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We theoretically study magnon-phonon hybrid excitations (magnon-polarons) in two-dimensional
antiferromagnets on a honeycomb lattice. With an in-plane Dzyaloshinskii-Moriya interaction (DMI)
allowed from mirror symmetry breaking from phonons, we find non-trivial Berry curvature around
the anti-crossing rings among magnon and both optical and acoustic phonon bands, which gives rise
to finite Chern numbers. We show that the Chern numbers of the magnon-polaron bands can be
manipulated by changing the magnetic field direction or strength. We evaluate the thermal Hall
conductivity reflecting the non-trivial Berry curvatures of magnon-polarons and propose a valley
Hall effect resulting from spin-induced chiral phonons as a possible experimental signature. Our
study complements prior work on magnon-phonon hybridized systems without optical phonons and
suggests possible applications in spin caloritronics with topological magnons and chiral phonons.

Introduction. Antiferromagnetic materials have re-
cently attracted a great deal of attention within the
community of spintronics [1–3], because they are rather
insensitive to the perturbation of magnetic fields and
have small stray fields with fast THz magnetic dynamics
compared to ferromagnets with frequencies in the GHz
range. Research over the past decade has focused on
spin dynamics and spin transport in antiferromagnets,
which may originate from spin-transfer torques [4, 5],
domain-wall motion [6], and the spin Seebeck effect [7–
9]. Magnons, as collective excitations emerging from
magnetic order, have low-dissipation and permit a pure
spin transport without Joule heating, leading to a surge
of interest in utilizing magnons for spintronics. Many
magnonic analogs of electronic phenomena, such as the
magnon thermal Hall effect [10–12], the magnon Nernst
effect [13–15] and the magnonic Edelstein effect [16, 17],
have been theoretically studied and experimentally ob-
served.

Along with magnonics, there is also a potential appli-
cation in spintronics by combining magnetic orders with
non-trivial band topology [18]. Topologically protected
states are usually robust and only weakly affected by
disorders. They can provide a high charge-to-spin con-
version efficiency [19], exhibit strong magnetoresistance
[20, 21] and possess a number of exotic phenomena such
as the quantum anomalous Hall effect [22, 23] and chiral
Majorana fermions [24]. In addition to fermionic topo-
logical excitations, there is also an emerging field of in-
vestigating topological bosonic excitations, such as topo-
logical magnons [25–28] and topological phonons [29–
31]. Moreover, some recent works have shown topological
properties in hybridized systems between magnons and
acoustic phonons with the magnetoelastic coupling [32–
34], the Dzyaloshinskii-Moriya interaction (DMI) [35, 36],

and the dipolar coupling [37]. However, a study of the
coupling between magnons and optical phonons is still
lacking.

In this Letter, we study hybrid magnon-phonon excita-
tions in a 2D collinear antiferromagnetic insulator (AFI)
on the honeycomb lattice. The topological magnon bands
originate from an in-plane nearest-neighbor DMI permit-
ted by mirror symmetry breaking [38–40], which can be
generically achieved in 2D van der Waals heterostruc-
tures, in the presence of magnon-phonon coupling. Since
van der Waals antiferromagnets naturally possess at least
two sublattices, it is possible to realize the coupling be-
tween magnons and optical phonons. In such a coupled
magnon-(optical) phonon system, which has not been
studied in the ferromagnetic case [35], we find non-zero
Chern numbers with finite Berry curvatures and chiral
phonons at high symmetry points [52, 53].

We also show that the Chern numbers of magnon-
polaron bands and the phonon chiralities can be manip-
ulated by an external magnetic field. For connection to
experiments, we evaluate the thermal Hall conductivity
and propose a spin-induced valley Hall effect [53] as a pos-
sible experimental observation. We emphasize that our
results are generic to many lattice structures and can be
easily generalized to three-dimensional systems, as dis-
cussed at the end of this Letter. Our work suggests anti-
ferromagnets with multiple sublatticesin contrast to fer-
romagnetsserve as promising platforms to realize tunable
topological excitations hybridizing magnons with both
acoustic and optical phonons, where the topology of the
bands can provide robust information transport and may
find possible applications in spintronics.

Model. We consider a system with collinear AFI Neel
order on a honeycomb lattice, where the magnetic mo-
ments are perpendicular to the plane, i.e., SA,B = ±Sẑ
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FIG. 1. (Color online.) (a) Schematic illustration of a hybrid
magnon-phonon system. The ground state of the magnetiza-
tion is Neel order along the z-axis (red and blue arrows, color
denoting the A and B sublattices). (b) DM vectors (green ar-
rows) for the nearest bonds originated from mirror symmetry
Myz breaking.

for the A and B sublattices respectively [see Fig. 1(a)].
The Hamiltonian describing both spin and lattice degree
of freedom can be written as H = Hm+Hp+Hmp, where
the magnetic part Hm is given by,

Hm = J1
∑

〈ij〉

Si · Sj − J2
∑

〈〈ij〉〉

Si · Sj

− Kz

2

∑

i

(Sz
i )

2 − B
∑

i

Sz
i , (1)

where J1 (J2) > 0 is the (next-)nearest-neighbor anti-
ferromagnetic (ferromagnetic) Heisenberg exchange cou-
pling, Kz > 0 is the easy-axis anisotropy and B = gµBB
is the external effective Zeeman magnetic field. The
phonon part Hp can be expressed as,

Hp =
∑

i

p2
i

2Mi

+
k1
2

∑

〈ij〉

(R̂0
ij ·uij)

2 +
k2
2

∑

〈〈ij〉〉

(R̂0
ij · uij)

2,

(2)
where uij = uj − ui is the in-plane displacement of the

lattice, R̂0
ij is the unit vector along bond ij in equilib-

rium, and k1 (k2) is the spring constant that corresponds
to the elastic energy between two (next) nearest neighbor
ions. Here we ignore out-of-plane vibrations as they are
higher-order terms [41].
For the magnon-phonon coupling Hmp, we begin from

an in-plane nearest-neighbor DMI originating from mir-
ror symmetry breaking. By Moriya’s rule [42, 43], the
direction of the DM vectors is perpendicular to the bond,
i.e., Dij ∝ ẑ×Rij [see Fig. 1(b)]. The DMI Hamiltonian
is then

HD = Dij · (Si × Sj). (3)

This term is not included in Eq. (1) since it is well-known
that DM vectors perpendicular to spin moments do not
appear in the linear spin-wave Hamiltonian [10, 35, 36]
and we assume it does not appreciably change (i.e., the

change is numerically small) the Neel ground state order
as long as the exchange coupling and anisotropy is large
enough. However, both the magnitude and direction of
Dij depend on Rij and thus it couples lattice and spin
degrees of freedom. To lowest order of uij and δsi =
Si − 〈Si〉, Eq. (3) can be expanded in a partial mean-
field form as [41],

Hmp ≈ DS

a

∑

〈ij〉

uij

[

I2 − R̂0
ijR̂

0
ij

]

(δsA,i + δsB,j)

=
DS

a

∑

〈ij〉

(

R̂0
ij × uij

)

·
[

R̂0
ij × (SA,i + SB,j)

]

,

(4)

where D = |Dij | is the magnitude of the DMI, a = |R0
ij |

is the bond length, I2 is the 2 × 2 identity matrix,
R̂0

ijR̂
0
ij is the Kronecker product between two R̂0

ij ’s and
δsA(B),i = (Sx

A(B),i, S
y

A(B),i) = SA(B),i−(+)Sẑ. The sec-

ond equation mimics a Rashba-type spin-orbital coupling
[44, 45] or a Raman spin-phonon interaction [30, 46–48],
which has been studied in topological aspects of spin or
phonon systems.

It is clear from Eq. (4) that the DMI induced magnon-
phonon coupling breaks the combined symmetry of time
reversal plus 180◦ rotation about an in-plane axis [49, 50].
With magnetic fields, this symmetry breaking allows the
existence of a thermal Hall effect [51], which is absent
in a magnon-only or phonon-only scenario. Moreover, in
contrast to the ferromagnetic case, Hmp+Hm also breaks
inversion symmetry [13] and gives rise to chiral phonons
at high symmetry points [52, 53], as will be shown below.

Band Topology. As magnons and phonons are both
bosons, one can treat them equivalently as magnon-
polaron excitations and re-write H = Hm+Hp+Hmp to
a generalized Bogliubov-de Gennes (BdG) form as [41],

Hk =





1
2 H̃m(k) H̃mp(k) 0

H̃†
mp(k)

1
2D(k) 0

0 0 I4

2M



 , (5)

with representation Xk =
(

ak, bk, a
†
−k
, b†−k

,uk,p−k

)T

,

where ak (bk) is the A (B) sublattice magnon annihi-
lation operator in a Holstein-Primakoff representation
[54], S+

A (S+
B ) =

√
2Sa (b†), uk (p−k) is a four-vector

for two-dimensional displacements (momenta) of A and
B sublattices, H̃m (k) (H̃mp(k)) corresponds to Eq. (1)
[Eq. (4)] and D(k) is the dynamical matrix correspond-
ing to Eq. (2). Under this representation, the bosonic
commutator is written as

[

Xk, X
†
k

]

= g =









I2
−I2

iI4
−iI4









, (6)
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FIG. 2. (Color online.) Topological magnon-polaron bands.
Energy is in meV. We set parameters as S = 3/2, J1 =
2.0 meV, J2 = 0.0 meV, Kz = 1.0 meV, mB/mA = 1,

~
√

k1/mA = 7.0 meV, ~
√

k2/mA = 0.5 meV, D = 0.2
meV. The blue (red) dashed lines are phonon (magnon) dis-
persions without DMI. The solid lines are magnon-polaron
bands with DMI, where the color shows the z-component
angular momentum, indicating whether the hybridization is
more ”magnonic” (as blue for Sz = −1 or red for Sz = +1) or
”phononic” (as green for Sz = 0). (a)(b) Full band dispersions
along high symmetry path. (c)(d) Bands around anti-crossing
points. Band numbering is shown in (d). The insets show the
gap opens at K and allows phonons with different chiralities
(red or blue). Details are shown in Fig. 4.

and the eigenstates satisfy [55, 56],

gHk |ψnk〉 = σnnEnk |ψnk〉 , 〈ψnk| g |ψn′k〉 = σnn′ , (7)

where σ = σz
⊗ I6×6 stands for particle-hole space.

With particle-hole symmetry, Enk = En+6,−k

and thus we only plot the first six eigenvalues
in Fig. 2 and others are redundant. Here Sz =
〈

ψR
nk

∣

∣

(

−a†
k
ak + b†

k
bk + uA

k
× pA

−k
+ uB

k
× pB

−k

)

∣

∣ψR
nk

〉

mediates both magnon spins and phonon polarizations
[52].
In Fig. 2, there are gapped rings around Γ or K (K′)

formed by anti-crossing points among magnon and
phonon bands due to the DMI coupling, which gives
rise to nontrivial topological properties in this magnon-
polaron system. In such a generalized BdG system,
the Berry curvature is given by the Bloch wavefunction
|unk〉 = e−ik·r |ψnk〉 as [12, 41] Ωnk = i 〈∇kunk| g ×

L(�)=Sign(�)Log(1+|�|) L(�)=Sign(�)Log(1+|�|) L(�)=Sign(�)Log(1+|�|)

(a) B = 0.3 meV

L(Ω)=Sign(Ω)Log(1+|Ω|) L(Ω)=Sign(Ω)Log(1+|Ω|) L(Ω)=Sign(Ω)Log(1+|Ω|)

(b) B = 0.6 meV

FIG. 3. (Color online.) Berry curvatures of the middle three
anti-crossed bands in Fig. 2. Band numbers are ordered from
bottom to top. When the magnetic field increases, there is
one gapped ring around Γ between band 3 and 4 splits into
two rings around K and K′ leading to a topological phase
transition.

|∇kunk〉 , and the Chern numbers can be obtained by
integrating Berry curvature Ωz

nk along the Brillouin zone
as [57] Cn = 1

2π

∫

BZ
d2k Ωz

nk, from which we calculate
the band Chern numbers [since the top (also bottom) two
bands are degenerate at Γ point, we add up the Berry
curvature of the two bands to obtain a well-defined Chern
number] by the Fukui method [41, 58] and find that the
magnetic field can change the Chern numbers by integers.

In Fig. 2(a), the Chern numbers for the middle three
anti-crossed bands from low to high are (−2,+4,−2),
while they change to (−2,+1,+1) in Fig. 2(b) by a phase
transition when B > Bc(≈ 0.41 meV with the parameters
in Fig. 2 [41]). Since in this parameter region the cou-
pling barely affects acoustic modes and the longitudinal
optical (LO) mode, the band topology can be effectively
mapped into an SU(3) algebra [34, 59]. Here, instead of
an analytic calculation (which is generally not accessi-
ble), we achieve an understanding of the band topology
more intuitively by looking at Berry curvatures.

As shown in Fig. 3, non-trivial Berry curvatures are
induced around the anti-crossing regions, and thus the
change of Chern numbers can be intuitively understood
as a pair of gapped rings around K and K′ combining
into or split by one anti-crossing ring around Γ. Notice
that there are opposite Berry curvatures at K and K′ in
band-3 from the gap by spin-induced inversion symmetry
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FIG. 4. (Color online.) Phonon polarization contribution
Sz
P =

〈

uA
k × pA

−k + uB
k × pB

−k

〉

to Sz in Fig. 2. The green
(yellow) line is for band 2 (band 3). The chiralities of phonons
occur around K.

breaking, but it does not contribute to the Chern num-
ber due to a cancellation between these two valleys [53].
However, as shown in Fig. 4(a)-(d), large phonon angu-
lar momentum Sz

P =
〈

uA
k
× pA

−k
+ uB

k
× pB

−k

〉

occurs at
K for band 2 and 3 giving rise to chiral phonons. The
polarization of these phonons can be flipped by reversing
the magnetic field and they can contribute to a valley
Hall effect [53].
Similar to the physics of gapped 2D Dirac systems [60],

the physics of an anti-crossing magnon-phonon pair can
be effectively described by

Heff =
E±

mk
+ E±

pk

2
I2 + d±±

k
· σ + Vk, (8)

where E
+(−)
mk

is the upper (lower) magnon energy with-

out the DMI, E
+(−)
pk is the transverse optical (longitu-

dinal acoustic) phonon energy without the DMI, σ =
(σx, σy, σz) is the Pauli matrices, d±±

k
opens a gap be-

tween E±
mk

and E±
pk arising from the DMI and can be

regarded as an analog of the gaping term in the Kane-
Mele model [61, 62], and Vk includes terms that do
not conserve particle numbers and perturbations that
do not participate in opening the gap between the two
bands [33, 34]. A Skyrmion (anti-Skyrmion) topologi-
cal charge Q (−Q) can then be defined with d±±

k
as

Q = 1
4π

∫

d2k d̂k ·
(

∂kx
d̂k × ∂ky

d̂k

)

for the upper (lower)

band. In general, the analytical expression for d±±
k

is not
available, but since d±±

z = (E±
mk

−E±
pk)/2, the Skyrmion

numbers will change with the moving of anti-crossing
rings [33]. As the band Chern number reflects the wind-

ing number of d̂k wrapping the unit sphere in the Bril-
louin zone, a skyrmion arising from d with charge Q de-
termines the lower (upper) band with a Chern number
Q (−Q) [63]. In addition to changing the field strength,
reversing the external field will also change the Chern
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(c) B = 1.2 meV with Chern
number (0, +2, −2, +2, −2, 0).

FIG. 5. (Color online.) (a) Thermal Hall response using
parameters from MnPS3. (b),(c) Band structures and Chern
numbers for different external fields. See main text for details.

numbers by flipping the sign, thus we find the topology
of our system is highly tunable.
Thermal and Valley Hall effects. In order to connect

our results with possible experimental observations, we
evaluate the thermal Hall effect rising from the non-
trivial Berry curvature of magnon-polaron bands. With
a longitudinal temperature gradient ∇yT , an anomalous
transverse motion of magnon-polaron excitations can be
induced by the fictitious field Ωz

nk associated with a
transverse thermal conductivity κxy as [12]

κxy = −k
2
BT

~V

∑

n,k

[

c2(g(Enk))−
π2

3

]

Ωz
nk, (9)

where c2(x) = (1 + x) ln2(1 + 1/x) − ln2 x − 2Li2(−x),
Li2(x) is the polylogarithm function, and g(x) =
(exp(x/kBT )− 1)−1 is the Bose-Einstein distribution.
In Fig. 5, we evaluate κxy with parameters [64–66] for

MnPS3 as mA = mB = M = 55 u, S = 5/2, J1 = 1.54
meV, J2 = 0.14 meV, g = −2.0 and set Kz = 0.1 meV,
D = 0.5 meV, ~

√

k1/M = 11 meV and ~
√

k2/M = 2.2
meV. At the low field, the two magnon bands couple with
the transverse optical (TO) phonon giving a Chern num-
ber distribution (0, +2, −4, +2) from bottom to top,
while they couple with the TO and longitudinal acoustic
(LA) phonon respectively at high field giving a Chern
distribution (−2, +2, −2, +2). These results are also
consistent with our analysis on band topology by look-
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ing at the moving of gapped rings. The change of κxy
with magnetic field results from the topological transi-
tion with different Chern numbers, while the sign change
with temperature reflects the competition among bands
of different Chern numbers which come to dominate the
transverse thermal transport.

In addition, as the spatial inversion symmetry is bro-
ken by the spin degree of freedom, the gap opens at K

and K′ valley, and thus gives rise to chiral phonons with
different polarizations at these high symmetry points [see
Fig. 2(c)(d) and 5(b)(c)]. This has not been discussed
in previous studies in coupled systems without optical
phonons. By introducing a longitudinal strain gradient
across the system, we expect opposite motion of chiral
phonons at different valleys since v ∝ −Estrain×Ω in the
transverse direction which creates a temperature differ-
ence between two edges [53]. The sign of the valley Hall
signal is also controllable by flipping the external mag-
netic field. As these two Hall effects originate from the
non-trivial topology of the system, we expect to observe
a thermal Hall signal only weakly affected by the bulk
disorder.

Discussion. In this Letter, we study the topology of
magnon-polaron bands in a 2D honeycomb Neel order an-
tiferromagnet with an in-plane DMI induced by magnon-
phonon coupling. Without the DMI, the magnon or
phonon bands are trivial, while non-trivial Berry curva-
ture occurs around the anti-crossing rings opened by the
magnon-phonon coupling. In contrast to previous stud-
ies on ferromagnetic magnons or on magnons coupled
with only acoustic phonons, in our case, antiferromag-
netic magnons can couple with both optical and acoustic
phonons giving rise to two remarkable resultshighly tun-
able integer Chern numbers with an external magnetic
field and the existence of chiral phonons. We also inves-
tigated a field-tunable thermal Hall effect induced from
the finite Berry curvatures and proposed valley Hall ef-
fects by spin-induced chiral phonons, both of which will
generate significant experimental interests in the commu-
nity.

Even though we study the model on a honeycomb
lattice, the coupling can be expressed with a dis-
placement field u ≈ uij/a and a staggered spin field

n ≈ (SA − SB)/2S as DS2

a3 (∇× u) · (∇× n) from
Eq. (4), which does not depend on lattice details [41].
This is similar to Rashba spin-orbital coupling and Ra-
man spin-phonon interaction, revealing the underlying
topological nature of this hybridized system. We believe
this universal form is the key to the topology and gives
a crucial insight that will be of interest to a broad
community of researchers studying the consequences of
magnon-phonon interactions. This 2D model can also
be generalized to a 3D system with mirror symmetry
breaking in the bulk [67, 68] and it can couple the
magnons with out-of-plane phonon modes as well which

could further enrich the physics of topology. In principle,
our method can be used in any bosonic system such as
plasmonics [69, 70] and photonics [71], and may find
similar and interesting applications there. To our best
knowledge, this is the first study on the field-tunable
topological properties and phonon chiralities arising
from the coupling between antiferromagnetic magnons
and optical phonons. Our work opens a new avenue
in the study of hybridized magnon-phonon excitations
by treating the optical and acoustic phonons on equal
footing, and it may be useful to design tunable transport
devices in the field of spintronics and draws a connection
to chiral phonons with spin caloritronics.
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