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Abstract

This work aims at addressing an important advanced methodology for twisted graphene in the

presence of applied magnetic field, which is the Bloch-basis tight-binding model (TBM) in conjunc-

tion with the generalized Peierls substitution. We investigate extensively the band structures, Lan-

dau levels (LLs), and quantum Hall conductivity (QHC) of twisted bilayer graphene and twisted

double bilayer graphene, as well as their dependence on the twist angle. Comparison between

these crucial properties of monolayer graphene, Bernal bilayer graphene, and the twisted systems

is carefully made to highlight the roles played by twisting. The unique selection rules of inter-LL

transition, which is crucial for achieving a deep understanding of the step structures of QHC, are

identified through the properties of LL wave functions. Remarkably, for the first time, the effective

TBM is combined with the generalized Peierls substitution to investigate the magnetic quantization

of twisted graphene systems at magic angle. Our theoretical model opens up an opportunity for

comprehension of the interplay between an applied magnetic field and the twisting effect associated

with layered graphene. The proposed method is expected to be applicable for the calculation of

magnetic quantization problems of other complex systems.
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I. INTRODUCTION

Recently, twisted graphene (TG) has attracted widespread attention since it plays a

key role in deciphering the nature of correlation phenomena in low-dimensional materials.

Up to now, the most studied TG, namely twisted bilayer graphene (TBLG) and twisted

double bilayer graphene (TDBLG), have been synthesized successfully by nanotechnology

fabrication methods [1]. TG presents various intriguing physical properties, such as the

anomalous Hall effect [2, 3], the unique magnetic quantization [4–8] and the quantum Hall

effect (QHE) [9–19]. Notably, TG at magic angles have been shown to exhibit various elec-

tronic states, including correlated insulators [20–22], superconductors [21–25], and topo-

logical phases [26–29]. Such exotic physical phenomena are induced by the dominant role

played by electron-electron interactions in flat-band systems. The microscopic mechanism of

these phases can be understood through the connection between the electronic interactions

and quantum degeneracy. So far, strong electron-electron interactions in partially-filled flat

bands have been probed by spectroscopies [20, 30] while LL degeneracy variation associated

with filling of electrons have been observed by transport measurements [20, 21, 23]. Ap-

parently, TG is a prominent candidate for potential applications in new-generation devices

with modern advanced functionalities [31].

Many fundamental properties of TBLG and TDBLG have been investigated intensively

by both theoretical and experimental approaches. Their band structures have been presented

from a theoretical perspective by using density-functional theory (DFT) [32, 33] and mod-

eling [34–42] as well as obtained experimentally by utilizing scanning-tunneling microscopy

(STM) and spectroscopy (STS) techniques [4, 42–49]. Besides electronic structures, the mag-

netic quantization which provides important dynamical information of materials has been

predicted theoretically [4–6] and identified experimentally [7, 8] for TBLG and TDBLG. It

has been shown for TBLG that its quantum Hall conductivity (QHC) exhibits a step struc-

ture, in which the plateau series (in the unit e2/h) are ±4, ±8, ±12 · · · [13–16]. At the magic

angle, the QHC step sequence also includes ±2 due to the breaking of spin-valley symmetry

[9–12, 23]. Meanwhile, the studies for QHE in TDBLG with small twist angles have also

been carried out. However, their filling factors are responsive to the stacking configuration

and magnetic field [17–19]. Though remarkable efforts have been devoted to studies of the

transport properties of TG, a deep understanding of the QHC step formation, as well as its
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connection to the quantized Landau levels (LLs), still remain elusive.

The limitation of theoretical study on the LLs of condensed matter systems results from

the complexity of atomic-scale structures. It has been shown that the effective-mass model,

a low-energy method commonly used to investigate magnetic quantization phenomenon,

cannot capture certain important physical features of materials. Remarkably, Ref. [50]

reported the breakdown of the chiral anomaly in Weyl semimetals in a strong magnetic field

by using a proper TBM, which becomes impossible by using the low-energy model. On the

other hand, the band structures of TBLG and TDBLG at magic angles have never been

verified by experiments up to this point of time. As a matter of fact, the development of

the TBM combined with the Peierls substitution method is highly desirable for the study of

magnetic quantization of TG.

In this paper, we present an important methodological advance, the Bloch-basis TBM

in conjunction with the generalized Peierls substitution, to comprehensively investigate the

LLs and QHE of TG and their dependence on the twist angle. This method allows us not

only to obtain accurate band structures in a wide energy range but also to solve the huge

Hamiltonian matrix under a magnetic field. Specifically, the calculated LL wave functions

enable a full analysis of transition-selection rules which are very useful for an extensive un-

derstanding of the QHE. We will present the band structures, field-dependent LL spectra,

LL wave functions, and Fermi energy-dependent QHC. We will also show these characteris-

tics for monolayer graphene (MLG) and AB bilayer graphene (BLG) which are critical for

analyzing and understanding our numerical results. Comparison between TG and these two

systems will be made to clarify the principal role played by the twist angle in electronic

and transport properties. Importantly, the Peierls phases are applied to the effective TBM

for the first time to explore the magnetic quantization of TG at magic angle. It is critical

to mention that our calculated results of LL spectra and filling factors for both large twist

angle and small magic angle are in good agreement with the experimental measurements.

The rest of the paper is organized as follows. In Sec. II, we first establish our theoretical

model for executing numerical computations, including tight-binding formalism and appli-

cation of a magnetic field. In Sec. III, we present a detailed discussion on obtained numerical

results for considered structures. Finally, conclusions drawn from this paper are summarized

in Sec. IV.
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II. THEORETICAL METHOD

In this work, the π-electronic structure is calculated using the pz-orbital TBM. The

effective TBM is developed for the twisted system at the magic angle (see Appendix A).

The Kubo formula is combined with the TBM to evaluate the Fermi energy-dependent QHC

(see Appendix B). Some details are presented below.

A. Tight-binding model

Let us start with monolayer graphene whose two equivalent sublattices are designated as

A and B. The primitive unit cell consists of two atoms, as illustrated in Fig. 1(a). Here,

a1 and a2 are the lattice vectors, a = |a1| = |a2| ≈ 2.46 Å is the lattice constant. For

Bernal bilayer graphene, the two graphene sheets are separated by the interlayer distance of

d0 ≈ 3.35 Å. The notations A` and B` indicate two sublattices on the `-th (` = 1, 2) layer

(Fig. 1(b)). There are four carbon atoms in a primitive unit cell. The (x, y) coordinates of

two layers are different by a shift of a C-C bond length (a0 = 1.42 Å) along the armchair

direction. The tight-binding Hamiltonian for a layered graphene system can be expressed as

H =
∑

m,j; `,`′

t``
′

mj(c
`
m)†c`

′

j +H.c. . (1)

In Eq. (1), m and j denote the lattice sites, c`m [(c`m)†] is the annihilation (creation) operator

which can destroy (generate) an electronic state at the m-th site on the `-th layer, t``
′

mj are

the hopping interaction terms between the atoms at the m-th site on the `-th layer and the

j-th site on the `′-th layer, and H.c. stands for Hermitian conjugation.

The hopping interaction between two C atoms at lattice points Rm and Rj is calculated

as

−tmj = Vppπ

[
1−

(
h · ez
h

)2
]

+ Vppσ

(
h · ez
h

)2

, (2)

where
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FIG. 1. (color online) Lattice structure of (a) monolayer graphene and (b) AB bilayer graphene.

The unit cell is outlined by black lines, a1 and a2 are the lattice vectors. [r1, r2, r3] are three

nearest-neighbor vectors in the Wannier basis. [r′1, r′2, r′3] are the selected nearest-neighbor

vectors in the Bloch basis. The magnetic-field enlarged unit cell is outlined by green lines in (a).

The red and blue balls indicate atoms on the first and second layers, respectively.

Vppπ = V 0
ppπ exp

(
−h− a0

δ

)
,

Vppσ = V 0
ppσ exp

(
−h− d0

δ

)
.

Here, ez is the unit vector in the z direction, V 0
ppπ is the nearest-neighbor transfer integral in

monolayer graphene (t``mj in Table I), V 0
ppσ is the interlayer transfer integral between vertical

atoms. Also, δ = 0.184 a is the decay length of transfer integral. The TBM in this work

includes hopping interactions within the area of h ≤ 4a0. The parameters for hopping

interactions of monolayer graphene and Bernal bilayer graphene are presented in Table I.

Solving the Hamiltonian is of utmost importance for gaining an understanding of the es-

sential physical properties of the materials. Due to the limitation of the numerical technique,

constructing a sufficiently small tight-binding matrix Hamiltonian for the large systems is

highly desirable. So far, several methods have been widely employed for reducing the size

of the Hamiltonian matrix, such as the scalable TBM [51], the continuum model [34, 36],
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TABLE I. Hopping parameters of monolayer graphene and AB bilayer graphene

Hopping parameters [eV] Monolayer AB bilayer

t``mj −2.7 −2.7

t``mm(B) 0 0.0366

t12m,m 0 0.48

t12m,m±1 0 0.211

and the effective TBM (minimal model) [35, 37]. The scalable TBM for graphene has been

built up with the scaled hopping parameter and lattice spacing. This model describes the

so-called “theoretical artificial graphene” which has been proved to capture the same results

for the electronic and transport properties as graphene. This method is restricted to the

long wavelength limit for which the Fermi wavelength should be much longer than the lattice

spacing. In the presence of a magnetic field, the validity of the Peierls substitution imposes

a further restriction for the scaling, in which the magnetic length must be much larger than

the lattice spacing. On the other hand, the continuum model and minimal model are limited

to low-energy physics. In addition, these models cannot capture the boundary conditions of

systems. Therefore, some essential physical features might be excluded. Here, we show that

our proposed Bloch-based TBM can deal with larger systems and in a wider range of energy.

Furthermore, the combination of the Bloch function basis and the effective TBM enables the

investigation of fundamental properties of TG at the magic angle under a magnetic field.

It is well known that the Wannier and Bloch function bases are commonly used to con-

struct the TBM of graphene and other condensed matter systems. The crucial difference

between these two comes from the geometric phases of interacting atoms. For the Wannier

basis, the estimated distance between two atoms is based on their Cartesian coordinates.

For the Bloch basis, on the other hand, a unit cell is viewed as a point so that the distance

between any two atoms is just the separation between the two unit cells which they belong

to. For monolayer graphene, three nearest-neighbor geometric phases (see Fig. 1(a)) can be

expressed either by the Wannier basis [r1 = (−b, 0); r2 = (b/2,
√

3b/2); r3 = (b/2,−
√

3b/2)]

or by the Bloch basis [r′
1 = (0, 0); r′

2 = (3b/2,
√

3b/2); r′
3 = (3b/2,−

√
3b/2)]. These

vectors are associated with geometric phases of different lattice sites. Our numerical results

of band structures for monolayer graphene and AB bilayer graphene by using TBM based
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on Wannier and Bloch bases agree with each other (see Appendix C). In general, the Bloch

function basis is advantageous over the Wannier function one for large systems (with many

atoms within a unit cell) since the former simplifies the Hamiltonian matrix by reducing the

number of geometric phases.

For TBLG, two graphene layers are relatively rotated by an angle called the “twist angle”.

Fig. 2(a) presents the lattice structure of TBLG with a twist angle θ = 21.79o. The lattice

vectors of the TBLG [L1 and L2] can be expressed in terms of the lattice vectors of the first

[a
(1)
1 , a

(1)
2 ] and second [a

(2)
1 , a

(2)
2 ] layers. Specifically, L1 = ma

(1)
1 +na

(1)
2 = na

(2)
1 +ma

(2)
2 and

L2 = R(π/3)L1, where m and n are certain integers satisfying θ(m,n) = arg[(me−iπ/6 +

neiπ/6)/(ne−iπ/6 + meiπ/6)], and R(θ) defines the rotation by an angle θ [52, 53]. Fig. 2(b)

displays the Brillouin zones for the first (red hexagon) and second (blue hexagon) layers.

The Brillouin zone of TBLG is also a hexagon but with a smaller size compared to Brillouin

zones of two individual layers. For a TBLG with a large twist angle, the two layers are

considered decoupled so that it can be described by the TBM of BLG in the absence of

interlayer interactions.

We note that TDBLG will acquire various stacking configurations since the BLG compo-

nents can be AA or AB types. Here, we consider twisted double AB-AB bilayer graphene

due to its special lattice symmetry. This system consists of a pair of Bernal BLG with a

relative rotation between them. Each AB BLG contains the atomic interactions as quanti-

fied in Table I. Furthermore, the middle two layers resemble the TBLG. Interestingly, there

exists an overlapping behavior of certain atoms on different graphene layers, e.g., the mu-

tual coordinates of (A1, A2, A3, A4), (A1, A2), (A3, A4), (B1, B4) and (B2, B3). In our

calculations, only the atomic interactions between the nearest-neighbor graphene layers are

taken into account. Therefore, the tight-binding Hamiltonian of the AB-AB TDBLG can

be constructed based on those of the AB BLG and TBLG.

B. Generalized Peierls substitution

As a graphene sheet is subjected to a uniform perpendicular magnetic field B = (0, 0, B),

the field-induced Peierls phase GR needs to be included in the graphene Hamiltonian. The

Peierls substitution [54] is a common method to study the behavior of Bloch electrons in a

magnetic field. This approach can be classified into two mechanisms: (1) The substitution of
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FIG. 2. (color online) (a) Lattice structure of a twisted bilayer graphene with a twist angle

θ = 21.79o. The blue and red balls denote atoms on the bottom and top layers, respectively. The

overlapped atoms are indicated by yellow balls. The unit cell is outlined by the black lines for

the zero field and by the green lines for the finite B field. [r1, r2, r3, r4, r5, r6] are selected

nearest-neighbor vectors in the Wannier basis. [a
(1)
1 , a

(1)
2 ] and [a

(2)
1 , a

(2)
2 ] denote the lattice vectors

of the first and second layers, respectively; L1 and L2 are the lattice vectors of TBG. (b) shows

the selected first Brilloun zones for the bottom (blue) and top (red) layers, where [Kd<0
+ , Kd<0

− ]

and [Kd>0
+ , Kd>0

− ] represent two valleys of the bottom and top layers, respectively.

−i~∇− e
c
A for ~k in the energy function for a band [55] and (2) the multiplication of the zero-

field matrix elements of the tight-binding Hamiltonian by the Peierls phase factors [56, 57].

It is noted that, the approach (1) is limited to the simple lattices for which the expression

of energy function can be accomplished, e.g, the square lattice [55]. On the other hand, the

Peierls substitution can be made in the matrix elements of the tight-binding Hamiltonian,

according to the approach (2), so that the resulting equations near the K and K′ points can

be expanded to lowest orders in the wave vector and the vector potential. In particular,

the Peierls substitution made for the momentum operator of the effective massless Dirac

Hamiltonian has been frequently used in the literature [56, 57]. However, this procedure is

restricted to the low-energy range of the systems with simple band structures. Here, we

propose using the mechanism (2) and numerically solve the Hamiltonian without further

perturbation. This method can yield the accurate results of a wide energy range for a large
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group of materials.

The Peierls phase can be expressed in term of the magnetic vector potential A via the

relation GR = (2π/φ0)
r∫
R

A · d`, in which φ0 = hc/e is the flux quantum. Without loss of

generality, we set c = 1 in our calculations. Within the Landau gauge, the vector potential

is written as A = (0, Bx, 0). Accordingly, the period of the Peierls phase is defined as 2φ0/φ,

in which φ = BS is the magnetic flux with S being the area of a unit cell. The applied

magnetic field leads to the extension of a unit cell along the x direction (see Fig. 1(a) for

monolayer graphene) so that it will include the number of 2N × 2φ0/φ atoms. Here, 2N is

the number of atoms in the reduced super cell with N being the number of atoms in the

zero-field unit cell.

The magnetic Hamiltonian matrix elements can be expressed as

HB =
∑

m,j; `,`′

t``
′

mj e
iGR

(
c`m
)†
c`
′

j +H.c. , (3)

where `, `′ and j, m are layer and site indexes, respectively, and H.c. represents the Hermi-

tian conjugate term. In the case of TBLG, the field-induced extension of a unit cell is along

the direction of L1, as seen in Fig. 2(a). The main challenge of theoretical models in study-

ing TG under a magnetic field lies in the issue of a large number of atoms included within

a field-extended unit cell. In order to resolve this issue, we propose employing the Bloch

function basis in investigating the characteristics of LLs and QHC. Using a Bloch basis, we

consider only the Peierls phases between the atoms in different unit cells but ignore those

within the same unit cell. In this way, it enables the computation of LLs for a huge magnetic

Hamiltonian matrix, which becomes impractical by using the Wannier function basis. It is

noted that the Peierls phases are added to the hopping terms of Hamiltonian in Eq. (3). Our

calculated results for monolayer graphene and AB bilayer graphene (see Appendix C) are

in good agreements with previous experimental and theoretical studies. In connection with

the Hamiltonian in Eq. (3), the LL wave function |ψ〉 takes the form

|ψ〉 =

2φ0/φ∑
j=1

(Aj|Aj〉+ Bj|Bj〉) , (4)

where Aj and Bj are the subenvelope functions and represent the amplitudes of tight-binding

wave functions for j-th A and B atoms in a unit cell, respectively, while |Aj〉 and |Bj〉 are
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their corresponding eigenstates.

III. RESULTS AND DISCUSSION

The Bloch-basis tight-binding Hamiltonian is employed for large twist angle while the

effective tight-binding model is constructed for the magic angle TG systems. These models

are further combined with the Peierls substitution to investigate the LLs and QHC.

A. Large twist angle

1. Twisted bilayer graphene

The band structures of θ = 9.43o and θ = 21.79o TBLG present the Dirac-cone shape

at the K point, as shown in Figs. 3(a) and 3(b). In the vicinity of zero energy, the linear

dispersion resembles that of MLG. However, the conduction and valence bands are eight-

fold degenerate, which is twice the band degeneracy of MLG. This characteristic plays a

distinctive role in QHE. At higher energies, there exists a saddle point M as well as a hole

pocket at Γ point. However, the main features of band structure are similar for various

twist angles, but the energy scales are quite different. We find that within the same energy

range, the θ = 9.43o hetero-structure shows more subbands compared with the case of

θ = 21.79o. That is, the energy scale is retracted for decreasing twist angle. The robust

dependence of electronic properties on a twist angle can be explained by the band-folding

effect. Specifically, the relative rotation of a graphene layer leads to the extension of unit

cell, causing band folding in momentum space. Consequently, the first Brillouin zone is

folded with a greatly reduced size. Our calculations reveal that the retraction of energy

scale and the reduction of folded Brillouin zone have a proportional relationship.

The B0-dependence of LLs in TBLG is found similar to that of MLG because their low-

lying bands can be viewed as two overlapping Dirac cones. Figs. 4(a) and 5(a) show the LL

spectra for θ = 9.43o and θ = 21.79o TBLG, respectively. Here, the nearly-flat zeroth LLs,

as well as the square root dependence of LL energies on n > 0 and B, still remain at low B0

fields. This implies that the atomic couplings between two layers are extremely weak at low

energies. As a matter of fact, two LL groups nc,v1 and nc,v2 overlap each other. This explains
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FIG. 3. (color online) Band structures of TBLG with a twist angle of (a) θ = 9.43o and (b)

θ = 21.79o.

well why each LL is eight-fold degenerate, which is twice that of MLG. This characteristic

is also different from four-fold degenerate LLs of AB BLG for which two LL groups are well

separated (see Appendix C). Nevertheless, a sufficiently high B0 can destroy the degeneracy

of LLs for which the splitting of degenerate LLs is manifest. The critical field at which such

LL splitting occurs increases with twist angle θ.

The probability distribution provides important clues for inter-LL transitions. Figs. 4(b-

I) through 4(b-IV) present the probability distributions for nc,v = 0 and nv = 1 LLs with

θ = 9.43o TBLG. Here, the most influential sublattices of each LL can be either A1 and B2 or

A2 and B1. For θ = 21.79o, on the other hand, the dominant sublattices are A1,2 or B1,2, as

seen in Figs. 5(b-I) through 5(b-IV). This difference is associated with the change of relative

positions of atoms under the rotating procedure. In both twisted systems, two graphene

layers play the equivalent role in the LL probability distributions. This is in contrast with

AB BLG where only B atoms have a crucial contribution to the |Ψ|2 of LLs. It is noted

that, the existence of zero mode in the nv = 1 LL state allows for the excitation between

nc,v = 0 and nv = 1 LLs, leading to unique QHC plateaus. The selection rule for excitation

in TBLG and MLG, as well as in AB BLG, are equivalent, given by ∆n = 1.

The EF -dependent QHC for θ = 9.43o and 21.79o TBLG exhibit the sequence of 8(m−

1/2) e2/h (Figs. 4(c) and 5(c)), corresponding to the eight-fold degenerate LLs at B0 = 30 T.

Our theoretical results are in good agreement with the previous studies of QHC in TBLG [13–

16] for various twist angles θ. The size of plateaus becomes wider for larger θ, which correctly
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FIG. 4. (color online) (a) The magnetic-field-dependent Landau energies of twisted bilayer graphene

with a twist angle θ = 9.43o. The vertical arrows indicate the inter-LL transitions. Panels (b-I)

through (b-IV) present the square of the wave functions for nc,v = 0 and nv = 1. Panel (c) shows

the Fermi-energy-dependent quantum Hall conductivity at B0 = 30 T. The arrows in (c) show the

discrete plateaus coming from the corresponding vertical transitions between the LLs indicated in

(a).

FIG. 5. (color online) (a) B0-dependent LL energies of twisted bilayer graphene with a twist angle

θ = 21.79o. The vertical arrows indicate the inter-LL transitions. Panels (b-I) through (b-IV)

display the wave function amplitudes of nc,v = 0 and nv = 1. Panel (c) presents the EF -dependent

QHC at B0 = 30 T. The arrows in (c) show discrete plateaus, corresponding to arrows in (a) for

vertical transitions between the LLs.
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reflects the LL energy spacing. At zero energy, the QHC varies from −4 e2/h to 4 e2/h, in

correspondence with the vertical transition from nc,v = 0 to nc = 1 as indicated by purple

arrows. That is, there is no zero QHC step, which is different from a narrow zero plateau in

AB BLG. Such a feature is consistent with B0-induced LL splitting and its dependence on

θ as discussed above. Consequently, the QHCs for θ = 9.43o and 21.79o are expected to be

dissimilar at higher B0. We emphasize that the QHCs of TBLG and MLG are quite similar

because they both share the Dirac-cone band structures.

2. Twisted double bilayer graphene

The low-lying band structures of TDBLG display two pairs of parabolic conduction and

valence bands, as in Figs. 6(a) and 6(b) for θ = 9.43o and 21.79o, respectively. Here, each

band is only doubly degenerate due to finite number of graphene layers in the system. Note

that the couplings between two middle graphene layers are weak. Therefore, TDBLG can be

regarded roughly as two Bernal BLG. For higher and deeper energy ranges, the degenerate

bands split in the direction of M → Γ. Such band splitting occurs at lower energies for

smaller θ. The zoom-in view of the band structure for θ = 9.43o in the inset of Fig. 6(a)

demonstrates that this system is a gapless semiconductor. For θ = 21.79o, on the other

hand, there is a narrow band gap in the vicinity of zero energy, as illustrated in the inset

of Fig. 6(b). Our calculated gap size is consistent with previous prediction [41, 42]. Similar

to TBLG, the retraction of energy scale is proportional to the reduction of folded Brillouin

zone as well as the twist angle.

The B0-dependent LL energy spectra of AB-AB TDBLG, shown in Figs. 7(a) and 8(a),

can be classified into two groups, namely, nc,v1 and nc,v2 . The crucial physical properties of

these systems are mainly dominated by the nc,v1 LL group at low energies. There exists an

overlap of the nc,v1 = 0 and nv1 = 1 LLs at low B0, similar to that of AB BLG (see Appendix

C). This agrees with the equivalence of their energy dispersions as discussed above. In

general, the main features of LLs resemble those of AB BLG since the interlayer interactions

within each BLG component are much stronger than those between them. Despite the

similarity in the B0-dependence of LLs, the LL degeneracies of the two systems are distinctive

due to the difference in number of graphene layers. Moreover, the probability distributions

of TDBLG are more diversified as we will discuss next.
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FIG. 6. (color online) Band structures of AB-AB TDBLG with twist angles of (a) θ = 9.43o and

(b) θ = 21.79o.

FIG. 7. (color online) (a) B0-dependent Landau energies of AB-AB TDBLG with a twist angle

θ = 9.43o. The vertical arrows indicate the inter-LL transitions. Here, (b-I) through (b-III)

present the corresponding wave function amplitudes of nc,v1 = 0, nv1 = 1 & 2 at B0 = 30T . The

EF -dependent QHC is illustrated in (c). The arrows in (c) point to discrete plateaus, corresponding

to vertical transitions between LLs indicated in (a).

Figs. 7(b) and 8(b) present distributions of |Ψ|2 for θ = 9.43o and 21.79oo TDBLG,

respectively. In order to highlight twisting effect in the system, we combine the probability

distributions of A and B atoms for each component AB BLG. For each LL, the combined |Ψ|2

of A sublattices on the upper and lower BLG are identical, and also for the B sublattices.

The LL indicies are determined from the number of zero modes in |Ψ|2 on the dominant B
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atoms. Surprisingly, we find the n = 0 & 1 modes for nv1 = 2 LL, as seen in Figs. 7(b-III)

and 8(b-III) by separated blue and red curves. This gives rise to a new excitation selection

rule of ∆n = 2 in addition to a conventional one ∆n = 1. In particular, the transitions

between nc,v1 = 0 and nc,v1 = 2 occur beside those between nc,v1 = 1 and nc,v1 = 2 as in three

systems discussed above. The unusual characteristics of LLs are expected resulting from the

special arrangement in the TDBLG lattice structure. Moreover, we find that the TDBLG

is less sensitive to the twist angle θ compared with the TBLG because their electronic

characteristics are dominated by the individual AB BLG components for large θ.

FIG. 8. (color online) (a) B0-dependent LL energies of AB-AB TDBLG with θ = 21.79o. The

vertical arrows indicate the inter-LL transitions. Panels (b-I) through (b-IV) present the amplitudes

of wave function corresponding to nc,v1 = 0, nv1 = 1 & 2 at B0 = 30 T. The EF -dependent QHC is

given in (c). The arrows in (c) indicate the discrete plateaus due to vertical transitions between

LLs indicated in (a).

The EF -dependent QHC of TDBLG with large θ follows the sequence 8me2/h due to

its eight-fold degenerate LLs. The step structures for θ = 9.43o and 21.79o TDBLG at

B0 = 30 T are given in Figs. 7(c) and 8(c), respectively. Here, the narrow zero plateau like

that of component AB BLG is also observed, which comes from the nv1 = 1 → nc,v1 = 0 LL

transition. The width of this plateau is determined by the energy spacing between these

two LLs, and is proportional to B0. At sufficiently weak B0, the zero QHC will disappear

so that the system will achieve the double QHC step of 16 e2/h. Such a large QHC step

is unique for the AB-AB TDBLG, which has not been reported for other graphene-related
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materials. Our prediction of the filling factors can be examined by transport measurements,

as done for MLG and AB BLG.

B. Magic angle

1. Twisted bilayer graphene

The band structure of TBLG at the magic angle θ = 1.08o, shown in Fig. 9(a), is

calculated by using four-band TBM (see Appendix A). This method has been demonstrated

before as being suitable for generic TG with small twist angle [37]. The four low-lying bands

present a linear dispersion near the K and K ′ points as well as the saddle points near the

M point. These two pairs of valence and conduction energy bands are nearly overlapping

around the K and K ′ points while they split along ΓM . It is important to notice that the

K and K ′ points here are no longer equivalent like in the case of MLG and AB BLG. This

is because the small θ greatly changes the crystal symmetry and consequently the electronic

properties of the system.

The Φ-dependent LL energy spectrum is quite different from that of MLG with more

complicated features, referring to Fig. 9(b) . This results from significant couplings between

two graphene layers, in contrast with the TBLG with larger twist angle. The two LLs in

the vicinity of zero energy are separated by a small gap for a wide range of Φ. Under an

external magnetic field, the LL degeneracy is lifted and reduced from eight-fold to four-fold.

As an exception, the n = 0 LLs are doubly degenerate due to the non-equivalence of the

K and K′ valleys. Therefore, the sequence of filling factors includes both the four-fold-

degenerate states and spin-valley broken-symmetry states. Particularly, the LLs at higher

and lower energies remain split slightly. Such a LL splitting is stronger for higher Φ. This

points out that the TBLG with a small θ becomes more sensitive to magnetic field compared

with other systems with a large θ. Remarkably, the combination of Peierls substitution and

tight-binding model employed in this work reveals perspicuous B dependence of LLs at weak

fields, which is consistent with the experimental results [9–11, 23] and calculations by using

the continuum model [12, 13]. Beyond that, our theoretical method allows one to explicitly

analyze the vertical transition channels between occupied and unoccupied LLs. This is
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FIG. 9. (color online) (a) Band structure of TBLG at the magic angle θ = 1.08o from 4-band

model. The valley eigenvalues of the effective Hamiltonian of K and K ′ are shown as the red and

blue lines, respectively. (b) Φ-dependent LLs at low energies. The vertical arrows indicate the

inter-LL transitions. (c) Wave-function amplitudes for nc,v = 0 and nc = 1 at B0 = 0.001φ0, and

(d) EF -dependent QHC. The arrows in (d) show the discrete plateaus coming from the vertical

transitions between LLs as indicated in (a).
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crucial for exploring the optical and transport properties of graphene-based materials.

The probability distributions for four sublattices present well-defined oscillation modes,

as observed from Fig. 9(c). They are equivalent on A and B atoms. The LLs with the

same zero modes, which are dominated by atoms on the first (A1 and B1) and second (A2

and B2) graphene layers, are separated by a narrow energy spacing. Generally, LLs having

n ≥ 1 zero modes are found possessing n − 1 zero modes at the same time, which allows

vertical transitions between the nc,v = n, n ± 1 LLs. Consequently, the QHC exhibits the

step structure of 4me2/h, as presented in Fig. 9(d). Especially, the ±2e2/h steps near the

zero energy, referring to the zoom-in of Fig. 9(d), correspond to the doubly degenerate n =

0 LLs. This feature is qualitatively similar to that of AB BLG, except that the plateaus

here are three orders of magnitude smaller. We emphasize that the calculated magnetic-

field-dependent LL spectrum and filling factors are in good agreement with the experimental

results at the magic angle [9–11, 23]. Note that, the filling factors of ±1 and ±3 reported

in refs. [9, 10] might be induced by the LL splitting due to the effect of substrates. This

implies the reliability of our newly developed theoretical method.

2. Twisted double bilayer graphene

The band structure of TDBLG at magic angle θ = 1.248o shown in Fig. 10(a) was

calculated by employing the 4-band effective TBM [37]. The main features of the energy

dispersion is rather complex with multiple extreme points of both valence and conduction

bands. Two pairs of conduction and valence bands completely split except for the crossing

points at Γ and M . This implies the non-equivalence of the K and K ′ valleys due to the

robust coupling between two component BLG. Moreover, the contour-energy diagram (insert

of Fig. 10(a)) shows the indirect overlap between the valence and conduction bands.

The complex band structure leads to a tangled Φ-dependent LL spectrum, as presented in

Fig. 10(b). There exists a very high density of LLs in a small energy range at low magnetic

field. The valence and conduction LLs overlap over a certain range of energy, corresponding

to the indirect overlap of the zero-field bands. The interaction between these LLs results in

the anti-crossing phenomenon, as marked by the green oval for the nv = 0 and nc = 1 LLs.

This causes the splitting of degenerate LLs even at small Φ. The probability distribution

on the dominated sublattices of LLs exhibits well-behaved wave function modes, as shown
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FIG. 10. (color online) (a) Band structure of TDBLG at the magic angle θ = 1.248o from 4-

band model. The valley eigenvalues of the effective Hamiltonian of K and K ′ are shown as the

red and blue lines, respectively. The insert presents the contour-energy diagram at low energy

(b) Φ-dependent LLs at low energies. (c) Wave-function amplitudes for nc = 0 and nc = 1 at

B0 = 0.001φ0, and (d) EF -dependent QHC.

in Fig. 10(c) for the nc = 0 and 1 LLs. The available inter-LL transition gives rise to the

formation of corresponding QHC step structure.

The QHC presents a step structure with many plateaus in a narrow energy range, referring

to Fig. 10(d). We observe the QHC plateaus at filling factors 0, 2, ±3, ±5, and so on. Such

unorganized sequence of plateaus is different from those of the explored layered graphene

and TG. This can be explained by the splitting of LLs due to anti-crossing. The complex
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series of filling factors for TDBLG at magic angle has been examined in previous studies [17],

though our calculated QHC is not identical to the reported results. In fact, the LL filling

factors depend significantly on the magnetic field. Furthermore, we find that the effective

TBM plays an important role in the study of QHC. Therefore, the inconsistency between

our theoretical result of QHC and transport experiments might also be related to certain

assumptions of the 4-band effective TBM of TDBLG which we used in the calculation. This

raises an issue for the study of QHC by using the effective TBM. The constructed model

Hamiltonian needs to be able to properly describe the system regarding the symmetries and

interactions.

IV. CONCLUDING REMARKS

In a nutshell, we have developed an important methodological theory by combining the

generalized Peierls substitution with Bloch-basis TBM to reliably calculate the magnetic

quantization and QHE in TMLG. We have demonstrated that this method can efficiently

solve the huge Hamiltonian matrix of TBLG and TDBLG in the presence of an applied

magnetic field. For hetero-structures with large twist angles, the Bloch-basis TBM has

been employed in order to reduce significantly the size of Hamiltonian matrix. We have

further developed a simplified four-band TBM for the twisted system at the magic angle.

By properly substituting the generalized Peierls phases into the TBM, we have successfully

calculated the field-dependent LLs, the LL distribution probability, and the QHC of TG

for both large angle and magic angle. We emphasize that our theoretical prediction of LL

spectra and filling factors are in good agreement with the experimental results. We also

pointed out the issue remained to be solved for the QHE study by using effective TBM.

A notable accomplishment of this work is that we are able to provide incontrovertible

explanations for the occurrence of QHC step structures by means of the unique selection

rule for the inter-LL transitions based on analyzing the node structure of LL wave functions.

This work opens up an opportunity for deciphering the interplay between an external mag-

netic field and the twisting effect on layered graphene. Remarkably, our newly developed

theoretical method can be used to investigate the magnetic quantization of other complex

systems, such as TG and substrates, other twisted hetero-structures, topological materials

with both bulk and surface states. A deep understanding of QHC of various condensed
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matter systems is expected to be established.
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Appendix A: Effective tight-binding model

Physically, our proposed Bloch basis used in the TBM for calculating the LLs of TBLG

can be extended to other twisted structures with arbitrary twist angle θ, e.g. TDBLG and

twisted graphene on substrates. Technically, however, if the twist angle is sufficiently small,

e.g. the magic angle, the primitive unit cell becomes sizable so that the field-extended unit

cell is too large for numerical computations. In addition, the smaller the twist angle is, the

weaker the magnetic field is needed to quantize electronic states into LLs. As a result, a

lower limit is expected for a twist angle in studying magnetic quantization with TBM. Here,

we propose using an effective TBM for exploring LL dynamics together with QHE in TBLG

and TDBLG at the magic angle.

We construct an effective four-band TBM for TMG based on the Wannier TBM for few-

layer graphene (FLG) and continuum model, following the refs. [35, 37]. The low-energy

Hamiltonian for TG is built up with 2× 2 block-diagonal elements [35], where each block rep-

resents Bloch waves of individual MLG at various momentum states. These block-diagonal

elements are coupled to one another through interlayer interactions. Such couplings break

down the translation symmetry of graphene unit cell so that the new supercell is required

for TG. Here, the reciprocal lattice of this supercell is utilized to transform the MLG block

from a real-space basis to a momentum basis. The chiral decomposition has been demon-

strated for few-layer graphene (FLG) and TG [37], in which a general stacking sequence can

be structurally decomposed into several partitions with a chirally stacking order. Conse-

quently, the low-energy states of a FLG can be well described by the sum of subspaces in

terms of the so-called “pseudospin doublets”. For TG, these pseudospin doublets include

the renormalized four flat bands and the remaining ones. Let us consider a general TG with

N top-layers and M-bottom layers with small twist angles ±θ/2, respectively. The Wannier
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tight-binding model can be written as

Hmn(R) =
1

Nk

∑
k

e−ik.R〈ψmk|EkI|ψnk〉, (A1)

where Ek is the eigenvalue and ψmk is the Bloch sum function. They can be obtained from

the effective continuum model

Ĥ(k) = Ĥ0(k) + ĤT . (A2)

Here, Ĥ0(k) is the Hamiltonian of the FLG in the top and bottom of a TG and ĤT describes

the effective twisted interlayer coupling.

The initial guess for the Bloch sum functions is

|ψ(0)
nk 〉 =

∑
m

|Ψmk〉〈Ψmk|gn〉, (A3)

in which, |Ψmk〉 is the Bloch state and |gn〉 is the initial Wannier function (WF). For the

low energy states, we have

|Ψmk〉 =
∑
ξ;τ,l

∑
G

C
(ξ;τ,l)
nk (G)|Ψ(ξ;τ,l)

klξ+G
〉. (A4)

In this notation, ξ ≡ ξ± = ±1 denotes the graphene valleys, τ = τα, τβ is graphene sublattice

degree of freedom, l stands for the layer index measured from the bottom to the top. G =

n1G1 + n2G2 is the reciprocal lattice vector for TG (G1,2 are the two components), and

klξ is the TG valleys. Note that, C
(ξ;τ,l)
nk (G) can be calculated by diagonalizing the effective

continuum model. On the other hand, the Bloch sum functions can be written explicitly as

|Ψ(ξ;τ,l)

klξ+G
〉 =

∑
L,R

ei(k
l
ξ+G).D[sign(d) θ

2
](L+R+d)|τα, l,L + R + d〉. (A5)

Here, klξ = k + KFLG
ξ −Kl

ξ is the wave vector of graphene, where k is the TG wave vector,

and KFLG
ξ is the graphene valley. L stands for the emerged moiré pattern, R represents

the graphene lattice; d = dd0ẑ denotes the layer stacking distance where d0 is the distance

between two graphene layers and d is the layer index measured from the bottom to the top.

D[sign(d) θ
2
] indicates a twist angle θ

2
for the top partition and − θ

2
for the bottom partition.

The Hamiltonian matrix elements of the effective continuum model can be expressed as

〈Ψ(ξ;τα,l)

klξ+G
|Ĥ(k)|Ψ(ξ;τβ ,l

′)

k′l
′
ξ +G′

〉 = 〈Ψ(ξ;τα,l)

klξ+G
|Ĥ0(k)|Ψ(ξ;τβ ,l

′)

k′l
′
ξ +G′

〉+ 〈Ψ(ξ;τα,l)

klξ+G
|ĤT |Ψ

(ξ;τβ ,l
′)

k′l
′
ξ +G′

〉

= δξξ′δsign(l),sign(l′)δGG′ ×
∑
R

ei(bfk
l
ξ+G).R〈τα, l, 0 + d||τβ, l′,R + d′〉

+δξξ′δl=±1,l′=∓1 × [T1δG,G′ + T2δG,G′+ξG1 + T3δG,G′+ξ(G1+G2)]. (A6)
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The matrices T1,2,3 read as

T1 =

u u′

u′ u

 ,

T2 =

 u u′ω−ξ

u′ωξ u

 ,

T3 =

 u u′ωξ

u′ω−ξ u

 ,
in which, ω = e2πi/3; u = 0.0797 eV and u′ = 0.0975 eV describe the relaxation effect.

The WFs of a TG can be constructed from the pz orbitals together with an envelope

function. If the twisted interlayer coupling is negligible, the low-energy Bloch states can be

regarded as the folded band structure of FLG. The WFs can be expressed as

|gn〉 =
1

2

∑
ξ

∑
τ,l,L,R

eiK
FLG
ξ .rf (ξ,τ,l)

n (r)|τ, l,L + R + d〉. (A7)

In this notation, eiKξ.r is the a high frequency factor, |τ, l,L + R + d〉 is the pz orbital.

f
(ξ,τ,l)
n (r) is the smooth envelope function in moiré length scale, in which n stands for the

index of the WFs. Note that, the system preserves the time-reversal symmetry for the two-

valley TBM. We consider the real-value WFs by setting the limit f
(ξ+,τ,l)
n = f

(ξ−,τ,l)
n ≡ f

(τ,l)
n .

The initial condition of WFs can be established by using the constraint f
(τα,−1)
1 (r) = G(r−

rhex1 ), f
(τβ ,−1)
2 (r) = G(r−rhex2 ), f

(τβ ,1)
3 (r) = −G(r−rhex1 ), and f

(τα,−1)
4 (r) = −G(r−rhex2 ) with

G(r− rhexi ) being the Gaussian function localized at the hexagonal site. These initial WFs

satisfy the orbital character (flat bands) and lattice symmetry (hexagonal site symmetry,

sublattice equivalence, and C2x symmetry). In order to select the real-valued WFs, we set

the limit f
(ξ+;τ,l)
n = f

(ξ−;τ,l)
n = f

(τ,l)
n , for which the equivalence of the two valleys is established.

Then,

|gn〉 =
1

2

∑
τ,l,L,R

cos(KFLG
ξ .r)f (τ,l)

n (r)|τ, l,L + R + d〉. (A8)

Therefore, the initial guess for the Bloch sum functions is now obtained by inserting the

Bloch states from Eq. (A5) and the WFs from Eq. (A8) into Eq. (A3). Now we take the
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singular value decomposition of ψ
(0)
nk , it reads

|ψ(1)
nk 〉 =

∑
m

|Ψmk〉(AkS
−1/2
k )mn, (A9)

where

Ak = UkΣkV
†
k ,

S
−1/2
k = Vk

1√
Σ†kΣk

V †k .

The Bloch sum functions can be obtained by projecting ψ
(1)
nk onto the subspace spanned by

flat bands as done for the Bloch bands in ref. [58]. Particularly,

|ψnk〉 = Pf.b.k |ψ
(1)
nk 〉 (A10)

with

Pf.b.k =
∑
n

|Ψf.b.
nk 〉〈|Ψ

f.b.
nk |.

The number of k states is properly truncated so that it is sufficient to cover the main

features of electronic property of TG. In fact, our effective TBM can reproduce well the

band structures from the DFT method for arbitrary twist angles near the magic angle.

Furthermore, the magnetic-field effect is considered by adding the Peierls phases to the

effective Hamiltonian in the Bloch basis. In this way, the effective TBM enables to reduce

significantly the computational cost, making the calculations of LLs at the magic angle

practical.

Appendix B: Kubo formula

By assuming a weak applied DC electric field for electron transport, one can use a linear-

response theory (or Kubo formula) to calculate conductivity. Here, we employ the Kubo

formalism in our studies of the QHE in graphene-based twisted systems. The expression for

the DC quantum Hall conductivity QHC can be written as [59]

σxy =
ie2~
S
∑
α

∑
β 6=α

(fα − fβ)

[
〈α|u̇x|β〉〈β|u̇y|α〉
(Eα − Eβ)2 + Γ2

]
. (B1)

In Eq. (B1), S stands for the area of field-extended unit cell, Eα(β) and |α(β)〉 are, respec-

tively, the eigen-values and eigen-functions of the Hamiltonian in Eq. (3), fα(β) = {1 +
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exp{(Eα(β) −EF )/kBT}}−1 is the Fermi-Dirac distribution function at temperature T with

Fermi energy EF , and Γ (∼ 1 meV) is the lifetime broadening of electrons. u̇x(y) is the

velocity operator along the x(y) direction. The velocity matrix element 〈α|u̇x(y)|β〉 can be

computed using the gradient approximation of the forms [60]

〈α|u̇x|β〉 ≈
1

~

〈
α

∣∣∣∣∂H∂kx
∣∣∣∣ β〉 , (B2)

〈α|u̇y|β〉 ≈
1

~

〈
α

∣∣∣∣∂H∂ky
∣∣∣∣ β〉 . (B3)

It is noted from Eq. (B1) that a system has a finite QHC as both factors in Eqs. (B2) and

(B3) are non-vanishing. This condition can only be satisfied if the wave functions of the

initial and final states in transition acquire the same oscillation mode. Such a selection rule

for excitation will be extensively discussed for each system introduced in Section III.

Appendix C: Monolayer graphene and AB bilayer graphene

The band structure of a monolayer graphene consists of six Dirac cones at the corner

points (K and K ′) of the hexagonal first Brillouin zone. The valence and conduction bands

meet at the Dirac points, making monolayer graphene a gapless semiconductor. Both the

upward and downward cones are isotropic in k space and they are mostly symmetric in the

vicinity of Fermi energy (EF = 0). However, these cones become anisotropic at sufficiently

high energies, as seen in Fig. 11(a). On the other hand, AB bilayer graphene possesses

two pairs of asymmetric valence and conduction bands, as displayed in Fig. 11(b). Such an

asymmetry in the bands results from the breaking down of lattice-mirror symmetry in the

Bernal stacking. Moreover, the pair of subbands closer to EF = 0 are overlapped slightly, as

shown in the insert of Fig. 11(b). For both monolayer graphene and AB bilayer graphene,

our TBM prediction for low-lying bands is in good agreement with those calculated using

DFT method [61, 62] and experimental measurements [63–65] as well.

The LLs of MLG exhibit a unique field-dependent spectrum, as found from Fig. 12(a).

The zeroth LL, which is flat and non-dispersive at zero energy, is independent of magnetic

field strength B0. At higher and deeper energies, LLs resulting from the linear bands present

a proportional relationship with B0, i.e., En ∝
√
nB0. Regarding the gap between two
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(a)
Monolayer

(b)
AB bilayer

FIG. 11. (color online) Band structures of (a) monolayer graphene and (b) AB bilayer graphene

along the high symmetry points M,K and Γ.

nearest-neighbor LLs, it decreases at higher or deeper energies, which is associated with the

nature of Dirac-cone band structure. With increasing B0, this gap is enlarged gradually.

Figs. 12(b-I) through 12(b-IV) show the probability distribution (square of wave function,

|Ψ|2) of the A and B atoms for the nc,v = 0 and nc = 1 LLs. Here, each LL is four-fold

degenerate due to the lattice symmetry and spin interaction [66]. For the degenerate LLs,

the probability distribution is identical for the spin-up and spin-down states. On the other

hand, the equivalence of A andB sublattices gives rise to two different configurations for |Ψ|2,

e.g., one of them is dominated by A atom [see Figs. 12(b-I) and 12(b-III)] while the other is

governed by B atom [Figs. 12(b-II) and 12(b-IV)]. The index of each LL, which is determined

from the number of zero-modes for the dominant sublattice, plays an important role in

revealing a selection rule for the inter-LL transitions in transport and optical properties.

The EF -dependent QHC of MLG displays a unique step structure, as presented in

Fig. 12(c), following the sequence of 4(m− 1/2)e2/h in which m is an integer. Interestingly,

the σxy = 0 plateau is missing due to the quasi-particle excitation in graphene. Specifi-

cally, the nc,v = 0 LL exhibits both electron-like and hole-like characteristics, leading to

unusual half-integer QHE in graphene. The arrows in Fig. 12(c) show the discrete plateaus

resulting from the corresponding vertical transitions between LLs indicated in Fig. 12(a).

For example, the plateau for σxy = 2 e2/h is connected to the excitation from nc,v = 0 to

nc = 1 LLs. We further observe that the nc = 1 LL consists of both the n = 0 and n = 1

modes of probability distribution, as seen in Figs. 12(b-I) and 12(b-II). Therefore, the nc,v
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FIG. 12. (color online) (a) Magnetic-field-dependent LL energies of monolayer graphene. The

notations nc,v (= 0, 1, 2, · · · ) stand for the conduction and valence LLs, respectively, where n is the

index of LLs relating to the number of zero nodes in corresponding wave functions. The vertical

arrows indicate the inter-LL transitions. (b-I) through (b-IV) present the magnitudes of wave

functions with respect to nc,v = 0 and nc = 1. (c) Fermi-energy-dependent QHC at B0 = 30 T.

The arrows in (c) show discrete plateaus in correspondence with vertical transitions between LLs

in (a).

= 0 → nc = 1 transition produces a nonzero value for the velocity matrix element terms in

Eq. (B1), which yields a finite QHC. In general, the selection rule for excitation is defined

as ∆n = |nf − ni| = 1, where ni and nf stand for the LL indices with respect to the initial

and final states, respectively. Moreover, the size of QHC plateaus becomes smaller for larger

and deeper EF , in agreement with alteration of LL energy spacing. The half-integer QHE in

graphene has been suggested by different theory groups [67–69] and verified by experimental

measurements [70, 71]. The quantization obtained by our computation method is in accord

with previous theoretical and experimental studies for monolayer graphene, indicating the

suitability of our proposed model theory in calculating the QHE of this system. Most impor-

tantly, our theoretical method enables a thorough explanation for the occurrence of unique

QHC step structures.

For AB BLG, the B0-dependent LL spectrum can be classified into two distinct groups,

appearing as blue (nc,v1 ) and red (nc,v2 ) lines in Fig. 13(a), corresponding to two pairs of

conduction and valence energy bands. Both LL groups, excluding the nc,v1 = 0 at zero
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FIG. 13. (color online) (a) B0-dependent LLs of AB bilayer graphene. The vertical arrows indicate

the inter-LL transitions. Panels (b-I) through (b-IV) present the wave functions squared for nc,v = 0

and nc = 1. (c) EF -dependent QHC at B0 = 30 T. The arrows in (c) show discrete plateaus coming

from vertical transitions between LLs in (a).

energy, possess a linear dependence on magnetic field strength B0. The physical properties

at low energies are largely dominated by the nc,v1 group. Similar to MLG, LLs are four-

fold degenerate here. Of special interest is the slight overlap of low-lying pair of energy

bands, which results in peculiar LLs near zero energy, e.g., spectrum asymmetry and small

splitting of the nc,v1 = 0 and nc1 = 1 LLs. In fact, these two LLs overlap as the magnetic

field is sufficiently weak (B0 ≤ 10 T), but split otherwise. Their probability distributions

on A and B sublattices of the first (A1 and B1) and second (A2 and B2) graphene layers

are displayed in Fig. 13(b). Interestingly, the probability distribution for each LL is strongly

dominated by either B1 or B2 sublattice. The minor role of A atoms might be accounted

for by suppression of spin-orbital-coupling for A1 and A2 sublattices due to their identical

(x, y)-projection.

AB BLG has a unique EF -dependent QHC spectra, whereby the plateaus appear at

4me2/h, as clearly demonstrated in Fig. 13(c). We notice that the nc1 = 1 LL contains both

n = 0, 1 oscillation modes although the n = 0 mode exhibits a relatively small amplitude.

This facilitates the excitation between nc,v1 = 0 and nc1 = 1 LLs, giving rise to a QHC plateau

at zero energy, as indicated by purple arrows in Figs. 13(a) and 13(c). The AB BLG goes

along with the selection rule ∆n = 1 for transitions, similar to that of MLG. The narrow

QHC plateau, corresponding to nc,v1 = 0→ nc1 = 1 transition, is correlated with the energy

34



difference between these two LLs, and therefore it will vanish for very small B0. It is worth

mentioning that the energy splitting between the nc,v1 = 0 and nc1 = 1 LLs is infinitesimal for

laboratory magnetic field so that it could not be resolved by transport measurement. Our

numerical calculations show that AB BLG exhibits a special QHC step of 8e2/h at a suitable

field strength when both nc,v1 = 0 and nc1 = 1 LLs are filled. This signifies the consistency

between B0-dependent LL spectrum and QHC. Our predicted filling factors of ±4, ±8, · · ·

are found identical to those in previous theoretical [69, 72] and experimental [70] verification.
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