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The community currently lacks a complete understanding of how resonant inelastic x-ray scattering
(RIXS) experiments probe the electron-phonon (e-ph) interaction in solids. For example, most
theoretical models of this process have focused on dispersionless Einstein phonons. Using a recently
developed momentum average (MA) variational approximation for computing RIXS spectra of band
insulators, we examine the influence of both electron and phonon dispersion in the intermediate
state of the scattering process. We find that the inclusion of either, and their mutual interplay,
introduces significant momentum variations in the RIXS intensity, even for momentum-independent
electron-phonon coupling. The phonon dispersion also induces nontrivial changes in the excitation
line shapes, which can have a quantitative impact on the data analysis. These results highlight the
considerable challenges of interpreting RIXS data in actual materials.

Introduction — Resonant inelastic x-ray scattering (RIXS)
[1, 2] is being used increasingly to study electron-phonon
(e-ph) coupling in solids. This application is being driven
by the steady improvements of both the instrument resolu-
tion and our understanding of the RIXS cross-section. For
example, theoretical modeling has suggested that RIXS
can access the e-ph coupling strength with momentum
resolution and element specificity [3–5].

One of the most popular methods for quantitatively ana-
lyzing lattice excitations in RIXS spectra is the single-site
framework developed by Ament et al. [3]. It approxi-
mates the infinite system with a single isolated site whose
local electron density in the valence orbital couples to
the lattice displacements. This simplified model’s exact
RIXS scattering amplitude can be computed within the
Kramers-Heisenberg formalism using a Lang-Firsov trans-
formation. Its key predictions are that the e-ph coupling
produces a series of low-energy harmonic excitations in
the energy loss spectra, whose relative intensities can be
mapped onto the strength of the e-ph interaction.

While this single-site model has been widely employed
for data analysis [6–10], its approximations are drastic,
and it is unclear how relaxing them may affect the results
of the analysis. For this reason, several groups have at-
tempted to develop alternative approaches. Examples (in
no particular order) include generalizations of the single-
site framework to include multiple modes or changes in
the harmonic potential in the intermediate state [11], ex-
act diagonalization of small clusters [4, 12], diagrammatic
approaches [5, 13], cumulant expansions of the Green’s
function [14], and dynamical mean-field theory [15].

Recently, we introduced an efficient variational method
for computing RIXS spectra for band insulators [16]. Our
method is built on the Momentum Average (MA) class
of variational approximations [17, 18] and allows us to
treat situations where a core electron is excited into an
empty band in the intermediate state of the RIXS process

and is allowed to interact with the lattice. We showed
that the single-site approximation becomes inaccurate
for shallower core-hole potentials and found that the
itinerancy of the valence electron leads to momentum
dependence in the intensity of the RIXS phonon peaks
even if both the e-ph coupling and the phonon’s disper-
sion are momentum-independent. Naturally, this raises
the question of whether the momentum-dependence of
various features in the RIXS spectra can be used to infer
momentum dependence of either the e-ph coupling and/or
phonon dispersion.

Here, we answer the latter part of this question. We
extend the MA formalism to study band insulators where
the excited electron couples to dispersive optical phonons.
Our goal is to understand how a finite phonon bandwidth
affects the RIXS spectra when the e-ph coupling is
momentum independent (Holstein). We find that the
phonon bandwidth produces specific q-dependence of
the multi-phonon excitations so that even for a Holstein
coupling, we obtain single- and multi-phonon excitations
whose peak location and intensity vary significantly
around the first Brillouin zone (BZ). Moreover, the
predicted multi-phonon line shapes are complicated,
deviating considerably from the Lorentzian or Gaussian
shapes frequently adopted when fitting experimental
data. These results expand our knowledge of how the
details of the e-ph coupling are encoded in the RIXS
cross-section and further underscore the need to move
beyond single-site models in data analysis.

The Model — We examine the RIXS spectra for a band in-
sulator whose valence electrons are coupled to a dispersive
optical phonon branch in the intermediate state of the scat-
tering process. The Hamiltonian isH = He+Hph+He-ph+
Hch. Here, He = −t

∑
〈ij〉[d

†
idj + H.c.] =

∑
k εkd

†
kdk

where d†i (di ) creates (annihilates) an electron at site i in
the valence band, and εk is the valence band dispersion.
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The optical phonon is described by Hph =
∑

q ωqb
†
qbq,

where b†q (bq) creates (annihilates) a phonon with en-
ergy ωq (we set ~ = 1). Throughout, we assume that
the system is a two-dimensional (2D) square lattice
with a = 1 so that εk = −2t (cos kx + cos ky) while
ωq = ω0 +2ω1 (cos qx + cos qy). Since we have in mind op-
tical oxygen modes in transition metal oxides, we further
assume that the phonon bandwidth is small, ω1 � ω0.
The Holstein e-ph coupling is

He-ph = g√
N

∑
i

e−ik·Rid†idi (b
†
k + b−k), (1)

where g is the strength of the coupling and N is the
number of lattice sites. Finally

Hch = εch
∑
i

p†ipi − UQ
∑
i

d†idi

(
1− p†ipi

)
(2)

describes the core-hole and its interaction with the
valence electron. Specifically, p†i (pi ) creates (annihilates)
an electron in the relevant core level at site i, εch is the
on-site energy of the core level, and −UQ is the local
attractive interaction between the valence electron and
the core hole. We use a mixed notation for the Holstein
coupling [Eq. (1)], where the electron (phonon) operators
are represented in real (momentum) space, for later
convenience. Finally, Eq. (2) captures the core-hole’s
influence on the system in the intermediate state via a
local core-hole potential. We note that although the bare
UQ potential is purely local, the effective potential can
extend over the entire lattice (albeit decaying very fast
away from the core hole) [16, 19, 20] once dressed by the
e-ph interaction.

The Method — Our starting point is the standard Kramers-
Heisenberg (KH) equation for the RIXS intensity [1, 2],
which we reformulate by expanding the delta function as
the imaginary part of a final state Green’s function [21]

I(ω, q) = − 1
π
=
∑
f

|Ffg(q, z)|2

ω + iη − Ef + Eg
. (3)

Here, η is a broadening parameter and Ffg is the scatter-
ing amplitude

Ffg(q, z) =
∑
n,i

eiq·Ri
〈f |D†i |n〉 〈n|Di |g〉

Eg − En + z
, (4)

where |g〉, |n〉, and |f〉 are the initial, intermediate, and
final states of the RIXS process with energies Eg, En, and
Ef , respectively, z = ωin +iΓ, ωin and ωout are in energies
of the incident and scattered x-ray, ω = ωout − ωin and q
are the energy and momentum transferred to the sample,
Γ is the inverse core-hole lifetime, and Di is the dipole
operator. (Here, we have omitted the geometric prefactors
associated with the dipole matrix elements to focus on

the effects of the electron and phonon dispersions.) The
specific elemental edge does not matter at our level of
modeling [16].

We briefly explain here our variational approach, del-
egating all details to the Supplementary Material [22].
The first step is to evaluate the spectral amplitude Ffg.
Following Ref. 16, we cast it as a generalized propagator

Ffg(q, z) = 1√
N

∑
i

eiq·Ri 〈f | p†idiG(z)d†ipi |g〉 , (5)

where G(z) = [z −H+ Eg]−1. We generate an equation
of motion (EOM) for Ffg(z) by applying the Dyson
identity G(z) = G0(z) + G(z)VG0(z), where V = He−ph
and H0 = H−He−ph has the associated resolvent G0(ω).
The EOM for Ffg(z) depends on new propagators,
whose EOMs depend on other new propagators, etc.,
generating an infinite hierarchy of coupled EOMs. To
simplify it and then solve it, we define a variational
Hilbert space characterized by the size and spread of the
phonon cloud [18], and only keep in the hierarchy the
EOMs for propagators consistent with this variational
choice. In particular, it has been well documented
that for a Holstein coupling that is not deep into the
adiabatic regime, a one-site cloud approximation is
very accurate (deep in the adiabatic regime, Holstein
polaron clouds spread over several consecutive sites and
the variational space needs to be expanded accordingly
[23, 24]. We implement this one-site cloud variational
solution here. We emphasize that this polaron cloud can
appear anywhere in the system, it is not restricted to the
core-hole site. Additional technical details can be found
in the Supplementary Material [22], as well as Refs. 16–18.

Results and discussion — Figure 1 presents RIXS spectra
for an itinerant electron, Holstein-coupled to a dispersive
optical phonon branch. Here we take ω0 = 1 as our
unit of energy and set ω1 = 0.02ω0, t = 5ω0, g = 2ω0,
UQ = 20ω0, and Γ = 2ω0 unless otherwise stated. The
effective e-ph coupling λ = M2/4tω0 = 0.2 is thus rather
weak. For a typical transition metal oxide we expect
ω0 ∼ 100 meV. Our value for Γ is, therefore, halfway
between values appropriate of the transition metal L-
edge and oxygen K-edge [4, 8, 11]. Our choice for UQ is
smaller than the UQ ∼ 4–6 eV typically adopted in the
literature [4, 12, 25–27]. This choice partially accounts for
the interaction between the core hole and the lattice and
extenuates the delocalization effects in the intermediate
state. As discussed previously [16], the core-hole-lattice
coupling, which is neglected in Eq. (1), can frustrate
polaron formation in the valence band. At the lowest
order, this effect reduces the effective core hole potential,
which we account for by reducing UQ.

For reference, Fig. 1(a) shows the RIXS spectrum for a
dispersionless optical phonon (ω1 = 0). It shows the ex-
pected multi-phonon excitations located at multiples nω0
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FIG. 1. RIXS spectra calculated for various model parameters. The results plotted for momentum transfers q along the
high-symmetry cuts of the first Brillouin zone of the square lattice. The high-symmetry points are denoted as Γ = (0, 0),
M = (1, 1), X = (1, 0), and S = (1/2, 1/2) in units of π/a. All results were obtained with a variational constraint p = 2 (see the
Supplementary Material [22] for more details). (a) mobile electron coupled to an Einstein phonon (t = 5, ω1 = 0); (b) mobile
electron coupled to a dispersive optical phonon (t = 5, ω1 = 0.02); (c) localized electron coupled to a dispersive optical phonon
branch (t = 0, ω1 = 0.02). All parameters are in units of ω0 = 1. We’ve multiplied the intensity of the multi-phonon peaks
by the factor indicated in the corner of the respective region. The dashed blue lines indicate the edges of the corresponding
multi-phonon energy convolution (see text for more detail). The green lines are plots of the RIXS spectrum at the high symmetry
points.

of the phonon energy. The excitations have Lorentzian
line shapes with a broadening set by η = 0.04ω0 to mimic
the instrument’s resolution. The amplitude of the peaks
decreases as the excitation number n increases. (For more
clarity, we scaled each overtone by the numerical factor
indicated in red at the top of the plot.) The momentum
dependence of the intensity of the first phonon peak is
due to the electron mobility in the intermediate state [16].
The intensity of the multi-phonon peaks is q-dependent,
but it is harder to discern on this scale.

Figure 1(b) shows the RIXS spectrum when we in-
troduce a phonon dispersion with a narrow bandwidth
ω1 = 0.02. The single phonon peak continues to be a
Lorentzian with broadening η, but its position now follows
the phonon dispersion ωq indicated by the dashed blue
line, as required by the conservation of momentum and
energy [3, 5]. Its intensity again exhibits a significant mo-
mentum dependence due to the mobility of the electron
in the intermediate state. This is further confirmed by
the RIXS spectrum shown in Fig. 1(c) for a localized elec-
tron (t = 0, ω1 = 0.02). Indeed, here the single phonon
peak tracks the phonon frequency ωq but has the same
intensity at all q.

Much more important is the observation that now the
higher-order peaks in Fig. 1(b) also show a strong momen-
tum dependence both in their line shape and intensity. To
understand it, consider first the two-phonon peak. Here,
the total transferred momentum is distributed between
the two phonons left behind after RIXS, q = q1 +q2. The
transferred energy must then equal the two phonons’ en-
ergy ωq−q2 +ωq2 = 2ω0 + 4ω1

∑
δ=x,y cos qδ2 cos(q2δ −

qδ
2 ).

There is no broadening at the M -point [= (π, π)] (apart
from the extrinsic broadening η); however, for any other
q the two-phonon peak has an intrinsic broadening

8ω1(cos qx2 + cos qy2 ), marked by the blue dashed lines,
due to the convolution over all q2 values.

We can explain the broadening of the higher multi-
phonon peaks in a similar manner; it results from the
convolution over the n phonon energies with total mo-
mentum q =

∑n
i=1 qi. The expected outermost energies

allowed by this constraint are shown by the dashed blue
lines and indeed mark the regions with finite RIXS inten-
sity. The higher-order peaks thus exhibit an ever-growing
broadening. For example, the four-phonon feature is ap-
proximately twice as wide as the two-phonon one. Fig. 1(c)
shows the same broadening for the localized electron, con-
firming that this feature is due solely to the phonon
dispersion. These findings naturally explain why many
experiments have resolved increasing line widths for the
multi-phonon excitations [4, 12].

Another interesting observation is that the shape of
the two- and three-phonon peaks is highly nontrivial and
does not follow a Lorentzian or Gaussian lineshape, as
is often assumed. Furthermore, the three phonon peak
is skewed, producing asymmetric peaks around the Γ-
and M -points. The bond-stretching “breathing” phonon
modes in transition metal oxides often have bandwidths
comparable to our model [28] while Cu L-edge RIXS ex-
periments can access momentum transfers approaching
the X point. Therefore, copper oxide materials could
serve as a platform for experimentally confirming these
effects, provided the coupling is strong enough to generate
multi-phonon excitations and depending on the instru-
mental resolution and the actual self-energy broadening
of the valence electron. Nonetheless, it seems to be worth
investigating. For example, it might be worth examining
how incoherent, extremely correlated Fermi liquid [29, 30]
or non-Fermi liquid [31] behavior would manifest here.
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FIG. 2. An analysis of the phonon excitations for ω0 = 1,
t = 5ω0, ω1 = 0.02ω0, Γ = 2ω0, and g = 2ω0. (a) The
width of the phonon excitations, defined as the empirically
determined half width half maximum (HWHM) of the peak,
as a function of momentum. (b) The momentum dependence
of the maximum phonon excitation intensity, normalized to
their peak intensity at (0, 0). In all panels, results are shown
for the first four phonon excitations and for UQ = 20ω0 (solid
lines) and UQ = 60ω0 (dashed lines).

The higher phonon excitations eventually revert to
a Gaussian line shape, as evident in the four-phonon
line, owing to the central limit theorem (the crossover
from unusual to Gaussian line shapes is controlled by the
strength of the e-ph coupling). In contrast to the case of
a dispersionless phonon (panel a), we also see a stronger
momentum dependence of the weight of the higher-phonon
peaks. Comparison with panel (c) reveals that its details
depend on the phonon and valence band’s bandwidth. We
expect that this intensity and the specific line shapes will
be further affected by a momentum-dependence of the
e-ph coupling, but the study of this issue is deferred to
future work.

Figure 1 clearly illustrates that both electron mo-
bility and phonon dispersion, and their interplay, pro-
duce phonon excitations with nontrivial momentum-
dependence in the RIXS spectra. We further quantify
these results in Fig. 2 for different values of UQ. Figures
2(a) and 2(b) plot the line width of the phonon peaks and
their intensity as a function of momentum, as obtained
from numerical fitting of a Lorentzian lineshape. Here,
the peak intensity is determined from the peak maximum.
One could use the integrated area instead, which would
show similar trends but with quantitative differences (not
shown). The width is determined empirically from the
half-width at half maximum (HWHM). For UQ = 20ω0,
the intensity of the first and second phonon excitations
varies significantly. For example, the first phonon excita-
tion drops in intensity by more than half when tracking
from (0, 0) to (π, π), while the intensity of the second
phonon excitation grows by a factor of two. As discussed,
the width of the first phonon peak is fixed to our input
resolution (η = 0.04ω0), while the width of the second
phonon peak varies by more than 100% following the
trends noted previously. In comparison, the momentum

FIG. 3. An analysis of the phonon excitations for localized
(t = 0, dashed lines) and delocalized (t = 5ω0, solid lines)
electrons, similar to Fig. 2. Other parameters are ω0 = 1,
ω1 = 0.02ω0, UQ = 20ω0, and g = 2ω0.

dependence of the third and fourth phonon excitations is
weaker but remains significant.

We also examine a larger core-hole potential UQ = 60ω0.
This value effectively localizes the excited valence electron
at the core-hole site in the intermediate state and reduces
the momentum dependence of the phonon peaks (similar
to the t = 0 results). The only exception is the two-
phonon peak, which still varies rapidly as a function of q.
This result suggests that the largest contribution to the
momentum dependence of two-phonon excitation arises
from the phonon dispersion rather than the electron
mobility. To confirm this, Fig. 3 compares the results of
the same analysis, this time for systems with t = 0 and
t = 5ω0, and UQ = 20ω0. The strong similarity between
the results for the localized electron (t = 0) and those
obtained for a mobile electron with UQ = 60ω0, indicate
that this larger potential is indeed strong enough to
localize the electron in the intermediate state.

Summary and Conclusions — Our results demonstrate
that electron mobility and phonon dispersion produce
momentum-dependent phonon excitations in the RIXS
spectra. Crucially, this dependence emerges even for
models with momentum independent e-ph interactions
and would significantly impact estimates for the strength
of the coupling if one does not account for it. We also
found that the phonon dispersion produces a nontrivial
broadening of the multi-phonon excitations. This effect
may account for the increasing widths of the phonon
excitations often observed in experiments [4, 12].

Our results have important implications for analyzing
RIXS data on systems with dispersive phonon modes. For
example, the single-site model predicts that the strength
of the e-ph coupling can be directly extracted from the
intensity ratios of successive phonon excitations with
gq/Γ = In+1(q)/In(q) [3]. In our model, g is independent
of q yet the resulting In(q) are not, showing that this sim-
ple mapping does not hold for dispersive systems. Impor-
tantly, this conclusion holds in the limit of strong electron



5

localization (i.e., strong, attractive core-hole potentials)
if the relevant phonon branch has a sizable bandwidth.

Our results are for a band insulator, where the core
electron is excited into an empty band in the intermediate
state of the scattering process. We suggest that such
systems, along with other dilute materials, could be
used to develop a controlled theory of e-ph coupling in
RIXS experiments. In the future, it is highly desirable to
explore these effects in cases where the band is partially
filled and/or where correlation effects cannot be neglected.
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