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The Shastry-Sutherland model as a canonical example of frustrated magnetism has been extensively studied.
The conventional wisdom has been that the transition from the plaquette valence bond order to the Neel order is
direct and potentially realizes a deconfined quantum critical point beyond the Ginzburg-Landau paradigm. This
scenario however was challenged recently by improved numerics from density matrix renormalization group
which offers evidence for a narrow gapless spin liquid between the two phases. Prompted by this controversy
and to shed light on this intricate parameter regime from a fresh perspective, we report high-resolution functional
renormalization group analysis of the generalized Shastry-Sutherland model. The flows of over 50 million
running couplings provide a detailed picture for the evolution of spin correlations as the frequency/energy scale
is dialed from the ultraviolet to the infrared to yield the zero temperature phase diagram. The singlet dimer
phase emerges as a fixed point, the Neel order is characterized by divergence in the vertex function, while the
transition into and out of the plaquette order is accompanied by pronounced peaks in the plaquette susceptibility.
The plaquette order is suppressed before the onset of the Neel order, lending evidence for a finite spin liquid
region for J1/J2 ∈ (0.77, 0.82), where the flow is continuous without any indication of divergence.

Forty years after the introduction of the Shastry-Sutherland
(SS) model [1], its ground state phase diagram remains incon-
clusive. The model describes quantum spins on the square lat-
tice with competing antiferromagnetic exchange interactions,
J1 for the horizontal/vertical bonds and J2 for the decimated
diagonal bonds connecting the empty plaquettes, see Fig. 1.
Owing to the frustration, the model has long been suspected
to host exotic ground states and phase transitions. A large
body of theoretical works have established the existence of
three phases, see e.g. [2] and [3, 4] for a synopsis of ear-
lier and recent results, respectively. The J1 < J2/2 limit is
exactly solvable and the ground state is a product state of di-
agonal dimers (spin singlets). For intermediate value of J1/J2,
the ground state is a plaquette valence bond solid, while Neel
order takes over for large J1/J2. The most interesting, and
controversial, question regards the nature of the plaquette-to-
Neel (pN) transition: is it conventional, a deconfined quantum
critical point, or through an additional spin liquid phase?

Remarkably, the SS model has an almost ideal realization in
SrCu2(BO3)2 crystals, where phase transitions can be induced
by tuning the hydrostatic pressure [5, 6]. Inelastic neutron
scattering found signatures of the plaquette phase [7], and heat
capacity measurements confirmed the dimer-to-plaquette tran-
sition [8, 9]. Yet a direct plaquette-to-Neel transition was not
observed in the anticipated pressure range. These experiments
renewed the effort to examine this intriguing region using the
state-of-the-art numerical techniques. Earlier tensor network
(iPEPS) calculations confirmed the plaquette phase within the
region J1/J2 ∈ [0.675, 0.765] [10–14] and a weak first order
pN transition. A recent density matrix renormalization group
(DMRG) study [3] with cylinders of circumference up to ten
sites yielded similar phase boundary J1/J2 ∈ [0.675, 0.77] but
a continuous pN transition with spin correlations supporting
a deconfined quantum critical point. Another DMRG using
cylinder circumference up to 14 sites concludes that a spin
liquid phase exists in the window J1/J2 ∈ [0.79, 0.82] be-

tween the plaquette and the Neel phase [4]. A core difficulty
in reaching a consensus is attributed to the near degeneracy of
the competing orders in this region. The finite-size limitation
of DMRG means that the ground state can only be inferred by
extrapolation via careful finite size scaling analysis.

The size restriction prompts us to adopt an alternative
approach diametrically opposed to exact diagonalization or
DMRG on finite systems. The algorithm directly accesses the
infrared and thermodynamic limit while treating all compet-
ing orders on equal footing without bias. It starts from the
microscopic spin Hamiltonian and successively integrates out
the higher frequency fluctuations with full spatial (or equiva-
lently momentum) resolution retained at each step. The scale-
dependent effective couplings and correlation functions are
obtained by numerically solving the Functional Renormaliza-
tion Group (FRG) flow equations [15–17]. As the frequency
scale Λ slides from J1,2 down to zero, the zero temperature
phase diagram is determined. Such FRG approach to quan-
tum spin systems, first established in 2010 [18], has yielded
insights for many frustrated spin models. But its application
to the SS model has not been successful, perhaps due to two
reasons. First, in contrast to the Neel order, the dimer or the
plaquette order cannot be inferred naively from the divergence
of vertex functions, making it challenging to locate their phase
boundaries. Second, as we shall show below, the pN transition
region is better understood by examining a generalized model
that reduces to the SS model in a particular limit.

In this work, high resolution FRG analysis of the general-
ized SS model is achieved by overcoming these technical bar-
riers. To maintain sufficient momentum and frequency resolu-
tion, one must keep track of millions of running couplings at
each FRG step. The calculation is made possible by migrating
to the GPU platform which led to performance improvement
by orders of magnitude [19, 20]. Despite being a completely
different approach, the phase boundaries predicted from our
FRG are remarkably close to the state-of-the-art DMRG. The
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agreement further establishes FRG as an accurate technique
for frustrated quantum magnetism. Most importantly, the pla-
quette susceptibility from FRG indicates the plaquette order
terminates around J1/J2 ≈ 0.77 before the onset of weak Neel
order around J1/J2 ≈ 0.82. It supports the existence of a spin
liquid region between the plaquette and Neel phase proposed
in Ref. [4]. Thus, the SS model is a strong candidate to host
spin liquid, and SrCu2(BO3)2 offers exciting opportunity to
realize and probe the elusive spin liquid phase.

Model and pseudofermion FRG.— Our starting point is the
generalized Shastry-Sutherland Hamiltonian [21]

H = κJ1

∑
〈i, j〉′

Si · S j + J1

∑
〈i, j〉′′

Si · S j + J2

∑
i, j∈diag

Si · S j (1)

where Si are spin one-half operators (S = 1/2), i, j label
the sites, and J1,2 > 0 are antiferromagnetic exchange cou-
plings. The first (second) sum is over nearest neighbors on
the square lattice represented by the solid (dashed) black lines
in Fig. 1(a), the last sum is over the alternating diagonal bonds
indicated by the red lines. The original SS model corresponds
to the limit κ = 1 [1, 2]. A small δJ1 = (κ − 1)J1 acts as a
source field to break the double degeneracy and favor valence
bond order within the shaded plaquettes. It plays a crucial role
in our analysis and facilitates the calculation of plaquette sus-
ceptibility. We will stay close to the limit κ → 1 throughout.

To predict the phase diagram of Hamiltonian Eq. (1), FRG
finds its generating functional, i.e. an effective field the-
ory parametrized by self-energies, four-point and higher-order
vertices, for each given frequency/energy scale Λ. The self-
energies and vertices obey the formally exact flow equations
that can be truncated and solved numerically. More specif-
ically, the many-spin problem is first converted to an inter-
acting fermion problem using the pseudofermion representa-
tion [18], S µ

i = (1/2)σµαβψ
†

iαψiβ. Here σµ are the Pauli matri-
ces, and ψiβ annihilates a fermion at site i with spin β =↑, ↓
etc.. The resultant fermion Hamiltonian only has quartic in-
teractions but no kinetic energy term (the fermions are local-
ized and constrained at one particle per site). So the bare
single-particle Green function G0(ω) = 1/iω with ω being the
frequency [18]. Then the flow equations for the interacting
fermion problem can be solved by generalizing the expansion
and truncation schemes extensively benchmarked for strongly
correlated electronic materials [22, 23].

The implementation of psuedofermion FRG are well docu-
mented in the original work [18] and later improvements [24–
37]. A brief outline is as follows. Starting from an ultraviolet
scale Λ = ΛUV � J1,2 and using the bare interaction in Eq.
(1) and bare Green function to set up the initial condition, the
coupled integro-differential equations for the scale-dependent
self-energy ΣΛ(ω) and four-point vertex ΓΛ

i1i2
(ω′1, ω

′
2;ω1, ω2)

are solved successively in small steps along a discretized grid
of the frequency/energy scale Λ until it is reduced down to
the infrared Λ = ΛIR → 0. During the flow, the self-energy
ΣΛ(ω) is renormalized to gain nontrivial frequency depen-
dence as higher frequency fluctuations induce retarded inter-
actions. But it remains site-independent, i.e. fermions hop-
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FIG. 1. Generalized Shastry-Sutherland model and its zero temper-
ature phase diagram from FRG. (a) The competing exchange cou-
plings in model Eq. (1) include κJ1 and J1 for the black solid and
dashed bonds respectively, and J2 for the red bonds. The four sites
within the unit cell (shaded square) are labelled by color red, green,
blue and yellow respectively. (b) The phase diagram for κ = 1 con-
sists of four phases separated by three critical points as J1/J2 is var-
ied. A representative point is chosen for each phase to illustrate the
typical RG flows of the spin susceptibilities χ(p) in leading channels
(i.e. different values of p, see main text). The corresponding insets
show the profile of χ̃r(p) in the infrared limit Λ → 0. The white ×
indicates its peak position in the momentum space (px, py).

ping is prohibited. The four-point vertices ΓΛ (effective in-
teractions) carry multiple indices: i1 and i2 for lattice sites
whereas ω′1, ω

′
2 and ω1, ω2 are frequencies for the pair of sites

before and after the interaction. Contributions from higher
order vertices are approximated by the Katanin term [38].

Care must be exercised to efficiently parametrize the ver-
tices in order to render the numerical task tractable. In particu-
lar, the SS model has non-symmorphic lattice symmetry, with
four sites per unit cell shown in colors α = r, g, b, y in Fig. 1
and no C4 symmetry as in the J1-J2 model. To avoid using
color indices in ΓΛ

i1i2
, we pick a α = r site located at the origin

as i1. Other vertices for sites of different color α = g, b, y can
be obtained from the central r-site with appropriate rotation
and lattice translation [39]. We retain all i2 within a radius
|ri1 − ri2 | < Rmax in ΓΛ

i1i2
and emphasize that the FRG equa-

tions describe infinite systems without a boundary. Here Rmax

merely places an upper cutoff for the correlations retained
in the numerics. As to the frequency variables, we rewrite
ΓΛ(ω′1, ω

′
2;ω1, ω2) as functions of the Mandelstam variables

s, t and u [18] which manifestly enforce the frequency con-
servation. Finally, we discretize the frequency using a loga-
rithmic mesh of Nω points extending from the ultraviolet scale
ΛUV = 102J2 to the infrared scale ΛIR = 10−2J2. Typically,
Nω = 48 provides good frequency resolution, and further in-
creasing Nω will not alter the results appreciably. We take
Rmax = 10 which amounts to NL = 441 lattice sites within
the correlation radius. In total, this gives a coupled system of
NL × N3

ω ∼ 50 million running couplings.
Correlation functions and susceptibilities.— To detect the

emergence of long range order as Λ → 0, correlation func-
tions at each renormalization scale can be obtained from the
ΣΛ and ΓΛ via standard calculations involving Feynman di-



3

agrams. For example, the spin-spin correlation function is
given by

χi j(ω) =

∫ ∞

0
dτeiωτ〈TS z

i (τ)S z
j(0)〉

= S z
i S z

j S z
j S z

j+ , (2)

where black dots represent the spin matrix S z
i = σz/2, filled

square represents vertex ΓΛ and lines with arrows are dressed
Green functions that contain the self-energy. The scale de-
pendence of χ is suppressed for brevity. We find that it is
necessary to distinguish the flows of spin correlations for dif-
ferent bonds, i.e. pairs of (i, j), because the symmetry break-
ing patterns in the SS model are rather complex and involving
valence bond orders. For a given site i of color α, one can find
χ̃α(p), the Fourier transform of Eq. (2) in the limit of ω → 0.
It is also convenient to define spin susceptibility

χ(p) = lim
ω→0

1
4

∑
α

∑
j

eip·(rα−r j)χi j(ω) =
1
4

∑
α

χ̃α(p), (3)

where the α sum is over the four sites of different colors within
the unit cell, the j sum is over all sites, and the limit ω→ 0 is
taken in the end. The spin susceptibility defined in Eq. (3) has
no bond resolution, but its divergence (or lack thereof) and its
profile in momentum space offer a quick diagnosis of the in-
cipient orders as the ratio J1/J2 is changed. Finally, we define
a set of plaquette susceptibilities to detect the plaquette va-
lence bond order. They measure the bond-resolved responses,
e.g. the change in χi j, due to a small bond modulation

χP
i j ≡ −

1
J1

∂χi j

∂κ

∣∣∣∣∣∣
κ→1

= −
∂χi j

∂(δJ1)

∣∣∣∣∣∣
δJ1→0

(4)

with J1 and J2 fixed. A dramatic enhancement of the χP
i j

around the shaded plaquettes indicates an instability against
a small fluctuation of modulation δJ1. To compute χP

i j, we
perform two runs of FRG flow with bare couplings (κJ1 =

J1 + δJ1, J1, J2) and (J1, J1, J2) for a given bond (i, j). The
procedure is expensive but provides invaluable insights.

Phase diagram.— The final results of our FRG calculation
are summarized in the phase diagram shown in Fig. 1(b). It
contains four phases as J1/J2 is varied at fixed κ = 1. For each
phase, a representative value of J1/J2 is chosen to illustrate its
characteristic FRG flow pattern in two complementary ways.
First is the momentum distribution χ̃r(p) near the end of the
flow (insets), where the peak momenta are labelled by white
‘×’ in the extended Brillouin zone [40]. Next is the flow of
spin susceptibility χ(p) with the RG scale Λ (main panels) for
different channels, i.e., different values of p. For example,
the channel p = (π, 0) is shown in blue, the (π, π) channel in
orange, while the flow for the peak momenta labelled by ‘×’
is in red. Clearly, the leading channels for the four phases
are distinct. Take the case J1/J2 = 1.0 for example, from the
inset it is clear that χ̃r(p) is peaked at p = (π, π). Accordingly,
the FRG flow for χ(π, π) (in orange) is most dominant and
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FIG. 2. The dimer and spin liquid phase as the fixed points of the flow
of spin-spin correlation functions χi j(ω→ 0). (a) Flows of χi j for the
dimer bonds (red lines in inset) converge to a constant ≈ 0.41 in the
infrared limit for all J1/J2 values (color coded, see the colorbar) up
until 0.67 indicated by the solid black line. (b) The scale-dependent
χi j (solid lines) for the dimer bonds becomes flat against J1/J2 in
the infrared limit. Linear regression (black lines) gives the dimer to
plaquette transition point (J1/J2)c = 0.67. The dashed lines represent
χi j for another set of diagonal bonds (inset at the upper right corner)
orthogonal to the dimer bonds. As Λ → 0, it becomes flat for J1/J2

between 0.77 and 0.82 where spin liquid is postulated to exist.

rises rapidly as Λ is reduced. The flow breaks down around
Λ∗ ≈ 0.2, signaling a physical divergence and the onset of
magnetic long-range order as seen in many FRG calculations.
Thus the Neel phase can be identified unambiguously from
the (π, π) peak and the flow divergence.

Outside the Neel phase, the flows appear smooth down to
the lowest Λ. This is perhaps not that surprising because spin
rotational symmetry is not broken in the dimer or plaquette
phase. Yet by inspecting the two cases J1/J2 = 0.3 and 0.7
in Fig. 1, it is apparent that their spin correlations are rather
different, e.g., they have different peak momenta or leading
channels. Unfortunately, the information contained in χ(p) or
χ̃α(p) is too crude to differentiate the dimer from the plaquette
phase. In what follows, we show that this can be achieved by
the FRG flow of bond-resolved spin correlation χi j.

Dimer phase as a fixed point.—Fig. 2(a) compares the flows
of χi j for the diagonal bond (red lines in the inset) at different
values of J1/J2. One notices a remarkable phenomenon: for
all J1/J2 < 0.6, they flow to the same exact value ≈ 0.41 in
the infrared Λ → 0. This renormalization group fixed point
defines a robust phase with constant spin correlation along the
diagonal. This is nothing but the dimer phase, in accordance
with the known fact that the ground state wave function in this
region is a product state of isolated spin singlets, frozen with
respect to J1/J2 with constant energy up to a critical point.
To determine its phase boundary, Fig. 2(b) plots the diagonal
bond correlation in the infrared limit versus J1/J2. It stays
completely flat before dropping rapidly in a linear fashion.
Linear regression (black lines) yields an intersection point at
J1/J2 = 0.67 which we take as the estimated phase transi-
tion point. This critical value is impressively close to 0.675
from large-scale DMRG [3]. The agreement provides strong
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FIG. 3. Identification of the phase boundaries from bond-resolved
plaquette susceptibility χP

i j, which measures the response of a given
bond (i, j) [red lines in insets] to a small increase δJ1 in the shaded
squares. (a) A pronounced peak of χP

� around J1/J2 = 0.67 signals
the onset of plaquette order. (b) The suppression dip of χP

� at 0.77
indicates the plaquette order is superseded by a new phase, the spin
liquid with distinct inter-plaquette correlations. (c) An example of
longer range χP

i j that also develops peak/dip at the two critical points
above. (d) The momentum space degeneracy η of χ̃r(p) is peaked at
J1/J2 ≈ 0.82, which marks the transition into the Neel phase.

evidence for the validity and accuracy of our FRG calculation.
Plaquette valence bond solid.—Identification of plaquette

order from FRG has been an open challenge. In earlier stud-
ies, a plaquette susceptibility χPVB was defined as the propen-
sity towards translational symmetry breaking with respect to
a small bond modulation bias [18, 25, 33]. Enhancement of
χPVB has been reported, but to our best knowledge, plaquette
order has not been positively identified using pseudofermion
FRG so far. For the generalized SS model, we have confirmed
that χPVB is indeed enhanced within a broad region stretching
from J1/J2 ∼ 0.5 to 0.7 when compared to its values within
the Neel phase (see [39] for details). But it only exhibits a
smooth crossover with J1/J2 due to the lack of bond resolu-
tion. This has motivated us to introduce a more refined mea-
sure, the bond-resolved plaquette susceptibility χP

i j in Eq. (4).

Fig. 3(a) illustrates the χP
i j for the horizontal/vertical bonds

within the slightly strengthened plaquettes (shaded squares),
denoted by χP

�. While it is more or less featureless at the ultra-
violet scale, as RG steps are taken and Λ is reduced, χP

� gains
nontrivial dependence on J1/J2. In particular, in the infrared
limit χP

� develops a pronounced peak around J1/J2 ≈ 0.67
[41]. The dramatic enhancement of plaquette susceptibil-
ity marks the onset of plaquette order. This independent di-
agnosis of the dimer-to-plaquette transition agrees very well
with the linear regression result above, showing the self-

consistency of our FRG and the advantage of introducing the
quantity χP

i j. It is not a divergence because higher-order ver-
tices are truncated in the current implementation. The onset of
plaquette order also manifests in longer range inter-plaquette
correlations. Fig. 3(c) depicts the χP

i j for a bond between an
r-site and a b-site from two shaded squares along the lattice
diagonal. It too has an enhancement peak at J1/J2 ≈ 0.67.

Further analysis of χP
i j also points to the demise of the pla-

quette phase. A pristine plaquette order is adiabatically con-
nected to the limit of decoupled plaquette singlets (shaded
squares in Fig. 1 without red or dashed bonds). Upon in-
creasing J1/J2, the plaquette order eventually yields to a
state with homogeneous bond energies and very different
spin correlations. One possibility is a liquid state where the
shaded and empty squares are entangled to feature strong
inter-plaquette correlations. The change in correlation is ap-
parent in Fig. 3(c): after the peak, χP

i j changes sign to develop
a sharp dip at J1/J2 ≈ 0.78, suggesting the onset of a new
phase. This interpretation is supported by the plaquette sus-
ceptibility χP

� shown in Fig. 3(b). It measures the change to the
bonds around the empty plaquettes in response to δJ1 > 0 in
the nearby shaded squares. When J1/J2 is reduced from above
toward 0.77, a small δJ1 leads to significant weakening of the
antiferromagnetic bonds (red lines) around the empty squares,
i.e. decoupling of the shaded plaquettes to break translational
symmetry. Thus the pronounce dip of χP

� at J1/J2 ≈ 0.77 [42]
marks the upper critical point of the plaquette phase. At the
very least, the dramatic variations of χP

i j are at odds with the
scenario that the plaquette phase persists after J1/J2 ≈ 0.77.

A sliver of spin liquid.—The existence of a novel phase after
J1/J2 ≈ 0.77 can be inferred independently from the spin cor-
relation χi j for the diagonal bond shown in Fig. 2(b) (dashed
lines). Here it becomes flat, i.e. independent of J1/J2, in the
infrared limit. The behavior is distinct from that of a plaque-
tte valence bond solid or a Neel antiferromagnet, for which χi j

increases with J1. Since the spin susceptibility flow is contin-
uous down to Λ→ 0 as shown in Fig. 1(b), the only plausible
scenario seems to be that this FRG fixed point corresponds to
a liquid phase. With further increase in J1, the flat top of diag-
onal χi j is terminated by an upturn around J1/J2 ∼ 0.82, sig-
naling another phase transition. To precisely locate the onset
of the Neel order, we adopt an independent criterion [43]. In
the postulated spin liquid region, the spin susceptibility χ̃r(p)
develops broad maxima, instead of a sharp peak, in momen-
tum space, see the case of J1/J2 = 0.8 in Fig. 1(b). We can
quantify the peak degeneracy by η, the percentage of p points
with χ̃r(p) ≥ 0.9max[χ̃r(p)]. A similar method was employed
in [44] for a different system. The result is shown in Fig. 3(d).
As the Neel phase is approached, the broad maxima coalesce
into a sharp peak at (π, π), after which η drops quickly. The
peak location of degeneracy η at J1/J2 = 0.82 serves as an ac-
curate estimation for the transition from the spin liquid to the
Neel phase, in excellent agreement with the phase boundary
obtained from large scale DMRG [4].

Conclusions.—Our high-resolution FRG analysis of the SS
model identifies four phases separated by three critical points
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summarized in Fig. 1. Key technical insights are retrieved by
monitoring the renormalization group flows of bond-resolved
spin-spin correlation functions and susceptibilities. The good
agreement with other established numerical methods on the
locations of the phase boundaries attests to the accuracy of
FRG which takes into account quantum fluctuations in all the
channels without bias by tracking millions of effective cou-
plings at each scale Λ. The implementation and analysis
strategies reported here can be applied to study other quantum
spin Hamiltonians with unconventional magnetic orders using
pseudofermion FRG. In particular, our result supports the ex-
istence of a finite spin liquid phase rather than a deconfined
quantum critical point between the plaquette and Neel phase.
It motivates future theoretical work to further elucidate the na-
ture and extent of this phase, and precision measurements to
locate and probe spin liquid in SrCu2(BO3)2.

This work is supported by TUBITAK 2236 Co-funded
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120C066 (A.K.) and NSF Grant No. PHY- 2011386 (E.Z.).

∗ ahmetkeles99@gmail.com
[1] B. Sriram Shastry and Bill Sutherland, “Exact ground state

of a quantum mechanical antiferromagnet,” Physica B+C 108,
1069–1070 (1981).

[2] Shin Miyahara and Kazuo Ueda, “Theory of the orthogonal
dimer Heisenberg spin model for SrCu2(BO3)2,” Journal of
Physics: Condensed Matter 15, R327–R366 (2003).

[3] Jong Yeon Lee, Yi-Zhuang You, Subir Sachdev, and Ashvin
Vishwanath, “Signatures of a Deconfined Phase Transition on
the Shastry-Sutherland Lattice: Applications to Quantum Crit-
ical SrCu2(BO3)2,” Phys. Rev. X 9, 041037 (2019).

[4] Jianwei Yang, Anders W. Sandvik, and Ling Wang, “Quan-
tum Criticality and Spin Liquid Phase in the Shastry-Sutherland
model,” (2021), arXiv:2104.08887 [cond-mat.str-el].

[5] H. Kageyama, K. Yoshimura, R. Stern, N. V. Mushnikov,
K. Onizuka, M. Kato, K. Kosuge, C. P. Slichter, T. Goto,
and Y. Ueda, “Exact Dimer Ground State and Quantized
Magnetization Plateaus in the Two-Dimensional Spin System
SrCu2(BO3)2,” Phys. Rev. Lett. 82, 3168–3171 (1999).

[6] Shin Miyahara and Kazuo Ueda, “Exact Dimer Ground State of
the Two Dimensional Heisenberg Spin System SrCu2(BO3)2,”
Phys. Rev. Lett. 82, 3701–3704 (1999).
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