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Abstract

We successfully synthesize RuBr3, which is a candidate material of Kitaev spin liquid, via a high-

pressure synthesis. The material RuBr3 possesses BiI3-type structure (space group: R3) where

Ru3+ form an ideal honeycomb lattice even at room temperature and it does not show a structural

transition at low temperatures. RuBr3 has a negative Weiss temperature and it undergoes a zigzag

antiferromagnetic transition at TN = 34 K, as does α-RuCl3(TN = 7− 14 K) which is a promising

candidate for a Kitaev spin liquid. Although both compounds of RuBr3 and α-RuCl3 have a zigzag

magnetic order at low temperature, the magnetic order in RuBr3 is more robust than in α-RuCl3.

Our results indicate that the Kitaev and non-Kitaev interactions can be modified in ruthenium

trihalides by changing the ligand sites, and will provide a new platform for exploring Kitaev spin

liquids.
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A theoretical breakthrough [1] has brought compounds with honeycomb lattices into the

spotlight as candidates for quantum spin liquids. Kitaev proposed a model where S = 1/2

spins placed on a honeycomb lattice are coupled with their three nearest-neighbor spins

with bond-dependent ferromagnetic Ising interactions [1]. This model is exactly solvable,

and the ground state is a quantum spin liquid. The material α-RuCl3 is the most promising

candidate for a Kitaev spin liquid and has been actively studied in recent years [2–4]. In

α-RuCl3, Ru3+ form a honeycomb lattice in two-dimensional layers through an edge-sharing

network of RuCl6 octahedra. The detailed crystal structure of α-RuCl3 is debated [5–

8]. Recent studies on high-quality single crystals report that it has an AlCl3-type crystal

structure at room temperature with a slightly distorted honeycomb lattice (space group:

C2/m), and that below a structural transition temperature of 150 K, it has a BiI3-type

structure with an ideal honeycomb lattice (space group: R3, Fig. 1(a)) [9–11]. Instead

of the expected spin-liquid state owing to the frustrated nature of the Kitaev interaction

K, α-RuCl3 shows a zigzag antiferromagnetic order [6]. The antiferromagnetic transition

temperature, TN = 7− 14 K, is very sensitive to the details of the crystal structure [7, 12].

The long-range antiferromagnetic order originates from the sizable contributions of non-

Kitaev interactions such as the Heisenberg interaction J and off-diagonal interaction Γ. In

fact, the extended model that takes such contributions into account (the J-K-Γ model) is

useful for describing magnetic properties of α-RuCl3. The Hamiltonian is written as

H =
∑

〈i,j〉∈NN

(
JSi · Sj +KSγi S

γ
j + Γ

(
Sαi S

β
j + Sβi S

α
j

))
, (1)

where Sγi denotes the γ component of the spin-1/2 operator of site i (γ being the direction

perpendicular to the edge-sharing plane) [13–15]. By assuming appropriate values of the pa-

rameters J , K, and Γ, this Hamiltonian (eq. 1) can well explain various magnetic behaviors

of α-RuCl3, including the zigzag antiferromagnetic order, the field-induced Kitaev spin-liquid

state, and magnetic excitations in Raman and inelastic neutron spectra [13, 16–18]. Earlier

works have revealed a dominant ferromagnetic Kitaev interaction of K = −3 – −25 meV

and sizable contributions from the other terms, |J/K| ∼ 0.05 – 0.25 and |Γ/K| ∼ 0.21 –

0.99 [19]. Hence, α-RuCl3 is still far from the ideal Kitaev limit, |K| � |J | , |Γ|. However,

no methods to tune the parameters J , K, and Γ have been established experimentally, and

no state closer to the Kitaev limit has been achieved yet. This is partly because there are

no analogue materials for α-RuCl3.
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Here, we focus on two polymorphs of RuCl3: an α one with a honeycomb structure and

a β one with a one-dimensional chain structure (space group: P63/mcm) [20]. While both

polymorphs exist for RuCl3, only the chain structure is known for RuBr3 [20, 21]. Because

α-RuCl3 is more densely packed than β-RuCl3, one expects that RuBr3 with the honeycomb

structure can be obtained by keeping RuBr3 with the chain structure under high pressure

and high temperature. Actually, recent first-principles calculations predict the stability

of RuBr3 with the honeycomb structure, which can be foiled into a monolayer limit [22].

Replacing Cl with Br is expected to have two effects: lattice expansion owing to the larger

ionic radius of Br− than that of Cl−, and increased covalency of Ru-Cl/Br bonds owing to

the up-floating of Br: 4p bands compared with Cl: 3p bands. As will be discussed later,

both effects bring the system closer to the |K| � |J | , |Γ| regime.

The RuBr3 polycrystalline sample with a honeycomb lattice was synthesized using a

cubic-anvil high-pressure apparatus. The starting material, RuBr3 with the chain structure,

was placed in a gold or platinum capsule and loaded into a pyrophyllite cube. These were

pressurized at ∼ 4 GPa and heated at ∼ 400◦C for 30 minutes. The electrical resistivity

was measured using the four-terminal method. Magnetic susceptibility measurements were

performed using a superconducting quantum interference device magnetometer. The spe-

cific heat was measured using the thermal-relaxation method. Powder neutron diffraction

experiments were performed using the high-resolution time-of-flight (TOF) neutron powder

diffractometer SuperHRPD installed at the beam line BL08 of J-PARC [23]. The nuclear

quadrupole resonance (NQR) spectra were measured with the spin-echo method with the

pulse interval τ = 15− 20 µs and π/2 duration = 1.5− 2 µs at zero field.

The X-ray diffraction pattern of RuBr3 synthesized at high pressure is totally different

from that of RuBr3 with the chain structure. To clarify the crystal structure, we measured

the high-resolution neutron powder diffraction at various temperatures; the pattern collected

at 300 K is shown in Fig. 1(b). Among several crystal structures with different stacking

sequences of the transition-metal trihalides [24–27], the BiI3 structure with the space group

R3 (Fig. 1(a)) best reproduces the experimental data. We cannot find any signatures of a

structural transition such as peak splitting down to 3 K. The crystallographic data obtained

through the Rietveld analysis using the Fullprof software suite [28] are summarized in the

Supplemental Material [29] (see, also, references [30–38] therein). In the refined structure,

the Ru atoms in the unit cell are related to each other through the threefold rotation axis
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along the c-direction, and the network formed by the nearest-neighbor Ru–Ru bonds is a

regular honeycomb lattice. This indicates that the newly developed RuBr3 provides an ideal

platform for exploring Kitaev spin liquids. Henceforth, we discuss the electronic properties

of RuBr3 with the R3 structure.

Figure 2(a) shows the temperature dependence of the resistivity ρ for RuBr3. The data

show a thermally activated temperature dependence, which is consistent with a strongly

spin-orbital-coupled Mott insulator. The activation energy is Eg ∼ 0.21 eV. Figure 2(b)

shows the temperature dependence of the magnetic susceptibility χ under a magnetic field

of µ0H = 1 T. The data at 200−300 K well follow Curie-Weiss behavior, χ = CCW/(T−θCW),

with a Curie constant of CCW = 0.699 emu/mol and a Weiss temperature of θCW = −58

K. The effective moment per ruthenium ion, µeff , is calculated to be 2.36 µB from the

relation CCW = NAµ
2
eff/3kB, where NA and kB are the Avogadro constant and the Boltz-

mann constant, respectively. The negative Weiss temperature indicates the predominance

of the antiferromagnetic correlation in this system. Turning to the low-temperature regime,

χ shows a broad peak around T ∗ = 60 K, which is most likely related to the development of

antiferromagnetic correlations. When the system is cooled further, χ shows a kink charac-

terized by a sharp peak in dχ/dT at TN = 34 K, as shown in Fig. 3(a). This kink anomaly

corresponds to the formation of long-range antiferromagnetic order. This interpretation is

supported by the result for the specific heat C, which shows a peak just around 34 K as

shown in Fig. 3(b). The low-temperature part of C obeys a T 3 law (C = βT 3) as shown

in the inset of Fig. 3(b), which can be explained by contributions from Debye phonons

and antiferromagnetic spin waves in three dimensions. If we suppose that spin-wave con-

tributions are negligible, we obtain a Debye temperature of θD = 159 K from the formula

β = 12π4NR/5θ3
D, where N is the number of atoms per formula unit and R is the gas

constant.

To investigate the spin dynamics, we performed NQR spectroscopy. Figures 4(a) and

(b) show NQR spectra of 81Br and 79Br (nuclear spin I = 3/2) for RuBr3 at 40 − 280 K.

The resonance frequency scales well with the electric quadrupole moment (81Q = 0.276b,

79Q = 0.330b, b = 10−28 m2). A single NQR spectrum for each nucleus is consistent with an

R3 structure that contains one Br site. The temperature dependence of the NQR frequency

reflects an enhancement of the electric field gradient via thermal lattice contraction. Upon

further cooling, the NQR spectrum splits below 34 K, clearly showing the emergence of
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a spontaneous local field due to the antiferromagnetic order. Figure 3(c) shows the tem-

perature dependence of the 79Br and 81Br nuclear spin-lattice relaxation rate 1/T1. The

values for both isotopes scale well with the square of the gyromagnetic ratio, as expected

for predominant spin fluctuations. An increase in 1/T1 from about 60 K shows the growth

of antiferromagnetic correlation; this is in harmony with the broad peak structure at T ∗ in

χ. The spin fluctuations divergently increase toward TN, below which magnetic excitation

is gapped, coinciding with the evolution of the order parameter as observed in the zero-field

nuclear magnetic resonance (NMR) spectrum (Fig. 4(c)).

To reveal the magnetic structure, we performed neutron diffraction measurements at low

temperature, and the collected patterns are shown in Fig. 1(c). At least five peaks are found

at 3 K that do not appear at 100 K. These peaks can be indexed with the magnetic modu-

lation vector k = (0, 1/2, 1). Initial candidates for determining the magnetic structure were

obtained using magnetic representation theory [39]. The magnetic representations for the Ru

moments were decomposed into two one-dimensional representations (IR1 and IR2) of the

k-group with the magnetic modulation vector k = (0, 1/2, 1) (see the Supplemental Material

[29] for the details of the IRs). The powder neutron diffraction pattern was well fit with

the IR2 representation, which represents a zigzag antiferromagnetic structure (Fig. 1(a)).

A zigzag order at low temperature in RuBr3 agrees with the theoretical prediction, which

takes electron correlation into account [22]. The magnetic moment is tilted, and its angle

from the ab-plane is α = 64(12)◦ (Fig. 1(a)). The magnitude of the magnetic moment is

estimated to be m = 0.74(12) µB.

We here compare the experimental results for two honeycomb-based materials, RuBr3 and

α-RuCl3. The material RuBr3 has the R3 structure in the whole temperature range below

room temperature, contrasting with the structural transition at 150 K from the C2/m to

the R3 structure in α-RuCl3 [9–11]. The metal-metal bond distance is dRu−Ru = 3.6438(2) Å

in RuBr3, which is much longer than the reported values dRu−Ru = 3.43 and 3.46 Å in α-

RuCl3 [6, 7, 40]. The interlayer distance between the honeycomb planes is d⊥ = 6.014(1) Å

in RuBr3, which is also longer than the reported d⊥ = 5.72 Å in α-RuCl3 [6, 7, 40]. These

are the consequences of the larger ionic radius of Br− than that of Cl−. The Ru-Cl/Br-Ru

bond angle, which is an indicator of trigonal distortion, is closer to the ideal value of 90◦

for RuBr3 (φ = 93.14(8)◦) than for α-RuCl3 (φ ∼ 94◦) [6, 7]. Hence, the Jeff = 1/2 state

is still a good starting point in RuBr3, which is also evidenced by the comparable effective
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magnetic moment: µeff = 2.36 µB for RuBr3 and µeff = 2.24 µB for α-RuCl3. The crucial

difference between the two materials is the dominant magnetic interaction. In RuBr3, there

are fairly strong antiferromagnetic interactions characterized by a negative Weiss temper-

ature of θCW = −58 K; in α-RuCl3, there are ferromagnetic interactions characterized by

a positive Weiss temperature of θCW = 19 K. Nevertheless, both compounds have zigzag

magnetic order at low temperature. The magnetic order in RuBr3 is more robust than in

α-RuCl3. This can be seen from the differences in TN (TN = 34 K for RuBr3 and TN = 7−14

K for α-RuCl3) and the ordered magnetic moment (m = 0.74(12)µB for RuBr3 and m = 0.4–

0.7 µB for α-RuCl3 [6–8, 10]). The tilt angle of the magnetic moment from the honeycomb

plane is α = 64(12)◦ in RuBr3, which is larger than α = 32–35◦ in α-RuCl3 [7, 41]. Concern-

ing magnetic fluctuations above TN, both materials show an enhancement in 1/T1 toward

TN below nearly the same temperature, ∼ 60 K [11]. However, the broad peak structure in

the χ curve in this temperature regime is only seen in RuBr3.

We now discuss the microscopic origin of the similarity/difference in magnetic properties

of RuBr3 and α-RuCl3. The J −K − Γ model (eq. 1) contains the zigzag magnetic order

as the ground state in a wide parameter space. Let us first discuss how the replacement

of Cl with Br influences J , K, and Γ. The leading terms of J , K, and Γ deduced from

perturbation theory can be written as follows [13, 42–45]:

J ' 4

9

t2dd
U
, K ' −8

3

t2dpd
U

JH

U
, Γ ' −16

9

tdpdtdd
U

JH

U
, (2)

where U and JH are the Coulomb repulsion and the Hund coupling between t2g electrons at

the same site, respectively. These exchange interactions are sensitive to the direct hopping

between nearest-neighbor t2g orbitals, tdd, and the indirect hopping between nearest-neighbor

t2g orbitals via ligand p orbitals, tdpd. Replacing Cl with Br brings about drastic change

especially in tdd and tdpd. Because dRu−Ru for RuBr3 is much longer than that for α-RuCl3,

replacing Cl with Br results in a significant decrease in tdd. The tdpd values would be

enhanced by replacing Cl with Br, because Br 4p orbitals are more strongly hybridized with

Ru 4d orbitals than Cl 3p orbitals. As a result, RuBr3 is expected to have a larger |K| and

smaller |J/K| and |Γ/K| than α-RuCl3. Therefore, the argument based on the change in the

hopping parameters implies that replacing Cl with Br drives the system closer to a parameter

regime for the Kitaev spin liquid. The likely experimental results to support our hypothesis

are a magnetic moment angle (α). Theoretical calculations based on the J −K − Γ model
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indicate that α monotonically increases by approaching the Kitaev spin liquid limit in the

zigzag antiferromagnetic phase [14, 46–48]. Thus, our experimental observation of the larger

α in RuBr3 than in α-RuCl3 provides an experimental evidence for a smaller value of |J/K|

and |Γ/K| in RuBr3. It should be noted, however, that the “pseudomoment” direction,

which is theoretically discussed in relation to the Kitaev interaction in ref. [47], is not

exactly the same as the moment angle (α) experimentally-obtained by neutron scattering

and that α is affected by the anisotropy of the g factors.

Here, the question arises as to why the zigzag antiferromagnetic order in RuBr3 is more

stable than in α-RuCl3 despite the increased ferromagnetic Kitaev interaction. One possible

answer is that the energy scale of the J−K−Γ model becomes much larger in RuBr3 than in

α-RuCl3; however, this idea does not account for the difference in sign of the Weiss tempera-

ture between RuBr3 and α-RuCl3. The other plausible reason for the stable magnetic order

in RuBr3 is obtained by going beyond the J−K−Γ model. The negative Weiss temperature

in RuBr3 implies a significant contribution from the antiferromagnetic non-Kitaev interac-

tions. The possible candidate is the third-nearest-neighbor Heisenberg interaction J3(> 0),

which is shown in Fig. 1(a). This exchange interaction is believed to play an important role

in the formation of zigzag antiferromagnetic order [13, 44, 49, 50]. The hopping process re-

sponsible for J3 occurs through Ru4d−Br4p−Br4p−Ru4d path [3, 51], which is pronounced

owing to the enhanced hopping integrals between Ru4d−Br4p and Br4p−Br4p orbitals. Let

us roughly estimate the energy scale of J3 from θCW. In the mean-field approximation, the

Weiss temperature for a powder-averaged system is [51, 52]

kBθCW = −3

4

(
J +

1

3
K + J3

)
. (3)

If we suppose that J is negligible, we can conclude from the negative Weiss temperature that

|3J3| is at least comparable to K. It should be noted that a recent theoretical study reported

that the intrinsic Weiss temperature cannot be evaluated by the standard Curie-Weiss law

in the Kitaev candidate material. In order to discuss the microscopic interaction parameters

in more detail, it is necessary to analyze the data on the anisotropy of χ by using a modified

Curie-Weiss law that takes into account the temperature dependence of µeff .

It is also important to pay attention to a dimensionality when discussing the reason for

the stabilization of the zigzag antiferromagnetic order in RuBr3. Despite the fact that the

magnetic structures of α-RuCl3 and RuBr3 are three-dimensional ones, the Hamiltonians of
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J − K − Γ and J − K − Γ − J3 models assume complete two-dimensionality and do not

take into account any interactions between honeycomb layers. It is plausible to consider

that the enhancement of coupling between honeycomb layers causes the increase in TN.

Since the electro-negativity of Br is smaller than that of Cl, the electronic structure of

RuBr3 becomes more three-dimensional one, which is the origin of the high TN in RuBr3. In

any case, further experiments, especially on single crystals, are required for understanding

the magnetic properties of RuBr3, as well as support from theoretical studies.

In conclusion, we successfully synthesized RuBr3 with a BiI3-type structure (space group:

R3), where Ru3+ form an ideal honeycomb lattice. RuBr3 shows a zigzag antiferromagnetic

transition at TN = 34 K, which is significantly higher than TN = 7− 14 K in α-RuCl3. The

increase of TN in RuBr3 is probably resulting from the third-nearest-neighbor Heisenberg

interaction and/or the interlayer coupling due to the three dimensionality. Our results

indicate that the Kitaev and non-Kitaev interactions can be modified in ruthenium trihalides

by changing the ligand sites, and provide a new platform for exploring Kitaev spin liquids.
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(c)(a) (b)

FIG. 1. (a) Schematic of crystal and magnetic structures refined from the neutron diffraction

pattern. This figure is drawn using VESTA [53]. α is the angle of the magnetic moment from

the honeycomb plane, and J3 is the third-nearest-neighbor Heisenberg interaction. (b) Neutron

diffraction pattern collected at 300 K by the backscattering (BS) bank. The red dots, cyan curve,

and blue curve represent the observed intensities, calculated intensities, and difference between

them. The difference is shifted for clarity. The vertical black bars indicate the peak position

expected from the space group R3. (c) Neutron diffraction patterns focused on the magnetic

reflections. Intensities at 3 and 100 K are represented by the red and black dots, respectively. The

upper and lower panels are data collected by the quarter-angle (QA) and low-angle (LA) detector

banks, respectively.
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FIG. 2. (a) Temperature (T ) dependence of the resistivity (ρ). The inset shows the Arrhenius

plot, and the fitting result is shown by the red line. (b) Temperature dependence of the magnetic

susceptibility (χ) under a magnetic field of µ0H = 1 T. The inset shows the inverse of χ. The data

at 200 − 300 K are fitted with the Curie-Weiss law, and the fitting results are shown by the red

line.
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FIG. 3. (a-c) Temperature (T ) dependences of (a) the magnetic susceptibility (χ) and temperature

differential of χ (dχ/dT ) under a magnetic field of µ0H = 1 T, (b) the specific heat (C) under

a zero magnetic field, and (c) the 79Br and 81Br nuclear spin-lattice relaxation rate 1/T1. In the

inset of (b), C/T is plotted as a function of T 2. The solid curves in (c) are guides for the eye.
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FIG. 4. (a, b) NQR spectra of (a) 79Br and (b) 81Br above the antiferromagnetic transition

temperature. (c) Zero-field Br and Ru nuclear magnetic resonance (NMR) spectra in the antifer-

romagnetically ordered state. A spectrum below 75 MHz comes from a 99Ru NMR spectrum.
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