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In this work, we study the in-plane optical phonon modes of current-carrying single-layer graphene
whose coupling to the π electron gas is strong. Such modes are expected to undergo a frequency shift
compared to the non-current-carrying state due to the non-equilibrium occupation of the Dirac cone
electronic eigen-states with the flowing π electron gas. Large electron-phonon coupling (EPC) can
be identified by an abrupt change in the slope of the phonon mode dispersion known as the Kohn
anomaly, which mainly occurs for (i) the in-plane longitudinal/transverse optical (LO/TO) modes
at the Brillouin zone (BZ) center (Γ point), and (ii) the TO modes at the BZ corners (K points). We
show that the breaking of the rotational symmetry by the DC current results in different frequency
shifts to the Γ-TO and Γ-LO modes. More specifically, the DC current breaks the TO-LO mode
degeneracy at the Γ point which ideally would be manifested as the splitting of the Raman G peak.

PACS numbers: 63.22.Rc, 63.20.kd, 72.80.Vp, 74.25.nd

I. INTRODUCTION

Recently, growing interest in studying the impact of
DC current on surface plasmon polaritons (SPPs) in
graphene [1] has emerged on both theoretical [2–13] and
experimental [14, 15] fronts. The current-driven drag of
SPPs can be described by the non-equilibrium (NE) elec-
tromagnetic response of the flowing π electron gas [2–7].

The flow of the π electron gas also alters the static di-
electric screening properties [4]; therefore, the screening
of the “electrostatic” interaction among the positively-
charged carbon ions is altered by DC current. This trans-
lates into the modification of the “spring constant” of the
carbon pairs due to their immersion in the flowing π elec-
tron gas. Ultimately, this hints at the possibility that the
phonon mode frequencies in graphene could be impacted
by DC electric current.

The phononic dispersion of graphene can be calculated
by constructing the dynamical matrix based on a purely
ionic potential [16–21] which leads to the bare phonon
frequencies. However, the screening of the inter-ionic
Coloumb interaction due to the π electron gas must be
taken into account which leads to the renormalization
of the bare phonon frequencies [22–24]. Such renormal-
ization is the main mechanism through which certain
phonon modes are impacted by DC current, and the pro-
posed effect will be discussed in detail in this paper.
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Graphene is described by a two-atomic unit cell repeat-
ing in two dimensions [25], which leads to the emergence
of 6 phonon modes corresponding to the 6 degrees of
freedom of this 2-atom building block [18]. We represent
these modes by (ν, q) with ν and q being respectively the
branch index and the momentum vector of the phonon
mode. Formally, these phonon modes can be obtained by
solving the DDD(q) · êν,q = ω2

ν,qêν,q eigen-value equation,
with DDD(q), êν,q and ων,q being respectively the 6× 6 dy-
namical matrix, the 6-dimensional mode eigen-vector and
the mode eigen-frequency, i.e., mode frequency [26, 27].

As shown in Fig. 1, Γ and Kj points (j = 1, . . . , 6)
represent the center and the six corners of the hexago-
nal first Brillouin zone (FBZ), respectively. The phonon
modes of interest in this work include the in-plane
longitudinal/transverse optical phonon modes at the Γ
point (Γ-LO/Γ-TO) and the in-plane transverse optical
phonon modes at the Kj point (Kj-TO) [28]. Since the
electron-phonon coupling (EPC) is large only for these
modes [22], the impact of the flowing π electron gas,
which can be regarded as a perturbation to EPC, is also
expected to be non-negligible only for these modes. The
out-of-plane optical (ZO) phonon modes are not expected
to be affected by DC current due to their weak coupling
to the Dirac fermions in graphene [29–31], and only in
quasi-freestanding graphene epitaxially grown on Pt(111)
the ZO branch has been reported to exhibit signatures of
large EPC in the vicinity of the Γ point [31]. The phonon
modes which are the focus of this work are denoted in the
(ν, q) representation as follows,

Γ-LO : (LO, q = 0) ,

Γ-TO : (TO, q = 0) ,

Kj-TO : (TO, q = Kj) ;j = 1, . . . , 6.
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FIG. 1. (Color online) The two-dimensional reciprocal space
corresponding to the honeycomb lattice of carbon atoms in
real space. The hexagon colored in light red shows the first
Brillouin zone, and the three rhombi colored in light green
show the other choices of summation domain in computing
the relevant quantities. The dashed circles represent the
(un)occupied eigen-states in the (valence) conduction band of
(p-)n-doped graphene. The gray-filled circles show their coun-
terpart in the presence of DC current along the ŷ direction.
In general, the shift of the circles, which is parallel to the DC
current, does not have to be along ŷ and can be in any arbi-
trary direction. The horizontal and vertical axes respectively
describe the x and y components of the crystal momentum,
k, corresponding to each point in k-space in units of 2π/3a
with a ∼= 0.142 nm being the carbon-carbon bond length.

The interaction of a phonon mode, (ν, q), with the π elec-
tron gas leads to (i) the renormalization of its frequency,
ων,q, and (ii) the emergence of a finite broadening, γν,q.
The creation and annihilation of electron-hole pairs in the
π–π∗ bands arising from the scattering processes involv-
ing the (ν, q) phonon mode leads to a phonon self-energy,
Πν,q, and the electron-phonon interaction shall thus be
discussed via Πν,q. The resulting frequency renormaliza-
tion and uncertainty are expressed by [32, 33],

~ων,q = ~ωB
ν,q + Re[Πν,q] (1)

~γν,q = ~γB
ν,q − Im[Πν,q] , (2)

with ωB
ν,q and γB

ν,q being respectively the frequency and
broadening of the (ν, q) mode of undoped graphene
wherein the eigen-states in the valence band are all oc-
cupied and the eigen-states in the conduction band are
empty [32]. The quantity γB

ν,q denotes the residual broad-
ening of the (ν, q) mode due to its involvement in scatter-

ing processes such as (i) phonon-phonon (anharmonic ef-
fects) [34], (ii) phonon-impurity, and (iii) phonon-defect.

Introducing a small DC current to the π electron gas
can be modeled as a perturbation to the self-energy. Such
current-induced perturbation, δΠν,q, can be obtained by
subtracting the self-energy computed in the absence of
DC current, Π(0)

ν,q, from its NE value [35], i.e.,

δΠν,q = Πν,q −Π(0)
ν,q. (3)

As a result, Eqs. (1) and (2) can be re-written into

~ων,q =

~ω(0)
ν,q︷ ︸︸ ︷

~ωB
ν,q + Re

[
Π(0)
ν,q

]
+Re[δΠν,q] (4)

~γν,q = ~γB
ν,q − Im

[
Π(0)
ν,q

]︸ ︷︷ ︸
~γ(0)
ν,q

−Im[δΠν,q] , (5)

with ω(0)
ν,q and γ(0)

ν,q being respectively the frequency and
broadening of mode (ν, q) in the absense of DC current.

Raman spectra of current-carrying graphene have been
measured in Refs. 36–39 where the variation in the po-
sition and/or bandwidth of the G and G′ peaks with
respect to the drain-source voltage have been mainly at-
tributed to Joule heating; however, no attempt has been
made to isolate the impact of the electron flow on these
Raman features. In principle, as the sample heats up due
to Joule heating, such isolation could be achieved by con-
tinuously cooling down the sample to maintain a sample
temperature independent of the drain-source voltage.

In this paper, we investigate the direct (non-thermal)
contribution of DC electric current to the position and
bandwidth of the Raman G peak at a given temperature.
This contribution is solely due to the asymetric nature of
the occupation of the eigen-states around Dirac cones by
the π electron gas in its current-carrying state. The in-
plane optical phonon modes of graphene at the center and
corners of its FBZ are known to be responsible for the G
and G′ features, respectively [40]. Therefore, the impact
of DC current on these Raman features can be quantified
by computing the current-induced perturbation to the
self-energy, δΠν,q, for the responsible phonon modes, i.e.,
the Γ-LO, Γ-TO and Kj-TO modes (j = 1, . . . , 6).

The generalized formalism to compute the phonon
mode renormalization will be explicitly discussed in Sec-
tion II. In Sec. III, a method will be introduced to approx-
imately describe the occupation of the eigen-states within
the valence and conduction bands by the flowing π elec-
tron gas. In Sec. IV, the computation of the DC-current-
induced frequency shift and broadening for the LO and
TO modes at the Γ point will be discussed along with the
numerical results. The same analysis will be repeated for
the TO modes at the Kj points (j = 1, . . . , 6) in Sec. V.
The experimental manifestation of such current-induced
modification to the these phonon modes will be discussed
in Sec. VI. The findings of this paper will then be sum-
marized in Sec. VII followed by concluding remarks.
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II. SELF-ENERGY FORMALISM

Within the second-order perturbation theory, the self-
energy of the (ν, q) phonon mode due to its interaction
with the π electron gas is given by the following integral
over the FBZ (i ≡

√
−1) [32, 33, 41, 42],

Πν,q =
gS

AFBZ

∫
FBZ

d2k
∑
s,s′=±

[
F

[ν]
s,s′(k, q)

nF[Es′(k+q), EF]− nF[Es(k), EF]

Es′(k+q)− Es(k)−~ [ων,q+iγν,q]

]
,

(6)

with gS = 2, AFBZ = 2
3
√

3

[
2π
a

]2 and nF[E,EF] denoting
the spin degeneracy, the area of the FBZ and the Fermi-
Dirac (FD) distribution function given by

nF[E,EF] =

[
1 + exp

(
E − EF

kBTe

)]−1

, (7)

where Te and EF respectively denote the temperature
and the Fermi energy of the π electron gas, and kB is
the Boltzmann constant. The function Es(k) yields the
energy eigen-value of the |k, s〉 eigen-state of the conduc-
tion (s=+1) or valence (s=−1) band. The tight-binding
(TB) model yields Es(k) in terms of the hopping parame-
ters corresponding to the nearest-neighbor (NN) and the
next-nearest-neighbor (NNN) carbon atoms in graphene,
respectively denoted by t ∼= 2.7 eV and t′ ∼= −0.2t [25],

Es(k) ∼= st
√

3 + f(k)− t′f(k) , (8)

where f(k) is given as follows [25],

f(k) = 2 cos
[√

3kya
]

+ 4 cos
[√3kya

2

]
cos
[3

2
kxa
]
, (9)

with a ∼= 0.142 nm and k = kxx̂ + kyŷ respectively be-
ing the carbon-carbon bond length in graphene, and the
crystal momentum vector measured with respect to the
Γ point. The expression given by Eq. (9) is valid for the
choice of unit vectors, x̂ and ŷ, shown in Fig. 1.

In addition, F
[ν]
s,s′(k, q) = |〈k + q, s′|∂ν,qV |k, s〉|2 de-

notes the electron-phonon scattering amplitude between
the |k, s〉 and |k + q, s′〉 eigen-states due to interac-
tion with the (ν, q) phonon mode, where ∂ν,qV is the
derivative of the electronic Kohn-Sham potential with re-
spect to the atomic displacement along the mode eigen-
vector êν,q [19, 22, 23, 43]. The coupling between elec-
trons and phonons in graphene can be understood from
the TB model perspective by noting that the carbon-
carbon bond length in graphene is modulated by the
phonon modes, and the scattering amplitude obtained
from the TB model reflects the impact of the phonon-
induced bond length modulation on the NN hopping pa-
rameter [27, 32, 44, 45]. In the following sections, the
electron-phonon scattering amplitude corresponding to
the (LO, q = 0), (TO, q = 0), and (TO, q = Kj) modes

will be discussed in more detail and the self-energy inte-
gral given by Eq. (6) will be simplified accordingly.

Since ωB
ν,q is the mode frequency of neutral graphene, it

already contains the contribution of the π electron gas at
ground state. Therefore, in applying Eq. (1) to the case
of neutral graphene at ground state, i.e., ων,q = ωB

ν,q,
the term Re[Πν,q] is expected to vanish. However, for
undoped graphene (E(0)

F = 0) at Te = 0 K, the self-energy
integral in Eq. (6) yields the following nonzero value,

ΠVE

ν,q
∼= −2

gS

AFBZ

∫
FBZ

F
[ν]
+,−(k, q) d2k

E+(k+q)− E−(k)
, (10)

where VE stands for Virtual Excitations; a term used in
Ref. 32 to refer to this contribution. Since the integration
cutoff energy is much larger than ~ωB

ν,q, for the majority
of the integration domain |E+(k+q)−E−(k)| � ~ωB

ν,q is
satisfied. For this reason, one can ignore ων,q+iγν,q in the
denominator of the integrand in Eq. (6); hence the term
virtual excitations. Therefore, to avoid double-counting
in Eqs. (1) and (2), the self-energy given by Eq. (6) should
be redefined according to Πν,q → Πν,q −ΠVE

ν,q [32, 41].
As suggested by Eq. (3), the current-induced perturba-

tion to the self-energy can be obtained by subtracting the
self-energy computed in the absence of DC current, Π(0)

ν,q,
from its value computed in the presence of DC current,
Πν,q. Clearly, since the contribution due to the virtual
excitations does not depend on the presence of DC cur-
rent, DC-current-induced perturbations do not contain
any contribution due to the virtual excitations.

It is worth noting that the set of Eqs. (1), (2) and (6)
could, in principle, be solved self-consistently. However,
owing to the perturbative nature of self-energy, our re-
sults did not change considerably in the second iteration
of calculations. Therefore, in calculating the self-energy
integral, we start with ων,q = ωB

ν,q and γν,q = γB
ν,q in

Eq. (6), and the corrected values for ων,q and γν,q ob-
tained from Eqs. (1) and (2) will not be inserted back
into Eq. (6) for the second step of calculations.

III. THE NON-EQUILIBRIUM STATE OF THE
FLOWING π ELECTRON GAS

A. Modeling the non-equilibrium occupation

Similar to the approach taken in Refs. 4 and 7, in the
absence of DC electric current, the FD distribution func-
tion in the phonon self-energy integral given by Eq. (6)
should be used with the equilibrium-state Fermi energy,
i.e., E(0)

F =±~vF

√
πns, with ns being the density of elec-

trons injected into (E(0)
F > 0) or pulled out of (E(0)

F < 0)
the graphene sample, and ~vF is the slope of the Dirac
cones. Applying drain-source voltage along the graphene
channel drives the π electron gas out of equilibrium, and
the resulting NE occupation of the eigen-states in the va-
lence and conduction bands can be calculated using the
Boltzmann transport equation (BTE) [46–48]. A simpler



4

alternative approach is to employ the phenomenological
shifted Fermi disk (SFD) model [49] which estimates the
NE electronic occupation of current-carrying graphene
with the FD distribution function when used with an
angle-dependent Fermi energy. This model consistently
describes the occupation of the electronic eigen-states in
the vicinity of the FBZ corners. To elaborate, we first
define θk to be the angle between the crystal momentum
vector relative to the FBZ corner at Kj (j = 1, . . . , 6)
and x̂, i.e., under the k→ k −Kj redefinition,

k = k [x̂ cos θk + ŷ sin θk] . (11)

The SFD model simulates the NE occupation with a shift
of the Fermi disk, kshift, with respect to the corners of
the hexagonal FBZ. This shift occurs parallel to the elec-
tron (hole) drift velocity, vd = vd [x̂ cos θd + ŷ sin θd], for
positive (negative) values of Fermi energy, E(0)

F , i.e.,

kshift = ηk(0)
F [x̂ cos θd + ŷ sin θd] , (12)

where η ≡ kshift/k
(0)
F ≤1 is the shift of the Fermi disk in

units of the Fermi wavevector, k(0)
F ≡|E(0)

F |/[~vF]. Such a
shift leads to a θk-dependent NE Fermi energy [4, 7],

EF(θk, θd)

E(0)
F

= η cos [θk−θd] +

√
1− η2 sin2[θk−θd]. (13)

The drift velocity of electrons/holes in graphene, vd, can
then be calculated from [7],

vd=
vF

π2ns

∫ 2π

0

∫ kc

0

k nF[~vFk,EF(θk, θd)] dk dθk, (14)

with sgn[x], vF = 3at
2~ and kc = 2k(0)

F + 5
3atkBTe respec-

tively denoting the signum function, the Fermi velocity,
and the cutoff for the radial k-integration. The drift ve-
locity is converted to the surface current density, js, by

js = sgn[E(0)
F ] jF

vd
vF

, (15)

where jF ≡ ensvF and e denotes the charge of an electron.
In the η ∼ 1 limit, where the shift of the Fermi disk is
comparable to its radius, the θk-dependent Fermi energy
that is formulated by Eq. (14) fails to give a consistent
description of the electronic occupation in both conduc-
tion and valence bands at finite temperatures. For this
reason, we restrict our use of Eq. (14) to the case where
the shift of Fermi disk is small, i.e., η2�1. In this limit,
Eq.(13) can be simplified into

kF(θk, θd) = k(0)
F [1 + η cos (θk−θd)] +O

[
η2
]
. (16)

Figure 2 shows the drift velocity computed with Eqs. (13)
and (14) for modest values of kshift, and we observe that
the computed drift velocity still exhibits a linear be-
haviour versus kshift at temperatures as high as 600 K.
This justifies that the terms proportional to η2 or higher-
order terms in Eq. (16) can safely be discarded.
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FIG. 2. (Color online) The magnitude of the drift velocity,
vd, computed using Eq. (14) for Fermi disk shift values up
to 0.1k(0)

F for a graphene sample with a carrier density of
ns ∼= 1012cm−2. Panel (a) shows the vd–kshift curves each
generated assuming a fixed electron gas temperature, Te, in-
dependent of the shift of the Fermi disk with Te ranging from
0.1 K up to 600 K. The occupation of Dirac cones’ electronic
eigen-states has been illustrated at high and low temperatures
wherein the (un)occupied eigen-states are shown with (blue)
red, and the partially-occupied eigen-states are shown with
white. Panel (b) displays the dependence of the drift veloc-
ity on Te at kshift = 0.05k(0)

F , where the thermal spread of the
drift velocity values is marked with two arrows on panel (a).

B. The experimental relevance of the SFD model

Here, we present a series of simplified arguments to
relate the experimental parameters such as drain-source
voltage, gate voltage, and some of the geometrical pa-
rameters of a graphene Field-Effect Transistor (G-FET)
to the parameters introduced in the SFD model such as
kshift and E(0)

F . The shift of the Fermi disk can be ob-
tained from the channel length, lc, the drain-source volt-
age, Vds, and momentum relaxation time τm [49],

η =
kshift

k(0)
F

∼= eVds

~lc
τm√
πns

. (17)

For a momentum relaxation time of τm = 60 fs [50], a
carrier density of ns = 1012cm−2, a drain-source voltage
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of Vds = 0.1V and a channel length of lc = 5µm, Eq. (17)
yields η ∼= 0.01. We can obtain the channel mobility µc
which corresponds to the momentum relaxation time of
τm = 60 fs. As shown in Fig. 2, in the low-current regime
the drift velocity can be safely described by vd ∼= ηvF.
Therefore, the channel mobility reads

µc ≡
vd
Vds

lc ∼=
eτm

~√πns
× 3at

2~
, (18)

which yields a channel mobility of µc ∼= 4500 cm2

V·s . On the
other hand, the normalized drift velocity values shown in
Fig. 2 can be converted to a value for surface current den-
sity when multiplied by jF = ensvF

∼= 1.4 mA/µm. Mul-
tiplying the resulting surface current density by the chan-
nel width wc yields the total current that flows through
the channel. For η ∼= 0.01, the curves presented in
Fig. 2 yield vd/vF

∼= 0.01, which corresponds to a chan-
nel current of Ic ∼= 70µA for a graphene ribbon of width
wc = 5µm [51]. Also, we can find an estimate for the gate
voltage, Vg, needed to achieve a certain carrier density,

Vg
tg
∼= ens
εgε0

, (19)

with εg, ε0 and tg respectively being the gate dielec-
tric constant, the permittivity of vacuum and the gate
thickness. The expression given by Eq. (19) is obtained
based on a simplified approach which models the gate
and the channel as two plates of a capacitor. Assuming
the thickness and the dielectric constant of the gate to be
tg = 300 nm and εg = 3 [36, 52–55], the expression given
by Eq. (19) suggests that a gate voltage of Vg ∼= 18 V is
required to achieve a carrier density of ns = 1012 cm−2.
For a comprehensive study of G-FET devices, see Ref. 56.

In the following sections the results will be reported in
terms of the shift parameter η and the equilibrium-state
Fermi energy, E(0)

F , rather than channel current density,
the drain-source voltage and/or the gate voltage.

IV. CURRENT-INDUCED PERTURBATION TO
THE IN-PLANE OPTICAL PHONON MODES AT

THE FBZ CENTER

A. Scattering amplitude formalism

The electron-phonon scattering amplitude for the
(ν, q) phonon modes in the vicinity of the center of FBZ,
i.e., |q| = q � a−1, is given as [32, 41, 42, 45, 57–62],

F
[ν]
s,s′(k, q) = κ2

Γ

[
1− lν ss′ cos (2φk,q)

2

]
, (20)

where ν = {LO,TO}, and lν is a mode index which takes
the values of +1 and −1 for ν = LO and ν = TO, re-
spectively. Moreover, φk,q is defined as

φk,q =
θk+q + θk

2
− θq, (21)

where θk ≡∠(k, x̂), θq ≡∠(q, x̂) and θk+q ≡∠(k+q, x̂)
[63]. The coupling parameter κΓ for the ν = {LO,TO}
modes is given by the TB model as [32, 42, 45, 61, 62],

κΓ =
3tβ√

2a

√
~

2Mω(0)
Γ

∼= 0.24 eV, (22)

where M ∼= 11.178 GeV/c2 is the mass of the 12
6C car-

bon isotope and ~ω(0)
Γ = ~ω(0)

LO,0 = ~ω(0)
TO,0

∼= 196 meV

[22, 32, 57, 64], or equivalently 1581 cm−1, is the fre-
quency of the degenerate (LO, q = 0) and (TO, q = 0)
modes in the absence of DC current. The measured
values for the frequency of these two modes in graphite
range from 1565 to 1583 cm−1 [65]. Nevertheless, we take
1581 cm−1 as the nominal mode frequency. Finally, β is
a parameter which reflects the change in the NN hopping
parameter due to the change in the bond length [32, 66],

β ≡ − d [ln t]

d [ln a]
. (23)

Following Ref. 32, all the numerical results in this paper
are calculated for β = 2. One method to obtain β is
measuring the step-like decrease of the line-width of the
Raman G peak upon increasing the carrier density with
no DC current present [67, 68]. Depending on the ex-
perimental dataset at hand, one could obtain a slightly
different value for β, and in that case, all the numer-
ical values for the phonon mode renormalizations and
current-induced perturbations reported in our work can
be corrected upon multiplication by β2/4.

In the absence of DC current, graphene can be re-
garded as isotropic for very large phonon wavelengths,
i.e., q =0, and therefore any set of mutually-orthogonal
in-plane unit vectors can be selected as the eigen-vectors
of the dynamical matrix at q=0. However, the presence
of DC current breaks this isotropy, and the eigen-vectors
of the perturbed dynamical tensor at q=0 are expected
to be constructed from the unit vector defined by the
introduced preferential direction. As a result, the in-
plane atomic vibrations corresponding to the (LO, q=0)
and (TO, q=0) modes should be parallel and perpendic-
ular to the surface current density, respectively (For a
detailed discussion, see Appendix A). As a consequence,
θq in the equilibrium-state scattering amplitude given by
Eq. (20) should be replaced with Θ = θd ± π at q = 0,
and the expression for the scattering amplitude of the
ν = {LO,TO}modes of current-carrying graphene reads,

F̃
[ν]
s,s′(k,0) =

κ2
Γ

2

{
1− lν ss′ cos (2 [θk − θd])

}
. (24)

Computing the self-energy integral with the preced-
ing scattering amplitude leads to corrections for the
(LO, q=0) and (TO, q=0) modes which are indepen-
dent of the direction of the DC current. This can be
verified by performing the angular integration over the θ
variable obtained by implementing the change-of-variable
given by [θk − θd] → θ in Eqs. (13), and (24). This
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FIG. 3. (Color online) Self-energy corrections obtained for the
Γ-LO mode by combining Eqs. (6)–(9), (13), (22), (23), (24)
and (25) for Fermi disk shift values up to 0.1k(0)

F at Te=5K.
Panels (a) and (b) show respectively the frequency and
broadening of the Γ-LO mode of current-carrying graphene
versus the equilibrium-state Fermi energy normalized by the
frequency of the Γ-LO mode of undoped graphene. The in-
set in each panel shows the current-induced perturbation to
the quantity shown in its respective panel versus the normal-
ized E(0)

F . The Fermi energy is varied from 0 to 300 meV,
and the current-induced perturbations exhibit a resonant-
like behavior at a sample carrier density corresponding to
E(0)

F = ~ω(0)
Γ /2 ∼= 98 meV. In the presence of DC current, the

Γ-LO mode is defined as the mode with an in-plane atomic
displacement parallel to DC current flow.

agrees with what one would expect intuitively because
the intra-valley transitions caused by the (LO, q=0) and
(TO, q=0) modes are strictly vertical and should not be
affected by the direction of DC current.

A similar approach of utilizing the correct “longitu-
dinal” and “transverse” polarizations has been taken in
Refs. 69–71 to interpret the G peak features of the Raman
spectra for graphene samples under uniaxial strain with
the in-plane atomic displacement of the Γ-LO and Γ-TO
modes being parallel and perpendicular to the strain axis,
respectively. Neglecting the correct polarization of the
Γ-LO and Γ-TO modes relative to the preferred axis in
graphene plane leads to a frequency surface that is not
single-valued at q = 0. For example, unlike Refs. 69–
71, Ref. 72 did not utilize the correct basis set for the
eigen-vectors of the Γ-LO and Γ-TO modes in the case of
graphene under uniaxial strain, which led to the depen-
dence of the self-energy corrections on the angle of the
mode momentum, q, even when q=0.
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FIG. 4. (Color online) Self-energy corrections obtained for the
Γ-TO mode by combining Eqs. (6)–(9), (13), (22), (23), (24)
and (25) for Fermi disk shift values up to 0.1k(0)

F at Te=5K.
Panels (a) and (b) show respectively the frequency and
broadening of the Γ-TO mode of current-carrying graphene
versus the equilibrium-state Fermi energy normalized by the
frequency of the Γ-TO mode of undoped graphene. The in-
set in each panel shows the current-induced perturbation to
the quantity shown in its respective panel versus the normal-
ized E(0)

F . The Fermi energy is varied from 0 to 300 meV,
and the current-induced perturbations exhibit a resonant-
like behavior at a sample carrier density corresponding to
E(0)

F = ~ω(0)
Γ /2 ∼= 98 meV. In the presence of DC current, the

Γ-TO mode is defined as the mode with an in-plane atomic
displacement perpendicular to DC current flow.

Figures 3 and 4 show the frequency and broadening
of respectively the Γ-LO and Γ-TO modes in the pres-
ence of DC current for several values of DC current,
with the current-induced perturbations being shown in
the insets. The mode frequencies shown in Figs. 3-(a)
and 4-(a) are obtained by subtracting the contribution
of virtual excitations from the computed self-energy cor-
rections. Within the Dirac cone approximation, the con-
tribution due to the virtual excitations can be obtained
from Eq. (10), and the resulting expression reads

ΠVE

LO,0 = ΠVE

TO,0 = −
[gSgV

4

] √3

πt
κ2

Γ [kca] , (25)

with gV = 2 and kc being respectively the valley degen-
eracy and the cutoff used in evaluating the self-energy
integral for the Γ-LO and Γ-TO modes. In our compu-
tations, we utilized kc = [10kBTe + 8~ω(0)

Γ ]/[~vF].
The frequency and broadening of Γ-LO and Γ-TO

modes presented in Figs. 3 and 4 exhibit a resonant-like
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FIG. 5. (Color online) Current-induced perturbation to the
ν = {LO,TO} modes at q=0 computed for a residual broad-
ening of γB

ν,0 = 8 cm−1 and a drift parameter of η = 0.1,
i.e., kshift = 0.1k(0)

F , and at temperatures ranging from 0.01
to 100K. Panels (a) and (c) show respectively the current-
induced frequency shift and the current-induced broadening
of the Γ-LO mode versus the normalized equilibrium-state
Fermi energy; their Γ-TO counterparts are shown in panels
(b) and (d). The data points corresponding to Te = 0 K are
actually calculated for Te = 0.01 K.

behavior at E(0)
F =0.5 ~ω(0)

Γ =98 meV, corresponding to a
sample carrier density of 9.24 × 1011cm−2. This behav-
ior stems from the damping of these phonon modes due
to electron-hole pair creation [67]. As it can be seen in
Figs. 3 and 4, the onset of such damping can be tuned
by DC current, and in order for the current-induced per-
turbations to be non-negligible, the sample carrier con-
centration should be roughly within the following range,

~ω(0)
Γ

2 [1− η]
& E(0)

F &
~ω(0)

Γ

2 [1 + η]
. (26)

The expressions for the upper/lower bounds in Eq. (26)
can be derived at Te = 0 K, for a clean sample and within
the low-current regime, i.e., η2 � 1, which will be dis-
cussed in Sec. IVB. However, Eq. (26) can also be applied
to the cases wherein the sample temperature and residual
broadening are nonzero and moderately low to obtain an
estimate for the range of sample carrier densities where
the current-induced perturbations are non-negligible.

As shown in Fig. 5, the temperature of the electron gas
adversely impacts the current-induced perturbations to
the Γ-LO and Γ-TO modes. Since the renormalization of
these phonon modes is purely due to “vertical” inter-band
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FIG. 6. (Color online) Current-induced perturbation to the
ν = {LO,TO} modes at q = 0 computed at Te = 5K, for
a drift parameter of η = 0.1, i.e., kshift = 0.1k(0)

F , and for
multiple values of residual broadening, γB

ν,0, ranging from 1 to
100 cm−1. Panels (a) and (c) show respectively the current-
induced frequency shift and the current-induced broadening
of the Γ-LO mode versus the normalized equilibrium-state
Fermi energy; their Γ-TO counterparts are shown in panels
(b) and (d). The data points corresponding to γB

ν,0 = 0 cm−1

are actually calculated for γB
ν,0 = 1 cm−1.

electronic transitions, the current-induced perturbations
to these modes is expected to vanish when the thermal
smearing of the Fermi level becomes of the same order
as the current-induced tilt in the Fermi level, i.e., kBTe≈
η|E(0)

F |. For example, for a drift parameter of η = 0.1
and a Fermi energy of E(0)

F =98 meV, the current-induced
perturbations to the Γ-LO and Γ-TO modes are expected
to vanish at temperatures exceeding 113 K.

The adverse impact of the residual broadening on the
current-induced perturbations to the Γ-LO and Γ-TO
modes is shown in Fig. 6. Since the broadening of a
phonon mode can be interpreted as the uncertainty with
which the mode frequency can be determined, the shift
of the Fermi disk cannot be distinguished by the “verti-
cal” inter-band electronic transitions caused by the Γ-LO
and Γ-TO modes if the mode broadening is of the same
order as the current-induced tilt of the Fermi energy,
i.e., ~γν,0 ≈ η|E(0)

F |. For instance, for a drift parame-
ter of η = 0.1 and a Fermi energy of E(0)

F = 98 meV,
the current-induced perturbations to the Γ-LO and Γ-TO
modes are expected to vanish for residual broadening val-
ues exceeding 80 cm−1.
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B. Analytic results for a clean sample at Te = 0 K

As indicated by Fig. 1 and Eq. (6), the computa-
tion of current-induced perturbations involves a two-
dimensional integration over the reciprocal space. How-
ever, in the low-current and low-temperature limit, i.e.,
η2 � 1 and kBTe � η|E(0)

F |, both the frequency shift
and broadening of the Γ-LO and Γ-TO modes of current-
carrying graphene can be approximated by a semi-
analytic formula, which involves a one-dimensional polar
integral, and the instructions to utilize this semi-analytic
formalism can be found at the end of Appendix B.

Since the self-energy integral is calculated within the
framework of 2nd order perturbation theory, the interac-
tion of the Γ-LO and Γ-TO modes with other phonon
modes, quasi-particles, impurity atoms and crystal de-
fects can be assumed to be negligible in 1st order per-
turbation, a scenario referred to as the “clean-sample”
limit [32]. If the clean-sample assumption is added to the
low-temperature and low-current experimental setup, the
broadening of the (ν, q=0) mode can be approximated
by an analytic expression at Te = 0 K. The derivation
steps for this expression can be found in Appendix B.
The analytic expression reads

~γν,0 ∼=
√

27

2M

[
~
a

]2 [
β

2

]2 [
ψ + lν sinψ cosψ

π

]
, (27)

where ψ = ψ
(
E(0)

F

)
is given by

ψ ≡


π |E(0)

F | ≤ E(+)
F

arccos[B] E(+)
F ≤ |E(0)

F | ≤ E(−)
F

0 |E(0)
F | ≥ E(−)

F

, (28)

and B = B
(
E(0)

F

)
is defined as

B =
|E(0)

F |
(
E(−)

F + E(+)
F

)
− 2E(−)

F E(+)
F

|E(0)
F |
(
E(−)

F − E(+)
F

) , (29)

with E(±)
F being

E(±)
F =

~ω(0)
Γ

2 [1± η]
. (30)

The current-induced frequency shift and broadening cal-
culated from the semi-analytic formalism are presented
in Fig. 14, and it can be seen that the semi-analytic val-
ues for mode broadening approach those given by the
analytic formalism as the residual broadening decreases.

C. The impact of charge density inhomogeneity

As can be seen in Figs. 3–6, when the equilibrium-
state Fermi energy of the sample is set to be around
E(0)

F = ~ω(0)
Γ /2 ∼= 98 meV, which corresponds to a car-

rier density of ns ∼= 9.24×1011cm−2, the current-induced
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FIG. 7. (Color online) Spatial averages of the current-induced
frequency shift computed for the (a) Γ-LO and (b) Γ-TO
modes versus the relative shift of the Fermi disk (or equiv-
alently, versus the DC current). The averaging of the fre-
quency shifts is performed assuming an average Fermi en-
ergy of 〈E(0)

F 〉 = 0.5~ω(0)
Γ
∼= 98 meV (corresponding to 〈ns〉 ∼=

9.24× 1011cm−2) for 9 values of Fermi energy variance. Prior
to averaging, the current-induced perturbations were calcu-
lated at Te=5K for a residual broadening of γB

ν,0 =8 cm−1 for
both modes. The dependence of the raw (unaveraged) data
on E(0)

F is shown in the insets of Figs. 3-(a) and 4-(a).

perturbations to the Γ-LO and Γ-TO modes become sen-
sitive to the carrier concentration of the sample. At this
carrier concentration, δγν,0 vanishes while δων,0 is max-
imal for both ν = {LO,TO} modes, provided that the
carrier density is uniform over the area of the graphene
sample that is irradiated by Raman laser. However,
the carrier density throughout a typical graphene sam-
ple undergoes local fluctuations which are manifested as
electron and hole puddles [73–77]. On the other hand,
the laser light with which Raman spectroscopy is per-
formed can be focused down to a spot of 1µm in diameter
[36, 38, 40, 78, 79]. Since the size of the charge puddles
can be as small as 10nm [73–77], and therefore much
smaller than the laser spot size, the impact of the carrier
density fluctuations on Raman measurements cannot be
neglected. The impact of charge non-uniformity on the
self-energy corrections, Πν,q, can be quantified by per-
forming a spatial averaging of the self-energy over the
sample points under the laser spot [67, 68]. This can be
achieved by using a Gaussian distribution to describe the



9

0 1 2 3 4 5 6 7 8 9 10

Te (10K)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
〈δ
[h̄
ω
ν,

0
]〉
(c
m
−1

)

0 1 2 3 4 5 6 7 8 9 10

Te (10K)

(b)(a) ν = TOν = LO

0
2

4
6

8
1
0

1
2

1
4

1
6

σ
F [m

e
V
]

FIG. 8. (Color online) Spatial averages of the current-
induced frequency shift computed for the (a) Γ-LO and (b)
Γ-TO modes versus temperature. The averaging of the fre-
quency shifts is performed assuming an average Fermi en-
ergy of 〈E(0)

F 〉 = 0.5~ω(0)
Γ
∼= 98 meV (corresponding to 〈ns〉 ∼=

9.24× 1011cm−2) for 9 values of Fermi energy variance. Prior
to averaging, the current-induced perturbations were calcu-
lated for a drift parameter of kshift = 0.1k(0)

F and a residual
broadening of γB

ν,0 =8 cm−1 for both modes. The dependence
of the raw (unaveraged) data on E(0)

F is shown in panels (a)
and (b) of Fig. 5.

statistics of the carrier density fluctuations [73],

p (E(0)
F ) =

1√
2πσ2

F

exp

[
−1

2

(
E(0)

F − 〈E(0)
F 〉

σF

)2
]
, (31)

with 〈E(0)
F 〉 and σF being respectively the spatial average

and the variance of the Fermi energy [80]. The latter re-
flects the severity of charge nonuniformity due to the elec-
tron/hole puddles [73] which can be expressed in terms
of the average and the variance of carrier density, that
are denoted by respectively 〈ns〉 and Var[ns], as follows

σF = 〈E(0)
F 〉

Var[ns]

2〈ns〉
. (32)

Same averaging approach can be adopted to incorporate
the impact of carrier density fluctuations on the current-
induced perturbations, δΠν,q. That is

〈δΠν,q〉 =

∫ ∞
−∞

p (E(0)
F ) δΠν,q dE(0)

F . (33)

The carrier density fluctuations are determined by multi-
ple factors such as the type of substrate. Refs. 67 and 68
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FIG. 9. (Color online) Spatial averages of the current-induced
frequency shift computed for the (a) Γ-LO and (b) Γ-TO
modes versus the residual phonon mode broadening. The
averaging of the frequency shifts is performed assuming an
average Fermi energy of 〈E(0)

F 〉 = 0.5~ω(0)
Γ
∼= 98 meV (corre-

sponding to 〈ns〉 ∼= 9.24 × 1011cm−2) for 9 values of Fermi
energy variance. Prior to averaging, the current-induced per-
turbations were calculated at Te=5K for a drift parameter of
kshift =0.1k(0)

F . The dependence of the raw (unaveraged) data
on E(0)

F is shown in panels (a) and (b) of Fig. 6.

report a fluctuation of ±3× 1011 cm−2 in carrier concen-
tration, and for our case, we adopt this value for Var[ns].
Assuming the gate voltage to be set to a value that cor-
responds to an average Fermi energy of 〈E(0)

F 〉 = ~ω(0)
Γ /2,

such charge density variation translates into a variance
in Fermi energy which is determined by Eq. (32) to be
σF
∼= 0.16〈E(0)

F 〉 ∼= 16 meV. As can be seen in Figs. 3–6,
the current-induced broadening is roughly an odd func-
tion of E(0)

F −(~ω(0)
Γ /2) suggesting that the spatial average

of the current-induced broadening is expected to vanish,
and consistently, the computed values for 〈δ[~γν,0]〉 did
not exceed 0.1 cm−1 even for a clean sample at Te = 5K.
The results for the spatial averages of the current-induced
frequency shifts are presented in Figs. 7–9.

It is worth pointing out that scanning probe micro-
scopy measurements indicate that charge inhomogene-
ity in a substrate-supported graphene sample is mainly
due to the charged impurities embedded in its SiO2 sub-
strate [73, 74, 81]. In Refs. 75 and 76, charge den-
sity fluctuations in graphene were measured for two
different cases using scanning tunneling spectroscopy
(STS), and the comparison between the case where
graphene is directly placed on an amorphous SiO2

substrate (i.e., graphene/SiO2) and the case where a
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20 nm-thick layer of crystalline hexagonal boron nitride
(hBN) separates graphene from the SiO2 substrate (i.e.,
graphene/hBN/SiO2) indicates that the charge inhomo-
geneity variance in graphene can be considerably sup-
pressed by the placement of hBN layer. Moreover,
the STS measurements reported in Ref. 77 indicate
that the separation of the hBN and SiO2 layers with
a graphite crystal (i.e., graphene/hBN/graphite/SiO2)
substantially enhances the charge uniformity in graphene
comparing to the graphene/hBN/SiO2 stacked structure.

V. CURRENT-INDUCED PERTURBATION TO
THE IN-PLANE TRANSVERSE OPTICAL

PHONON MODES AT THE FBZ CORNERS

A. Scattering amplitude formalism

Due to their large momentum, the Kj-TO phonon
modes (j = 1, . . . , 6) are capable of causing electronic
transitions from an eigen-state |k, s〉 of one valley into
the |k + q, s′〉 eigen-state of the adjacent valley, i.e.,

q ∼ |Kj | =
4π

3
√

3a
;j = 1, . . . , 6. (34)

Assuming the mode momentum vector, q, to connect Γ
to the points in the vicinity of Kj (see Fig. 1), the scat-
tering amplitude of the inter-valley processes involving
such (TO, q) modes is given by [22, 45, 57–62],

F
[TO]
s,s′ (k, q) = κ2

K

[
1− ss′ cos (θk+q′ − θk)

2

]
, (35)

where θk ≡ ∠(k, x̂) and θk+q′ ≡ ∠(k + q −Kj , x̂) are
the angles defined for the crystal momentum vectors k
and k + q −Kj that are both measured with respect to
the same given FBZ corner. The coupling parameter κK

obtained from the TB model is as follows [45, 61, 62],

κK =
3tβ

a

√
~

2Mω(0)
K

∼= 0.37 eV, (36)

with ω(0)
K = ω(0)

TO,K being the TO mode frequency at
q = K1, . . . ,K6 in the absence of DC current. Mul-
tiple measured values have been reported for ~ω(0)

K , in-
cluding 161.2 meV [22, 57], 149.8 meV [82], 166 meV [83],
and 154 meV [84]. Since the squared scattering ampli-
tude, and therefore the current-induced perturbation to
the Kj-TO mode, is inversely proportional to the mode
frequency, we make the conservative choice and accept
the highest value as the nominal mode frequency, i.e.,
~ω(0)

K = 166 meV, or equivalently 1339 cm−1.
Since the coupling of the Kj-LO phonon mode to the

π electron gas is estimated to be less than 1.6% of its
TO counterpart [58, 60], the impact of DC current on
the Kj-LO modes is negligible and will not be studied
here. The computation of the self-energy corrections,
and therefore the current-induced perturbations to the
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FIG. 10. (Color online) The self-energy integral obtained for
the Kj-TO mode by combining Eqs. (6)–(9), (13), (35), (36)
and (37) for Fermi disk shift values up to 0.1k(0)

F at Te=5K.
Panels (a) and (b) show respectively the frequency and
broadening of the Kj-TO mode of current-carrying graphene
versus the equilibrium-state Fermi energy normalized by the
frequency of the Kj-TO mode of undoped graphene. The in-
set in each panel shows the current-induced perturbation to
the quantity shown in its respective panel versus the normal-
ized E(0)

F . The Fermi energy is varied from 0 to 250 meV,
and the current-induced perturbations exhibit a resonant-
like behavior at a sample carrier density corresponding to
E(0)

F = ~ω(0)
K /2 ∼= 83 meV.

TO mode exactly at q = Kj (i.e., q′ = 0), is similar to
those of the q = 0 modes discussed in Sec. IV, with few
differences. First, due to the inter-valley nature of the
electron-phonon scattering processes which contribute to
the self-energy, the valley degeneracy does not appear in
the formalism. Second, the difference between the bare
mode frequencies at q = Kj and q = 0 leads to different
values of the coupling constant and therefore different
values of perturbations. In Ref. 33, the difference be-
tween these frequencies, i.e., EK→K′ = ~

[
ω(0)

Γ − ω(0)
K

] ∼=
30 meV, is interpreted as the (phonon) energy required to
translate an electron between two adjacent FBZ corners.
Third, in addition to the difference in mode frequency,
the electron-phonon coupling constant for the TO mode
obtained from the 1st-NN TB model at q = Kj is greater
than that of the TO mode at q = 0 by a factor of

√
2.

This is in agreement with the Density Functional Theory
(DFT) calculation result reported in Ref. 22, which is ex-
pressed by κ2

Kω
(0)
K = 2.02κ2

Γω
(0)
Γ . Fourth, the scattering

amplitude at q = Kj becomes independent of θk, and
since the inter-band inter-valley processes are the sole
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FIG. 11. (Color online) Current-induced perturbation to the
TO mode at q = K1, . . . ,K6 computed for a residual broad-
ening of γB

TO,K = 8 cm−1 and a drift parameter of η = 0.1,
i.e., kshift = 0.1k(0)

F , and at temperatures ranging from 0.01
to 100K. Panels (a) and (b) show respectively the current-
induced frequency shift and the current-induced broadening
of the Kj-TO mode versus the normalized equilibrium-state
Fermi energy. The data points corresponding to Te = 0 K are
actually calculated for Te = 0.01 K.

contributors to the self-energy of the Kj-TO modes, the
scattering amplitude given by Eq. (35) reduces to 1.

In the case of the Kj-TO modes, the contribution of
the virtual excitations which need to be removed from
the self-energy calculations is given by,

ΠVE

TO,K = −
[gS

2

] √3

πt
κ2

K [kca] . (37)

The computed current-induced perturbations to the
Kj-TO modes are examined here versus several param-
eters, including kshift, Te and γB

TO,K, and the numerical
results have been presented in Figs. 10, 11 and 12, re-
spectively. Since the Raman G′ peak involves the (TO, q)
modes with finite momentum, i.e., q′ = |q −Kj | . a−1

[33, 59, 85–87], the numerical results reported for the
Kj-TO modes cannot be used to predict the impact of
DC current on the G′ peak. Since the magnitude and
direction of the reduced momentum vector, q′, of the
near-zone-corner TO modes adds to the parameters to
vary, the quantitative study of the current-induced per-
turbations to these modes is computationally expensive
and therefore not included here.

Nonetheless, the computation of the self-energy of the
near-zone-corner TO modes can be accelerated by con-
verting the hexagonal FBZ domain to any of the rhombi
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FIG. 12. (Color online) Current-induced perturbation to the
TO mode at q = K1, . . . ,K6 computed at Te = 5K, for a
drift parameter of η = 0.1, i.e., kshift = 0.1k(0)

F , and for mul-
tiple values of residual broadening, γB

TO,K, ranging from 1 to
100 cm−1. Panels (a) and (b) show respectively the current-
induced frequency shift and the current-induced broadening
of the Kj-TO mode versus the normalized equilibrium-state
Fermi energy. The data points corresponding to γB

TO,K =

0 cm−1 are actually calculated for γB
TO,K = 1 cm−1.

shown in Fig. 1, depending on which valleys are con-
nected by q. The integration can be further reduced to
a single-valley integration domain by translating one of
the Dirac cones. The single-valley integration routine
designed to calculate the self-energy and current-induced
perturbations for the TO modes in the vicinity of q = Kj

can also be applied to the q = Kj′ corner by only rotat-
ing the shift direction of the Fermi disk by ∠(Kj′ ,Kj).

The near-zone-corner TO modes which contribute to
the G′ peak, are separated from the FBZ corners by a
momentum proportional to the frequency of the Raman
laser, i.e., q′ ∝ ωL [59, 88]. Since the current-induced per-
turbation to the near-zone-corner (TO, q′) modes should
be negligible when q′�k(0)

F and should be maximal when
q′∼k(0)

F , the impact of DC current on the G′ peak is ex-
pected to be maximal when ~ωL ∼ E(0)

F . This requires
large levels of carrier concentration, i.e., E(0)

F ∼ 1eV,
which can be achieved using ion-gel gate dielectric [89].

B. Analytic results for a clean sample at Te = 0 K

In the low-current and low-temperature limit, i.e.,
η2 � 1 and kBTe � η|E(0)

F |, both the frequency shift
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and broadening of the Kj-TO mode of current-carrying
graphene can be approximated by a semi-analytic for-
mula, which involves a one-dimensional polar integral,
and the instructions to utilize this semi-analytic formal-
ism can be found at the end of Appendix C.

In the clean-sample, low-temperature and low-current
limit, the broadening of the (TO, q=Kj) mode can be
approximated by an analytic expression at Te = 0 K. The
derivation steps for this expression can be found in Ap-
pendix C. The analytic expression reads

~γTO,K
∼=
√

27

M

[
~
a

]2 [
β

2

]2 [
ψ

π

]
, (38)

where ψ = ψ
(
E(0)

F

)
is given by Eqs. (28)–(29) in terms of

E(±)
F =

~ω(0)
K

2 [1± η]
. (39)

The current-induced frequency shift and broadening cal-
culated from the semi-analytic formalism are presented
in Fig. 15, and it can be seen that the semi-analytic val-
ues for mode broadening approach those given by the
analytic formalism as the residual broadening decreases.

Comparing the (semi-)analytic expressions for the
current-induced perturbations to the Kj-TO modes
presented in Appendix C and Eq. (38) with their
Γ-LO/Γ-TO counterparts presented in Appendix B and
Eq. (27), yields the following relation at Te = 0K,

δΠTO,K =
1

gV

κ2
K ω

(0)
K

κ2
Γ ω

(0)
Γ

[δΠLO,0 + δΠTO,0] . (40)

The left-hand side (LHS) of Eq. (40) is nonzero only for
carrier concentrations corresponding to E(0)

F ∼ ~ω(0)
K /2,

while the right-hand side (RHS) is nonzero only when
E(0)

F ∼ ~ω(0)
Γ /2. Since ω(0)

Γ 6= ω(0)
K , this equality is valid

only if the δΠs of these three modes are computed at
the same normalized frequency/broadening, i.e., the fre-
quency/broadening of the corresponding mode expressed
in units of |E(0)

F |. The emergence of the ω(0)
K /ω(0)

Γ ratio in
Eq. (40) is a result of the normalization of k(0)

F in each of
Eqs. (B3) and (C3) by the frequency of the correspond-
ing mode. Additionally, Eq. (40) can be generalized to
finite temperatures if both sides of this equality are com-
puted at the same normalized temperature, i.e., if the
LHS is computed at Te the RHS should be computed at
T ′e = Te ω

(0)
K /ω(0)

Γ for the equality to hold.

VI. DISCUSSION OF EXPERIMENTAL
IMPLICATIONS

The experimental techniques to measure the phonon
dispersion in graphene include (i) inelastic neutron scat-
tering (INS) [90], (ii) high resolution electron energy-loss
spectroscopy (HREELS) [91–93], (iii) inelastic x-ray scat-
tering (IXS) [65, 83, 94], (iv) angle-resolved photoemis-
sion spectroscopy (ARPES) [82], and (v) Raman spec-

troscopy [95–98]. Therefore, any of these techniques, in-
cluding Raman spectroscopy, could be applied to measure
the current-induced perturbations.

As was shown in Sec. IV, the introduction of DC elec-
tric current breaks the LO-TO degeneracy at the Γ point,
and this could be manifested in the form of a splitting of
the Raman G peak. The intensity of Raman peaks can be
strictly computed using quantum mechanical perturba-
tion theory [30, 85, 87, 89, 99–101]. However, it has been
a common practice among experimentalists to fit Raman
peaks with Lorentzians [37, 67, 69, 102–106]. Therefore,
to describe the current-induced G-peak splitting, we take
the simpler approach of modeling the G-peak intensity,
IG(ωs), with the superposition of two Lorentzians, i.e.,

IG(ωs) ∼=
∑

ν∈{LO,TO}

Imν 〈γν,0〉2
[ωs − 〈ων,0〉]2 + 〈γν,0〉2

, (41)

with Imν and 〈ων,0〉/〈γν,0〉 being respectively the peak in-
tensity of the Lorentzian due to the (ν, q = 0) mode and
the spatial average of mode frequency/broadening. In
the absence of DC current and mechanical strain, these
two modes become indistinguishable and contribute to
IG(ωs) identically, i.e., ImLO = ImTO, ωLO,0 = ωTO,0 and
γLO,0 = γTO,0. Finally, ωs denotes the Raman shift
which is defined as the shift in the incident photon fre-
quency due to the scattering processes involving the emis-
sion (ωs < 0) or absorption (ωs > 0) of phonons.

As suggested by Eq. (41), the contribution of each
mode to the overall intensity is a Lorentzian that can
be superposed onto the contribution of the other mode.
However, quantum interference effects such as the depen-
dence of peak intensity on carrier concentration [87, 101],
cannot be captured by the superposition of intensities.

As it can be inferred from the phenomenological bi-
Lorentzian form given by Eq. (41), the separation be-
tween the LO and TO peaks should be larger than the
width of each of the two peaks, for the G-peak splitting
to be observable. On one hand, as shown in Figs. 7–
9, |~〈γLO,0〉 − ~〈γTO,0〉| does not exceed 1 cm−1. On
the other hand, the typical value of broadening for both
modes is around 10 cm−1 [67, 68, 87]. Therefore, this
G-peak splitting will not be observable under moder-
ate values of current, temperature and sample disorder.
To demonstrate the adverse impact of the residual mode
broadening, the simulated results are presented in Fig. 13
in which increasing the residual broadening from 0.2 to
0.8 cm−1 causes the splitting to disappear. Nonetheless,
it should be still possible to observe and measure the
overall frequency up-shift and thickening of the G peak
versus DC current, provided that the impact of DC cur-
rent could be isolated from that of temperature.

At equilibrium, the TO branch in the vicinity of the
Kj points can be described by a conical dispersion, with
its slope being proportional to κ2

K [22, 64]. The impact
of DC current on the TO cones at FBZ corners can be
explained as follows. On one hand, the self-energy con-
tribution of the intra-band inter-valley transitions to the
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FIG. 13. (Color online) Simulated Raman spectra of current-
carrying graphene versus the laser frequency shift. In cal-
culating the intensities, the spatial averages of the mode fre-
quency shifts presented in Figs. 3 and 4 have been plugged into
Eq. (41), and therefore the simulated Raman intensity curves
represent the case where Te = 5K and 0≤kshift≤0.1k(0)

F . An
average Fermi energy of 〈E(0)

F 〉 = 0.5~ω(0)
Γ
∼= 98 meV (corre-

sponding to a carrier concentration of 〈ns〉 ∼= 9.24×1011cm−2)
and a Fermi energy variance of σF = 2 meV are assumed for
the graphene sample under the laser spot. The solid and
dashed curves represent the Raman intensity for the two cases
wherein broadening values of respectively ~〈γν,0〉= 0.2 cm−1

and ~〈γν,0〉 = 0.8 cm−1 have been assumed for both modes.
The dashed lines trace out the peak location of the two indi-
vidual LO and TO Lorentzians. For a more clear presentation
of the evolution of peaks with DC current, the simulated Ra-
man spectra have been shifted vertically.

zone-corner TO modes becomes non-negligible for modes
of larger reduced momentum, q′ = q−Kj [33, 59, 87]. On
the other hand, unlike the inter-band, the intra-band con-
tribution to the current-induced frequency shifts are ex-
pected to persist at high temperatures. Since the impact
of DC current on the intra-band portion of the self-energy
integral can be modeled by Doppler-shifted mode fre-
quencies, the application of DC current should cause the
TO cones to tilt at temperatures exceeding η|E(0)

F |/kB.
This tilt may be observed using IXS measurements sim-
ilar to those performed in Ref. 83.

VII. CONCLUSIONS AND FUTURE WORKS

The impact of DC current on highest in-plane optical
phonon modes, which include the LO mode at the FBZ

center and the TO mode at the FBZ corners and center,
has been studied here. The impact of several param-
eters such as temperature, sample disorder and carrier
concentration has been explored. The current-induced
perturbation to each of these modes has been shown to
be nonzero only within a specific range of the sample car-
rier concentration. Moreover, (semi-)analytic expressions
were presented which make it possible to obtain upper
estimates for the current-induced perturbations without
having to perform two-dimensional integration.

Due to the inter-band nature of the electronic tran-
sitions that contribute to the self-energy of Γ-LO and
Γ-TO modes, the current-induced perturbations to these
modes are sensitive to temperature and sample disorder.
As a result, for moderately low values of DC current,
the current-induced frequency shifts are of the same or-
der as the Raman spectral resolution (∼ 1cm−1). How-
ever, establishing larger DC currents in graphene sam-
ple while maintaining a relatively low temperature, i.e.,
kBTe � η|E(0)

F |, could make it possible to detect the
current-induced frequency shifts.

The proposed current-induced perturbations, though
moderately weak, call for the development of experimen-
tal techniques to revisit the observed evolution of Raman
peaks with DC current [36–39] to isolate the non-thermal
impact of DC current on the G and G′ peaks. Clearly, the
numerical results reported in this work are only valid for
small DC current, i.e., η2 � 1, and in the large-current
limit the NE electronic occupation should be obtained by
solving the BTE. Moreover, the expressions for the cou-
pling parameters given by Eqs. (22) and (36) do not hold
for extreme NE electronic occupations [43], and therefore
need to be recalculated for large values of DC current.

Raman maps of the frequency and linewidth of the G
and G′ peaks in graphene have been utilized to visualize
local variations in substrate, carrier concentration, me-
chanical stress and number of layers [78, 107–109]. Sim-
ilarly, if the impact of DC current on Raman peaks can
be isolated from those of temperature, carrier concen-
tration and mechanical stress [110], then local Raman
measurements could be a versatile tool in determining
the distribution of electric current throughout the sam-
ple, an experimental objective which has been achieved
in Refs. 36, 111–119 owing to other physical mechanisms.

Raman intensity is the result of the construc-
tive/destructive interference between the scattered and
incident resonances [87]. This leads to the dependence of
Raman G-peak intensity on carrier concentration which
exhibits a peak at 2|E(0)

F | = ~
[
ωL − (ω(0)

Γ /2)
]
[87]. More-

over, in the case of uniaxially strained graphene, the Ra-
man intensity due to the Γ-LO and Γ-TO modes exhibits
a dependence on the angle between the laser polarization
and strain axis [69–71]. Therefore, the dependence of
Raman intensity of current-carrying graphene on (i) the
sample carrier concentration and (ii) the polarization of
the Raman laser could be a subject of future works.
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Appendix A: Discussion on the eigen-vectors of the
LO and TO modes in the presence of DC current

Evidently, the term θq in Eq. (21) does not vanish even
for momentum vectors of extremely small magnitudes,
i.e., θq→0 6= 0. When evaluating the self-energy inte-
gral for the (LO, q) and (TO, q) phonon modes exactly
at q = 0 in the absence of DC current, the contribution
of the cosine term in the scattering amplitude given by
Eq. (20) vanishes due to the isotropic electronic occupa-
tion around the Dirac points [32]. Therefore, in the ab-
sence of the DC current, the self-energy-corrected mode
frequency does not depend on the angle of the momentum
vector at q = 0, which is the expected behavior. How-
ever, in the presence of DC current, the anisotropic occu-
pation of the eigen-states around the Dirac points leads
to a nonzero contribution of the aforementioned cosine
term which results in the dependence of mode frequency
on the angle of the momentum vector, q, even at q = 0.
This problem can be traced back to the canonical rep-
resentation of phonon modes which relies on the choice
of
{
q̂‖, q̂⊥

}
unit vectors to decompose the in-plane mode

displacement. These unit vectors are given by [27, 32],

q̂‖ =
q

|q| = x̂ cos θq + ŷ sin θq (A1)

q̂⊥ = ẑ × q̂‖ = ŷ cos θq − x̂ sin θq, (A2)

with ẑ being the unit vector perpendicular to the plane
at which the graphene sheet is placed. In the presence of
DC current, the eigen-vectors of the dynamical matrix at
q=0 are expected to be the in-plane unit vectors parallel
and perpendicular to the DC current. This remedy can
be extended to the modes with non-zero momentum by
choosing the mode eigen-vectors to be parallel and per-
pendicular to q − kshift, which suggests that the impact
of DC current on the eigen-vectors of phonon modes of
larger momentum should be less significant. Therefore,
in the presence of DC current we utilize the following set
of orthogonal vectors as the eigen-vectors of the in-plane
phonon modes of graphene,

ê‖ =
q − kshift

|q − kshift|
= x̂ cos Θ + ŷ sin Θ (A3)

ê⊥ = ẑ × ê‖ = ŷ cos Θ− x̂ sin Θ, (A4)

where Θ ≡ ∠(q − kshift, x̂). Following the derivation
steps presented for the equilibrium-state case in Ref. 32,
it can be readily verified that the formalism for the
equilibrium-state scattering amplitude given by Eq. (20)
can only be applied to the phonon modes of current-
carrying graphene only if the angle θq in the definition of
φk,q is replaced with Θ, i.e., 2φk,q = θk+q + θk − 2Θ.

This suggests that the in-plane longitudinal (trans-
verse) modes of current-carrying graphene should be re-
defined to the modes with their displacement vector par-
allel (perpendicular) to q − kshift. Another equally valid
choice for the phonon mode eigen-vectors in the presence
of DC current would be q + kshift, i.e.,

ê‖ =
q + kshift

|q + kshift|
& q̂⊥ = ẑ × q̂‖. (A5)

Clearly, only one of the choices given by Eqs. (A3)
and (A5) can be taken as the mode eigen-vector. Since
the Fourier expansion in ω-space has to lead to a real-
valued displacement vector in time-domain, the Fourier
expansion in q-space should be performed over the sum-
mation variables of q− = q − kshift and q+ = q + kshift
for ω > 0 and ω < 0, respectively. Therefore, if the
set of eigen-vectors given by Eq. (A3) is selected for the
(ν, q) mode of positive ω, then the one given by Eq. (A5)
should be reserved for the same mode with negative ω.

The results presented in this work do not depend on
the generalization to the |q| 6= 0 case given by Eqs. (A3)–
(A4) and (A5); nevertheless, these expressions are pre-
sented here as an educated guess. Even though these
generalized eigen-vectors reduce to the correct result in
the special cases of |q| = 0 and |q| � |kshift|, a more
rigorous approach is needed to determine whether these
expressions correctly describe the (LO, q) and (TO, q)
modes of current-carrying graphene when |q| ∼ |kshift|.
One possible approach is to directly derive the dynamical
matrix of current-carrying graphene in the small-current
limit, which could naturally lead us to the correct eigen-
vectors for the in-plane phonon modes near FBZ center.

Appendix B: Analytic formalism for the broadening
of the Γ-LO and Γ-TO modes in the low-current,

low-temperature and clean-sample limit

At Te = 0 K, the self-energy of the Γ-LO and Γ-TO
modes, which is given by Eq. (6), can be simplified to

Πν,0
∼= gSgV

AFBZ

κ2
Γ

∫ 2π

0

dθk

∫ kF(θk,θd)

0

Λν,0(k) dk, (B1)

where kF(θk, θd) is described by Eq. (16) and Λν,0(k) is

Λν,0(k) ≡ k

~
∑

α,α′=±

0.5 [1− αlν cos (2 [θk − θd])]
[1− α] vFk − α′ [ων,0+iγν,0]

. (B2)

As can be seen in the expression in Eq. (B2), the two
terms corresponding to (α, α′) = (1,±1) cancel each
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other, which means that the contribution of the intra-
band transitions vanishes at q = 0. Therefore, the ex-
pression given by Eq. (B1) can be further simplified by
dropping the α = 1 term, i.e.,{

ΠLO,0

ΠTO,0

}
∼= 2

gSgV

AFBZ

k(0)
F

~vF

κ2
Γ

∫ π

0

SΓ(θ)

{
cos2θ

sin2θ

}
dθ, (B3)

where θ ≡ θk − θd and SΓ(θ) is defined as

SΓ(θ) =
∑
α′=±

∫ k̃F(θ)

0

k̃ dk̃

2k̃ − α′ω̃cΓ
, (B4)

with the auxiliary variables k̃, k̃F(θ) and ω̃cΓ being

k̃ ≡ k

k(0)
F

, (B5)

k̃F(θ) ≡ kF(θ, θd = 0)

k(0)
F

, (B6)

ω̃cΓ ≡
~ω(0)

Γ

|E(0)
F |

+ i
~γ(0)

Γ

|E(0)
F |

, (B7)

where γ(0)
Γ = γ(0)

LO,0 = γ(0)
TO,0. Note that the pre-factor

“2” in Eq. (B3) resulted from reducing the integration
range from [0, 2π) to [0, π) simply because the integral
over [0, π) is equal to the integral over [π, 2π). Utilizing
this identity simplifies the expression in Eq. (B4),∫

xdx

x+A
= x−A ln[x+A] + C, (B8)

with A and C being arbitrary constants. Therefore,

SΓ(θ) =

[
k̃ +

ω̃cΓ
4

ln

(
2k̃ − ω̃cΓ
2k̃ + ω̃cΓ

)]k̃F(θ)

0

. (B9)

Even in the clean-sample limit, i.e., γ(0)
Γ = 0, the real-

valued argument of ln(x) in Eq. (B9) can be negative,
and therefore K(θ) can be complex-valued. In that case,

Im[SΓ(θ)] = −πω̃Γ

4
H

(
ω̃Γ

2
− k̃F(θ)

)
, (B10)

with H(x) denoting the Heaviside step function and
ω̃Γ = ~ω(0)

Γ /|E(0)
F |. The expression given by Eq. (B10)

is obtained using the following identity

Im[ln(x)] = ±πH(−x) ;x ∈ R, (B11)

where we accepted the “−” sign to get a positive value
for mode broadening. Combining the expressions given
by Eqs. (B3) and (B10) yields the following expression
for the broadening of the Γ-LO and Γ-TO modes in the
presence of DC current at Te = 0 K,

γν,0 ∼=
gSgV

AFBZ

κ2
Γ

~2v2
F

πω(0)
Γ

4

∫ π

ϑ

[1 + lν cos(2θ)] dθ, (B12)
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FIG. 14. (Color online) Current-induced perturbation to the
ν = {LO,TO} modes at q = 0 computed at Te = 0K, for a
drift parameter of η = 0.1, i.e., kshift =0.1k(0)

F , and for multi-
ple values of residual broadening, γB

ν,0, ranging from 0.01 to
100 cm−1. Panels (a) and (c) show respectively the current-
induced frequency shift and the current-induced broadening of
the Γ-LO mode versus the normalized equilibrium-state Fermi
energy; their Γ-TO counterparts are shown in panels (b) and
(d). The data points corresponding to γB

ν,0 = 0 cm−1 are
actually calculated for γB

ν,0 = 0.01 cm−1. The frequency shift
and broadening of each mode are computed semi-analytically,
by combining Eqs. (B3) and (B9). The current-induced per-
turbations are simply computed by subtracting the self-energy
values in the absence of the DC current from their counter-
part computed in the presence of the DC current. The semi-
analytic values for the mode broadening approach the analytic
values given by Eqs. (27)–(30) as the residual mode broaden-
ing becomes vanishingly small.

where the angle ϑ is the lower limit of the range of θ
values wherein the inequality of k̃F(θ) > 0.5ω̃Γ holds.
The search for this range can be performed graphically,
and ϑ the angle at which the shifted Fermi circle and the
non-shifted circle of radius ω̃Γ

2 intersect, i.e.,

k̃F(ϑ) ∼= 1 + η cosϑ = ω̃Γ/2. (B13)

Obviously, solutions for ϑ exists only if ||ω̃Γ/2| − 1| ≤ η.
The explicit solutions to Eqs. (B12) and (B13) are
presented in Sec. IVB by Eqs. (27)–(30), in terms of
ψ = π − ϑ. Additionally, in the low-current and low-
temperature limit the frequency-shift and broadening
of the modes can be obtained by combining Eqs. (B3)
and (B9). The current-induced perturbations can simply
be computed by subtracting the values obtained from
the (semi-)analytic formalism for η = 0 from their η 6= 0
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counterpart. This can also be achieved by changing the
lower bound in the expressions given by Eq. (B9) from
0 to k(0)

F . The computed values for the current-induced
frequency shift and broadening obtained from the semi-
analytic formalism are presented in Fig. (14).

Appendix C: Analytic formalism for the broadening
of the Kj-TO mode in the low-current,

low-temperature and clean-sample limit

Considering the differences between the Kj-TO and
Γ-TO modes in terms of the self-energy calculation,
which are listed in Sec. VA, the (semi-)analytic formal-
ism for the Kj-TO modes can be obtained by making
a few minor changes to the formalism presented in Ap-
pendix B. Starting with Eq. (B1), at Te = 0 K, the self-
energy of the Kj-TO mode can be simplified to

ΠTO,K
∼= gSκ

2
K

AFBZ

∫ 2π

0

dθk

∫ kF(θk,θd)

0

ΛTO,K(k) dk, (C1)

where ΛTO,K(k) is defined as

ΛTO,K(k) ≡ k

~
∑
α′=±

1

2vFk − α′ [ωTO,K+iγTO,K]
. (C2)

The semi-analytic formalism is therefore given by

ΠTO,K
∼= 2gS

AFBZ

k(0)
F

~vF

κ2
K

∫ π

0

SK(θ) dθ, (C3)

where SK(θ) is defined as

SK(θ) =

[
k̃ +

ω̃cK
4

ln

(
2k̃ − ω̃cK
2k̃ + ω̃cK

)]k̃F(θ)

0

, (C4)

with ω̃cK being defined as

ω̃cK = ω̃K + iγ̃K =
~ω(0)

K

|E(0)
F |

+ i
~γ(0)

K

|E(0)
F |

;γ(0)
K = γ(0)

TO,K. (C5)

In the clean-sample limit, i.e., γ(0)
K = 0, we have

Im[SK(θ)] = −πω̃K

4
H

(
ω̃K

2
− k̃F(θ)

)
. (C6)

Combining the expressions given by Eqs. (C3) and (C6)
yields the following expression for the broadening of the
Kj-TO mode in the presence of DC current at Te = 0 K,

γTO,K
∼= 2gS

AFBZ

κ2
K

~2v2
F

πω(0)
K

4

∫ π

ϑ

dθ, (C7)

with ϑ being the angle at which the shifted Fermi circle
and the non-shifted circle of radius ω̃K

2 intersect, i.e.,

k̃F(ϑ) ∼= 1 + η cosϑ = ω̃K/2. (C8)

Solutions for ϑ exists only if ||ω̃K/2| − 1| ≤ η. The ex-
plicit solutions to Eqs. (C7) and (C8) are presented in
Sec. VB by Eqs. (38)–(39) in terms of ψ = π − ϑ.
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FIG. 15. (Color online) Current-induced perturbation to the
TO mode at q=Kj computed at Te = 0K, for a drift param-
eter of η = 0.1, i.e., kshift =0.1k(0)

F , and for multiple values of
residual broadening, γB

TO,K, ranging from 0.01 to 100 cm−1.
Panels (a) and (b) show respectively the current-induced
frequency shift and the current-induced broadening of the
Kj-TO mode versus the normalized equilibrium-state Fermi
energy. The data points corresponding to γB

TO,K = 0 cm−1

are actually calculated for γB
TO,K =0.01cm−1. The frequency

shift and broadening are computed semi-analytically, by com-
bining Eqs. (C3)–(C4). The current-induced perturbations
are computed by subtracting the self-energy values in the ab-
sence of the DC current from their counterpart computed in
the presence of the DC current. The semi-analytic values for
the mode broadening approach the analytic values given by
Eqs. (38)–(39) upon decreasing the residual mode broadening.
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