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Trilayer graphene is receiving an increasing level of attention due to its stacking–dependent mag-
netoelectric and optoelectric properties, and its more robust ferromagnetism relative to monolayer
and bilayer variants. Additionally, rhombohedral stacked trilayer graphene presents the possibil-
ity of easily opening a gap via either an external electric field perpendicular to the layers, or via
the application of external strain. In this paper, we consider an external electric field to open a
bandgap in rhombohedral trilayer graphene and study the excitonic optical response of the sys-
tem. This is done via the combination of a tight binding model with the Bethe–Salpeter equation,
solved semi–analytically and requiring only a simple numerical quadrature. We then discuss the
valley–dependent optical selection rules, followed by the computation of the excitonic linear opti-
cal conductivity for the case of a rhombohedral graphene trilayer encapsulated in hexagonal boron
nitride. The tunability of the excitonic resonances via an external field is also discussed, together
with the increasing localization of the excitonic states as the field increases.

I. INTRODUCTION

Ever since the discovery and isolation of
graphene[1], a plethora of different layered ma-
terials have been studied in detail. Of these lay-
ered materials, we specifically mention hexag-
onal boron nitride (hBN)[2] and transition
metal dichalcogenides (TMDs)[3]. In hBN, the
large bandgap and strong second–order non-
linearities make it well–suited for deep–UV
optoelectronics[2, 4]. Regarding TMDs, these
display strong spin–orbit coupling and breaking
of inversion symmetry, leading to coupled spin
and valley physics, and valley–selective optical
excitations [5–8].

The optical response of these materials is
dominated by excitons[9], which consist of
bound electron–hole pairs. These are created
by the excitation of an electron from the valence
band to the conduction band, leaving behind
a hole in the valence band. The electrostatic
interaction[10, 11] between the pair leads to the
formation of a bound state inside the bandgap
of the material, forming a Hydrogen–like sys-
tem. The large binding energies of excitons, to-
gether with their efficient coupling with light,
makes them a highly relevant and a rich field of
research. Recently, various works have focused

their attention on the optical response of exci-
tons in TMDs, both in the linear regime [12, 13]
as well as in the non–linear regime [14, 15].

As graphene lacks the necessary bandgap for
the formation of electron–hole bound states,
excitonic phenomena are absent in pristine
graphene monolayers. Graphene multilayers
can, however, be engineered to present a ban-
gap and, as such, host bound electron–hole
pairs. A simple example of this is biased bilayer
graphene, where a external perpendicular elec-
tric field is applied to a pair of stacked graphene
monolayers, opening a tunable bandgap and al-
lowing the formation of excitons. This system,
encapsulated in hBN, was the subject of recent
experimental [16] and theoretical [17–19] stud-
ies.

A less studied system is that of biased tri-
layer graphene, where three graphene monolay-
ers are stacked and an external perpendicular
electric field is applied to the multilayer. Ferro-
magnetism has been shown to be more robust
in trilayer graphene than in either monolayer
and bilayer graphene, specifically when the lay-
ers are stacked in an ABC fashion (i.e., rhom-
bohedral stacking) rather than in an ABA fash-
ion (i.e., Bernal stacking) [20, 21]. While the
largest bandgaps obtained in bilayer graphene
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systems have been around hundreds of meV, in
trilayer graphene bandgaps of around 2 eV have
been obtained by tuning the interlayer coupling
via compression of a few GPa[22].

Recent experimental and theoretical works
have also shown that several transport prop-
erties depend on the stacking order, includ-
ing but not limited to thermoelectric[23] and
magnetoelectric[24] transport. Additionally, it
has been shown that a considerable gap can be
opened in ABC–stacked trilayer graphene via
an external electric field, while the same does
not occur in ABA–stacked trilayer graphene un-
der the same situations[25–27]. The possibility
of broken symmetry states has also been ex-
plored in weakly disordered ABC–stacked tri-
layer graphene via a self–consistent Hartree–
Fock approximation, with gapped broken sym-
metry states shown to be favored over both gap-
less and normal states[28]. Gapped many–body
states have also been investigated, of which we
specifically mention quantum Hall states in chi-
rally stacked systems[29, 30].

This paper is structured as follows. In Sec.
II, we begin by defining the tight binding model
of the considered ABC–trilayer system and dis-
cuss its band structure. We then reduce the
Hamiltonian to a nearest–neighbor only model
as to simplify the Bethe–Salpeter calculations,
discussing the dominant bands and the specific
phase factors of each electronic state. Follow-
ing from the single–particle regime, in Sec. III
we discuss the excitonic states of the system,
obtained by solving the Bethe–Salpeter equa-
tion. Finally, in Sec. IV, we discuss the opti-
cal response of the system. After outlining the
method of computing the optical conductivity,
we discuss the excitonic selection rules for both
linearly polarized and circularly polarized light.
We then consider additional hopping parame-
ter in the Hamiltonian, discussing the resulting
new selection rules and computing their contri-
bution to the optical conductivity. Finally, we
consider several different values of the external
bias potential, computing the optical conduc-
tivity for each as to ascertain the tunability of

the excitonic response.
II. TIGHT–BINDING MODEL

For describing the excitonic properties of the
ABC–stacked graphene trilayer, we first need
to analyze the electronic properties of the sys-
tem in the independent-electron approximation.
This stacking order is characterized by the B
sublattice of each layer laying opposite of the
A sublattice of the layer above, but opposite
to the honeycomb centers of the layer below,
and is also known as rhombohedral stacking.
We begin defining a tight binding Hamiltonian
written directly in momentum space and tak-
ing into account the hoppings discussed in [28].
A schematic view of the hoppings considered is
shown in Fig. 1.

Figure 1. Schematic view of the hoppings included
in the tight binding model. Red and blue dots rep-
resent the two different sublattices, while the dif-
ferent lines connecting them represent the different
hopping terms considered.

Throughout this paper, we will work in
the {|1, t〉 , |2, t〉 , |1,m〉 , |2,m〉 , |1, b〉 , |2, b〉} ba-
sis, where the 1/2 labels represent the two sites
in the monolayer graphene unit cell (red/blue
dots in Fig. 1, respectively) and the t/m/b
labels represent the top/middle/bottom lay-
ers. The tight binding Hamiltonian for ABC–
stacked trilayer graphene for the hoppings
shown in Fig. 1 can be written as [28, 31, 32]
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HTB =


0 γ0φ (k) γ4φ (k) γ3φ

∗ (k) 0 γ2
γ0φ
∗ (k) 0 γ1 γ4φ (k) 0 0

γ4φ
∗ (k) γ1 0 γ0φ (k) γ4φ (k) γ3φ

∗ (k)
γ3φ (k) γ4φ

∗ (k) γ0φ
∗ (k) 0 γ1 γ4φ (k)

0 0 γ4φ
∗ (k) γ1 0 γ0φ (k)

γ2 0 γ3φ (k) γ4φ
∗ (k) γ0φ

∗ (k) 0

 , (1)

with φ(k) obtained from the honeycomb geom-
etry of the individual layers as

φ(k) = eikya/
√
3

[
1 + 2e−i3kya/2

√
3 cos

(
kxa

2

)]
(2)

and a = 2.46Å the carbon–carbon distance in
graphene.

As we are interested in the low energy re-
sponse of the system, we restrict our study
to the Dirac points of the first Brillouin zone.
Close to these Dirac points, φ (k) can be ap-
proximated as

φ (k) ≈ 3

2
a τkeiτθ,

with τ = ±1 the Dirac valley index, k = |k| and
θ = arctan

(
ky
kx

)
.

The nearest-neighbor intralayer and inter-
layer hopping processes γ0 and γ1 are respon-
sible for the general features of the band struc-
ture, while γ2, γ4 and the trigonal warping γ3
parameter have their main impact close to the
band-crossing points. Considering the graphite
hopping parameter values described in [28],
given by γ0 = 3.12 eV, γ1 = 0.377 eV, γ2 =
0.01 eV and γ3 = 0.3 eV, as well as the γ4 hop-
ping parameter described in [31], γ4 = −0.1 eV,
the band structure near the one of the two
Dirac points is given in Fig. 2. In this fig-
ure, the band structure for a minimal model
Hamiltonian where γ2 = γ3 = γ4 = 0 is also
plotted in dashed lines. The agreement be-
tween the full and the minimal models is quite
good. No bandgap is present in either model,
with the two lowest energy bands intersecting at
k ≈ −0.014Å−1 in the full model and at k = 0
in the minimal model. This intersection of the
lowest energy bands in the full model is similar
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Figure 2. Electronic bands near the Dirac valley
τ = 1 for ABC–stacked trilayer graphene. Solid
lines represent the full tight binding Hamiltonian of
Eq. (1), while dashed lines represent the minimal
model Hamiltonian where only the hopping param-
eters γ0 and γ1 were considered.

to that which is present at k = 0 for the two
higher energy bands, with no bandcrossing oc-
curring. Focusing on the higher energy bands,
their previously mentioned intersection at k = 0
occurs at an energy of roughly 380 meV (see Fig.
2, brown/orange lines for conduction bands and
purple/blue lines for valence bands). The min-
imum of these two higher energy bands occurs
at 350 meV, significantly higher than the energy
scale of the lowest energy bands.

A. Nearest–Neighbor Biased Hamiltonian

Since there are no significant differences be-
tween the full tight binding Hamiltonian and
the minimal model close to k = 0, we con-
sider, for matters of simplicity, only the min-
imal model with γ0 and γ1 both finite. The
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Figure 3. Electronic bands near the Dirac valley
τ = 1 for a minimal model of biased ABC–stacked
trilayer graphene with bias potential V = 0 meV
(dashed lines) and V = 100 meV (solid lines).

adoption of this minimal model for the elec-
tronic motion in the ABC–trilayer graphene al-
lows, as discussed ahead, separation of variables
in the eigenvectors of the tight binding Hamil-
tonian (see Eq. (4)), greatly simplifying the
momentum integration in the Bethe–Salpeter
equation. The effects of considering non–zero
trigonal warping on the optical selection rules,
i.e. setting γ3 = 0.3 eV, will be discussed in
Sec. IVB.

Adding an external electric field perpendicu-
lar to the layers introduces in the Hamiltonian
an additional term, which takes into account
the electric potential in the different layers. The
new Hamiltonian reads

H = HTB + Vdiag [1, 1, 0, 0,−1,−1] , (3)

where Vdiag [1, 1, 0, 0,−1,−1] represents a

diagonal matrix where the diagonal ele-
ments are those in square brackets (i.e.,
[1, 1, 0, 0,−1,−1]), the rest of the elements
being zero. This corresponds to an electric
potential of +V in the top layer, 0 in the
middle layer, and −V in the bottom layer,
meaning that the total potential difference
between the top and bottom layers will be 2V .
The band structure near the Dirac point of the
τ = 1 valley for V = 0 and 100 meV is given in
Fig. 3

As expected[25], a gap of Egap = 2V opens
at the Dirac point, although that is not the
smallest gap in the system. For the bias po-
tential considered in Fig. 3 (100 meV), a gap of
∆ = 160 meV exists at roughly k ≈ ±0.03Å−1.
This second, smaller gap remains the smallest
for all finite values of the bias potential, al-
though its location depends on the value of V
(minimum at ±0.0085Å−1 for V = 10 meV,
and at ±0.05Å−1 for V = 250 meV). Addi-
tionally, when a bias potential is introduced in
the system, a gap also appears between the two
higher energy bands, removing the intersection
at k = 0 visible in the dashed lines.

As the characteristic polynomial of this
Hamiltonian is of order six, the exact form of
the eigenvector for each of the six bands is cum-
bersome. As such, we will not write their ex-
plicit expressions. Instead, and as they have
a well–defined phase in each of the six spinor
components of each eigenvector, we will extract
this phase factor explicitly. This separation
will prove useful for solving the Bethe–Salpeter
equation, allowing us to transform the two di-
mensional integral into a 1D problem. This
generic eigenvector will then be given by

|uv,ηk 〉 =
[
e3iθτψη1,v, e

2iθτψη2,v, e
2iθτψη3,v, e

iθτψη4,v, e
iθτψη5,v, ψ

η
6,v

]ᵀ
|uc,ηk 〉 =

[
e3iθτψη1,c, e

2iθτψη2,c, e
2iθτψη3,c, e

iθτψη4,c, e
iθτψη5,c, ψ

η
6,c

]ᵀ
, (4)

where the k dependence has been included in the radial ψηj,c/v radial spinor components for
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compactness, c/v distinguishes between conduc-
tion and valence bands, and η is the band index
that distinguishes the three individual bands in
each set (η = −1 for the band closest to the gap,
η = 0 for the intermediate band and η = +1 for
the band furthest from the gap, see Fig. 3).

However, due to the definition of the angu-
lar variable θ, the complex exponential eiθ be-
comes ill–defined and discontinuous as k → 0.

To avoid this discontinuity, we group the phase
factors such that complex exponentials only ap-
pear multiplied by terms that vanish at k = 0,
removing numerical difficulties stemming from
this discontinuity[18]. This will lead to different
forms of the eigenvectors from Eq. (4) depend-
ing on the specific band, given in generic fashion
in Eq. (5).

∣∣∣uc,−1k

〉
=
[
ψ−1,c, e

−iθτψ−2,c, e
−iθτψ−3,c, e

−2iθτψ−4,c, e
−2iθτψ−5,c, e

−3iθτψ−6,c
]ᵀ∣∣∣uv,−1k

〉
=
[
e3iθτψ−1,v, e

2iθτψ−2,v, e
2iθτψ−3,v, e

iθτψ−4,v, e
iθτψ−5,v, ψ

−
6,v

]ᵀ∣∣∣uc,0k

〉
=
[
e2iθτψ0

1,c, e
iθτψ0

2,c, e
iθτψ0

3,c, ψ
0
4,c, ψ

0
5,c, e

−iθτψ0
6,c

]ᵀ∣∣∣uv,0k

〉
=
[
eiθτψ0

1,v, ψ
0
2,v, ψ

0
3,v, e

−iθτψ0
4,v, e

−iθτψ0
5,v, e

−2iθτψ0
6,v

]ᵀ∣∣∣uc,+1
k

〉
=
[
eiθτψ+

1,c, ψ
+
2,c, ψ

+
3,c, e

−iθτψ+
4,c, e

−iθτψ+
5,c, e

−2iθτψ+
6,c

]ᵀ∣∣∣uv,+1
k

〉
=
[
e2iθτψ+

1,v, e
iθτψ+

2,v, e
iθτψ+

3,v, ψ
+
4,v, ψ

+
5,v, e

−iθτψ+
6,v

]ᵀ
. (5)

This phase choice of the Bloch factors will play
a crucial role in determining the optical selec-
tion rules and leads to Hydrogen–like selection
rules in the monolayer[18]. It is important to
note, however, that this choice of phase factors
breaks down for sufficiently large values of the
bias potential. At V ≈ 260 meV the phases of
the η = −1 and η = 0 begin mixing as the top
of the η = −1 band becomes extremely close
to the bottom of the η = 0 band. As such, we
end our calculations at V = 110 meV as to be
sufficiently far away from this regime.

Trigonal warping was not included in the min-
imal model Hamiltonian as its presence makes
separating the phase factor of each spinor en-
try similarly to Eqs. (4–5) impossible. Ignoring

trigonal warping at this level is not a stringent
approximation as shows the results of Fig. 2.
Still, we will consider its contribution to the
dipole moment operator when selection rules
are discussed as it leads to important new opti-
cal selection rules.
III. BETHE–SALPETER EQUATION

Having finalized the discussion of the elec-
tronic band structure, we will now move on to
the excitonic states. To compute the excitonic
wave functions and their binding energies we
will solve the Bethe–Salpeter equation. For a
multi–band system, the Bethe–Salpeter equa-
tion can be written in momentum space as[33–
36]
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E ψc,η1;v,η4 (k) = (Ec,η1k − Ev,η4k )ψc,η1;v,η4 (k) + (6)

+
∑
η2,η3

∑
q

V (k− q)
〈
uc,η1k | uc,η2q

〉 〈
uv,η3q | uv,η4k

〉
ψc,η2;v,η3 (q)

where ψc,η1;v,η4 (k) is the excitonic wave func-
tion that we wish to obtain,

∣∣∣uv/c,ηk

〉
and Ev/c,ηk

are the single particle electronic wave functions
(Eqs. (4–5)) and energies, respectively, and
V (k) is an electrostatic potential coupling dif-
ferent bands and thus capturing many–body ef-
fects including the intrinsic many–body nature
of excitons.

In this paper, we consider the electrostatic
potential to be the Rytova–Keldysh potential
[10, 11] (usually employed to describe excitonic
phenomena in mono- and few–layer materials),
which can be obtained by solving the Poisson
equation for a charge embedded in a thin film of
vanishing thickness. In momentum space, this
potential is given by

V (k) = 2π
~cα
ε

1

k (1 + r0k)
,

where α = 1/137 is the fine–structure constant,
ε the mean dielectric constant of the medium
above/below the ABC–trilayer graphene. The
parameter r0 corresponds to an in–plane screen-
ing length related to the 2D polarizability of
the material. It can be calculated from the
single particle Hamiltonian of the system, al-
though ab initio calculations might be neces-
sary for accurate computation of r0 depending
on the material[37]. This screening parameter
varies with the bias potential V , and its numer-
ical value is of the utmost importance if the ex-
citonic properties of a specific system are to be
studied accurately[38, 39]. An in–depth discus-
sion of the in–plane screening length in bilayer
graphene has been done in Ref. [40], and we
perform a simplified version of this procedure
for ABC–trilayer graphene in Appendix A.

To solve the Bethe–Salpeter equation, we
assume that the excitons have a well–defined

angular momentum quantum number m, such
that their wave functions can be written as
ψc,η1;v,η4 (k) = fc,η1;v,η4 (k) eimθ. Furthermore,
it is important to note that Eq. (6) is actu-
ally a separate equation for each pair of bands
c, η1; v, η4. This implies that there are 9 equa-
tions (3 valence times 3 conduction) that must
be solved, stemming from the three valence and
three conduction bands. Additionally, as men-
tioned previously, a careful choice of the phases
of the single–particle spinors allows us to trans-
form the BSE into a 1D integral equation. Both
the discussion on the necessary transformations
to solving the Bethe–Salpeter equation in biased
ABC–trilayer graphene and the description of
the numeric methodology are available in Ap-
pendix B. Solving this eigenvalue problem, one
obtains the excitonic eigenvalues and eigenfunc-
tions.

Having determined the solutions for a wide
range of biases, we observed that of the 9 sets
of ψc,η1;v,η4 (k), those corresponding to η1 =
η4 = −1 were by far the dominant contribu-
tions. This is a reasonable and somewhat ex-
pected result, as intuition tells us that the bands
close to the gap should dominate the system’s
low–energy response. As such, calculations can
be greatly optimized by restricting the sum over
bands to only the η = −1 bands. It is impor-
tant to note that, as the bias potential increases
past a certain point (roughly V ≈ 200 meV), the
η = −1 bands are no longer the sole dominant
contribution. At this external bias, one must
also take into account the next pair of bands
to obtain a reasonable result, greatly increasing
the computational complexity and calculation
time.

When discussing excitonic states, we adopt a
nomenclature similar to what is used in the Hy-
drogen atom, with states with angular momen-
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tumm = 0 being s–series states, states with an-
gular momentum |m| = 1 being p–series states,
and analogously to higher angular momenta. To
distinguish ±m states, for m 6= 0, we will use
the sign of the angular momentum in index (i.e.,
3d+ and 3d− states).

To finalize this section, we depict the density
plot of the 1s and the 3d+ excitonic states for
three different external bias in Fig. 4, together
with the binding energies of the two excitonic
states in question and the electronic bandgap.
The 1s state is presented only for comparison,
as it is the only state that is non–zero at k = 0
and, as such, is sufficiently distinct from all
other excitonic states. However, it is optically
dark and will play no part in the optical con-
ductivity, as we will show in Sec. IV.

As the external field V increases, the effec-
tive screening length r0 decreases (see Appendix
A) leading to more tightly bound excitons in
real space. This is clear by the increase in the
delocalization in momentum space of the exci-
tonic wave functions as the field increases, which
is equivalent to localization in real space, in
accordance with what was expected from the
decrease in screening length. Considering the
wave function for V = 110 meV, the spread in
momentum space of the 3d+ states is roughly
∆k ≈ 0.08Å−1. As such, the spread in real
space will be approximately ∆r = 2π/∆k ≈
80Å.

Having obtained the excitonic wave functions
and discussed their dependence on the external
bias potential, we will now compute the opti-
cal linear conductivity and discuss the selection
rules obtained from the tight binding Hamilto-
nian.

IV. EXCITONIC CONDUCTIVITY

In this section, our goal is to obtain the exci-
tonic linear optical conductivity for biased tri-
layer graphene, followed by discussing the tun-
ability of the obtained resonances via the ex-
ternal potential. We will begin by determining
the optical selection rules of our system and the
impact of each hopping term in the Hamilto-

nian on these same selection rules. This discus-
sion will be focused on both linearly polarized
light and circularly polarized light, while the fi-
nal computations will focus only on linearly po-
larized light, as circular polarization does not
generate new possible transitions.

In the dipole approximation, and consider-
ing normal incidence, the optical conductivity
is given by[34]

σ
(1)
α,β (~ω) ∝

∑
n

En
Ωn,αΩ∗n,β

En − ~ω − iΓn
+(ω → −ω)∗,

(7)
where the sum over n represents the sum over
excitonic states with energy En and wave func-
tion ψn,cv, and Γn is a phenomenological broad-
ening parameter considered to be n–dependent
in a similar fashion as [18]. This broadening pa-
rameter is considered to be a fixed value chosen
as to better identify each individual excitonic
resonance. The inhomogeneity of the structure,
together with exciton–phonon interactions and
disorder scattering would provide a significant
contribution to this broadening[41–43].In Eq.
(7), Ωn,α is defined as

Ωn,α =
∑
c,v

∑
k

ψn,cv (k) 〈uvk |rα|uck〉 , (8)

with 〈uvk |rα|uck〉 the interband dipole operator
matrix element in the α direction, obtained us-
ing the relation

〈uvk |rα|uck〉 =
〈uvk |[H, rα]|uck〉

Evk − Eck
.

Knowing this relation, one then expands the
commutator 〈uvk |[H, rα]|uck〉 and the optical se-
lection rules are directly obtained from the
phase factors of the single particle states in Eq.
(5). With these phase factors fixed, one can
then study what optical transitions become al-
lowed when specific hopping terms are included
in the tight binding Hamiltonian.

As mentioned previously, although only the
nearest–neighbor hopping terms were consid-
ered when solving the Bethe–Salpeter equation,
the effects of the trigonal warping hopping γ3
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Figure 4. Left: Electronic bandgap (black line), together with binding energies of the (optically dark)
excitonic 1s ground state (red dots) and (optically bright) excitonic 3d+ state, for various bias potentials
between V = 30 meV and V = 150 meV. Right: Density plot of the absolute value squared of the excitonic
1s (top panels) and 3d+ (bottom panels) wave functions in ABC–stacked trilayer graphene encapsulated in
hBN with various external biases V = 30 meV, V = 70 meV and V = 110 meV. The region plotted in each
panel is a square of side 0.1Å−1 centered at k = 0.

will also be taken into account during the eval-
uation of the commutator [H, rα] as it plays
a crucial role in the system’s optical selection
rules. The impact of the γ4 hopping parameter
will also be discussed, even though it does not
generate new selection rules. The magnitude
of this hopping parameter is also much smaller
than that of γ0, leading to no significant change
in the excitonic peaks. As such, we will not
include its contribution in the final optical con-
ductivity.

A. Linearly and Circularly Polarized Light

Considering linearly polarized light, fixed
(without loss of generality) in the x direction,
and taking again the thermodynamic limit, we
write Eq. (8) as

Ωn =
∑
c,v

∫
ψn,cv (k)

〈uvk |[H,x]|uck〉
Evk − Eck

k dk dθ.

(9)
As such, the optical conductivity will be given
by

σ(1)
xx (ω) =

e2

4π2i~
∑
n

 En
En − (~ω + iΓn)

∣∣∣∣∣∑
c,v

∫
ψn,cv (k)

〈uvk |[H,x]|uck〉
Evk − Eck

k dk dθ

∣∣∣∣∣
2
+ (ω → −ω)

∗
,

(10)

which can be quickly computed as solving the
Bethe–Salpeter equation provided us with both

En and ψn,cv (k), and the diagonalization of Eq.
(3) provides us with the band structure.
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As was discussed in Sec. III, we can safely dis-
card the contribution from higher energy bands
and focus only on the two electronic bands clos-
est to the gap as long as the external bias re-

mains sufficiently small. This somewhat sim-
plifies the previous expression, with the optical
conductivity being given by

σ(1)
xx (ω) =

e2

4π2i~
∑
n

[
En

En − (~ω + iΓn)

∣∣∣∣∫ ψn (k)
〈uvk |[H,x]|uck〉
Evk − Eck

k dk dθ

∣∣∣∣2
]

+ (ω → −ω)
∗
, (11)

where ψn corresponds to the excitonic wave
functions when only these two lowest energy
bands are considered.

The optical selection rules are now evident,
as the integral of Eq. (9) is only non–zero for
states with angular momentum symmetric to
the phase factors obtained by expanding the
commutator 〈uvk |[H,x]|uck〉. Explicitly expand-
ing this commutator, we obtain

[H,x] =
3aτ

2


0 γ0 γ4 γ3 0 0
γ0 0 0 γ4 0 0
γ4 0 0 γ0 γ4 γ3
γ3 γ4 γ0 0 0 γ4
0 0 γ4 0 0 γ0
0 0 γ3 γ4 γ0 0

 . (12)

Focusing first on the nearest–neighbor hop-
ping parameter, the interband matrix element
is given by

〈uvk |[H,x]|uck〉 ∝ Aγ0c,ve−2iτθ +Aγ0v,ce−4iτθ,
(13)

with

Aγ0c,v = ψ1,cψ2,v + ψ3,cψ4,v + ψ5,cψ6,v,

Aγ0v,c = ψ1,vψ2,c + ψ3,vψ4,c + ψ5,vψ6,c.

In this expression, we can see that the first term
only leads to a non–zero contribution for m =
2τ states (d series), and the second term form =
4τ states (g series). Focusing on the τ = 1 valley
and comparing the relative amplitudes of the
contributions from both series, those from d+–
series states dominate and g+–series states go
totally unnoticed, with the relative amplitude

being less than 0.1% for an external bias of V =
30 meV.

For circularly polarized light, the procedure is
equivalent to that which was performed above,
with the only slight change being the differ-
ent interband dipole operator matrix element.
In this regime, this operator will be written
as 〈uvk |[H,x± iy]|uck〉, with ± differentiating
between right polarization (+) and left polar-
ization (−). Focusing on right polarized light
for simplicity, the full interband dipole opera-
tor can be written as

〈uvk |[H,x+ iy]|uck〉 ∝ Aγ0c,v (τ + 1) e−2iτθ+

+Aγ0v,c (τ − 1) e−4iτθ.

(14)

The (τ + 1) , (τ − 1) factors further restrict the
selection rules, only allowing those to d+–series
states in the τ = 1 valley and those to g−–series
states in the τ = −1 valley.

B. Trigonal Warping Effects

Finally, we will consider the effects of the
additional hopping parameters which were dis-
carded when solving the Bethe–Salpeter equa-
tion, namely γ3 and γ4. Although γ2 was also
discarded, this hopping parameter will not con-
tribute to the optical selection rules as it ap-
pears in the tight binding Hamiltonian as a con-
stant term. Computing the dipole operator ma-
trix element while considering the γ3 hopping
term results in two new allowed transitions.
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For x–aligned linearly polarized light, terms
proportional to γ3 lead to

〈uvk |[H,x]|uck〉|γ3 ∝ B
γ3
c,ve
−iτθ + Bγ3v,ce−5iτθ,

(15)

with

Bγ3c,v = ψ1,cψ4,v + ψ3,cψ6,v,

Bγ3v,c = ψ1,vψ4,c + ψ3,vψ6,c,

only allowing transitions tom = τ (p series) and
m = 5τ (h series) states. Comparing the rela-
tive amplitudes of the contributions from both
series, those from p+–series states dominate and
h+–series states go totally unnoticed, with rel-
ative amplitudes again less than 0.1%. Terms
proportional to γ4, in turn, lead to

〈uvk |[H,x]|uck〉|γ4 ∝ C
γ4
c,ve
−2iτθ + Cγ4v,ce−4iτθ,

(16)

with

Cγ4c,v = ψ1,cψ3,v + ψ2,cψ4,v + ψ3,cψ5,v + ψ4,cψ6,v,

Cγ4v,c = ψ1,vψ3,c + ψ2,vψ4,c + ψ3,vψ5,c + ψ4,vψ6,c,

imposing the same selection rules obtained for
γ0. As such, and as γ0 � γ4, these will be ig-
nored when computing the optical conductivity.

For right circularly polarized light a similar
valley–dependent selection rule to the one ob-
tained in Eq. (14) is present. Explicitly expand-
ing the terms proportional to γ3 in the commu-
tator, we obtain

〈uvk |[H,x+ iy]|uck〉|γ3 ∝ B
γ3
c,v (τ − 1) e−iτθ+

+ Bγ3v,c (τ + 1) e−5iτθ,

(17)

allowing only transitions to m = 5τ (h series)
in the τ = 1 valley and to m = τ (p series)
in the τ = −1 valley. Analogously to linearly
polarized light, terms proportional to γ4 lead to

〈uvk |[H,x+ iy]|uck〉|γ4 ∝ C
γ4
c,v (τ + 1) e−2iτθ+

+ Cγ4v,c (τ − 1) e−4iτθ,

(18)

allowing only transitions to m = 2τ (d series)
in the τ = 1 valley and to m = 4τ (g series) in
the τ = −1 valley.

The contribution to the optical conductivity
from trigonal warping goes mostly unnoticed as
the intensity is close to two orders of magni-
tude smaller

(
γ23/γ

2
0 ≈ 0.01

)
, and the only dis-

tinguishable transition is that which is associ-
ated with the 2p+ resonance. This occurs as
this resonance is much larger than all other p–
series resonances and occurs far enough from
the resonances originating from the dominant
hopping parameter γ0.

Computing the sum over all the previously
mentioned states, with 10 states for each al-
lowed transition, we plot the real part of the
xx-linear optical conductivity in Fig. 5 for a ex-
ternal bias of V = 30 meV. The first few states
contributing to the optical conductivity are also
plotted individually as to clearly identify each
resonance and they are labeled according to the
hopping parameter that allows the transition in
question. In this figure, we can clearly distin-
guish three resonances, namely those associated
with 2p+, 3d+, and 4d+ states, with a plateau
forming close to the bandgap value as the ex-
citonic resonances become ever closer to each
other. The location and amplitude of these res-
onances are extremely sensitive to the external
bias, as we will now see in Sec. IVC.

C. Tunability via Bias Potential

To conclude our study of the ABC-trilayer
graphene optical conductivity, we will now an-
alyze the tunability of the excitonic resonances
via the bias potential, considering a broad range
of external biases and computing the excitonic
conductivity for the systems in question. It is
important to note that changing the bias poten-
tial will also alter the effective screening length
present in the Rytova–Keldysh potential (as dis-
cussed in Appendix A) and we will therefore
need to recompute the effective screening length
for each individual external bias. Additionally,
it is also important to note that, as was dis-
cussed in Sec. III, the lowest energy bands only
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Figure 5. Real part of the excitonic xx–conductivity for biased ABC–stacked trilayer graphene encapsulated
in hBN with a bias potential V = 30 meV, broadening parameters Γnd+ = 0.3 meV and Γnp+ = 0.1 meV,
and a N = 450 point Gauss–Legendre quadrature. First ten states of each excitonic series were considered
for the total conductivity. Vertical dashed lines represent the bandgap at k = 0 (right) and at the band
extremes (left). The different γs in the legend symbolize the hopping term that leads to specific resonances.
The conductivity is given in units of the conductivity of monolayer graphene σ0 = e2/4~.

dominate the low energy response of the system
for sufficiently low external biases. As such, we
only compute the excitonic optical conductiv-
ity for external biases up to V = 110 meV. At
this external bias, the contributions from higher
bands to Ωn,α (Eq. (8)) are still negligible, fur-
ther justifying the use of only the two bands
closest to the gap in our calculations.

The real part of the resulting optical conduc-
tivity for various external biases is plotted in
the right panel of Fig. 6, together with several
dashed lines representing the bandgap charac-
teristic of each system. Analogously to what
was discussed in Fig. 5, the optical conduc-
tivity plotted in Fig. 6 takes into account both
the dominant transitions allowed by the γ0 hop-
ping and those originating from trigonal warp-
ing (modeled by the γ3 parameter).

As it can be observed, the relative amplitude
of the dominant resonance increases as the ex-
ternal bias increases, leading to it overpowering
the nearby 2p+ resonance for larger biases (see
line for V = 110 meV). Above V = 50 meV,
resonances associated with higher nd+ begin to
appear at energies above the dashed lines of the
bandgap. These states are, however, still well
within the ∆ = 2V gap at k = 0 and, upon in-
spection of their density plots (similarly to Fig.
4), these appear to be getting more localized
near k = 0, implying higher delocalization in
real space, as one would expect from higher en-
ergy states.
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Figure 6. Real part of the excitonic xx–conductivity for biased ABC–stacked trilayer graphene encapsulated
in hBN with various bias potentials V = 30, 50, 70, and 110 meV, broadening parameters Γnd+ = 0.3 meV
and Γnp+ = 0.1 meV, and a N = 450 point Gauss–Legendre quadrature. First ten states of each excitonic
series were considered for the total conductivity. Vertical dot–dashed lines represent the bandgap at the
band extremes, while the bandgap at k = 0 will be simply 2V . Leftmost resonance in each curve is associated
with the transition to the 2p+ excitonic state, while the dominant peak and those to its right are associated
with the transition to the 3d+ and higher nd+ excitonic states, respectively. The conductivity is given in
units of the conductivity of monolayer graphene σ0 = e2/4~.

V. CONCLUSION

In this paper we studied the excitonic op-
tical response of biased rhombohedral trilayer
graphene.To this end, we began by review-
ing the single particle electronic properties of
the multilayer system by considering a sim-
plified tight binding Hamiltonian. The eigen-
states of this tight binding Hamiltonian are then
used as the input states for the Bethe–Salpeter
equation, whose solution leads to the excitonic
states.

With the excitonic wave functions and bind-
ing energies known, we proceeded to the com-
putation of the optical conductivity of the tri-
layer. This allowed us to study the optical se-

lection rules for excitonic transitions while also
giving valuable insight into the strength of the
photon–exciton coupling. We found that, if
trigonal warping is ignored, only d and g–series
states are optically bright, although the oscilla-
tor strength for g–states is negligible when com-
pared to that of d–states. When trigonal warp-
ing is taken into account, new transitions be-
come optically bright, as was expected from the
symmetry breaking this new hopping parame-
ter introduces. The new couplings make both
p and h–series states optically bright, although
the contribution from h–series states is again
negligible. Additionally, due to the small am-
plitude of the trigonal warping parameter rela-
tive to the dominant hopping term, only the 2p
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state presents a relevant contribution to the op-
tical conductivity. Additional hopping param-
eters were also studied, namely hopping terms
between same sublattice sites on different lay-
ers. The optical selection rules generated were
identical to those from the dominant hopping
term, allowing us to discard this contribution
due to the much smaller hopping parameter.

Varying the external bias potential, we ob-
served an increase in the localization of the ex-
citon as the bias increases, with the state as-
sociated with the dominant excitonic resonance
spread about 80Å in real space at an external
bias of 110 meV. We also observed that the rel-
ative amplitude of the dominant excitonic reso-
nance, associated with the 3d excitonic state, in-
creased as the potential increases. The smaller
2p resonance becomes increasingly masked by
its proximity to the dominant peak, becoming
almost indistinguishable from the 3d resonance
at an external bias of 110 meV.
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Appendix A: Effective Screening Length

The effective screening length is given by [40]

r0 =
~3cα
πm2

0

∑
c,v

∫
|〈uck |Px|uvk〉|

2

[Ec (k)− Ev (k)]
3 k dk dθ. (A1)

Substituting the momentum matrix element, defined as

Px =
m0

~
∂H

∂kx
,

we obtain

r0 =
~cα
π

∑
c,v

∫ ∣∣∣〈uck ∣∣∣ ∂H∂kx ∣∣∣uvk〉∣∣∣2
[Ec (k)− Ev (k)]

3 k dk dθ. (A2)

This effective screening length is, as can be seen in Eq. (A2, very sensitive to the external bias,
falling quickly for higher values of the external bias[40].

Considering only the lowest energy bands, dominant for low bias potentials, we obtain

r0 =
~cα
π

∫ ∣∣∣〈uc,−1k

∣∣∣ ∂H∂kx ∣∣∣uv,−1k

〉∣∣∣2
[Ec,−1 (k)− Ev,−1 (k)]

3 k dk dθ. (A3)

For V = 50 meV, the value of this screening length will be r0 = 165.623Å.
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Appendix B: Bethe–Salpeter Equation

Taking the thermodynamic limit, Eq. (6) can be written as

E fc,η1;v,η4 (k) = (Ec,η1k − Ev,η4k ) fc,η1;v,η4 (k)− (B1)

− 1

4π2

∑
η2,η3

∫
qdqdθqV (k− q)

〈
uc,η1k | uc,η2q

〉 〈
uv,η3q | uv,η4k

〉
fc,η2;v,η3 (q) eim(θq−θk).

This problem can be simplified further, as
〈
uc,η1k | uc,η2q

〉 〈
uv,η3q | uv,η4k

〉
consists of a sum of different

term with well–defined phases if a careful choice of the spinor phases has been made (Eq. (4)). For
compactness, in this Appendix we will suppress the η indices, instead using c, c′, v, v′ to distinguish
the different bands which take part in the calculation. As such, it can be written as〈

uck | uc
′

q

〉〈
uv

′

q | uvk
〉

=
∑
λ

Acc
′vv′

λ (k, q) eiλ(θq−θk), (B2)

where the angular dependence has been extracted from Acc′vv′λ (k, q).
Regarding the radial integral of the potential term, it can be written as

Im (k, q) =

∫ 2π

0

cos (mθ)

κ (k, q, θ) [1 + r0κ (k, q, θ)]
dθ, (B3)

where κ (k, q, θ) =
√
k2 + q2 − 2kq cos (θ) and only the even term is non–zero due to parity. In-

specting the integrand, it is clear that the I function will be numerically ill–behaved when k = q.
For this effect, we decompose the integrand in terms of partial functions as

Im (k, q) =

∫ 2π

0

cos (mθ)

κ (k, q, θ)
dθ − r0

∫ 2π

0

cos (mθ)

1 + r0κ (k, q, θ)
dθ

= Jm (k, q)−Km (k, q) .

With this decomposition, it is clear now that only the Jm (k, q) integral will be problematic when
k = q. Substituting Im (k, q) into Eq. (B1), we write

Efcv (k) = (Eck − Evk) fcv (k)−

− 1

4π2

∑
c′v′

∫ +∞

0

∑
λ

{
Jm+λ (k, q)Acc

′vv′

λ (k, q)−Km+λ (k, q)Acc
′vv′

λ (k, q)
}
fc′v′ (q) qdq (B4)

Writing

J cc
′vv′

m (k, q) =
∑
λ

Jm+λ (k, q)Acc
′vv′

λ (k, q) , Kcc
′vv′

m (k, q) =
∑
λ

Km+λ (k, q)Acc
′vv′

λ (k, q) ,

the BSE can now be compactly written as

Efcv (k) = (Eck − Evk) fcv (k)− 1

4π2

∑
c′v′

∫ +∞

0

[
J cc

′vv′

m (k, q)−Kcc
′vv′

m (k, q)
]
fc′v′ (q) qdq. (B5)
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We now focus our attention on the problematic J cc′vv′m (k, q) object. To treat the divergence at
q = k, an auxiliary function gm (k, q) is introduced. This function obeys the limit

lim
q→k

[
J cc

′vv′

m (k, q)− gm (k, q)
]

= 0

and it modifies the integrals as∫ +∞

0

J cc
′vv′

m (k, q) fc′v′ (q) qdq →
∫ +∞

0

[
J cc

′vv′

m (k, q)− gm (k, q)
]
fc′v′ (q) qdq+

+ fc′v′ (k)

∫ +∞

0

gm (k, q) qdq. (B6)

Following [18, 44], this auxiliary function is chosen as

gm (k, q) = J cc
′vv′

m (k, q)
2k2

k2 + q2
.

Having finished outlining the analytical procedure, we now proceed to the numerical solution of
the BSE. This is performed using the same methodology as [18], which we will quickly outline. A
variable change is introduced as to convert the integration limits from [0,+∞) to a finite limit, in
this case [0, 1], defined as q = tan

(
πx
2

)
. With this variable change, we proceed by discretizing x,

writing the numeric problem as

Efcv (ki) =
(
Ecki − E

v
ki

)
fcv (ki) +

1

4π2

∑
c′v′

N∑
j=1

[
Kcc

′vv′

m (ki, qj) fc′v′ (qj) qj
dq

dxj

]
− (B7)

− 1

4π2

∑
c′v′

∑
j 6=i

[
J cc

′vv′

m (ki, qj) fc′v′ (qj) + gm (ki, qj)
]
qj
dq

dxj
wj − fc′v′ (ki)

∫ ∞
0

gm (ki, p) pdp

 ,

where N is the number of points considered in the discretization, w is the weight function of
the quadrature in question, and the discretized variables are defined as qi ≡ q (xi), and dq

dxi
≡

dq
dx

∣∣∣
x=xi

. It is important to note that, while
∫∞
0
J cc′vv′m (k, q) qdq is numerically problematic at

q = k,
∫∞
0
gm (k, q) qdq is well–behaved.

In this paper, we employ a Gauss–Legendre quadrature [45], defined as∫ b

a

f (x) dx ≈
N∑
i=1

f (xi)wi,

where

xi =
a+ b+ (b− a) ξi

2

with ξi the i-th zero of the Legendre polynomial PN (x), and

wi =
b− a

(1− ξ2i )

[
dPN (x)
dx

∣∣∣
x=ξi

]2 .
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Finally, it is important to realize that Eq. (B5) can be written as the eigenvalue problem of a
9N × 9N matrix (i.e., a 9 × 9 matrix of N ×N matrices). The 81 blocks come from the different
combinations of band indices, and each N ×N matrix comes from the numerical discretization of
the integral. Solving this eigenvalue problem for a sufficiently large quadrature, one obtains the
excitonic eigenvalues and eigenfunctions.
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