetic
structure shown in (a). (d) Temperature dependence of the mag-
netic diffuse scattering intensity at Q = (0.5, 0.5, 0.5) and magnetic
Bragg peak intensity at Q = (0.5, 0.5, 1). The onset temperatures
and 2D and 3D magnetic ordering are indicated by the arrows.

in adjacent planes cannot be strictly collinear. A Rietveld re-
finement of magnetic Bragg peak intensities collected at 4 K
indicates that the magnetic structure is best fit by a 2-k model
[k1 = (1/2, 1/2, 0) and k2 = (1/2, -1/2, 0)] with the ordered
moment of 2.25(2)µB /Cr3+, characterized by the magnetic
space group PC42/ncm [43]. The resulting magnetic structure
is shown in Fig. 2(a), which is identical to the anticollinear
structure shown in Fig. 1(d).

Spin wave excitations. We investigate the low temperature
magnetic excitation spectrum of LSCrO using time-of-flight
neutron spectroscopy with various neutron incident energies
(Ei) [40]. Fig. 3(a) shows the overall energy-momentum de-
pendence of the measured dynamic structure factor S(q, ω)
along the high symmetry directions of the 2D Brillouin zone,
where the scattering intensities are integrated along the L di-
rection. An intense and dispersive spin wave band emanates
from the M -point. Its intensities gradually diminish when
moving to the Γ point. The spin wave shows almost no disper-
sion from the X point to the Y point, suggesting that further-
neighbor exchange couplings [44] and quantum anomaly ef-
fects [45] are small.

Using a lower incident energy, Ei = 20 meV, and there-
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FIG. 3. (a) Spin wave excitations along high symmetry directions in
the 2D Brillouin zone (inset) measured on SEQUOIA usingEi = 120
meV. Data are integrated within H,K= ±0.2 and L = ±8 r.l.u. The
flat modes near 10 and 20 meV are optical phonons at high L values.
(b) Dispersion along H near the M -point of the 2D Brillouin zone
measured at Ei = 20 meV. Data integration range is H(K)= ±0.03
and L = ±0.15 r.l.u. Dashed lines in (a) (b) represent best fit to Eq.
1 from LSWT. (c) Dispersion along [0.5, 0.5, L] measured at Ei =
8 meV. Data integration range is H,K= ±0.02 r.l.u. (d) Dynamic
magnetic susceptibility at the M -point, obtained by integrating the
data in (c). All data shown in this figure are collected at T = 5 K
and symmetrized according to the D4h point group symmetry of the
Cr3+ site.

fore better energy resolution, we identify an energy gap of
4.5(1) meV in the M -point spectrum [indicated by arrows in
Fig. 3 (b)(d)]. We attribute this gap to the weak, easy-plane
single-ion anisotropy of the Cr3+ moments.

Given the large spin carried by the Cr3+ ions [electron con-
figuration t32g , S = 3/2], we expect that the observed spec-
trum can be understood in terms of the linear spin wave theory
(LSWT). We find that the following minimal model Hamilto-
nian, which includes the first (J1) and the second neighbor
(J2) exchange interactions, as well as an easy-plane single-
ion anisotropy (A), can well describe the in-plane dispersion
of the spin wave within the LSWT framework:

H0 = J1
∑
〈ij〉1

Si · Sj + J2
∑
〈ij〉2

Si · Sj +A
∑
i

(Sz
i )2, (1)

where the summation 〈ij〉n runs over n-th neighbor spin pairs.
We attain the best fit [dashed black lines in Fig. 3(a)(b)] with
J1 = 10.6(1) meV, J2 = 0.16(6) meV, A = 0.05(1) meV.
The energy scale of the J1 exchange is comparable to the on-
set temperature for the short-ranged 2D Néel order.

Finally, we examine the low energy dispersion along the L
direction at the M -point with the best energy resolution ob-
tained at Ei = 8 meV [Fig. 3(c)]. Remarkably, the spec-

trum is gaped throughout. As the gaps do not show discernible
L-dependence, we conclude that the interlayer couplings be-
tween Cr3+ spins of adjacent layers are smaller than the in-
strument resolution [> 0.1 meV]. By integrating L in Fig.
3(c) and avoiding regions where there is inelastic leakage from
magnetic Bragg peaks, we obtain the energy dependence of
dynamic susceptibility χ′′(Q, ω), which clearly reveals a sec-
ond, much smaller gap ∆ ≈ 0.5(1) meV [Fig. 3(d)].

The weak interlayer coupling is expected given the rela-
tive low 3D ordering temperature, kBTN/[J1S(S + 1)] =
0.391. As a crude estimate, we neglect the small easy-plane
anisotropy and utilize the published ordering temperatures of
the quasi-2D Heisenberg model as determined by quantum
Monte Carlo simulations [46, 47]. We estimate the interlayer
coupling is in the range of 10−6 meV to 10−3 meV [40].

Interlayer couplings. While the minimal model Eq. (1) can
produce the in-plane dispersion of the spin wave, it is silent on
the origin of the 3D magnetic structure. We now discuss the
interlayer couplings that can stabilize the anticollinear state of
LSCrO.

To set the stage, we determine the symmetry-allowed cou-
plings between the Néel vectors associated with the two sub-
lattices. The single ion anisotropy forces the Néel vectors to
lie in the plane. We parametrize the orientation of the Néel
vector in the sublattice A/B by the azimuthal angle φa/φb, re-
spectively [Fig. 1(a)]. The interaction energy can be expanded
as Fourier series of φa,b. Up to the 4th order harmonics, our
symmetry analysis yields three algebraically independent cou-
pling terms [40]: − sin(φa + φb),− cos(4φa)−cos(4φb), and
cos(2φa − 2φb). The signs at the front are needed to energet-
ically favor the anticollinear state, i.e. φa = 0, φb = π/2
(and symmetry-related configurations). Each term admits a
physical interpretation: The first term arises from the mag-
netic (pseudo) dipolar interaction; the second describes an
in-plane, four-fold symmetric single ion anisotropy; the last
comes from the biquadratic exchange interaction.

Stabilizing the anticollinear order found in LSCrO re-
quires the combination of either (a) dipolar interaction and
biquadratic exchange or (b) dipolar interaction and single-ion
anisotropy. Note the combination of the biquadratic exchange
and the single-ion anisotropy does not fully lift the accidental
degeneracy — it admits another, symmetry-inequivalent anti-
collinear state φa = 0, φb = −π/2 [Fig. 1(e)] in addition to
the state observed in LSCrO.

Among the two possible combinations, we find the first can
produce the correct spin flop transition observed in LSCrO
(see below). We thus arrive at the following minimal Hamil-
tonian for the interlayer coupling:

H′ =
∑
〈ij〉3

D(Si · Sj − 3(Si · n̂ij)(Sj · n̂ij))

+K(Si · Sj)
2, (2)

where the summation is over all third-neighbor pairs. n̂ij is
the unit vector pointing from site i to site j. D > 0 and
K > 0 are strength of the dipolar and biqudratic couplings,
respectively.

Spin flop transitions. We now turn to the experimental test
of the model Eq. (2). A sensitive diagnostic for the interlayer
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FIG. 4. (a)(b) The azimuthal angle of the Néel vectors, φa and φb,
as a function of the applied magnetic field H along (a) [110] and (b)
[100] directions. Inset: configurations of the Néel vectors at selective
fields. (c)(d) Differential magnetization at 2 K and 200 K, measured
with H applied along (c) [110] and (d) [100] directions. (e) Field
dependence of the magnetic Bragg peak intensities at Q = (0.5,0.5,0)
and Q = (0.5,0.5,1), measured at T = 2 K on the CORELLI diffuse
scattering spectrometer (SNS, ORNL, Ref. [48]) with magnetic field
applied along the [11̄0] direction. (f) Field dependence of the relative
velocity variation of the transverse mode propagating along x-axis
and polarized along the y-axis VLxPy , measured at T = 2 K for H
along the a-axis (black curve) and along the c-axis (blue curve).

coupling is the spin flop transition driven by a magnetic field
applied within ab plane. The Zeeman coupling favors the Néel
vectors to be perpendicular to the field in each layer. When the
field is sufficiently strong, this effect can overcome the dipo-
lar/biquadratic interactions and stabilize a collinear state. The
resulting evolution from an anticollinear to a collinear mag-
netic structure thus offers a probe of the nature and strength
of the interlayer couplings.

Our theoretical analysis based on the model Eq. (2) reveals
distinct magnetization processes when field is aligned along
different high symmetry directions. Within increasing field
‖ [110], we find the angle between the Néel vectors of the two
sublattices gradually increase from π/2 to π, at which point
the system enters the collinear state. Meanwhile, the Néel
vectors remain symmetric with respect to the field [Fig. 4(a)].
The onset field of the collinear state is given by gµBµ0Hc =
16
√
J1KS4. Note this process is a crossover as opposed to a

phase transition in that no symmetry is spontaneously broken.
By contrast, with the field ‖ [100], the Néel vectors are

initially pinned to the anticollinear state [Fig. 4(b)]. A spin
flop transition occurs at Hc1, at which point the Néel vec-
tors are no longer orthogonal and evolve toward the collinear

state, whereby spontaneously breaking the π-rotation symme-
try with respect to [100]. The system enters the collinear state
at Hc2 although the collinear Néel vectors are not strictly or-
thogonal to the field. No symmetry breaking occurs at Hc2

and thus it constitutes a crossover. With increasing field, the
collinear Néel vectors continuously approach the limit where
they are orthogonal to the field. Hc1,c2 are determined by:

(gµBµ0Hc1)2

32J1
=
√
KD, (3a)

(gµBµ0Hc2)2

32J1
=

√
K2

2
+
K
2

√
K2 + 4D2, (3b)

where K = 8KS4 and D = 12a2DS2/(2a2 + c2).
These predictions are confirmed experimentally by our dc

magnetization measurements. The differential magnetization
in [110] direction shows a maximum near 5 T, corresponding
to the crossover from non-collinear to collinear states at Hc

[Fig. 4(c)]. By contrast, in the field ‖ [100], we observe in-
flection points at 3.15(5) T and 5 T [Fig. 4(d)]. We identify
the inflection near 3 T as the spin flop transition at Hc1 and
the one near 5 T as the crossover at Hc2. This interpreta-
tion is further supported by ultrasound velocity measurements
[Fig. 4(f)] – a sensitive technique to investigate second-order
magnetic phase transitions [49, 50] . When the field is ap-
plied in the [100] direction, the relative speed of transverse
sound wave shows a clear minimum at 3.27 T, indicative of a
phase transition, but no anomaly is found at 5 T. Meanwhile,
neutron diffraction measurement with field ‖ [110] reveals a
gradual increase (decrease) of magnetic Bragg peak intensities
with even (odd) L values up to the highest measured magnetic
field of 4 T [Fig. 4(e)], consistent with the picture of a gradual
rotation of Néel vectors [Fig. 4(a)].

Using the experimentally measured value of Hc1 and Hc2

in the [100] direction, we estimate DS2 ≈ 1.4 × 10−4 meV
and KS4 ≈ 1.3 × 10−4 meV. Using these parameters, we
determine the crossover field µ0Hc ≈ 5 T in the [110] di-
rection, in agreement with the experiment. Meanwhile, the
LSWT predicts all four branches of the spin waves are gapped.
The interlayer interactions open two gaps with values 0.2 meV
and 0.6 meV. The 0.6 meV gap is consistent with the observed
spectral gap ∆[Fig. 3(d)], whereas the 0.2 meV gap is beyond
the energy resolution of our measurements.

We note that the alternative model for interlayer coupling,
namely the dipolar coupling and the four-fold symmetric
single-ion anisotropy, produces first-order spin flop transitions
in the [100] directions [40], which is inconsistent with the ex-
periment.

Discussion. Having established the nature and strength of
interlayer interactions [Eq. (2)], we now discuss their micro-
scopic origins. The dipolar coupling D may originate from
either the pseudo-dipolar coupling, commonly found in sys-
tems with strong spin-orbital coupling, or the magnetic dipo-
lar interaction. Given the filled t2g shell of Cr3+, we do not
expect significant spin-orbital coupling and thus rules out the
former possibility. Note that our case is very different from
isostructural compounds with a second, magnetic rare earth
sublattice, e.g. R2CuO4 (R = Ce, Pr, Nd) [42, 51–53], which
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could mediate the pseudo-dipolar coupling [54]. Instead, we
findD is naturally attributed to the magnetic dipolar coupling.
Our magnetostatic calculation yields DS2 ≈ 2 × 10−4 meV
based on refined moment of 2.25µB/Cr3+, consistent with the
estimate based on the spin flop field. Dipolar coupling is
known to be crucial for rare-earth magnets with ice-like frus-
tration [19, 55–57] where the exchange interactions are small.
Our work demonstrates that it can also play an important role
in systems with comparatively much stronger exchange cou-
pling.

The positive biquadratic exchange interaction could be gen-
erated either by higher order virtual hopping processes in the
superexchange [58], or more likely by quenched disorder due
to the La/Sr mixing through the ObD mechanism [15, 17].
We also note that the combination of dipolar interaction and
a negative biquadratic exchange, produced by the thermal or
quantum ObD, would stabilize a collinear order with the spins
in the [110] direction, which may explain the 3D ordering in
Sr2CuO2Cl2 or LaSrFeO4. This observation motivates further
investigation of quenched disorder to control magnetic order
in frustrated magnets or spintronic devices.

The experimental observation of the anticollinear order in
LSCrO uncovers a new territory in the phase diagram of the
AB-stacked square-lattice antiferromagnet. In contrast to the
collinear magnetic states displayed by all related materials,
the anticollinear order in LSCrO exhibits a rich and unique

magnetic field evolution stemming from interlayer effects that
are merely a few parts-per-million of the main exchange in-
teraction. A systematic study of the temperature-field phase
diagram of LSCrO and its materials relatives is poised to re-
veal more surprises in this canonical family of geometrically
frustrated magnets.
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