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Flat-band systems are a promising platform for realizing exotic collective ground states with spontaneously
broken symmetry because the electron-electron interactions dominate over the kinetic energy. A collective
ground state of particular interest is the chased after exciton condensate (EC). However, in flat band systems
other collective ground states can compete with an EC phase, and the conventional treatment of the effect of
thermal and quantum fluctuations predicts the EC phase should be unstable. Here, using double twisted bilayer
graphene (TBLG) heterostructures as an example, we show that for realistic interaction strengths the EC phase
is favored with respect to other TBLG’s phases – orbital magnetism and superconductivity– when the TBLGs
have opposite doping, and that the quantum metric of the Bloch wave functions stabilizes the EC, reversing
the conclusion that would be drawn from the conventional approach in which quantum metric contributions are
neglected. Our results suggest that the quantum metric plays a critical role in determining the stability of exciton
condensates in double layers formed by systems with flat-bands.

An exciton is a bosonic quasiparticle formed by an elec-
tron (e) bound to a hole (h). A large number of excitons
can become phase coherent and form a collective state known
as exciton condensate (EC) [1, 2]. Already in the mid 70’s
it was proposed [3, 4] that spatially separating electrons and
holes should facilitate the formation of a thermodynamically
stable EC. Such separation can be realized in e-h semicon-
ductor double layers, in which a thin dielectric separates the
layers and distinct metal gates are used to create an excess
density of electrons in one layer which equals the excess den-
sity of holes in the other one. Great advances in the fabrica-
tion of heterostructures made possible the realization of sev-
eral novel double layers in which ECs could be realized [5–
24]. It was proposed that ECs could be formed in graphene
double layers [5, 6], but experimentally no strong signatures
have been observed, so far. It was then proposed that ECs
could be realized in systems based on double bilayer graphene
(BLG) [8, 9, 16], given that at low energies BLG’s bands are
qualitatively flatter than graphene’s, and recent experiments
show signatures that are consistent with the formation of an
EC [18]. These results, combined with the ones for quantum
Hall (QH) bilayers [25–30], in which the kinetic term of each
layer is completely quenched, would suggest that, in general,
the formation of an EC is favored in bilayers formed by 2D
systems with flat bands. As a consequence, double twisted
bilayer graphene (TBLG), in which the bands can be made
extremely flat by tuning the twist angle θ between graphene
sheets [31–38] appears to be an ideal system to seek the real-
ization of ECs without external magnetic fields. This expecta-
tion, however, is in part naive. First, the flatness of the bands
is associated with strong screening of the interlayer Coulomb
interaction that is the driver of the EC instability. This obstacle
can be overcome by tuning the system into the strong coupling
regime, where the e-(h-)densities are sufficiently small so that
the coherence length ξ of the EC is smaller than the average

distance between particles [10]. Second, the stiffness (ρs) of
the EC, i.e. its robustness against thermal and quantum fluc-
tuations, is conventionally expected to decrease as the bands
become flatter and ultimately vanish in the limit of perfectly
flat bands.

In this work we show that the second obstacle in general
might not be present if one considers the contribution to ρs
due to the quantum metric of the eigenstates of the EC. We
consider the specific case of double layers formed by an e-
doped TBLG and a h-doped TBLG separated by a thin in-
sulating barrier [Fig. 1(a)]. We first perform a mean field
calculation, in which the order parameters for the EC, su-
perconductivity (SC) and orbital magnetism (OM) are treated
on equal footing, to identify the regions of the the phase di-
agram as a function of dopings in the upper (U) and lower
(L) TBLG where the EC is favored. We then calculate ρs for
the EC and show that the contribution to it due to the quan-
tum metric is essential to make it positive and therefore to
stabilize the EC. In addition, we describe how ρs depends on
the twist angle and find that the most favorable twist angle θ
to realize a stable EC is not the magic angle. We also ob-
tain the Berezinskii-Kosterlitz-Thouless (BKT) temperature
TBKT [39, 40] as function of θ. Considering that most sys-
tems with almost flat bands are multiband systems, our results
have universal relevance for the understanding of the condi-
tions necessary to realize ECs: they show that to realize an
EC in 2D bilayers the flatness of the bands of the layers must
be accompanied by a significant quantum metric contribution
to the EC’s stiffness. Our results also allow to understand in
a new light the conditions that make possible the realization
and observation of ECs in QH bilayers [41, 42].

The double TBLG system is described by the Hamilto-
nian Ĥ = ĤU + ĤL + Ĥint where ĤU/L is the single-
particle Hamiltonian for the U/L TBLG and Hint describes
the e-e interactions. We assume θ to be the same for the two



2

TBLGs. For small θ the low energy states of a TBLG are
well described by an effective tight-binding Hamiltonian in
momentum space with the lattice sites {b = m1b1 + m2b2}
corresponding to the reciprocal lattice vectors of the moiré
lattice. The on-site Hamiltonians describe the Dirac points
of graphene with Fermi velocity vF = 106 m/s, and the
nearest-neighbor hopping matrices Ti describe the coupling
between the layers with tunneling strength w = 118 meV
[33, 43–45]. Here b1 = (

√
3Q, 0),b2 = (

√
3Q/2, 3Q/2),

m1,m2 ∈ Z, Q = (8π/3a0) sin(θ/2) and a0 is the lattice
constant of graphene. Recent experimental and theoretical re-
sults suggest that for a single TBLG the strongest instabilities
are orbital-magnetism (OM), characterized by a finite polar-
ization in sublattice space, and superconductivity (SC) [46–
48]. We therefore decouple the interactions within the same
TBLG via the mean fields ∆OM,SC

blσl′σ′ (l = l′, σ = σ′), where
the indices l, l′ (σ, σ′) correspond to the layer (sublattice) de-
grees of freedom freedom within the U or L TBLG [43]. The
interaction between electrons in different TBLGs is decou-
pled via the EC mean field ∆EC

blσl′σ′ . We assume the EC, SM,
and OM phases obey the spin-rotation symmetry. Given the
flatness of TBLG’s low energy bands, in the mean-field ap-
proximation all the interactions can be replaced by effective
local interactions [43]. We denote the strengths of the effec-
tive local interaction in the OM, SC and EC channels as VOM,
VSC and VEC, respectively. We expect VOM > VSC ∼ VEC,
but it is challenging to estimate the precise values of the in-
teraction strengths because of the interplay of screening ef-
fects and collective instabilities. Thus, we adopt a prag-
matic approach: we set VOM = 130 meV·nm2, and VSC =
75 meV·nm2 so that the corresponding critical temperatures
TOM
c and T SC

c are in good agreement with the experimental
observations [34, 37], and consider different range of values
for VEC, 60− 100 meV·nm2, for which TEC

c ∼ 1− 4 K, and
the system is in a strong coupling regime where the screening
does not prevent the formation of the EC.

The gap equations for each order parameter (OP) ∆OP
ᾱ ,

where OP = {OM,SC,EC}, and ᾱ is a collective index, can
be linearized close to the critical temperature TOP

c : ∆OP
ᾱ =∑

β̄ χ
OP
ᾱβ̄

∆OP
β̄

, where χOP
ᾱβ̄

is the bare susceptibility, indepen-
dent of ∆OP

ᾱ . TOP
c is obtained as the temperature T for which

the largest eigenvalue of χOP
ᾱβ̄

is equal to 1. The expressions
of χOP

ᾱβ̄
for each phase are given in [43]. In Fig. 1(b) we

show the phase diagram, as function of doping in each TBLG,
for VEC = 60 meV·nm2, obtained by identifying the highest
TOP
c . We have verified for several (µU , µL) value pairs that

the results obtained from the linearized and non-linearized gap
equations are consistent. Close to νU = νL = 0 the cor-
related insulating phase OM is favored, whereas introducing
equal electron densities in the two TBLGs µL ∼ µU favors the
SC phase [49]. When the excess density of electrons in one
TBLG equals the excess density of holes in the other TBLG,
µU ∼ −µL, the EC becomes dominant. In our system the EC
is formed by states in physically different TBLGs, no pairing
between states in bands with opposite Chern number is as-
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FIG. 1. (a) Proposed experimental setup. (b) Phase diagram of
double-TBLG as a function of µU and µL for θ = 1.00◦. (c,d) Phase
transitions as a function of dopings along the arrows shown in (b). (e)
Phase transition as a function of VEC at νU = νL = 0. The legend
SC(OM)U(L) represents the SC (OM) phase in the Upper (Lower)
TBLG.

sumed, and so the topology of the low energy bands does not
penalize the formation of a uniform inter-TBLG EC state [50].

To investigate the possible coexistence of ordered
phases [51] we have solved across several phase boundaries
the full non-linear gap equations in which all the order param-
eters are allowed to be nonzero. We used large numbers of
random initial conditions and identified the solution with the
smallest total energy as the ground state. Fig. 1 (c) and (d)
show the evolution of the order parameters across the OM/EC
and SC/EC phase boundaries, respectively. In both cases the
results suggest that the system undergoes a first-order quan-
tum phase transition as the dopings are varied in Fig. 1(b).
Fig. 1(e) shows the evolution of the order parameters as a
function of VEC at the neutrality point. Also in this case the
transition appears to be first order. Figure 1(e) suggest that
for VEC > 60 mev·nm2 the EC is favored in a significant re-
gion of the (µU , µL) plane. In the reminder we focus on the
µL = −µU ≡ µ regime, with µ sufficiently large, and set
VEC = 100 meV·nm2 so that, at the mean-field level, the EC
phase is dominant. To simplify the notation in the sections
below the EC label is implied.

Fig. 2 shows how Tc scales with µ and θ close to the magic
angle θM = 1.05◦. Tc is largest when θ = θM , twist angle for
which the bands are flattest, and decreases quickly when θ is
tuned away from θM . The solution of the gap equation reveals
that ∆blσl′σ′ has several non-zero components. We performed
the singular value decomposition (SVD), ∆blσl′σ′ = USV †,
where S is a diagonal matrix whose diagonal elements are the
singular values of ∆blσl′σ′ . Fig. 3(a) shows that the largest 20
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FIG. 2. (a) Tc as a function of µ = µL = −µU and different values
of twist angle θ. (b) Tc as a function of θ and different values of µ.
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FIG. 3. (a) The first twenty singular values of the SVD decompo-
sition ∆blσl

′σ′ = USV †. (b) Amplitudes of the order parameter
components mij . (c) Scaling with |b| of m03. Here θ = 1.05◦ and
µ = 0.30 meV.

singular values (in total we have 484 singular values [43]) are
of comparable size confirming the multi-component nature of
the order parameter.

To better understand the orbital structure of ∆blσl′σ′ we
calculated its projections on the 4×4 matrices κi ⊗ σj as
mij = [

∑
b ‖a

(b)
ij ‖2]1/2, a(b)

ij = (1/4)Tr[∆blσl′σ′κi ⊗ σj],
where κi (σi) are the Pauli matrices in the layer (sublattice)
space. We see, Fig. 3 (b), that m03 is the largest projection,
but several other projections are comparable to it. The fairly
even distribution of the EC’s order parameter over different
orbital channels is paralleled by its fairly slow decay with |b|,
see Fig. 3(c). These results are consistent with the SVD’s re-
sult that ∆blσl′σ′ describes a multi-component order param-
eter. This is in contrast with the results for the case of su-
perconducting pairing in isolated TBLG where the pairing is
dominated by a single channel and the magnitude of the order
parameter decreases quickly with |b| [48, 52].

Fig. 4 shows the low energy bands along the γ−κ+−ν−γ−
ν̄ path in the moiré Brillouin zone (BZ) [43] for θ = 1.05◦,
and θ = 1.00◦, in the presence of the EC condensate. For
θ = 1.05◦ the very large Fermi velocity of the low energy
bands at the γ point prevents the EC from opening a gap at
this point. As θ is tuned away from θM the singularity at the γ
point morphs into two very small e-h pockets, Fig. 4(b). The
results of Fig. 4(a,b) show that in double layer TBLG the EC
is expected to be, strictly speaking, gapless. However, given

(b)Upper
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FIG. 4. Band structures in the EC phase at T = 0 and µ = 0.30
meV for (a) θ = 1.05◦ and (b) θ = 1.00◦. The colorbar indicates
how much the eigenstate is localized in the U /L TBLG. The inset in
(a) shows the moiré Brillouin zone.

that the gapless nature is due to a very small number of states
close to a single point of the BZ, the density of states is very
negligible within the EC’s gap (see [43]), and so we expect
that the transition to the EC state could be clearly observed in
transport and spectroscopy measurements.

We now consider the stability of the EC with respect to
fluctuations. The dominant fluctuations are the ones of the
phase, ϕ(r), of the order parameter: ∆ → ∆eiϕ(r). Ex-
panding the action in the long-wavelength limit around the
saddle point identified by the mean-field solution we have
S = Ŝ0 +

∫
dτ
∫
dr 1

2ρ
s
αβ∂rαϕ∂rβϕ, where S0 is the ac-

tion at the saddle point, and ρsαβ is the αβ component of the
EC’s stiffness. The EC is stable when ρsαβ is positive-definite.
For a multiband system ρsαβ is given by the general expres-
sion [53, 54]:

ρsαβ =
∑
k,i,j

nF (Ej)− nF (Ei)

Ei − Ej

(
1

4A
〈ψi|v̂α|ψj〉〈ψj |v̂β |ψi〉

− 1

A
〈ψi|v̂cf,α|ψj〉〈ψj |v̂cf,β |ψi〉

)
, (1)

where Ei (|ψi〉) are the eigenvalues (eigenstates) of the mean-
field Hamiltonian HMF, nF (E) is the Fermi-Dirac distribu-
tion, A is the area of the sample, v̂α(k) = ∂HMF/∂kα and
v̂cf,α(k) = (1/2)γz∂HMF/∂kα are the components of the
regular and counterflow velocity operators, respectively, γz is
the Pauli matrix acting in the U/L subspace, and k = (kx, ky)
is the Bloch wave vector. In our case, ρsxy = ρsyx = 0, and
ρsxx = ρsyy ≡ ρs. For a multi-band system we can identify a
conventional contribution, to ρs, ρs,conv, arising almost exclu-
sively from intraband terms (same band index in the electron
or hole subspace), and a ”geometric” contribution, ρs,geom,
due to interband terms (different band indexes in both the elec-
tron and hole subspaces), and write ρs = ρs,conv + ρs,geom.
Because ρs,geom is closely connected to the quantum metric
of the Hilbert space spanned by the eigenstates of HMF [52–
57], it is often called a geometric contribution to the superfluid
stiffness.

Fig 5 shows how ρs,conv, ρs,geom and ρs depend on µ and θ.
All the results were obtained for T = 20 mK� Tc. We no-
tice that ρs does not grow with µ contrary to the conventional
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FIG. 5. (a) Conventional ρs,conv, (b) geometric ρs,geom, and (c)
total stiffness ρs as a function of µ for different values of θ. (d) ρs

vs. θ for different values of µ.

result ρs ∝ µ. For θ = 1.05◦, and θ = 1.10◦, ρs,conv and
ρs,geom are comparable and the relative weight changes with
µ. For all the other twist angles considered ρs,geom is larger
than ρs,conv, regardless of µ.

The results of Fig. 2 (a) show that the mean field critical
temperature Tc at θ = 1.00◦ is only slightly smaller than at
θ = θM , and therefore that, at the mean-field level, double-
layer TBLG with θ = 1.00◦ is a very good candidate for the
realization of an EC. However, strikingly, for θ = 1.00◦ we
find that ρs,conv for the EC is negative for all the values of µ,
see Fig. 5 (a) (this can happen because of the lack of particle-
hole symmetry). This result would lead us to conclude that for
θ = 1.00◦ the EC is fragile against fluctuations and therefore
not a stable ground state, despite the relatively large value of
Tc. This conclusion is reversed if one takes into account the
geometric contribution to ρs, Fig. 5 (b): for θ = 1.00◦ the
ρs,geom is positive and much larger, in absolute value, than
ρs,conv, guaranteeing the robust stability of the EC. In fact,
Figs. 5 (c), (d) allow us to conclude that the EC is most stable
for θ = 1.00◦, not for θ = θM as one would infer from the
mean-field results.

The results of Fig. 5(c),(d) can be used to obtain TBKT,
via the equation kBTBKT = 2πρs[∆(TBKT), TBKT], where
we have taken into account the valley and spin degeneracies.
For the dependence of ∆ on T we can adopt the BCS scal-
ing ∆(T ) = 1.764kBTc(1 − T /Tc)1/2, with kB the Boltz-
mann’s constant. The results for TBKT are shown in Fig. 6.
From Fig. 6 (a), (b) we see that, contrary to the mean-field re-
sults, the twist angle for which the critical temperature TBKT

is largest is not θM , but θ = 1.00◦, for all the values of µ. In-
deed TBKT at θ = 1.00◦ is up to 50% larger than at θM . This
somewhat surprising result arises entirely from the geomet-
ric contribution to ρs. It is interesting to notice that, contrary
to the conventional wisdom, for some twist angles TBKT de-
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FIG. 6. (a) TBKT as a function of µ for different values of θ. (b)
TBKT as a function of θ for different values of µ. (c), (d) TBKT/Tc
as a function of µ, θ, respectively.

creases, rather than increasing, with µ. Such behavior is par-
ticularly marked for θ = 1.00◦ and θ = θM , Fig. 6 (a), due to
the significant decrease of the geometric contribution to ρs, as
seen in Fig. 5. Figures 6 (c), (d) show how the ratio TBKT/Tc
scales with µ and θ, respectively. It is particularly interesting
to see that, for all values of µ, TBKT/Tc is minimum at θM .

In summary, we have studied the competition between OM,
SC and EC phases as a function of the dopings of the layers via
comprehensive mean-field calculations in double TBLG sys-
tems. We have discussed the nature of the phase transitions,
and we have shown that for realistic interaction strengths the
EC phase is favored when the TBLGs have sufficiently large
and opposite dopings. We then studied the stiffness ρs of the
EC and demonstrated that the quantum metric contribution to
ρs is essential to make ρs positive so that the EC is stable
against fluctuations. A “conventional” study of the EC’s sta-
bility that does not include interbands terms would lead to the
conclusion that in flat-band double layers ECs can be unsta-
ble. However, we found that this conclusion is reversed if
the interband terms responsible for the quantum metric of the
flat bands are taken into account. Finally, we obtained TBKT

for the ECs and found that the largest TBKT is realized not
at the magic angle, θ = 1.05◦, but at θ = 1.00◦. The re-
sults present a comprehensive and detailed picture of the pos-
sible correlated states of double-twisted bilayer graphene, and
show the role played by the quantum metric on the stability
and TBKT of the exciton condensate in double-twisted bilayer
graphene and so should constitute a useful guide to experi-
mentalists studying the correlated phases of these novel sys-
tems. In a more general context, our findings point to the im-
portance of the quantum metric for the understanding of the
physics of ECs in flat band systems, including QH and moiré
bilayers [58–60].
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