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In this work we investigate the ability of the cumulant expansion (CE) to capture one-particle
spectral information in electron-phonon coupled systems at both zero and finite temperatures. In
particular, we present a comprehensive study of the second- and fourth-order CE for the one-
dimensional Holstein model as compared with numerically exact methods. We investigate both
finite sized systems as well as the approach to the thermodynamic limit, drawing distinctions and
connections between the behavior of systems in and away from the thermodynamic limit that enable
a greater understanding of the ability of the CE to capture real-frequency information across the
full range of wave vectors. We find that for zero electronic momentum, the spectral function is well
described by the second-order CE at low and high temperatures. However, for non-zero electronic
momenta, the CE is only accurate at high temperature. We analyze the fourth-order cumulant, and
find that while it improves the description of the short-time dynamics encoded in the one-particle
Green’s function, it can introduce divergences in the time domain as well as unphysical negative
spectral weight in the spectral function. When well-behaved, the fourth-order CE does provide
notable accurate corrections to the second-order CE. Finally, we use our results to comment on
the use of the CE as a tool for calculating transport behavior in the realistic ab initio modeling of
materials.

The description of the dynamics of electrons interact-
ing with phonons is a cornerstone topic in condensed
matter physics due to its ubiquity and the importance of
electron-phonon interactions (EPIs) in determining the
properties of solids. Indeed, EPIs are crucial for under-
standing a wide range of phenomena in solids, including
superconductivity, transport properties, and the vibronic
satellite structure in emission and absorption spectra, to
name just a few.1–7 Unfortunately, even for simplified
canonical EPI models, such as the Holstein, Fröhlich, and
Su-Schrieffer-Heeger models which were introduced many
decades ago, exact dynamical solutions are largely out of
reach.8–11

There is a plethora of methods for extracting ac-
curate properties of EPI models which may be use-
ful under different circumstances. Exact ground state
and low-lying excited state properties for the Holstein
and other models are attainable through diagonaliza-
tion in a variational Hilbert space (VD).12–14 Focus-
ing on the electron-phonon dynamics, the one-particle
Green’s function G(k, t) has been extensively studied at
zero-temperature using exact diagonalization,15–18 clus-
ter perturbation theory,19,20 a variational approach,21 the
momentum-averaged approximation,22,23 and diagram-
matic quantum Monte Carlo (DQMC) in conjunction
with numerical analytic continuation.24

The frontier of finite-temperature dynamical calcula-
tions remains less well explored. The increased occu-
pation of higher-lying phonon states at nonzero tem-
peratures renders Fock space methods harder to con-
verge. Only recently has the spectral function (A (k, ω) =
−π−1=G(k, ω)) been reported at finite temperature for
the Holstein model using VD with the finite-temperature
Lanczos method on 6- and 12-site systems.25–27 DQMC
has provided the temperature dependent mobilities for
the Holstein and Fröhlich models; however, as with spec-
tral information this approach is restricted by an ill-

conditioned analytic continuation procedure.4,28 More re-
cently, numerically exact dynamical methods based on
DMRG+VD,29 a generalized cluster expansion,30 and the
Hierarchical Equations of Motion (HEOM)31–39 approach
have been introduced for real-time dynamics in lattice
models with EPIs.

For realistic ab initio modeling40–47 of systems with
EPIs, many of the exact methods mentioned previously
are infeasible. Instead, perturbative approaches are usu-
ally employed. However, since each order of perturbation
theory exponentially increases the number of self-energy
diagrams, it is not practical or computationally efficient
to directly compute high-order diagrams in large, realistic
systems, and approximate resummations of higher-order
terms become essential. The cumulant expansion (CE)
approach has been used for this purpose for many years,
and was recently combined with density functional per-
turbation theory to calculate the finite temperature pho-
toemission spectra of MgO, LiF43, and TiO2.42 While the
utility of the CE for the calculation of G (k, t) at finite
temperature has been known for years, only a few papers
have systematically explored its validity.48–50

Motivated by recent exact dynamical results in the
finite-temperature Holstein model,27 we systematically
explore the CE in this system as proposed by Dunn in
the context of Fröhlich insulators.48 A similar expansion
was also used in conjunction with the Matsubara formal-
ism by Gunnarsson et al for describing zero-temperature
spectral properties of the half-filled Holstein model.50 In
Section I we introduce the model, as well as the defini-
tion of G (k, t), and the framework of the CE. In Section
II we provide a detailed comparison of the CE in the
6-site Holstein model with exact VD results. This com-
parison highlights a number of interesting features which
demand more detailed investigation. In Section II A we
discuss errors of the CE that are associated with finite
lattice size. In Section II B we demonstrate several use-
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ful and problematic features of the fourth-order CE. In
Section II C we analyze the short-time convergence of the
CE as well as the limitations of the CE in capturing fine
spectral features and long-time behavior. In Section II D
we will present results for the spectral function of an in-
finite system. We conclude with a summary of the main
results and the implications of our findings for the use of
the CE in the ab initio modeling of materials.

I. MODEL AND PERTURBATIVE CUMULANT
EXPANSION

In this section we provide background information
needed for the remainder of the paper. While all of
the information in this section is well-known, this in-
formation is useful for setting notation and for provid-
ing a self-contained discussion of the results that follow.
Throughout this work we focus only on a very specific
model, namely the one-dimensional Holstein model with
Einstein phonons and periodic boundary conditions.3,8,9

We consider only the single particle case, that is a single
electron promoted into an otherwise empty band. The
model is defined by a system-bath Hamiltonian

H = He +Hp + V, (1)

where the kinetic energy term

He ≡ −t0
∑
n

(
a†nan+1 + a†nan−1

)
=
∑
k

εka
†
kak, (2)

εk = −2t0 cos k, (3)

describes the purely electronic system, and

Hp ≡ ω0

∑
n

b†nbn = ω0

∑
k

b†kbk, (4)

describes the bath. Lastly,

V ≡ gω0

∑
n

a†nan
(
bn + b†n

)
=
gω0√
N

∑
kq

a†k+qak

(
bq + b†−q

)
, (5)

accounts for the EPI, which is linear in the bath coor-
dinates. The Holstein model describes the deformation
of a discrete lattice,8,9 reflecting the decoupled nature of
sites in a molecular crystal by including only strictly local
electron-phonon coupling. In addition, the model further
isolates the effects of intermolecular relaxation by ignor-
ing Peierls-like coupling.11,51–53 For an excellent review
that discusses the relation between the Holstein model
and continuum models such as the Fröhlich model, see
the work of Devreese and Alexandrov.54

A. One-Particle Green’s Function

We will focus on the calculation of the finite tempera-
ture one-particle (causal55) Green’s function,3,56

G (k, t) ≡ −iΘ (t)
Tr
[
e−β(H−µN)ak(t)a†k(0)

]
Tr
[
e−β(H−µN)

] . (6)

This quantity is directly related to experimentally mea-
surable quasi-particle spectra as probed by, e.g., photoe-
mission spectroscopy, and can be used to infer transport
properties such as charge mobilities in an approximate
manner.3,46,47,57 In addition, the one-particle Green’s
function provides a testbed for the comparison of nu-
merical methods ranging from the approximate to the
exact which may be applied to general electron-phonon
problems.24,28,58,59

As mentioned above, we study an insulator where the
chemical potential µ satisfies µ � −2|t0| and there is
a single electron placed in the conduction band.48 When
this is the case, it is simple to demonstrate that the trace
over the many-electron Fock space in Eq. 6 can be ex-
actly replaced by a trace over zero-electron states and
non-interacting phonon states weighted by the canoni-
cal density operator for an uncoupled phonon bath,3,48

namely

G (k, t) = −iΘ (t)
Tr
[
e−βHpak(t)a†k(0)

]
Tr [e−βHp ]

,

≡ −iΘ (t) 〈ak(t)a†k(0)〉. (7)

As will be useful in the next subsection, we also define
the quantity

Φ (k, t) ≡ log
G (k, t)

G0 (k, t)
, (8)

where

G0 (k, t) = −iΘ (t) 〈eiHetake−iHeta†k〉. (9)

Finally, most comparisons with exact calculations will be
made via consideration of the spectral function, defined
as

Ak(ω) = − 1

π
=
[∫ ∞
−∞

dteiωtG (k, t) exp (−γt)
]
, (10)

which most closely connects the one-particle Green’s
function to angle resolved photoemission experiments.3

Here, γ is a broadening parameter which is used to en-
able comparison with VD calculations, serves to dampen
recurrences for calculations with a small number of sites,
and which may be considered as an effective “experimen-
tal” resolution for the spectral function itself.
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B. Cumulant Expansion for G (k, t)

Various perturbative approaches have been developed
for the explicit calculation of Green’s functions such as
G (k, t). The standard approach, which we shall not fol-
low here, follows the now well-established rules of quan-
tum field theory.3,56 Instead, we will follow the “linked-
cluster” or cumulant approach perhaps first used in the
form we employ by Brout and Englert,60,61 and ap-
plied to polaron models originally by Mahan, Dunn and
others.48,49

First, consider the difference between expansions of
the moment generating function (MGF) and the cumu-
lant generating function (CGF). For a (classical) Gaus-
sian random variable X, an expansion of the MGF trun-
cated at second-order will only approximately describe
the MGF,

〈e−igX〉 = 1− ig〈X〉 − g2

2
〈X2〉+O

(
g3
)
. (11)

However, the CGF in this case is exactly described by a
second-order expansion,

log〈e−igX〉 = −ig〈X〉 − g2

2

(
〈X2〉 − 〈X〉2

)
. (12)

By taking the logarithm of the Gaussian MGF before
expanding, one effectively resums an infinite number
higher-order terms in the MGF. The inclusion of even
approximate terms of higher-order in the perturbation
expansion leads one to expect that a cumulant method
can be accurate, especially if the expanded quantity is
“nearly Gaussian” in the sense of having small cumulants
of order higher than second.

The CE is readily adaptable for perturbative calcu-
lation of both thermodynamics and quantum dynamics,
where, like the MGF, both the Boltzmann factor and the
propagator are exponential functions to be averaged, al-
beit in time-ordered form.62 Analogous to a MGF, the
one-particle Green’s function

G(k, t) = G0 (k, t)

〈
e
−i

∫ t
0
dτV̂ (τ)

T

〉
k

(13)

G0 (k, t) = −iΘ(t)e−iεkt, (14)

can also be calculated approximately via a perturbative

calculation of

〈
e
−i

∫ t
0
dτV̂ (τ)

T

〉
k

in powers of a coupling

constant. Here, the k subscript denotes the average over
all one-electron states with electronic momentum k, the
T subscript denotes time-ordering, and the hat desig-
nates V̂ (τ) as an operator in the interaction picture.

TheMth-order CE (linked-cluster) for G (k, t) is given
by

GM(k, t) = G0 (k, t) exp [ΦM(k, t)] , (15)

and likewise AM (k, ω) is calculated via the Fourier trans-
form of GM (k, t). Here, ΦM(k, t) is the sum of the cu-
mulants Cµ up to orderM. The procedure for construct-
ing the cumulants Cµ (k, t) from the moments Mµ (k, t) is

well-known.3 For models of the form given in Eqns. (1-5),
the first few cumulants (up to the fourth-order cumulant)
are explicitly given by

C1 = 0, (16)

C2 = eiεktM2, (17)

C3 = 0, (18)

C4 = eiεktM4 −
1

2
C2

2 , (19)

where

Mµ(k, t) =
(−i)µ
µ!

∫ t

0

dt1...

∫ t

0

dtµ

×
〈
T
{
âk(t)V̂ (t1)...V̂ (tµ)â†k(0)

}〉
. (20)

Here T {. . . } is the time-ordering operator which places
later times to the left.

Calculation of the second-order and fourth-order CE
for the Holstein model requires computing M2 and M4.
These moments depend on εk and the form of the EPI
vertex, which is a momentum-independent constant for
the Holstein model. Expressions for M2 and M4 where
we evaluate the time integrals and leave the momentum
sums explicit are given in Appendix A.

C. Convergence of Cumulant Expansion

Let us now examine some aspects of the convergence of
the CE for the Holstein model as a function of tempera-
ture and EPI coupling strength. Following the definition
of the CE in Eq. 15, a sufficient condition for the break
down of the expansion occurs when successive higher-
order cumulants Cµ are not relatively small. Therefore
we examine the magnitude Cµ.

For T → 0, the phonon occupation numbers N0 van-
ish, such that we may order the terms in Appendix A
as functions of the coupling strength for the finite, even
cumulants

C2n ∼ g2n. (21)

The high temperature limit is slightly more subtle. Be-
fore performing the time integrations in Eq. (20), con-
tracting the phonon operators yields

C2n ∼ g2n
n∏
i=1

[
coth

(
βω0

2

)
cos (ω0τi)− i sin (ω0τi)

]
.

(22)

Taking the high temperature limit,

C2n ∼ g2n
n∏
i=1

2

βω0
cos (ω0τi) ∼

(
2g2

βω0

)n
. (23)
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FIG. 1. Spectral functions A (ω) for the 6-site Holstein model calculated via the second-order CE (blue solid line), fourth-order
CE (pink dashed line), and VD (thin black line and gold shading). Model parameters: ω0 = t0 = g = 1. We use γ = 0.05.
VD results are the same as those presented in from Fig. 1(a) of Bonča et al.27 (a) k = 0 for a range of temperatures. The
fourth-order CE is only presented for the two highest temperatures because it is divergent at lower temperatures. Both orders
of the CE capture the most prominent structures of the VD result. (b) k = 0 at only T = ω0. When the fourth-order CE is
convergent it slightly corrects the quasiparticle energy and adds additional structure to the peak which better approximates
the VD result. (c) k = π for a range of temperatures. The VD result demonstrates that there is significant structure in the
spectral function and a quasiparticle peak at ∼ −1.5ω0 (dotted black line) while the second- and fourth-order CE only broadly
model the structured features in the spectral function. In the fourth-order CE there is an addition peak centered around −ω0.
(d) Heat maps for second-order CE (left) and VD (right, from Ref. 27) at all momenta for ω0 = t0 = 1, T = 0.1 and g2 = 2.
Note how in the CE the extra bright peaks at k = 0 disperse into a series of shifted peaks which eventually coalesce into the
incoherent polaron peak at k = ±π. In contrast, the VD bands extend all the way from k = 0 to k = ±π.

Thus, we see from these two limits that the CE in the
time domain breaks down for large T and g such that,
schematically, the expansion is governed by

∼ max

[
g2,

2g2

βω0

]
. (24)

According to Dunn,48 the CE should also give a reason-
able description of A (k, ω) at high enough temperatures
and strong enough coupling such that (N0 = 1

eβω0−1
)

gN0 & 1, (25)

and/or

g (N0 + 1) & 2, (26)

which supersedes the condition for convergence given
above. In this regime the long time behavior of G (k, t)
is quickly damped and A (k, ω) is broadened to such a
degree to as to wash out all sharp spectral features. We
shall see evidence of these behaviors in the following sec-
tions.
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FIG. 2. One-phonon exact diagonalization approximation re-
sults of Holstein model at increasing system sizes. ω0 = t0 =
T = 1; g = 0.25 (a) Spectral function as a function of system
size demonstrates disappearing fine structure (b) Magnitude
of the Green’s function in time as a function of system size
demonstrates disappearance of sharp beats.

II. RESULTS

Recently, Bonča et al. published the first exact
temperature-dependent spectral function for the single-
particle Holstein model using VD.27 Since the VD and
finite temperature Lanczos methods are well detailed in
the literature, we do not review them here.12–14,25–27 Due
to the expense of the approach, the finite-temperature
calculations of Bonča et al. were limited to small system
sizes of 6 and 12 sites. It should be noted that at the
level of heat maps of the k-dependent spectral function,
the 6 and 12 site results differ by only a small amount.
On closer inspection, small finite size effects are appar-
ent, as will be discussed below. Recently, new techniques
have been developed that are capable of providing exact
finite temperature spectra in the single-particle polaron
models for larger systems.29 However comprehensive re-
sults for larger lattices in the Holstein model have not yet

been published, and thus we compare only to the work
of Ref. 27.

To judge the accuracy of the CE and compare its per-
formance to the exact results of Bonča et al.,27 we now
consider the CE approximation for spectral functions for
a 6-site Holstein model at the band bottom (k = 0) and
the band edge (k = π). We restrict the comparison to
the intermediate coupling regime where g = t = ω0. In
Fig. 1 we plot the k = 0 and k = π second- and fourth-
order CE spectral functions along with data from Ref.
27. For both momenta, the second-order CE captures
the broad structure of the spectral function reasonably
well, and for k = 0 the results are quantitatively accurate
at both T = 0 and at high temperatures T ≥ ω0. In par-
ticular, the second-order CE captures the quasi-particle
peak and the first vibronic satellite peak at T = 0 in ex-
cellent agreement with VD. At higher temperatures, the
central features of these peaks are well captured, how-
ever the fine structure superposed on the quasi-particle
peak exhibited by the exact VD spectra is absent in the
CE spectra. We will see below that this fine structure
is a consequence of the small lattice size, and thus the
CE approximation does not properly capture this type
of finite lattice effect.

At the band edge (k = π) the results produced by the
second-order CE are not as encouraging, as illustrated in
in Fig. 1(c). The VD data has two important features:
a quasi-particle peak at low energy (∼ −1.5ω0), and a
broad vibronic wing with a split peak structure centered
around 2ω0. The second-order CE misses the peak struc-
ture of the exact spectral function entirely, and instead
can be described as a single broad peak centered near the
average value of the peak intensity found in the exact VD
result. Again, as temperature increases and the features
of the spectral function broaden, the CE result becomes
more and more accurate, reflecting the fact that the CE
properly accounts for the spectral bandwidth even for
k = π. The fact that the CE is accurate away from
k = 0 for temperatures T ≥ ω0 has important practi-
cal implications for the use of the CE to study transport
phenomena, a topic we will return to before concluding.

The difference in accuracy of the CE between the k = 0
and the k = π cases is seen generally across the full range
of wave vectors. More specifically, we find that the k = 0
case is the only case for which the CE is in quantitative
agreement with exact VD results for low temperatures.
A full comparison of the exact and approximate CE spec-
tral functions across the entire band can be found in Fig.
1(d). Here, several features are notable. The fact that
for k = 0 the CE predicts a prominent series of small
peaks beyond the first satellite spaced by ω0, in reason-
able agreement with the exact VD results, is actually the
result of an incorrect intensity crossing structure which
renders the satellite behavior for all k 6= 0 inaccurate.
As we will discuss below, this behavior is the result of
the manner in which the CE approximates higher-order
multi-phonon scattering terms. Note as well that for
k 6= 0 there is fine structure in the high intensity band.
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FIG. 3. The fourth-order CE numerical results (dashed red) for N = 6 at g = ω0 = t0 = 1 and T = 0 compared with the
leading order envelope functions (solid black) at (a) k = 0, (b) k = 2π/3, and (c) k = π. The functional form of the envelope
is given in each figure and describes the general shape of the numerical results. A discussion of the origin of these envelope
functions is found in the main text and Appendix A.

This behavior is a finite size effect of the CE which van-
ishes when the number of lattice sites tends to infinity, as
we will discuss later in this work. Such finite size effects
are distinct from the true finite sized behavior exhibited
in the VD results discussed above, and do not reflect the
correct formation of structure exhibited in the satellite
region of the exact spectra.

We next turn to a discussion of the corrections to the
second-order CE provided by the fourth-order CE. In
general, when the fourth-order CE is well-defined for the
parameter regime of the Holstein model studied here, it
only subtly alters the behavior found from the second CE.
In Fig. 1(b) we provide a close-up of the k = 0, T = ω0

case found in Fig. 1(a). It can be observed that in general
the fourth-order CE indeed redistributes spectral weight
correctly, with the exception of a small region of negative
spectral weight for ω > 0. The fact that the fourth-order
CE does not guarantee positivity of the spectra has been
discussed in several previous works.50,63,64 Gunnarsson
et al. attribute this problem to the particular analyti-
cal form of the terms retained at fourth-order in the CE.
More problematic is the fact that for some parameter
regimes the fourth-order CE is not well defined due to
unbounded growth in the time domain of some of the
terms in the expansion.50 We will see below that these
terms take a similar form to those pointed out as con-
tributing to negative spectral weight by Gunnarsson et
al. Thus, these two issues appear to be connected. In
Fig. 1(a) fourth-order CE results are not shown for k = 0
and T ≤ 0.6ω0 due to the divergence in the time domain
of the fourth cumulant. In the next three subsections
we will investigate more deeply several of the features
exposed here for the finite-sized Holstein chain before
turning to the CE in the thermodynamic limit.

A. Finite Size Effects

In the discussion of results for the 6-site lattice pre-
sented above, we mentioned several aspects of both the
exact VD results as well as the results of the CE that
warrant further discussion. In this subsection we focus
on one such feature, namely the role played by the small
lattice size, and the implications for the failure of the CE
to capture these effects. In particular, we focus now on
the small ripples that appear in the main quasi-particle
region of the VD spectra for a 6-site system in the regime
0.1ω0 ≥ T ≥ 0.6ω0. We explicitly demonstrate that these
features are due to the small lattice size, and thus the
failure of the CE to capture this type of finite size effect
is not relevant in the thermodynamic limit. Indeed, the
expected change in the spectral function in transition-
ing from small finite size systems to the N → ∞ limit
plotted in the manner of Fig. 1(e) will largely appear
confined to smoothing the intensity modulation of the
most prominent spectral features.

To shed light on the type of finite size effects expected
to arise in small lattice systems, and to reveal why these
effects show up prominently only at low to intermediate
values of the temperature, we turn to exact diagonaliza-
tion for finite sized systems in the one-phonon sector.
This approach is outlined in Appendix C. Due to the
strong restriction on the phonon excitations allowed, we
do not aim for quantitative results and merely expose
the qualitative nature of the spectral features associated
with the quasi-particle peak as the system is tuned from
finite to infinite lattice size.

In Fig. 2 we show the behavior of the spectral function
and the real-time behavior of the one-particle Green’s
function for k = 0 for a weakly coupled electron-phonon
system (g = 0.25) with parameters ω0 = t = T = 1.
The behavior of the Green’s function in the time domain
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FIG. 4. Breakdown of the time dependence of (a) Φ4(0, t)
and its dependence on (b) C2(0, t) and (c) C4(0, t), high-
lighting the temperature driven transition from divergent to
non-divergent G(0, t). Here, ω0 = t0 = 1, g = 0.25, k = 0
and T = [0, 1.4]. Φ4(0, t) transitions from divergent to non-
divergent between T = 0.7 and T = 0.75, and because C2(0, t)
does not predict a divergent G(0, t) for any temperature, the
transition from divergence or non-divergence is dictated by
the transition in C4(0, t).

reveals the existence of higher frequency beating behav-
ior superposed on lower frequency oscillations. The high
frequency behavior is related to recurrences due to tran-
sitions associated with the discreteness of the spectrum
in the small N limit. Such behavior will manifest most
strongly at intermediate temperatures, where thermally-
populated low-lying states can participate in producing
the observed beating behavior but where the tempera-
ture is not so high that damping effects dominate the
decay of the Green’s function. We note that already by
N = 20 the erratic high frequency behavior vanishes,
although finite size effects are still present. In the fre-
quency domain, spectral functions of finite size systems
with N ≤ 12 exhibit small secondary peaks similar to the
behavior exhibited in Fig. 1(a).

N g T/ω0 ω0t<[Φ4]>0

6 1.00 0.40 7.3

6 1.00 0.60 10.7

6 1.00 0.70 23.2

6 1.00 0.72 80.0

6 1.00 0.73 > 104

6 0.75 0.00 7.3

6 0.50 0.00 10.7

6 0.25 0.00 20.2

6 0.10 0.00 51.6

6 1.00 0.00 7.1

12 1.00 0.00 10.2

50 1.00 0.00 24.9

100 1.00 0.00 49.0

150 1.00 0.00 73.3

TABLE I. t<[Φ4]>0 for varying system sizes, coupling
strengths and temperatures. Increasing the system size or
decreasing the coupling can push the onset of the divergence
to longer times. Raising the temperature past some transition
temperature fully removes the divergence. Model parameters:
t0 = ω0 = 1; k = 0

The finite size behavior and the inability of the CE to
capture it is similar to that seen in purely electronic sys-
tems. In particular, McClain et al. have studied the spec-
tral function of the electron gas with coupled-cluster and
cumulant-based techniques in finite sized systems.65 Here
the CE also shows a relative inability to reproduce struc-
ture associated with the discrete nature of finite sized
systems. We emphasize that the structure of the spec-
tral function seen in small systems in the Holstein model
discussed in this section are distinct from larger scale fea-
tures for k 6= 0 such as that seen in Fig. 1(c) which are
also absent in low-order CE calculations. The more im-
portant failure to reproduce these larger scale features is
expected to persist in the N →∞ limit.

B. Divergences in the fourth-order CE

Fig. 1(b) illustrates that, aside from the unphysical
appearance of regions with a (small) negative spectral
weight for ω & 1.1ω0 (not shown), the fourth-order CE
improves upon the second-order CE for the spectral func-
tion at k = 0 at higher temperatures. However, as men-
tioned above, for the same k value at low temperatures,
the fourth-order CE is divergent at longer times, and thus
truncated higher-order CEs cannot always be used to sys-
tematically improve upon low-order results. Here we fo-
cus on the factors which can shift the fourth-order CE
between well-behaved and divergent at long times to bet-
ter understand where corrections to the second-order CE
are applicable. We will demonstrate that in the Holstein
model, the divergence of the fourth-order CE depends
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intimately on the wave vector, system size and tempera-
ture under consideration, and is closely connected to the
issue of negative spectral weight first pointed out for this
model by Gunnarsson et al.50

The CE is an exponential function of the quantity
Φ(k, t) defined in Sec. 1B for which physical results re-
quire < [Φ(k, t)] ≤ 0 for all times. In addition, at finite
temperatures the requirement lim

t→∞
< [Φ(k, t)] → −∞

must hold, reflecting the finite lifetime of quasi-particles.
It is easily checked that the second-order CE always sat-
isfies these requirements. In particular, −g2t2(2N0+1) ≤
<[Φ2(k, t)] ≤ 0, and thus the second-order CE never di-
verges.

With these considerations in hand, we focus on the
fourth-order CE, characterizing the divergence of the
fourth-order term Φ4(k, t) by the quantity t<[Φ4]>0,
which marks the earliest time where <[Φ4] > 0. In Ta-
ble I we compile t<[Φ4]>0 for the Holstein model with the
same parameters as found in Fig. 1 for the spectral func-
tion at k = 0 as a function of temperature and the num-
ber of lattice sites. Several aspects of the data are worthy
of note. We focus first on the fact that as T approaches
a temperature between T = 0.72 and T = 0.73, the di-
vergence is abruptly pushed from a finite time to infinite
time for all practical purposes. This behavior is consis-
tent with the results plotted in Fig. 1(a), where only
the cases T = 1.0ω0 and T = 1.4ω0 have non-divergent
fourth-order CE results.

The root of this abrupt behavioral change in the long-
time limit of Φ4(k, t) becomes manifest upon examining
the analytical forms of the individual cumulant terms.
Details may be found in Appendix A. Direct examination
of Φ4(k, t) at zero temperature reveals terms of the form
teiαt where α is some real number. Care must be taken
with the evaluation of C4(k, t), as it contains many ap-
parent singularities which are actually well-defined when
appropriate limits are taken. Depending on the partic-
ular limit and the values of t0 and ω0, C4(k, t) contains
real-valued terms which may diverge linearly, quadrati-
cally, or quartically in time. Some of the seemingly diver-
gent terms of order t2 in M4(k, t) are exactly cancelled
by the transformation from moments to cumulants in Eq.
19.

Here, we present the leading-order contributions to the
fourth cumulant for N = 6, t0 = ω0, T = 0 and k = 0,

Φ4(0, t) =
−g4t2

(
2e−5itω0 + 25e−2itω0

)
1800ω2

0

+ o(t2). (27)

Since the exponential functions in Eq. 27 contain no real
damping, Φ4(0, t) diverges quadratically in time. The en-
velope growth rapidly becomes the only significant term
in the expansion. This is illustrated in Fig. 3(a) where
the case of g = ω0 = 1 is explicitly shown, and <[Φ(0, t)]
indeed grows along the upper and lower bounds of Eq.
27. Although the case presented here is quadratically
divergent, this is specific to t0 = ω0. A more general
version of Eq. 27 contains only linear divergences (albeit
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(0
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t2 = 2.90 t4 = 8.70

FIG. 5. (a): Comparison of A2 (blue solid line), A4 (pink
dashed line) and A∞/HEOM (thin black line and gold fill) for
T = 1.0ω0. (b): Comparison of the real parts of G2 (t) and
G4 (t) with G∞ (t) for T = 1.0ω0. (c): Comparison of Φ2 (t)
and Φ4 (t) with Φ∞ (t) for T = 0.0ω0. Model parameters:
N = 6; k = 0;ω0 = t0 = 1, g = 0.25, γ = 0.04 (spectral func-
tion only). HEOM calculations are performed using modified
versions of PHI 66 and pyrho.67

many of them), while the proper evaluation of the limit
t0 → ω0 introduces quadratically growing terms. It is
worth noting that terms of this general form were also
found by Gunnarsson et al. in their zero-temperature
CE study of similar polaron models.50 These authors de-
termined that such terms give rise problematic negative
spectral weight, however they did not report a divergent
behavior in G (k, t). We will return to the issue of nega-
tive spectral weight below.

Inspection of Eq. 27 also makes clear why decreasing
the value of the electron-phonon coupling delays the on-
set of the divergence, as seen in Table 1. The divergent
portion of the fourth-order cumulant is scaled by g4, so it
is quite expected that smaller g decreases the time scale
of divergence. This is demonstrated in Table I with the
example of a six site system where decreasing the value



9

of g indeed increases the divergence time.
In a similar vein, we can examine the terms in Φ4(π, t)

and Φ4(2π/3, t) to understand why, for N = 6 and
ω0 = t0, the fourth-order CE is non-divergent at zero
temperature. The case of k = 2π

3 is very similar in form
to k = 0 but critically contains an extra constant in the
expression for the leading term, namely

Φ4

(
2π

3
, t

)
=
−g4t2

(
4eitω0 + e−2itω + 6

)
96ω2

0

+ o(t2). (28)

Because of the −6t2g4/96ω2
0 term in Eq. 28,

<[Φ4(2π/3, t)] tends towards negative infinity quadrati-
cally, which corresponds to a strongly damped G(2π/3, t).
This is shown in Fig. 3(b) for the case of g = ω0 = t0 = 1.
As in the case of k = 0, the avoidance of an unphysical
divergence is specific to the choice that t0 = ω0, so it
merely serves as a demonstration of one way in which
the terms in the fourth-order CE conspire to avoid
divergences issues for a specific set of parameters at a
specific wave vector.

While these examples demonstrate how terms
quadratic in time in the expansion of Φ4(k, t) can lead
to a convergent or divergent approximation to G(k, t),
leading terms of even higher-order in time are possible.
An example of this occurs at k = π, where in Fig. 1(c)
we observe that the fourth-order CE is always well be-
haved. Once again taking N = 6, ω0 = t0 and T = 0, we
can show that the leading-order divergence for k = π is

Φ4(π, t) =
−g4t4

108
+ o(t4). (29)

Unlike the behaviour expressed by Eq. 27, the leading-
order divergence of Φ4(π, t) is not oscillatory; rather, it
is strictly negative and quartic, rendering irrelevant any
oscillating and increasing terms of slower growth. This
qualitative difference in behavior between the k = 0 and
k = π cases ensures a non-divergent Green’s function at
the band edge even at low temperatures.

The divergent terms discussed above are related to
the double pole structure described by Gunnarsson
et al.50 Analyzing the behavior of the fourth cumu-
lant in the short-time limit, a function of the form
exp (αtne−zt + . . . ) can be linearized to give 1+αtne−zt+
. . . . Here, α is a complex coefficient, n is a positive in-
teger, and z is purely imaginary. The Fourier transform
of a function of this form will be proportional to the
nth derivative of a delta function centered at z, and this
feature will be present in the spectra even if the over-
all CE is convergent. While this argument is approxi-
mate, as it relies on the short-time dynamics, it nonethe-
less makes clear the connection between negative spec-
tral weight and the potential for divergent behavior in
the fourth- (and presumably higher)-order CE. Since the
CE to all orders is exact, the cancellation of these prob-
lematic terms at high-orders must occur, albeit clearly
in a complicated manner which likely obviates the pos-
sibility of removing such terms in lower-order versions

of the the expansion in a reliable way. In most applica-
tions we are interested in the N →∞ limit, and here, as
shown in Sec. II D, we note that for some wave-vectors
divergences are suppressed with increased system size.
As empirically demonstrated in Table I for k = 0, the
onset time of the divergence grows linearly with the sys-
tem size. To understand this behavior, we again consider
which terms are present in the summation of the expres-
sions for the fourth-order cumulant. As the system size
increases, the number of terms in the momentum sums
over q1 and q2 grows as N2, while the weight of each
individual term decreases in magnitude as N−2. Singu-
larities in Φ4(k, t) that produce quadratic growth in time
only occur when specific energetic conditions are met. A
few examples of these conditions are εk+q1 − εk +ω0 = 0,
εk+q1 − εk+q1+q2 + ω0 = 0, and εk+q1+q2 − εk + 2ω0=0.
Crucially, these conditions exist only on one-dimensional
lines in the space of q1 and q2. Thus, the ratio of the
non-singular evaluations to the total number of evalua-
tions falls of at least as 1/N , as we observe numerically.
In particular, for k = 0 the non-singular term occurs in
61.1% of evaluations of the momentum sum for N = 6,
99.7% of the evaluations for N = 600, and 99.8% of the
evaluations for N = 1200. Thus, for very large system
sizes we can drop all of the singular cases of q1 and q2

by recognizing that the ratio of singular cases to non-
singular disappears as ∼ 1/N . The true thermodynamic
limit of C4(k, t) corresponds to a principle value integral
over momentum space with real terms at most linearly
divergent in t.

While the preceding argument justifies why the non-
linear in time divergences present in small systems disap-
pear as N →∞ for k = 0, it does not explain why linear
time divergences do not appear. We now heuristically ar-
gue that a distinct type of behaviour suppresses divergent
growth in time as N →∞ for some wave vectors.

With the remaining linear terms proportional to teiαt

where α ∈ <, the momentum sum in the fourth-order
cumulant becomes one of many oscillating exponential
functions, each with weight N−2. As the frequencies in
the exponential become continuously distributed, inter-
ference of the many out of phase components can delay
the onset of divergence to arbitrarily long times. It must
be noted that this cancellation depends on specific prop-
erties of the unperturbed energy dispersion which are not
trivially satisfied at all k. Nonetheless, we find numeri-
cally that as N tends towards an infinite number of sites
for both k = 0 and k = π, the first constructive beat
is pushed to t = ∞, hence the results in section II D
are well-behaved at all temperatures for those values of
k unlike for the case N = 6. We have not been able to
uncover a deeper analytical argument for this behaviour,
and must appeal to numerical heuristics, which are pre-
sented in detail in Sec. II D.

Since the infinite-order CE provides an exact repre-
sentation of the dynamics, it must be true that even
higher-order cumulant terms eventually conspire to re-
move the divergent terms at lower-orders. However, be-
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cause Cn(k, t) ∝ gn, we know that the higher-order terms
can not directly cancel the lower-order divergences, and
instead must form the series representation of a well-
behaved exact Φ(k, t). There are a number of approaches
one could attempt to remove these divergences, but all
presume some knowledge of the higher-order terms in
the CE. For an approximate means of resumming higher-
order cumulants, we refer the reader to the self-consistent
cumulant approximation in the companion paper.68

C. Convergence to Exact Result: Short-Time
Analysis

The results in the previous subsection illustrate that
the use of the fourth-order CE can improve agreement
with exact benchmarks (Fig. 1(b)) but can also lead
to unphysical results associated with instabilities and
negative spectral weight. While carrying out the CE
to infinite-orders yields exact results, it is clear that
the manner in which convergence occurs is complicated.
Here, we focus on the time domain, explicitly illus-
trating how higher-order expansions always systemat-
ically improve the accuracy of the short-time behav-
ior. To carry out this comparison, we employ the
numerically exact “Hierarchical Equations-of-Motion”
(HEOM) method.31–38 This approach provides rapid con-
vergence to the exact result for models such as the
spin-boson model. For the one-dimensional Holstein
model, exact convergence for finite times is attainable
for weak-to-moderate coupling strengths in moderately-
sized chains.38 Since this method may be unfamiliar to
some readers, a brief description is provided in Appendix
B.

We first work at weak coupling (ω0 = t0 = 1, g = 0.25)
and high temperatures (T = 1.0) where we can easily
converge the exact HEOM results for times sufficient to
provide the full spectral function with minimal artificial
damping. In Fig. 5(a) we show results for N = 6 and
k = 0 which are consistent with the behavior found in
Fig. 1. In particular, the fourth-order CE improves sub-
tly on the second-order result, bringing the theory into
quantitative agreement with exact spectral function, with
the exception of very small secondary peak structure vis-
ible at ω ∼ −2 and ω ∼ 0. As expected from the discus-
sion in Sec.IIA, this behavior is due to finite size recur-
rences which are expected to vanish as N →∞. Fig. 5(b)
illustrates the behavior underlying the spectral function
in the frequency domain. In particular, a large visible
recurrence starting at ω0t ∼ 20, which is missed by the
second- and fourth-order CEs, can be observed.

On the scale of Fig. 5(b), it is nearly impossible to
parse what the fourth-order CE provides over the second-
order CE to improve the distribution of spectral weight
as seen in Fig. 5(a). However, by focusing on the func-
tion Φ(k, t) directly, one clearly observes the systematic
improvement provided by the fourth-order CE over the
second-order CE. In Table II, we consider two temper-

g T/ω0 t2ω0 t4ω0

0.25 0.0 2.90 8.70

0.25 1.0 1.35 5.55

1.0 0.0 0.50 0.85

1.0 1.0 0.35 0.65

TABLE II. tM at two EPI strengths and temperatures. In all
cases, raising either the temperature or the coupling decreases
tM and t2 < t4, indicating that the fourth-order CE improves
upon the second-order CE at short times. Model parameters:
N = 6;ω0 = t0 = 1. HEOM calculations were performed
using modified versions of PHI 66 and pyrho.67

atures and two coupling strengths, along with the time,
tM, after which |GM (t)− G∞ (t) | > 5× 10−4, where M
is the order of the CE, and G∞ is given by the exact
HEOM result. This improvement in short-time behavior
is manifest in Fig. 5(c), which illustrates the improved
description of Φ(0, ω) for parameters such that the long-
time limit of the fourth-order CE is divergent. In partic-
ular, in all cases, t4 > t2 indicating that the fourth-order
CE improves upon second-order CE. Clearly, the long-
time pathological behavior of the fourth-order CE does
not corrupt the increase in accuracy of the short-time
behavior of the cumulant generating function.

The above discussion suggests that convergence of the
CE occurs in the time domain such that the short-time
behavior can be systematically converged for longer and
longer times, while concomitantly longer-time anomalies
in Φ(k, t) must resum into functions which behave in a
non-singular manner. It is difficult to guess the form
taken by such functions from just the first two terms in
the expansion. In this sense the fourth-order CE does
not appear to be generically useful. In the companion
paper, we will present a self-consistent cumulant scheme
that, while still suffering from some of the ill-effects in-
troduced by the fourth-order CE, does provide access to
non-perturbative behavior that appears to be completely
out of reach of low-order CEs.68

D. Thermodynamic Limit

Inspired by the possible suppression of physical fine
structure and the elimination of poorly behaved spuri-
ous oscillations in the infinite-system limit, we now con-
tinue in the spirit of Dunn’s continuum calculation on
the Fröhlich model48 to treat the finite-temperature in-
finite Holstein model in the thermodynamic limit using
the CE.

We start by investigating the finite-k behaviour of
A2(k, ω) and A4(k, ω) in Fig. 6 where An(k, ω) denotes
the nth-order CE approximation. Here, N = 600 for the
CE calculations while N = 6 for the VD results. We ex-
pect that on the scale of these plots, finite size effects in
the VD results are small as discussed in Ref. 27. Note,
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FIG. 6. Heat maps of A2(k, ω) for N = 600 (left), and
A∞/VD(k, ω) for N = 6 (right, from Ref. 27) for several
temperatures. Note that for the CE there is a sharp tran-
sition at around π/3 from a clear quasiparticle peak to a
incoherent spectrum. Additionally, note that compared to
the VD results that the band curvature is qualitatively in-
correct for the vibronic peaks at small k. Model parameters:
ω0 = t0 = 1, g2 = 2, and γ = 0.05.

however, the large changes that appear within A2(k, ω)
as N is increased. While A2(0, ω) is accurate compared
to the exact result, even near k = 0 the curvature of
the bands that represent satellite peaks are described in
a qualitatively incorrect manner. Further, while the fi-
nite size effects described in section II A do vanish after
an abrupt change of behaviour which occurs at εk = ω0,
they are replaced with a single incoherent band centered
on εk. Thus, the prominent satellite structure for k > ω0

in the exact results is completely absent in A2(k, ω).
The fourth-order CE (not plotted in Fig. 6) produces

an A(k, ω) broadly similar to that of the second-order
CE for all k which produce non-divergent fourth-order
results in our approximation of the thermodynamic limit
(N=600). However, A4(k, ω) does produce some notable
differences from A2(k, ω). The fourth-order CE correctly
predicts positive curvature of the satellite peaks at low
temperatures near k = 0, marking an improvement over
the second-order cumulant result. Along with this im-
provement, one obvious feature that emerges is small
regions of negative spectral weight. The appearance of

negative spectral weight, discussed previously by Gun-
narsson et al.50 and in the previous subsection, has also
been noted in other studies.63,64 Though only present in
high energy regions of the spectrum near k = 0, the neg-
ative spectral weight in A4(k, ω) appears at much lower
energies, approximately at the location of VD quasipar-
ticle energy, for k = π. Finally, there are large regions
of k space for which divergent behaviour occurs. It is
possible that these regions become well-behaved for even
larger system sizes, however, we have no evidence that
the fourth-order CE is globally well behaved for N =∞.

In Fig. 7 we closely examine the temperature depen-
dence of A2(k, ω) and A4(k, ω) at k = 0 and k = π.
At low temperatures, the k = 0 CE appears nearly con-
verged, with A2 (0, ω) and A4 (0, ω) showing nearly iden-
tical behaviour around the quasiparticle peak. On the
other hand, at k = π the low temperature fourth-order
CE does not appear converged with respect to the second-
order CE, and A2(π, ω) deviates notably from A4(π, ω)
for ω > 0. This distinction in performance at k = 0
and k 6= 0 is consistent with the overall comparison
of An(k, ω) with results from VD. In the companion
paper, we will discuss how A(k, ω) for k 6= 0 can be
more accurately calculated from a self-consistent cumu-
lant approach.68

For the k = 0 case, the apparent convergence of the
CE for some temperatures warrants more consideration,
and thus we devote the remainder of this subsection to
a more detailed discussion of this case. The second- and
fourth-order CE results match best for high and low T .
The low T convergence of the main spectral features is
supported by the analysis in Sec. I C, which shows how
the CE in the time-domain G (0, t) breaks down only at
high T , where the phonon occupation numbers N0 con-
tribute to a growth in the magnitude of higher-order cu-
mulants. Meanwhile, for very high temperatures, Dunn’s
argument that the long time behavior of G2 (0, t) and
G4 (0, t) may markedly differ with differences hidden by
rapid damping such that the resulting extremely broad
spectral functions may appear converged, is borne out.48

This extreme damping is seen for T = 1.4 highlighted
in Fig. 7(c), where although the centroids of the main
second- and fourth-order CE peaks are displaced, the
broadening makes the high T results appear converged.
Such misleading convergence behavior was also seen for
the 6-site system in Sec. II C. At intermediate temper-
atures such as T = 0.6, apparently neither the low tem-
perature real-time convergence illustrated in Sec. I C,
nor the high temperature damping behaviour discussed
above is operative, such that the CE results shown in
Fig. 7 display a lack of convergence for intermediate
temperatures, where the second-order CE polaron peak
is considerably shifted from the fourth-order CE polaron
peak. The shift of the polaron peak to lower energies ex-
hibited by A2(0, ω) seems to be an artificial feature that
is corrected in A4 (0, ω) where the center of the polaron
peak appears fixed in location with respect to tempera-
ture. The origin of the distinction between A2(0, ω) and
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FIG. 7. Spectral functions from the second-order CE (solid blue line) and the fourth-order CE (dashed pink line) for N = 600
Holstein model for a range of temperatures. (a) Results for the band bottom (k = 0) for T = [0.1, 1.4]. At low temperatures
fourth-order CE slightly lowers the quasiparticle energy while also inserting regions of negative spectral weight at high frequen-
cies. (b) k = 0, T = 0.1 spectral functions enlarged to emphasize the negative spectral weight predicted by the fourth-order
cumulant. (c) k = 0, T = 1.4 spectral functions enlarged to emphasize the shift in peak location between the second- and
fourth-order CE. (d) Results for the band edge (k = π) for T = [0.1, 1.4]. The fourth-order CE prediction lowers the energy
of the main peak predicted by second-order CE, and additionally adds a broad weak intensity peak at −ω0. Both orders of
the CE broaden similarly with increasing temperature. (e) k = π, T = 0.1 spectral functions enlarged to emphasize the added
peak and the region of negative spectral weight predicted by the fourth-order CE compared to the second-order CE. Model
parameters: ω0 = t0 = g = 1; γ = 0.05 (k = 0 only).

A4(0, ω) is subtle. An important approximation that dis-
tinguishes the second-order and fourth-order CEs is the
second-order assumption48

ε (k + q1 + q2) ≈ ε (k + q1) + ε (k + q2)− ε (k) . (30)

This approximation implies that the second-order CE
overestimates the energy of multiphonon processes, for
example the consecutive emission of two phonons with
q1 = q2 = π. This is likely the origin of the unphysical
shift in A2(0, ω).

III. CONCLUSION

In this paper we have presented a comprehensive study
of the behavior and properties of the CE method for
one paradigmatic model of an electron interacting with
phonons, namely the one-dimensional Holstein model.
The motivation for this choice is the fact that it is in this

case where the most extensive numerically exact results
are available for comparison. Some of the conclusions we
draw may be generic and connect to other polaron mod-
els, but future work is necessary before such a conclusion
can be drawn.

Although of great interest for applications to realistic
systems, the CE in higher dimensional systems is not di-
rectly explored in this work. The formalism for the CE
presented here is dimensionality agnostic, so we expect
that many of our conclusions should hold in higher di-
mensions.

Within the confines of the second-order CE, we find
that the spectral function is rather well described for up
to intermediate coupling strengths at both low and high
(T > ω0) temperatures for k = 0 but is quantitatively
accurate for other wave vectors in the high temperature
regime only. Finite lattice effects are present in the nu-
merically exact simulations which are not captured by
low-order CE methods. These features are small, and
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are not expected to be present in the infinite lattice limit.
The correct placement of satellite peaks for k = 0 is re-
vealed in the structure of the second-order CE in part to
be the result of a spurious intensity crossing structure.
In the infinite size limit this structure is converted into
a satellite region which exists only for wave vectors such
that (εk + 2t0 − ω0) < 0 with negative band curvature
for the higher order satellites. The effect of other mod-
els and parameters on the size of this region is a topic
of future study. Both the sharp change of behavior at
εk + 2t0 = ω0 and the sign of the curvature contrast
with the exact finite lattice results which are expected to
semi-quantitatively describe the infinite lattice behavior.

We have also explored the properties of the fourth-
order CE. At fourth order, we find that the short-time
real-time evolution of the Green’s function is always sys-
tematically improved, while the long-time behavior may
become pathological depending on the parameters of the
model and the wave vector in question. When the fourth-
order CE is well-behaved, improved spectral features are
noted even at relatively low frequencies. We have ex-
plored the origins of the ill-behaved fourth-order CE. The
general structure of the problematic terms take the al-
gebraic form noted by Gunnarsson et al. to also give
rise to negative spectral weight.50 In addition, classify-
ing the divergent contributions for fixed lattice size N,
we illustrate the subtle balance of terms that conspire
to render the fourth-order CE either useful in correct-
ing the second-order CE or pathological. We note that
in general the fourth-order CE does not generally appear
capable of producing stable and sizable corrections to the
second-order CE, even for intermediate electron-phonon
coupling values. In the companion paper, we formulate
and study a self-consistent version of the CE which is
capable of accurately capturing features beyond that of
the low order CE.68

Lastly, we comment on the recent use of the CE for
the study of transport behavior in real materials. Specif-
ically, Bernardi et al. have used the second-order CE,
in conjunction with the “bubble” approximation to the
current-current correlation function, to compute mobil-
ities in both SrTiO3 and in organic crystals. This ap-
proach has the advantage of capturing incoherent relax-
ation channels which are not described in the simplest
semi-classical theories based on the Boltzmann equation.
While we cannot comment on the accuracy of the CE
for systems like SrTiO3 for which the Fröhlich model is
most appropriate, nor can we comment on models with
sizable Peierls coupling such as organic crystals, our re-
sults do suggest that the second-order CE should rea-
sonably accurately model the full wave vector dependent
one-particle spectral function for the situation T & ω0,
while likely becoming significantly less accurate for all
but k ∼ 0 at lower temperatures. This of course does
not imply that the independent bubble approximation
is itself accurate. Further work will be devoted to test-
ing this approach in model systems where a controlled
assessment of the various approximations is possible.
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Appendix A: Moments for the Holstein model

Plugging in the specific form of the Holstein interac-
tion, performing the time integrals, and removing several
of the internal momentum sums via conservation of mo-
mentum, we find the second moment is given by

M2 (k, t) = −g
2

N
e−iεkt

∑
q

[
(N0 + 1)A−q +N0A

+
q

]
,

(A1)

A±q ≡
±it (ω0 ± (εk − εq))− e±it(ω0±(εk−εq)) + 1

(ω0 ± (εk − εq))2 , (A2)

and the fourth moment is given by

M4(k, t) =
g4

N2
e−iεkt

∑
q1,q2[

(N0 + 1)
2
T1

(
f+

1 , f
+
2 ; t
)

+N0 (N0 + 1)T1

(
f−1 , f

+
2 ; t
)

+N0 (N0 + 1)T1

(
f+

1 , f
−
2 ; t

)
+N2

0T1

(
f−1 , f

−
2 ; t

)
+ (N0 + 1)

2
T2

(
f+

1 , f
+
2 , f (q1 + q2, 0, 2ω0) ; t

)
+N0 (N0 + 1)T2

(
f−1 , f

+
2 , f (q1 + q2, 0, 0) ; t

)
+N0 (N0 + 1)T2

(
f+

1 , f
−
2 , f (q1 + q2, 0, 0) ; t

)
+N2

0T2

(
f−1 , f

−
2 , f (q1 + q2, 0,−2ω0) ; t

)
+ (N0 + 1)

2
T3

(
f+

1 , f (q1 + q2, 0, 2ω0) ; t
)

+N0 (N0 + 1)T3

(
f−1 , f (q1 + q2, 0, 0) ; t

)
+N0 (N0 + 1)T3

(
f+

1 , f (q1 + q2, 0, 0) ; t
)

+N2
0T3

(
f−1 , f (q1 + q2, 0,−2ω0) ; t

)]
, (A3)

where

T1 (a, b; t) =
1

b

[
a t

2

2 − t− h (a, t)

a2

+
1

b

(
h (a, t)− h (b, t)

a− b − t+ h (a, t)

a

)]
, (A4)



14

T2 (a, b, c; t) =
1

b

[
1

c

(
t+ h (a, t)

a
− h (a, t)− h (c, t)

a− c

)
− 1

c− b

(
h (a, t)− h (b, t)

a− b − h (a, t)− h (c, t)

a− c

)]
, (A5)

T3 (a, b; t) =
1

a

[
1

b

(
t+ h (a, t)

a
− h (a, t)− h (b, t)

a− b

)
+

1

b− a

(
e−att+ h (a, t)

a
+
h (a, t)− h (b, t)

a− b

)]
, (A6)

f(a, b, c) = i(εk+a − εk+b + c), (A7)

f±i = f (qi, 0,±ω0) , (A8)

h (x, t) =
e−xt − 1

x
. (A9)

For both M2 and M4, singular terms within the mo-
mentum sums are evaluated in a limiting sense using
L’Hopital’s rule.

Appendix B: Hierarchical equations of motion

For an exact benchmark of G (k, t) we will use the Hi-
erarchical Equations of Motion (HEOM) approach. First
popularized for solving vibronic models with continuous
bath spectral densities,31–35 HEOM has recently been
adapted to solve discrete bath models such as the Hol-
stein and SSH models.36–38 While we have recently shown
that the finite truncation of HEOM can lead to long-time
instability in such models,38 for the present application
the converged short and intermediate time behavior is
sufficient to provide benchmarks for G (t) and A (ω). Two
recent versions of HEOM have provided practical routes
to circumventing instabilities.39,69

To compute G (k, t) with HEOM we rewrite

G(k, t) = −iΘ (t) TrS
[
akTrB

[
e−iHt

×
(
e−βHb ⊗ a†kρvac

)
eiHt

]]
, (B1)

where

ρvac = |0〉〈0| =


1 0 . . . 0

0 0 . . . 0
...

...
. . . 0

0 0 0 0

 (B2)

is the pure-state electronic density matrix representing
the zero-electron vacuum, written in a basis of zero-
electron and one-electron states. The S and B subscripts
denote partial traces over the electron and phonon sub-
spaces, respectively. One-electron states are described in

the site basis. In this basis,

a†k =
1√
N


0 0 . . . 0

e−ik 0 . . . 0
...

...
. . . 0

e−ik(N−1) 0 0 0

 , (B3)

ak =
1√
N


0 eik . . . eik(N−1)

0 0 . . . 0
...

...
. . . 0

0 0 0 0

 . (B4)

Thus, to calculate G (k, t) we initialize a hierarchy of
auxiliary density matrices, each of dimension (N + 1) ×
(N + 1). All matrices ρm1±,...,mN±(t = 0) are set to zero
except for

ρ0,..,0(t = 0) = a†kρvac . (B5)

Then, we propagate in time using the discrete-bath
HEOM36–38

d

dt
ρm1±,...,mN±(t) = −iLρm1±,...,mN±(t)

− i
N∑
n=1

ω0 (mn− −mn+) ρm1±,...,mN±(t)

+

N∑
n=1

[
Φn

(
ρm1±,...,mn++1,...,mN±(t)

+ ρm1±,...,mn−+1,...,mN±(t)

)
+mn+Θn+ρm1±,...,mn+−1,...,mN±(t)

+mn−Θn−ρm1±,...,mn−−1,...,mN±(t)

]
, (B6)

where

L = [Ĥe, ...], (B7)

Φn = [V̂n, ...] (B8)

V̂n = a†nan, (B9)

and

Θn± = − (gω0)
2

2

(
[V̂n, ...] coth

(
βω0

2

)
∓ {V̂n, ...}

)
.

(B10)

Finally, we compute the Green’s function as

G(k, t) = −iΘ (t)Tr [akρ0,..,0(t)] . (B11)

Converging with respect to the hierarchy depth L, we
obtain the exact G (k, t) for the Holstein model.
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Appendix C: K-phonon approximation

For analyzing finite-size effects in an inexpensive, ap-
proximate way, we will also compute G (k, t) via numeri-
cal diagonalization of the Hamiltonian within a truncated
basis. Toward this end we introduce the momentum-
space basis kets

|ν0, . . . , νN 〉0, (C1)

and

|k, ν0, . . . , νN 〉1, (C2)

which represent states with zero and one electron, re-
spectively. The electronic quantum number k indicates
the momentum of the electron. The vibrational quantum
numbers νi denote the number of vibrational quanta in
each normal mode, such that

b†q|0, . . . , νq, . . . , 0〉0 =√
νq + 1|0, . . . , νq + 1, . . . , 0〉0, (C3)

b†q|k, 0, . . . , νq, . . . , 0〉1 =√
νq + 1|k, 0, . . . , νq + 1, . . . , 0〉1. (C4)

We work within a truncated K phonon basis such that

N∑
q=1

νq ≤ K. (C5)

Using this basis to represent the Hamiltonian, we can
then compute the matrix exponential necessary to deter-
mine G (k, t) by numerically diagonalizing the Hamilto-
nian. We will refer to this approach as the “K−phonon
approximation.” In the text only K = 1 results are
shown.
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25 J. Jaklič and P. Prelovšek, Adv. Phys. 49, 1 (2000).
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