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Employing the recently developed momentum-space quantum Monte Carlo scheme, we study
the dynamic response of single-particle and collective excitations in realistic continuum models
of twisted bilayer graphene. At charge neutrality with small flat band dispersion, this unbiased
numerical method reveals single-particle spectra and collective excitations at finite temperature.
Single-particle spectra indicate that repulsive interactions push the fermion spectral weight away
from the Fermi energy and open up an insulating gap. The spectra of collective excitations suggest
an approximate valley SU(2) symmetry. At low-energy, long-lived valley waves are observed, which
resemble spin waves of Heisenberg ferromagnetism. At high-energy, these sharp modes quickly
become over-damped, when their energy reaches the fermion particle-hole continuum.

Introduction — To understand the rich physics in
twisted bilayer graphene (TBG), as well as the mecha-
nism that governs this novel quantum system, a crucial
step is to identify the ground state and to characterize
the associated low-energy excitations [1–23]. Recently,
many new insights have been obtained using real-space
effective model analysis and large-scale numerical sim-
ulations (e.g. quantum Monte Carlo and DMRG) [24–
30], which indicate that even at integer fillings, correla-
tion effects give rise to a very rich phase diagram with
a variety of competing quantum phases. A key advan-
tage of this approach is that these lattice models can be
easily incorporated with well-established numerical tech-
niques, but it remains a challenge to determine the ef-
fective control parameters utilized in these models from
first principle. Another parallel approach utilizes con-
tinuum models with flat bands and fragile topology [31–
33], where Coulomb interactions and first principle ma-
terial parameters can be easily incorporated. In this
approach, a key theoretical challenge is to handle the
strong Coulomb interactions. In certain special limit, ex-
act solutions exist due to emergent high symmetry [34].
For realistic material parameters away from these special
cases, Hartree-Fock mean-field and DMRG calculations
suggest that the ground state is likely to be an intervalley
coherent (IVC) state [20–23, 35–38], which mixes elec-
tron states from the two opposite valleys and breaks the
Uv(1) valley charge conservation. There have been many
studies about symmetry-breaking ground states of such
systems [36, 39–42]. While finite temperature results
and the collective excitation is a matter of widespread
concern. To fully understand such a complex many-
body system, unbiased numerical methodology, which
can solve such correlated problems efficiently and accu-
rately, is in great need.

In this Letter, we utilize the momentum-space quan-
tum Monte Carlo (QMC) method [43–46] to achieve this
objective. The implementation of this method in contin-
uum models of TBG has been developed recently [45, 46],
but dynamic response, in particular the spectral infor-
mation of the collective excitations, has not yet been ob-
tained. In this work, we employ the momentum space
QMC method, accompanied by the stochastic analytic
(SAC) continuation scheme [47–53], to compute the spec-
tra of both single-particle and particle-hole excitations.
We find that, at the charge neutrality point (CNP), the
IVC state is the leading instability, with strong competi-
tion from the VP state. More interestingly, although the
valley SU(2) symmetry is broken explicitly when control
parameters take realistic values (with kinetic term), dy-
namic response of particle-hole excitations still exhibits
an approximate SU(2) symmetry. At low-energy, long-
lived valley waves are observed in close analogy to spin
waves of a Heisenberg ferromagnet, and these modes be-
come over-damped as their energy reaches the particle-
hole continuum. These results reveal complex dynamic
response in TBG and provide a foundation for the study
of other intriguing physics at and away from charge neu-
trality, such as the mechanism of superconductivity and
its possible topological origin [22, 23, 54, 55].

Model and Method — In this study, we utilize the con-
tinuum model of TBG flat band introduced in Refs. [1–6].
In the plane wave basis, the single-particle Hamiltonian
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FIG. 1. (a) The moiré Brillouin zones (mBZ) at one valley. The red solid line marks the high-symmetry path Γ−M−K1(K2)−Γ.
G1 and G2 are the reciprocal lattice vectors of the mBZ. Yellow dots mark possible momentum transfer in QMC simulations,
q + G, and the blue dashed circle is the momentum space cut-off. Because the form factor decays exponentially with G [34],
scatterings with momentum transfer larger than this cut-off are ignored. Here we show a 9 × 9 mesh in the mBZ, with 300
allowed momentum transfers. In (b) and (c), blue lines are single particle spectra of L = 6, T = 0.667 meV, u0 = 33 meV and
60 meV(realistic case [36, 56–59]), respectively, obtained from the momentum space QMC with analytic continuation. The red
stars and lines indicate the bare dispersions of H0, which is the kinetic energy in our model in Eq.(3).

can be written as:

Hτ
0,k,k′ = δk,k′
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(
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(
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where vF is the Dirac velocity, τ = ± is the valley in-
dex, and στ = (τσx, σy) defines the A,B sublattices of
the monolayer graphene. And Kτ

1,2 are the correspond-
ing Dirac points of the bottom and top layers, which are
twisted by angles ∓ θ2 respectively. As shown in Fig. 1 (a),
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are recip-
rocal lattice vectors of the moiré Brillouin zone (mBZ),
with LM = a0/[2 sin(θ/2)] and a0 = 0.246 nm. Inter-
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)
where u0 and u1 are the intra- and inter-sublattice in-
terlayer tunneling amplitudes. In this Letter, we set
~vF /a0 = 2377.45 meV, θ = 1.08◦ and u1 = 110 meV,
which means the moiré bands are completely flat at the
chiral limit u0 = 0 [56–59].

We then project the charge-density operator at q + G

to the nearly flat bands relative to the filling of CNP:

δρq+G =
∑

k∈mBZ,m1,m2,τ,s

λm1,m2,τ (k,k + q + G)

(
d†k,m1,τ,s

dk+q,m2,τ,s −
1
2δq,0δm1,m2

)
= (δρ−q−G)†

(2)

where d†k,m.τ,s is the creation operator for a Bloch eigen-
state, |uk,m,τ,s〉, with m, s, τ band, spin and valley in-
dices. The form factor is defined as λm1,m2,τ (k,k + q +
G) ≡ 〈uk,m1,τ | uk+q+G,m2,τ 〉. As shown in Fig. 1 (a)
q ∈ mBZ and q + G represents a vector in extended
mBZ, with G = n1G1 + n2G2, n1, n2 ∈ Z [57, 58].
After projecting to the flat band, the Hamiltonian reads:

H = H0 +Hint

H0 =
∑
m=±1

∑
kτs

εm,τ (k)d†k,m,τ,sdk,m,τ,s

Hint = 1
2Ω

∑
q,G,|q+G|6=0

V (q + G)δρq+Gδρ−q−G

(3)

where εm,τ (k) is the eigenvalue of the continuum
model in Eq. (1). We define the long-ranged sin-
gle gate (screened) Coulomb potential: V (q) =
e2

4πε
∫
d2r

(
1
r −

1√
r2+d2

)
eiq·r = e2

2ε
1
q

(
1− e−qd

)
. Here d

2
is the distance between graphene layer and single gate,
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with d = 40 nm and ε = 7ε0. The volume Ω = Nk
√

3
2 L

2
M

with Nk being the number of momentum points in a mBZ
(e.g., Nk = 81 for a 9×9 mesh). We choose the bare dis-
persion, as it is shown in Ref. [37] that the renormaliza-
tion from remote band has been considered in our form of
interaction. While it is worth noticing in [35, 38, 42] , the
mean field contribution of remote band interaction from
flat band is removed. Whether this remote band interac-
tion is strong enough to change parameter of moiré po-
tential obviously is under debate. In our work, we choose
the case where flat band approximation is reasonable to
carry out our simulation.

The problem associated with projected Coulomb
interaction is solved via a discrete Hubbard-
Stratonovich transformation [28, 45, 60, 61],
eαÔ

2 = 1
4
∑
l=±1,±2 γ(l)e

√
αη(l)ô + O

(
α4)(details

are shown in the Sec. I of Supplemental Material
(SM) [62]).

Exact ground states in the flat-band limit — When the
kinetic energy is ignored (i.e., the flat-band limit), the
TBG Hamiltonian at charge neutrality has an emergent
U(4) symmetry and ground states can be obtained ex-
actly [34, 35, 46, 63]. To see the exact solution, one
just needs to realize that the valley polarized state, with
all electrons in one valley, is a zero-energy eigenstate of
Hint. Because Hint is semi-positive definite, this must
be a ground state. In addition, any U(4) transformation
of this ground state is also a degenerate ground state,
including the VP, IVC and spin polarized states, as well
as many other degenerate states. For simplicity, in this
Letter, we will focus only on the VP and IVC states.

We define the VP and IVC order parameters as
Oa(q, τ) ≡

∑
k d
†
k+q(τ)Madk(τ), with Ma = τzη0 (η0

for band index) for VP and Ma = τxηy or τyηy for
the IVC states [20, 34, 35, 40, 46]. It is straightfor-
ward to verify that at q = 0, these three order parame-
ters obey the commutation relations [Oa,Ob] = iεa,b,cOc
and they all commute with the interaction Hamiltonian
[Oa, Hint] = 0. Thus, they generate a SU(2) symmetry
group, a subgroup of the full U(4) symmetry. In the or-
dered phase, the nonzero expectation value of these order
parameters spontaneously breaks this SU(2) symmetry,
resulting in spin-wave-like gapless Goldstone modes, i.e.
valley waves. Same as ferromagnetism, such valley waves
have a quadratic dispersion ω ∝ k2 at low-energy.

As for single-particle excitations, all these degenerate
ground states are insulators with a gap proportional to
the interaction strength. In the flat-band limit, single-
particle Green’s function can be calculated exactly at
T = 0 [34]. Despite of the strong Coulomb repulsion,
electrons/holes exhibit free-fermion-like behavior, where
the Green’s function shows four fermion bands with zero
damping: two conduction (valence) bands above (below)
the Fermi energy.

In a real TBG, away from the flat-band limit, this

SU(2) symmetry is explicitly broken by the kinetic en-
ergy down to Z2 (valley) and Uv(1) (valley charge con-
servation), lifting the degeneracy between VP and IVC
states. Here, an IVC (VP) state breaks the continuous
U(1) (discrete Z2) symmetry, and dynamics fluctuations
in VP and IVC states shall exhibit different behaviors.
However, if the kinetic energy term is small (i.e., small
band width), an approximate SU(2) symmetry may sur-
vive, and qualitative features may still resemble the flat-
band limit. The momentum space QMC technique offers
a probe to directly visualize the breaking of the SU(2)
symmetry as well as the remnant approximate symmetry.

Results and Analysis — In a previous work [45], we
have shown that Hint acquires a correlated insulator
ground state at CNP. In this study, we added the kinetic
term H0 and carried out the simulations at u0 = 33 meV
and 60 meV with 6 × 6 and 9 × 9 momentum meshes.
Here u0 = 60 meV is a realistic case [36, 56–59] which
leads to a bandwidth of 1.08 meV. And u0 = 33 meV
is a case between the realistic one and chiral limit. The
single-particle spectra are shown in Fig. 1 (b) and (c).
The bare (non-interacting) dispersions are depicted as
red stars. At low-temperature, for both u0 = 33 meV and
60 meV, interactions push the fermion states away from
the Fermi energy, results in an interaction-driven band
gap of ∼ 20 meV, magnitudes larger than that of the bare
bandwidth. Although we are using realistic parameters
away from the flat-band limit, as shown in Fig. 2 (c) and
(d), the peak of single particle spectra agrees nicely with
the solution of the flat-band limit [34], indicating that
the system is not far from the exactly-solvable limit. As
for the width of the peak, due to the finite temperature
and the presence of kinetic energy, fermions here exhibit
some damping of the order 10 meV, which is significantly
larger than T and the band width of the bare dispersion.
This is in contrast to the exactly-solvable limit at T = 0
where the damping vanishes.

The next question is to reveal the symmetry-breaking
channels of this insulating state. The proposed
symmetry-breaking states at the CNP, based on Hartree-
Fock mean-field analysis, are gradually pointing towards
the IVC and VP states [35, 36, 39, 40]. Here, we calculate
their corresponding (dynamical) correlation

Sa(q, τ) ≡ 1
N2
k

〈Oa(−q, τ)Oa(q, 0)〉 (4)

where Oa is the order parameter of the VP or IVC state
defined early on. For static properties, we calculate the
equal-time correlation at imaginary time τ = 0. To ob-
tain dynamic response, time-dependent Sa(q, τ) is cal-
culated at τ ∈ [0, β], followed by the stochastic analytic
continuation (SAC) [47–52, 64–69] to obtain the real fre-
quency spectra [62].

The static order parameters are presented in Fig. 2 (a)
and (b), where we calculate S(q = Γ, τ = 0), the squares
of the order parameter, for IVC and VP as a function
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FIG. 2. (a) S(q = Γ, τ = 0), the squares of order parameters, for VP and IVC at u0 = 33 meV and L = 6, as a function of
temperature. (b) The same quantity at u0 = 60 meV with both L = 6 and 9. When kinetic energy is ignored, the two order
parameters are degenerate due to an emergent SU(2) [U(4)] symmetry. When the kinetic energy is taken into account (”with
kin”), which breaks the symmetry, this degeneracy is lifted. At u0 = 33 meV, the splitting between VP and IVC is weak. This
splitting becomes more pronounced at u0 = 60 meV, indicating that IVC is more favored at low temperatures in comparison
to VP, although the competition between these two symmetry-breaking channels remains. (c) and (d) single-particle spectra
at T = 0.667 meV, u0 = 60 meV and L = 9, which shows an insulating gap ∼ 10 meV. The dashed lines are the analytic
computation of the single-particle dispersion at the flat-band limit following Ref. [34]. (e) and (f) dynamical spectra of VP
and IVC with the same parameters. Sharp and ferromagnetic-like valley waves are observed in both channels near q = Γ and
a fit of c q2 gives rise to c = 31.32± 0.03 meV/k2

θ (black solid line in (f)). At the energy scale of twice the single-particle gap,
∼ 20 meV, valley waves are over-damped into the particle-hole continuum. The dashed lines are the analytic computation of
the Goldstone mode at the flat-band limit following Ref. [34].

of temperature. Without the kinetic energy (H = Hint),
IVC and VP share identical susceptibility, which reflects
the SU(2) symmetry of the flat-band limit. Once the ki-
netic energy is included (”with kin” in the Fig. 2 (a) and
(b)), this degeneracy is lifted. At u0 = 33 meV, a small
splitting between IVC and VP correlation functions is ob-
served. The splitting becomes more significant when u0
reaches 60 meV, closer to the realistic case [70, 71], with
IVC being the more favored ground state. It is worth-
while to note that when system size goes from 6 × 6 to
9× 9, the IVC order S(q = Γ) does not change, whereas
the VP S(q = Γ) decreases as the system size increases.
One shall also notice that although the degeneracy be-
tween IVC and VP is lifted, both correlation functions
grow at low T , indicating that the competition between
IVC and VP remains strong and there is no a completely
dominant symmetry-breaking channel [40].

In addition to static correlations, we also compute
the dynamic correlations of IVC and VP as defined in
Eq. (4) and their spectra with the system size of 9 × 9
for the realistic case with kinetic energy at u0 = 60
meV at low temperature T = 0.667 meV, much lower
than the scale of the single-particle gap. The results
are shown in Fig. 2 (e) and (f), with Fig. 2 (c) and
(d) the associated single-particle spectra. The dashed

lines mark the single-particle dispersion and Goldstone
modes when the kinetic energy is ignored [34]. Mea-
sured from ω = 0, the single-particle gap is of size ∼ 10
meV and both the VP and IVC spectra develop a clear
and sharp valley wave dispersion at low-energy near Γ.
Remarkably, although the static susceptibility indicates
that the SU(2) symmetry has been explicitly broken at
u0 = 60 meV and the degeneracy between IVC and VP
is lifted [Fig. 2 (b)], the IVC and VP spectra are al-
most identical and are strikingly similar to the flat-band
limit [34, 72]. These sharp Goldstone-like modes are in
strong analog to SU(2) ferromagnetic Goldstone modes
with ω ∝ c q2 and c = 31.32 ± 0.03 meV/k2

θ , (where
kθ = 8π sin(θ/2)/ (3a0) and the lattice constant of the
monolayer graphene a0 = 0.246 nm), indicating an ap-
proximate SU(2) symmetry survives in our model. It
is worthwhile to highlight that this SU(2) approximate
symmetry is not an exact symmetry and it breaks at low
energy. Thus, at very small q and ω, this magnon-like
excitation will exhibit a linear dispersion ω ∝ q, due to
the broken SU(2) symmetry [20]. For our study, because
this SU(2) symmetry breaking is really weak, such linear
dispersion is not visible in the QMC data.

One other interesting feature of these valley waves is
that above the energy scale of ∼ 20 meV, the sharp col-
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lective excitations become heavily damped, which is not
seen in analytical solution(dashed line in Fig. 2 (e) and
(f)). The analytical solutions(without kinetic energy) are
only consistent with QMC results(with kinetic energy) at
low energy mode near Γ point means that our results are
beyond the mean-field type of calculations. The damping
of collective modes has two origins (1) scattering between
collective modes and (2) damping due to the fermion
particle-hole continuum. The second damping channel
arises for energy larger than twice of the fermion gap,
and thus is responsible for the over-damped features at
energy above 20 meV shown in Fig. 2 (e) and (f). This is
in strong analogy to the damping of ferromagnetic spin
excitations in the graphene nanoribbons, where the flat
band gives rise to the ferromagnetic long-range order but
the spin waves becomes over-damped in the particle-hole
continuum [72–74].

Discussion and outlook — Quantum dynamics of col-
lective excitations holds the key to the understanding of
many-body effects in twisted bilayer graphene and other
quantum moiré systems. This study suggests that the
momentum-space QMC method offers a powerful tool to
tackle this problem. In particular, the spectral function
obtained via this unbiased method offers a bridge way
to directly connect theoretical studies with experimental
measurements, especially spectroscopy methods, such as
inelastic light- or neutron- scattering and tunneling spec-
troscopy, making it possible to compare measurements in
experiments and large-scale quantum simulations at the
quantitative level.
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