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Abstract 
In [A. H. Velzen and K. J. Webb, Phys. Rev. B 92, 115416 (2015)], Velzen and Webb proposed that by 
structuring a metal film suspended in free space with a periodic array of nanoscale slots, the steady state 
optical pressure on the film resulting from an incident plane wave can be substantially enhanced compared 
to the standard radiation-pressure limit. This result appears to be in violation of the law of momentum 
conservation, given that the momentum of free-space electromagnetic plane waves is well established. We 
recalculated the optical fields and forces for the same configuration as Velzen and Webb and found that, 
although the calculated optical fields and force densities agree with the published result, the resulting total 
optical forces were not enhanced and instead matched the standard radiation-pressure relation. Our 
calculations imply that the diverging results arise due to different choices of the region used for integration 
of the force density. 
 

In [1], the authors proposed that the steady-state force that a light beam imparts to a metallic object in free 

space can be dramatically enhanced by structuring the surface with a periodic array of slots. Specifically, 

the authors explored a gold (Au) film with periodic grooves illuminated by a plane wave (Fig. 1(a)) and 

found that the optical pressure exceeded the conventional radiation-pressure limit by more than an order of 

magnitude. The proposed mechanism for this effect is the large spatial variation of the electric field just 

inside the metal at wavelengths close to the plasmonic resonances of the structure. Follow-up papers have 

explored such force enhancement both theoretically [2] [3] [4] and experimentally [5].  

 
Our interpretation is that the results reported in ref. [1] are inconsistent with the conservation of momentum. 

According to conventional electromagnetic (EM) theory, the optical pressure 𝑝 on an opaque, macroscopic 

object floating in free space illuminated by a plane wave and reflecting specularly (i.e., no far-field 

diffraction orders or scattering) is [6] 

𝑝 = !"#$|Γ|!&
'

                                                                       (1) 

where c is the speed of light and	𝑆 is the magnitude of the time-averaged Poynting vector (i.e., the intensity) 

of the incident light. |Γ|( is the reflectance, defined as |Γ|( = !"
!

, where 𝑆) is the intensity of the reflected 

wave in the far field. Eqn. (1) indicates that the optical pressure increases with reflectance, and the 

theoretical maximum optical pressure is 2𝑆/𝑐 for perfectly reflecting surfaces. This limit is associated with 

maximum momentum exchange between the object and incident photons. In the photon picture, the 
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momentum of an incident photon in free space is ℎ/𝜆* , where 𝜆*  is the wavelength. The maximum 

momentum the photon can impart is 2ℎ/𝜆*, when the photon is reflected in the opposite direction. Although 

the momentum of electromagnetic fields (or photons) inside materials has been a point of debate [6] [7], 

the momentum of electromagnetic waves in free space is well established.  

 

Because the conclusions in ref. [1] are out of line with the aforementioned arguments based on the 

conservation of momentum, we sought to re-examine the findings of that work by reproducing the field 

simulation results and then recalculating the optical force densities and total forces, with the geometry and 

light source the same as Fig. 1(a) in ref. [1]. We find that the total optical force on the object is bounded by 

the 2𝑆/𝑐 limit even as there can be large local force densities, especially when the structure is close to 

resonance. 

 

Review and discussion of optical forces and force densities 

As in ref. [1], we made assumed that, at optical frequencies, the magnetization of Au is zero (𝑴 = 0) and, 

since there are no current sources other than the incident field, the external current density and external 

charge density are both zero.  

 

We calculated the optical force using two different force-density formulations. The first is the Lorentz 

formulation, which under our assumptions has force density [8]: 

𝒇+ =
,𝑷
,.
× 𝜇*𝑯− (∇ ∙ 𝑷)𝑬                                                          (2) 

where 𝑷 is the material polarization. The second is the Einstein-Laub (EL) formulation, which is what is 

used in ref. [1]. Under the same assumptions, the force-density expression in the EL formulation is [8]: 

𝒇/+ =
,𝑷
,.
× 𝜇*𝑯+ (𝑷 ∙ ∇)𝑬                                                          (3) 

Eqn. (3) is the same as Eqn. (2) in ref. [1]. Using Eqns. (2) and (3), the time-averaged total force on the 

object can then be calculated by integrating the time-averaged force density over region Ω (the “force-

calculation region”) that encompasses the object: 

〈𝑭+//+〉 = ∬ 〈𝒇+//+〉1 𝑑𝑥𝑑𝑦                                                          (4) 

where 〈𝑭+〉 or 〈𝑭/+〉 are the time-averaged total forces in the Lorentz or EL formulation, respectively.  

 

While Eqn. (4) provides a way to calculate the total optical force on an object, such calculations can be 

nontrivial when encountering sharp boundaries [9]. Boundary issues can be circumvented with the 

assistance of the stress tensors, which are associated with the force densities in the following way [8]: 
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𝒇+//+ = −∇ ∙ �⃗⃖�+//+ −
,
,.
𝒈+//+                                                      (5) 

where 

�⃗⃖�+ =
#
(
(𝜀*𝑬 ∙ 𝑬 + 𝜇*2#𝑩 ∙ 𝑩)�⃡� − 𝜀*𝑬𝑬 − 𝜇*2#𝑩𝑩  𝒈+ = 𝜀*𝑬 × 𝑩	 

�⃖⃗�/+ =
#
(
(𝜀*𝑬 ∙ 𝑬 + 𝜇*𝑯 ∙ 𝑯)�⃡� − 𝑫𝑬 − 𝑩𝑯														  𝒈/+ = 𝑬 ×𝑯 𝑐(⁄  

�⃖⃗�+ is the Maxwell stress tensor (MST), �⃗⃖�/+ is the EL stress tensor (EL tensor), 𝒈+	is the EM momentum 

density in the Lorentz formulation (the Livens momentum density), and 𝒈/+ is the momentum density in 

the EL formulation (the Abraham momentum density). 𝑩 is 𝜇*(𝑯 +𝑴) = 𝜇*𝑯, since we assume 𝑴 = 0. 

�⃡� is the identity second rank tensor, 𝑫 = 𝜖*𝑬 + 𝑷 is the displacement field, and 𝑬𝑬, 𝑩𝑩, 𝑫𝑬 and 𝑩𝑯 are 

dyadic products. We are aware that in refs. [10] [11], 𝒈/+ is used rather than 𝒈+ to get 𝒇+ in Eqn. (5), We 

note, however, under the assumption 𝑴 = 0, there is no difference between 𝒈+ and 𝒈/+, and the expression 

of the Lorentz force density is the same as Eqn. (2) using either 𝒈+ or 𝒈/+. We use 𝒈+ for 𝒇+, following 

several textbooks [12] [13]. The total time-averaged force on an object within region Ω can be obtained as 

follows [14] [15]: 

〈𝑭+//+〉 = −∬ 〈∇ ∙ �⃖⃗�+//+〉1 𝑑𝑥𝑑𝑦 = −∮ 〈�⃖⃗�+//+〉 ∙ d𝒍,1                                (6) 

where	𝑑𝒍 = 𝑑𝑙 ∙ 𝒏R and 𝒏R is the normal vector for each boundary, Ω is the force-calculation region, and 𝜕Ω 

are the boundaries of Ω. Thus, Eqn. (4) with (2) or (3), and Eqn. (6) with �⃖⃗�+ or �⃖⃗�/+, give four different 

methods to calculate the time-averaged optical force on an object.  

 
Fig. 1. (a) An Au film in free space with periodic slits on the top surface illuminated from the top. (b-c) Two choices 
of the force-calculation region Ω for the periodic structure. (b) Outside choice: 𝜕Ω consists of two segments in free 
space, and two segments that overlap the periodic boundaries. (c) Inside choice: 𝜕Ω are within the homogeneous 
object but as close as possible to the physical boundaries of the object.  
 
We emphasize that selection of the force-calculation region Ω is crucial. The standard approach, e.g., used 

in refs. [14] [15] [16], is to have Ω fully enclose the object. If the object is periodic, it is impossible to fully 

enclose the object; however, the contributions to the stress tensor from two periodic boundaries cancel out. 
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Therefore, setting of 𝜕Ω as shown in Fig. 1(b) is equivalent to having 𝜕Ω in free space for a finite object. 

We refer to this as the “outside choice” (Ω34.5678). With Ω34.5678, if we calculate the time-averaged total 

force by integrating the force density (i.e., use Eqn. (2) or (3)), we integrate from inside the material, across 

material boundaries, and into the free-space background. If we use the stress tensor to calculate the time-

averaged force (i.e., use Eqn. (6) with �⃗⃖�+ or �⃖⃗�/+), we integrate the stress tensor along 𝜕Ω34.5678 (boundary 

of Ω34.5678). Our understanding is that Ω34.5678 and 𝜕Ω34.5678 were not used in ref. [1]. Instead, the authors 

set 𝜕Ω within the homogeneous object but as close as possible to the physical boundary, as illustrated in 

Fig. 1(c). We refer to this choice of Ω as the “inside choice” (Ω695678). We show next that the inside choice 

can result in the appearance of force enhancement, as reported in ref. [1].  
 

Calculation of fields, force densities, and total forces 

We simulated the fields using the finite-difference time-domain (FDTD) method. As in ref. [1], the incident 

plane wave is x-polarized at a wavelength of 𝜆* = 633	nm . We use 𝜖) = −11.835 + 1.241𝑖  for the 

relative permittivity of Au [17] and the period, Λ, is 400 nm. We set the intensity of the incident plane wave 

to 2 W/m2, matching the parameters of Figs. 3, 5, and 6 in ref. [1] (Note that that there is a factor of two 

difference between our definition of power density and that of ref. [1], which can be seen for example by 

comparing Eqn. (1) with Eqn. (5) in ref. [1]). The slab was optically thick (H = 200 nm). Fig. 2 shows the 

field simulation results for two slot depths (D = 55 and 75 nm) with W = 60 nm. Our calculated field 

distributions are essentially the same as Fig. 2 in ref. [1], though the ranges of the color bars are different 

because we used an incident power density to match Figs. 3, 5, and 6 in ref. [1], rather than Fig. 2.  

 
Fig. 2. E and H magnitudes for slot width W = 60 nm, and slot depths D = 55 nm (a & c), and 75 nm (b & d). The 
simulation mesh size is 0.25 nm.  
 
We calculated the force-density distribution for two structures using the Lorentz and EL formulations, 

shown in Fig. 3. Note that the power density of the incident light used in Fig. 3 is different from that what 

we used in Fig. 2; we chose the power density to be the same as what is used in Fig. 3 in ref. [1]. Our 
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calculated force densities in the EL formulation match those in Fig. 3 in ref. [1], though there are minor 

discrepancies near resonance (here, D = 51 nm), likely due to different meshing. We note that the force-

density distribution in the Lorentz formulation is somewhat different from that in the EL formulation, but 

we still expect the total optical force on the object be the same [8] [18] [19].  

 
Fig. 3. The y-component of the calculated Lorentz (a-c) and EL (d-f) force densities for slot width W = 30 nm and slot 
depth D = 51 nm (a,c) and 81 nm (b,d). The power density of the incident light is 1 mW over a circular spot with 
diameter of 1 𝜇m. The mesh size is 0.25 nm. For the Lorentz formulation, we calculated the force density within the 
object and across the material boundary. For the EL formulation, we only calculated the force density within the 
object. 
 
Next, we calculated the macroscopic time-averaged pressure based on the field data, using three different 

approaches and Ω34.5678 : Eqn. (4) with (2) (“volumetric Lorentz method”), Eqn. (6) with �⃖⃗�+  (“MST 

method”), and Eqn. (6) with �⃖⃗�/+ (“EL tensor method”). We also calculated the total optical force using 

Eqn. (1), based on the simulated far-field reflectance. These results are shown in Fig. 4. We found that the 

calculated pressure on a planar Au film is the same using each of the aforementioned methods (12.9 nN/m2), 

and also matches the result in ref. [1]. For slot depth > 0, our results diverge from those of ref. [1]. Our 

calculations based on the MST method and the EL tensor method match those using Eqn. (1), with the 

maximum optical pressure never exceeding the theoretical limit of 2𝑆/𝑐 = 13.3 nN/m2. Note that total 

calculated force is independent of the force-density formulation chosen. In summary, the large force 

enhancement described in ref. [1] does not appear in any of our calculations using Ω34.5678, which are all 

consistent with each other.  
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Fig. 4. Calculated time-averaged optical pressure as a function of slot depth based on (a) the volumetric Lorentz 
method (Eqn. (4) with (2)), (b) the MST method (Eqn. (6) with �⃖⃗�!), (c) the EL tensor method (Eqn. (6) with �⃖⃗�"! ), and 
(d) Eqn. (1). In all cases, Ω = Ω#$%&'(). The minus sign means that the direction of the optical force is in -y direction. 
The far-field reflectance as a function of slot depth is shown as an inset. 
 
We note that boundaries where material properties change abruptly can cause difficulties for the integration 

and/or interpretation of the force density. First, the discontinuity of the E-field near abrupt material 

boundaries can result in delta-function-like peaks in the force density within one mesh cell of the boundary, 

which seems unphysical and can potentially cause trouble in numerical integration. This subtlety has been 

discussed in ref. [20] [21] [22]. Therefore, we believe that the total force results based on the MST method 

and the EL tensor method are more reliable. Second, the definition of 𝑷 right at the object boundary is not 

clear to us, making the calculation of the term (𝑷 ∙ ∇)𝑬 at the object boundary difficult; for this reason, we 

did not use Eqn. (4) with (3) to calculate the total force using Ω34.5678. Note that this difficulty can be 

avoided when evaluating the force density in the Lorentz formulation, since we can convert Eqn. (2) using 

Maxwell’s equations such that 𝒇+ only depends on 𝑬 and 𝑯. We also note that, for some simple geometries, 

a rigorous analysis of force densities near material boundaries can be conducted and, in these cases, the 

integration of force densities can be performed without ambiguity [23] [24]. Finally, we note that a more 

rigorous treatment of material boundaries may require consideration of non-local effects [25] and other 

physics, which are beyond the scope of this comment. 

 

The force density near object boundaries reveals the importance of the choice of Ω. As an illustration, we 

calculated the time-averaged optical pressure on the structure shown in Fig. 1(a) where W = 30 nm and D 

= 46 nm, using Eqns. (4) with (2) and (3), and Eqn. (6) with �⃗⃖�+ and �⃖⃗�/+, with Ω34.5678 and Ω695678 applied. 

Note that for Eqn. (4) with (3), we only performed the calculation using Ω695678. These results are shown 

in Fig. 5. We find that using Ω34.5678, there is no force enhancement (at least using the Lorentz formulation). 
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However, using Ω695678, an enhancement in the total force appears, though the Lorentz and EL formulations 

give different absolute forces. This apparent force enhancement is similar to what is shown in ref. [1].  

 

We note that Ω34.5678 is widely used in the literature [16] [20] [26] [27] to calculate the total optical force 

exerted on the object, and refs. [14] [15] suggest that the using Ω695678 misses the force exerted on the 

object boundary, which means that the inside choice of Ω only calculates the local optical force exerted on 

parts of the object (i.e., local forces), not the total force exerted on the object. Although the local force can 

exceed the radiation pressure limit 2𝑆/𝑐, the total force must be bounded by that limit, which comes from 

the conservation of momentum for the whole system (i.e., the object and incident and reflected photons). 

 
Fig. 5. Total time-averaged optical pressure on the structure in Fig. 1 (with W = 30 nm and D = 46 nm), calculated 
using (a) the volumetric Lorentz method, (b) the volumetric EL method, (c) the MST method, and (d) the EL Tensor 
method, with both Ω#$%&'() and Ω'*&'() applied, as a function of simulation mesh size. For panels (a), (c), (d), we 
show the zoomed-in plots of the results using Ω#$%&'() to demonstrate convergence. 
 
To further validate our calculations, we considered the optical pressure on a nanostructured Au film with 

finite size in the x-direction (Fig. 6(a)), in contrast with the infinite case in Fig. 1(a) and ref. [1]. Fig. 6(b) 

shows the calculated pressure as a function of the number of periods using the MST method and the 

volumetric Lorentz method. For either method, the finite-width results converge to the infinite case as the 

width increases, as expected. 

 
Fig. 6. (a) The finite-width Au structure in free space, illuminated by a plane wave injected at the top boundary of 
the total-field scattered-field area. The incident field amplitude is the same as that for the infinite-width case. The 
red box, with all boundaries in free space, is the force-calculation region. (b) The time-averaged optical pressure as 
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a function of the number of periods, using the MST and volumetric Lorentz methods, compared to the infinite-width 
case. 
 
Conclusion 

We reexamined the time-averaged optical pressure on a corrugated Au film, explored in ref. [1]. We 

reproduced the calculations and found that, although our calculated optical fields and force densities agree 

with the published results [1], the resulting steady-state total optical forces are quite different and match 

the standard radiation-pressure limit, which is the result of momentum conservation of the whole system: 

the corrugated Au film in free space and the incident and reflected/scattered/transmitted light. The force-

enhancement finding in ref. [1] serves as a basis for a later experimental demonstration [5], is related to 

other published numerical works [2] [3] [4], and has substantial implications for laser sails [28] [29] [30]. 

Although in this comment we only focus on simulation results in ref. [1], we encourage a reexamination of 

the results in refs. [2] [3] [4] [5] given the close connection between these works. 
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