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We show that systematic full configuration-interaction (FCI) calculations enable prediction of the
energy spectra and the intrinsic spatial and spin structures of the many-body wave functions as
a function of the detuning parameter for the case of three-electron hybrid qubits based on GaAs
asymmetric double quantum dots. Specifically, in comparison with the case of weak interactions and
treating the entire three-electron double-dot hybrid qubit as an integral unit, it is shown that the
predicted spectroscopic patterns, originating from strong electron correlations, manifest the forma-
tion of Wigner molecules (WMs). Signatures of WM formation include: (1) a strong suppression of
the energy gaps relative to the non-interacting-electrons modeling, and (2) the appearance of a pair
of avoided crossings arising between states associated with two-electron occupancies in the left and
right wells. The Wigner molecule is a physical entity associated with electron localization within
each well and it cannot be captured by the previously employed independent-particle or two-site-
Hubbard theoretical modeling of the hybrid qubits. The emergence of strong WMs is investigated in
depth through the concerted use of FCI-adapted diagnostic tools like charge and spin densities, as
well as conditional probability distributions. Furthermore, the energy spectrum as a function of the
strength of the Coulomb repulsion (at constant detuning) is calculated in order to complement the
thorough analysis of the factors contributing to WM emergence. We report remarkable agreement
with recent experimental measurements. The present FCI methodology for multi-well quantum dots
can be straightforwardly extended to treat valeytronic two-band Si/SiGe hybrid qubits, where the
central role of the WMs was confirmed recently. Such valeytronic FCI could be also adapted and
employed, shortly, in simulations of Si-based two-qubit logical gates, made of two interacting DQD
hybrid qubits confining a total of N ≤ 6 electrons.

I. INTRODUCTION

Methodical control of the parameters and performance
of qubits is a prerequisite for the succesful implementa-
tion of quantum computing. To this effect during the last
decade, major experimental endeavors (see, e.g., Refs. [1–
7]) have been undertaken and substantial progress has
been reported. In particular, unprecedented progress
has been achieved in the techniques for controlling and
manipulating the spin and charge electronic degrees of
freedom of two-dimensional (2D) semiconductor hybrid-
double-quantum-dot (HDQD) qubits [8–15], comprising
three-electron (3e) [8–10, 12, 13, 15] and five-electron (5e)
[11, 14] varieties.

Nonetheless, several experimental scrutinies in the last
two years on state-of-the-art semiconductor double-dot
Si/SiGe [14] and GaAs [15] HDQD qubit devices have
provided incontrovertible evidence (see also Refs. [16, 17])
that a key factor influencing the qubit spectra and perfor-
mance had been overlooked in the context of earlier qubit
investigations. This factor is the manifestation of strong
electron-electron (e-e) correlations leading to formation
of Wigner molecules (WMs) [18–31], which rearranges
sharply the electronic spectra of the qubit device with re-
spect to those associated with non-interacting electrons.
As their name suggests, the WMs are a fully quantal ex-
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tension of the concept of a bulk Wigner crystal [32] to
the realm of finite systems.

From a theoretical perspective, the formation of
Wigner molecules cannot be described in the frame-
work of independent-particle (single-particle) modeling
[8, 33, 34], which was advanced for 2D quantum dots
(QDs) from the very early stages of the field [35]; nor
the more involved two-site Hubbard models [8, 36–41]
are adequate in this respect [42]. As reaffirmed recently
for the pilot case of two particles (two electrons [14–
17] or two holes [17]) in a single QD, explored in re-
cent experimental investigations [14, 15], formation of
WMs, which has been extensively demonstrated in ear-
lier investigations [18, 20, 21, 23, 27–30, 43, 44], requires
the employment of more comprehensive, ab-initio-in-
nature, theoretical approaches, including the symmetry-
breaking/symmetry-restoration [18, 20, 23, 29] methods
and the full configuration-interaction (FCI) method (re-
ferred to also as exact diagonalization, [21, 27–30, 43–
46]).

In this paper, we demonstrate the central role that
strong e-e correlations and WM formation play in shap-
ing the spectra of semiconductor qubits by going beyond
the aforementioned recent two-particle CI calculations in
a single dot [14–17], namely, we present FCI calculations
for the case of a hybrid [8–15, 33] three-electron double-
quantum-dot GaAs qubit, treated as an integral unit. To
establish contact with an actual experimental investiga-
tion, we employ HDQD parameters comparable to those
in Ref. [15], which measured the energy spectrum of the
qubit as a function of the detuning at zero magnetic field.
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As we elaborate below, we find a remarkable agreement
between our 3e-CI energy spectra and the essential exper-
imental trends that characterize the hybrid qubit. These
trends include the large suppression of the energy gaps
compared to the simple non-interacting-electron problem
and the emergence of the phenomenological 4x4 effective
Hamiltonian, which incorporates a pair of avoided cross-
ings associated with double electronic occupancies in the
left and right well, and which depends linearly on the
detuning between the two wells.

We further present a detailed analysis of the interplay
of the spectral features of the HDQD and the formation
of a WM, by investigating charge and spin-resolved den-
sities, as well as spin-resolved conditional probability dis-
tributions (CPDs), for the 6 or 8 lowest-in-energy states
of the 3e-DQD spectra for two different cases, namely as
a function of detuning (keeping constant the dielectric
constant κ) and as a function of the dielectric constant
(keeping the detuning constant). In this context, partic-
ularly revealing for the process of WM formation is the
contrast of charge densities (see Fig. 1 below) between a
weakly interacting case (with κ = 1000) and the strongly
interacting case (with κ = 12.5) of the GaAs HDQD
qubit.

Plan of the paper: In Sec. II, we introduce the many-
body Hamiltonian of the HDQD device model, compris-
ing three electrons in an asymmetric 2D double-well ex-
ternal confinement, which is modeled by a two-center-
oscillator (TCO) potential joined by a smooth neck. The
values of the model’s parameters, employed in the cal-
culations, are specified in this section; they are chosen
to address the experiments on GaAs HDQD in Ref. [15].
Also included (Sec. II 1) in this section is a restatement
of the Wigner parameter RW [18, 29] pertaining to the
propensity for Wigner-molecule formation, as well as es-
timates of the RW corresponding to the parameters used
in our calculations.

In Sec. III, the CI-calculated energy spectra as a func-
tion of the interdot detuning parameter at specific values
of the dielectric constant (controlling the strength of the
Coulomb repulsion) are discussed (Sec. III A) for both
the case where the inter-electron interaction is taken to
be small (simulating the independent-electron limit) and
for the actual value appropriate for GaAs (illustrating the
effect of strong WM-formation on the eigenvalue spec-
tra). Subsequently (Secs. IIIA 1 and IIIA 2), we analyze
the charge densities and spin structures corresponding to
selected values of the detuning parameter away from the
avoided crossings, using both spin-resolved charge den-
sities and spin-resolved CPDs. Special attention is de-
voted in Sec. III B to the evolution of the spectral char-
acteristics and the mixing of WM wave functions (Sec.
III B 1) when the detuning values fall in the neighbor-
hood of the avoided crossings. In Sec. III C, we focus
on the energy gap between the ground and 1st excited
state, and report remarkable agreement with the mea-
surements of Ref. [15]. We end Sec. III with an analysis
(Sec. IIID) of the CI-calculated spectra for GaAs in the

context of a phenomenological matrix Hamiltonian used
as a diagnostic tool in previous works on HDQD qubits.

The effects of inter-electron interaction on the Wigner-
molecule formation and associated spectral characteris-
tics, are further highlighted and accentuated in Sec. IV
through the analysis of the CI-calculated spectra and
charge densities as a function of the dielectric constant of
the material at a constant detuning value. We summarize
our results in Sec. V.

Appendix A describes the numerical approach to de-
termine the eigenenergies and eigenstates of the one-
body TCO Hamiltonian introduced below in Eq. (3).
Because the community of quantum-information and
quantum-computer scientists have only recently become
alerted [14–17] to the potentialities of the CI many-body
method and the significance of the concept of the Wigner
molecule, for completeness and pedagogical reasons, we
include two additional Appendices as follows: Appendix
B describes the CI methodology, whereas Appendix C
describes the diagnostic tools (beyond-mean-field single-
particle densities and CPDs, and their spin-resolved va-
rieties) needed to analyze the CI many-body wave func-
tions and extract the information regarding WM forma-
tion and the intrinsic spin structure of the associated CI
wave function.

II. MANY-BODY HAMILTONIAN AND
PARAMETERS OF THE DOUBLE-WELL

DEVICE

Following the recent advances [11, 13–15] in the fabri-
cation of hybrid qubits, we investigate in this paper the
many-body spectra and wave functions of three electrons
in an asymmetric two-dimensional double-well exter-
nal confinement, inplemented by a two-center-oscillator
(TCO) potential as described below.

We consider a many-body Hamiltonian for N electrons
of the form

HMB(ri, rj) =

N∑
i=1

HTCO(i) +

N∑
i=1

N∑
j>i

V (ri, rj), (1)

where ri,rj denote the vector positions of the i and j
electron. This Hamiltonian is the sum of a single-particle
part HTCO(i), which implements the double-well confine-
ment, and the two-particle interaction V (ri, rj). A no-
table property of HTCO is the fact that it allows for the
formation of a smooth interwell barrier between the indi-
vidual wells; see the inset of Fig. 1(b) for an illustration.

Naturally, for the case of electrons, the two-body in-
teraction is given by the Coulomb repulsion

V (ri, rj) =
e2

κ|ri − rj |
, (2)

where κ is the dielectric constant of the semiconductor
material.
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In the two-dimensional TCO employed by us, the
single-particle levels associated with the confining po-
tential are determined by the single-particle hamiltonian
[18, 23, 44]

HTCO =
p2

2m∗
+

1

2
m∗ω2

yy
2 +

1

2
m∗ω2

xkx
′2
k + Vneck(x) + hk,

(3)
where x′k = x − xk with k = 1 for x < 0 (left) and
k = 2 for x > 0 (right), and the hk’s control the relative
depth of the two wells, with the detuning defined as ε =
h1 − h2. y denotes the coordinate perpendicular to the
interdot axis (x). The most general shapes described
by H are two semiellipses connected by a smooth neck
[Vneck(x)]. x1 < 0 and x2 > 0 are the centers of these
semiellipses, d = x2−x1 is the interdot distance, and m∗
is the effective electron mass.

For the smooth neck, we use

Vneck(x) =
1

2
m∗ω2

xk

[
Ckx′3k +Dkx′4k

]
θ(|x| − |xk|), (4)

where θ(u) = 0 for u > 0 and θ(u) = 1 for u < 0.
The four constants Ck and Dk can be expressed via two
parameters, as follows: Ck = (2− 4εbk)/xk and Dk = (1−
3εbk)/x2k, where the barrier-control parameters εbk = (Vb−
hk)/V0k are related to the height of the targeted interdot
barrier (Vb, measured from the zero point of the energy
scale), and V0k = mω2

xkx
2
k/2. We note that measured

from the bottom of the left (k = 1) or right (k = 2) well
the interdot barrier is Vb − hk.

How we solve for the eigenvalues and eigenstates of
HTCO is described in Appendix A.

Motivated by the asymmetric double-dot used in the
GaAs device described in Ref. [15], we choose the pa-
rameters entering in the TCO Hamiltonian as follows:
The left dot is elliptic with frequencies corresponding
to ~ωx1 = 0.413567 meV = 100 h·GHz and ~ωy1 =
1.22 meV = 294.9945 h·GHz (1 h· GHz = 4.13567 µeV),
whereas the right dot is circular with ~ωx2 = ~ωy2 =
1.22 meV = 294.9945 h·GHz. The left dot is located
at x1 = −120 nm, whereas the right dot is located at
x2 = 75 nm, and the interdot barrier is set to Vb = 3.3123
meV = 800.91 h·GHz. The effective electron mass and
the dielectric constant for GaAs are m∗ = 0.067me and
κ = 12.5, respectively.

1. The Wigner parameter

At zero magnetic field and in the case of a single cir-
cular harmonic QD, the degree of electron localization
and Wigner-molecule pattern formation can be associ-
ated with the socalled Wigner parameter [18, 29]

RW = Q/(~ω0), (5)

where Q is the Coulomb interaction strength and ~ω0

is the energy quantum of the harmonic potential con-
finement (being proportional to the one-particle kinetic

energy); Q = e2/(κl0), with l0 = (~/(m∗ω0))1/2 the spa-
tial extension of the lowest state’s wave function in the
harmonic (parabolic) confinement.

Naturally, strong experimental signatures for the for-
mation of Wigner molecules are not expected for val-
ues RW . 1. In the double dot under considera-
tion here, there are two different energy scales, ~ω1 =
0.413567 meV (associated with the long x dimension of
the left QD) and ~ω2 = 1.22 meV (associated with the
right circular QD). As a result, for GaAs (with κ = 12.5)
one gets two different values for the Wigner parameter,
namely RW,1 = 5.31 and RW,2 = 3.09. These values sug-
gest that a stronger Wigner molecule should form in the
left QD compared to the right QD, as indeed was found
by the FCI calculation described below; the essentials of
the FCI method are presented in Appendix B.

We note that the earlier fabricated GaAs quantum dots
had harmonic confinements associated with frequencies
~ω0 ≥ 3 meV (RW < 1.97) [34, 35], which correspond
to a range of smaller QD sizes that did not favor the
observation of the WMs at zero magnetic fields, as can
be concluded from an inspection of the earlier experi-
mental literature [47]. In this context, the much larger
anisotropic GaAs double dot of Ref. [15], as well as the
findings of Ref. [14], where strong WM signatures were
observed, heralds the exploration of till now untapped
potentialities in the fabrication and control of quantum
dot qubits.

III. CI SPECTRA AS A FUNCTION OF
DETUNING

Before engaging in detailed analyses of the CI numer-
ical results, we comment on a particular notation that
will be essential in facilitating this task. Indeed, we will
extensively use the three-part notation (nL, nR;S) (with
nL+nR = N) to denote the left-well electron occupation,
the right-well electron occupation, and the total spin, re-
spectively, associated with a 3e CI wave function. In this
vein, the two-part notation (nL, nR) will also be occa-
sionally used

A. The big picture

Fig. 1 compares the CI spectra as a function of detun-
ing (within the same window, 1.40 meV ≤ ε ≤ 2.1 meV)
for two different values of the dielectric constant, i.e.,
κ = 1000, which is closer to the non-interacting limit,
and κ = 12.5, which is the actual value for GaAs QDs.

This comparison demonstrates a dramatic modifica-
tion in the spectra. Indeed, the low-energy spectrum for
κ = 1000 [including the ground state, see Fig. 1(a)] is
dominated by states that have the majority of electrons
(two or all three electrons) residing in the deeper right
well; such states are denoted as (1, 2;S) or (0, 3;S). Ac-
cording to the socalled branching diagram [48, 49], for
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three electrons the allowed total spin values are S = 1/2
(with a multiplicity of two) and S = 3/2 (with a mul-
tiplicity of one). All five lowest-in-energy states in Fig.
1(a) have a total spin S = 1/2, with the S = 3/2 states
appearing at higher energies (at the top of the plotted
energy spectrum).

On the contrary, in the corresponding low-energy spec-
trum in the GaAs case [Fig. 1(b)], the (2, 1;S) states
with two electrons in the left well are prominent, along
the (1, 2;S) states with two electrons in the right well.
Furthermore, states with three electrons in a given well,
denoted as (3, 0;S) or (0, 3;S), are absent. The fact that
only the six (2, 1;S) and (1, 2;S) states comprise the
lowest-energy spectrum for the GaAs double dot is an
essential feature that is a prerequisite for the implemen-
tation of the hybrid qubit which uses [8, 9, 13, 15, 33]
the four (2, 1; 1/2) and (2, 1; 1/2) states. As it is dis-
cussed below, this feature is the effect of the formation of
Wigner molecules as a result of the strengthening of the
typical Coulomb energies relative to the energy gaps in
the single-particle spectrum of a confining external po-
tential that represents a rather large-size and strongly
asymmetric double dot (see the discussion on the Wigner
parameter RW in Sec. II 1).

To assist the reader in the exploration of the features
present in the spectra of Fig. 1, we have successivley num-
bered the lowest six states at ε = 1.4 meV, starting from
the ground state (#1) and moving upwards to the first
five excited ones. Apart from the immediate neighbo-
hood of an avoided crossing, in both spectra, these energy
curves are straight lines, and naturally we keep the same
numbering for all values of the detuning in the window
range used in Figs. 1(a,b).

In Fig. 1(a), there are no degeneracies, and this num-
bering is self-explanatory. The spectrum in Fig. 1(b) is
less transparent, because of quasi-degeneracies between
states #2 and #3 and #5 and #6, as well as the small
energy gap (∼ 3 h·GHz) between state #1 and the quasi-
degenerate pair (#2,#3). We stress that the states #1
and #2 have two electrons in the left well and total spin
S = 1/2, and thus they are denoted as (2, 1; 1/2), whereas
state #3 has two electrons in the left well, but a total spin
of S = 3/2 [denoted as (2, 1; 3/2)]. On the other hand,
states #4, #5 (with S = 1/2), and #6 (with S = 3/2)
have two electrons in the right well and they are denoted
as (1, 2;S). A main feature of this six-state spectrum in
Fig. 1(b) is that, apart from the neighborhoods of the two
avoided crossings (see below Sec. III B), the energy curves
for the states #1, #2, and #3 form one band of parallel
lines, whereas the energy curves for the states #4, #5,
and #6 form a second band of parallel lines, and the two
bands intersect at two avoided crossings. Again the ap-
pearance of such three-member bands, grouping together
two S = 1/2 states and one S = 3/2 state, is a conse-
quence of the formation of a 3e Wigner molecule (three
localized electrons considering both wells), and this is in
consonance with the findings of Ref. [43] regarding the
spectrum of three electrons in single anisotropic quan-

tum dots in variable magnetic fields.
We further stress that the dominant feature in the

spectrum of Fig. 1(b) is the small energy gap between
the two S = 1/2 states #1 and #2, which contrasts with
the large gap between the other two S = 1/2 states #4
and #5, a point that will be discussed in detail in Sec.
III C below.

1. Charge densities away from the avoided crossings

Further insight into the unique trends and properties of
the GaAs double dot with the parameters listed in Sec.
II is gained through an inspection of the CI-calculated
charge densities, plotted in Fig. 1 for the ground and
first five excited states and for both values κ = 1000
[see Figs. 1(c-h)] and κ = 12.5 [see Figs. 1(i-d)] of the
dielectric constant.

To facilitate the identification and illucidation of the
main trends, we display, along with the charge densities,
the CI-obtained electron occupancies (red lettering) in
the left an right wells of the DQD (rounded to the sec-
ond decimal point). [These CI occupations are rounded
further to the closest integer in order to yield the nL’s
and nR’s (nL + nR = 3) used in the notation (nL, nR;S)
to characterize the energy curves in the spectra in Figs.
1(a,b)]. Naturally, the charge densities are normalized to
the total number of electrons N = 3.

Inspection of the charge densities on the left (for κ =
1000, that is, for highly weakened inter-electron repul-
sion) reveals that they conform to those expected from
an independent-particle system. Indeed, in Figs. 1(c,f,g),
two electrons with opposite spins occupy the lowest node-
less 1s-type single-particle level in the right well. At the
same time, the single electron in the left well can occupy
succesively the zero-node [Fig. 1(c)], one node [Fig. 1(f)],
and two-node [Fig. 1(g)] single-particle states in this well.
The 5th-excited state is a (2, 1) [Fig. 1(h)] state with
two electrons with opposite spins occupying the lowest
nodeless single-particle level in the left well, whereas the
third electron occupies the nodeless single-particle level
of the right well. Finally, the 2nd-excited and 3rd-excited
states [Figs. 1(d,e)] are (0, 3) states with all three elec-
trons residing in the right well. In a circular dot, these
two states would be degenerate and fully circular with
angular momenta +1 and −1, but here the degeneracy
is lifted because of the influence of the left well and the
inter-well neck.

The charge densities on the right (for κ = 12.5, case
of GaAs) deviate strongly from those expected from an
independent-particle system. Indeed the formation of a
strong 2e WM in the left well and of a weaker 2e WM
in the right well is clearly seen. For example, contrast
the (2, 1) independent-particle density in Fig. 1(h) with
the (2, 1) WM density in Figs. 1(i,j,k) and the (1, 2)
independent-particle density in Fig. 1(c) with the (1, 2)
WM density in Figs. 1(l,m,n). We also note the ab-
sence of states with higher than double-occupancy in
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ond decimal point). (c,d) Examples of two of the associated
spin-resolved CPDs. The red dots and arrows indicate the po-
sition and spin direction of the fixed point. The black arrows
indicate the spin direction associated with the plotted sur-
face. The spin-resolved densities integrate to the number of
spin-up and spin-down electrons in (a) and (b), respectively.
The scale of the vertical axes in (c) and (d) is arbitrary, but
the same in both cases.

probability distribution at another location r for finding
another electron with a definite (up or down) spin?

As an example of the spin-structure analysis that can
be achieved with the CI calculations, we analyze below
the two cases of the ground state and the 1st-excited state
for κ = 12.5 (GaAs) and ε = 1.405 meV.

Fig. 2(a) and Fig. 2(b) display, respectively, the spin-
up and spin-down densities for the ground state men-
tioned above; compare Fig. 1(i) for the total charge den-
sity. From these two spin-resolved densities, it is evident
that the spin structure of this ground state conforms to
the following familiar expression [8, 15, 41, 50] in the
theory of three-electron qubits:

(|duu〉 − |udu〉)/
√

2, (6)

where u and d denote an up and down spin, respectively,
with the three spins arranged from left to right in three
ordered sites.

Further confirmation for the spin structure in Eq. (6) is
obtained from the spin-resolved CPDs, two examples of
which are displayed in Figs. 2(c) and 2(d). Indeed both
the spin kets in Eq. (6) are compatible with a first elec-
tron with spin up being fixed at the third site. Then the
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first spin ket in Eq. (6) allows the presence of a spin-up
electron in its second site with probability 1/4, whereas
the second spin ket allows the presence of a spin-up elec-
tron in its first site, again with equal probability 1/4.
This is clearly in agreement with the CI CPD plotted in
Fig. 2(c), which exhibits two humps of similar height at
sites No. 1 and No. 2. Likewise, only the second spin ket
in Eq. (6) is compatible with a first electron with spin up
being fixed in the first site, and this spin ket allows the
presence of a spin-down electron in its second site with
probability 1/4. This again is in agreement with the CI
CPD plotted in Fig. 2(d), which exhibits a single hump
at site No. 2.

Fig. 3(a) and Fig. 3(b) display the spin-up and spin-
down densities for the associated 1st-excited state; com-
pare Fig. 1(j) for the total charge density. From these
two spin-resolved densities, one can conclude that the
spin structure of this 1st-excited state conforms to a sec-
ond familiar expression [8, 15, 41, 50] in the theory of
three-electron qubits, namely

(2|uud〉 − |duu〉 − |udu〉)/
√

6. (7)

Indeed, from Eq. (7), one can derive that the expected
spin-up occupancy for the most leftward and middle po-
sitions of the three spins is 5/6 in both cases, yielding
5/3 = 1.666 for the expected spin-up occupancy in the
left dot, in agreement with the CI value of 1.66 high-
lighted in red in Fig. 3(a). Similarly the expected spin-up
occupancy for the right dot from Eq. (7) is 1/3 = 0.333,
in agreement with the CI-value of 0.34 highlighted in red
in Fig. 3(a). Moreover from Eq. (7), one can derive that
the expected spin-down occupancy for the most leftward
and middle positions of the three spins is 1/6 in both
cases, yielding 1/3 = 0.333 for the expected spin-down
occupancy in the left dot, in agreement with the CI value
of 0.33 highlighted in red in Fig. 3(b). Finally the ex-
pected spin-down occupancy for the right dot from Eq.
(7) is 2/3 = 0.666, in agreement with the CI-value of 0.67
highlighted in red in Fig. 3(b).

As aformentioned, further confirmation for the spin
structure in Eq. (7) can be obtained from the spin-
resolved CPDs, two examples of which are displayed in
Figs. 3(c) and 3(d). Indeed only the second and third
spin kets in Eq. (7) are compatible with a first electron
with spin up being fixed at the third site. Then the sec-
ond spin ket in Eq. (7) allows the presence of a spin-up
electron in its second site with probability 1/6, whereas
the third spin ket allows the presence of a spin-up elec-
tron in its first site, again with equal probability 1/6.
This is clearly in agreement with the CI CPD plotted in
Fig. 3(c), which exhibits two humps of similar height at
sites No. 1 and No. 2. Likewise, only the first and third
spin kets in Eq. (7) are compatible with a first electron
with spin up being fixed in the first site. Then the first
spin ket allows the presence of a spin-down electron in
its third site with probability 2/3, whereas the third spin
ket allows the presence of a spin-down electron in its sec-
ond site with probability 1/6. This again is in agreement

with the CI CPD plotted in Fig. 3(d), which exhibits two
humps with relative height 1/4 at sites No. 2 and No. 3.

We stress that the two expressions in Eqs. (6)-(7) for
the spin structures of three fermions are not the most
general ones. The most general [51] expression for a total
spin S = 1/2 with a total-spin projection Sz = 1/2 is [52]:√

2

3
sinϑ|uud〉+

(√
1

2
cosϑ−

√
1

6
sinϑ

)
|udu〉

−

(√
1

2
cosϑ+

√
1

6
sinϑ

)
|duu〉,

(8)

where the angle ϑ can take any value in the interval
[π/2, 3π/2]. Eq. (6) is recovered for ϑ = π, whereas
its companion orthogonal expression (7) is recovered for
ϑ = π/2. Thus it is gratifying to see that the FCI solu-
tions, analyzed with the CPDs, that are associated with
the hybrid-qubit device of Ref. [15] do not deviate from
the spin structures invoked in building the theorical mod-
els of three-electron qubits [8, 41, 50].

B. The avoided crossings

In Fig. 4(a) and Fig. 4(b), we display magnifications
of the neighborhoods of the left and right CI avoided
crossings, respectively, appearing in the spectrum of the
GaAs double dot [Fig. 1(b)]. Only the S = 1/2 states
are shown, because the S = 3/2 states are not relevant
for the workings of the hybrid qubit [8, 15, 41, 50].

The left avoided crossing (situated in the neighbor-
hood of 1.49 meV < ε < 1.54 meV) is formed through
the interaction of the three curves #1, #2, and #4 [we
keep the same numbering of curves here as in Fig. 1(b)].
On the other hand, the curves #1, #2, and #6 partici-
pate in the formation of the right avoided crossing in the
neighborhood of 1.885 meV < ε < 1.908 meV. We note
that, according to the FCI calculation, the two avoided
crossings are separated by a detuning energy-interval of
∼ 400 µeV, which agrees with the experimentally deter-
mined value for the hybrid qubit device in Ref. [15].

The continuous lines in both panels of Fig. 4 represent
the socalled adiabatic paths, which the system follows for
slow time variations of the detuning. For fast time varia-
tions of the detuning, or with an applied laser pulse, the
system can instead follow the diabatic paths indicated ex-
plicitly with dashed lines in Fig. 4(a) and thus jump from
one adiabatic line to another; this occurs according to
the celebrated Landau-Zener-Stückelberg-Majorana [53–
55] dynamical interference theory.

We further mention that the position and the asym-
metric anatomy of the two avoided crossings play an es-
sential role in the operation of the hybrid qubit. Indeed,
the qubit is initialized on line #4 and in a (1, 2; 1/2)
ground-state configuration at a value of detuning far to
the right of the left crossing. Then by decreasing the
magnitude of the detuning in an adiabatically evolving
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FIG. 4. Magnification of the neighborhoods of the CI avoided
crossings appearing in Fig. 1(b) (κ = 12.5, case of GaAs).
Only the S = 1/2 states, relevant to the hybrid qubit, are
shown. (a) The left avoided crossing in the neighborhood of
1.49 meV < ε < 1.54 meV. (b) The right avoided crossing in
the neighborhood of 1.885 meV < ε < 1.908 meV.

manner, the state of the qubit moves along the #4 line
and is brought in the neighborhood of the left avoided
crossing, where a laser pulse induces a small-gap-enabled
diabatic transition to the line #1 [a (2, 1; 1/2) line]. Next
by increasing the detuning value, the qubit operation cy-
cle proceeds by moving adiabatically backwards along the
#1 line and through the right avoided crossing transition-
ing to the line #6 [a (1, 2; 1/2) line], where the readout
can be implemented, aided by the large energy gap be-
tween the two (1, 2; 1/2) states #4 and #6 [9, 15].
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FIG. 5. Examples of charge densities at the left avoided cross-
ing of the spectrum in Fig. 1(b)], namely at ε = 1.5201 and
κ = 12.5 (a) The ground state. (b) The 1st-excited state.
Both states have a total spin S = 1/2. The red decimal num-
bers indicate the left-right electron occupancies according to
the CI calculation (rounded to the second decimal point).

1. Charge densities at the avoided crossings: Mixing of
WM states

Inside the neighborhood of the avoided crossings, it is
expected that the ground state will be a superposition of
the two different wave functions (2, 1) (with two electrons
in the left well) and (1, 2) (with two electrons in the right
well). For κ = 12.5, this is confirmed by the CI ground-
state charge density [see Fig. 5(a)] at the detuning value
of ε = 1.5201 meV [middle point in the neighborhood
of the left avoided crossing; see Fig. 4(a)]. Indeed the
associated left and right electron occupancies equal both
1.50, suggesting the the CI ground state is a superposi-
tion given by (|1〉+ |4〉)/

√
2. Likewise, at the same value

of ε = 1.5201 meV, the charge density of the 1st-excited
CI state [see Fig. 5(b)] exhibits left and right electron oc-
cupancies equal to 1.64 and 1.36, respectively, suggesting
that this state is a superposition given by 0.8|1〉− 0.6|4〉.

C. The energy gap between the ground and
1st-excited states

To further highlight the notable specifications of the
GaAs double dot considered in this paper, we display in
Fig. 6 the CI-calculated energy gap between the ground
and the 1st-excited state as a function of the detuning
for κ = 12.5 (GaAs) [see the spectrum in Fig. 1(b)]. Fig.
6(a) displays the broader view in the detuning range from
1.4 meV to 2.1 meV covering both avoided crossings. In
reference to the spectrum in Fig. 1(b), this energy gap
involves the following states: (1) The states #1 and #2
to the left of the left avoided crossing, (2) the states #4
and #1 between the two avoided crossings, and (3) the
states #4 and #6 to the right of the right avoided cross-
ing. Fig. 6(a) highlights the overarching rise by an order
of magnitude of this energy gap, from ∼ 3 h·GHz to ∼ 83
h·GHz, as the spectrum transitions from the (2, 1) to the
(1, 2) configurations with two electrons in the left and
right dots, respectively. We note that this behavior is
in excellent agreement with the sharp rise of the corre-
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covering the left avoided crossing.

sponding energy gap within a detuning range of ∼ 400
µeV proposed in the experimental paper of Ref. [15] [see
Fig. S5(b) therein].

Moreover, Fig. 6(b) magnifies the corresponding en-
ergy gap in a smaller range [see the dashed-border box
in Fig. 6(a)] covering only the left avoided crossing. The
CI-calculated curve in 6(b) exhibits remarkable overall
agreement with the corresponding measured one in Fig.
1(b) of Ref. [15] [see also Fig. S5(b) therein].

D. The effective matrix Hamiltonian

In this section, we extract from the CI spectra the phe-
nomenological effective matrix Hamiltonian [9, 15] that
has played a central role in the experimental dynamical
control of the hybrid cubit. The general form of this 4×4
matrix Hamiltonian is:

HM =

 cLε̃/2 0 δ1 −δ2
0 cLε̃/2 + ∆EL −δ3 δ4
δ1 −δ3 cRε̃/2 0
−δ2 δ4 0 cRε̃/2 + ∆ER

 ,

(9)

where ε̃ = ε − ε0 denotes a renormalized interdot de-
tuning, and the other elements of the matrix follow the
notation used in Ref. [9] (see the Theory section therein).

A good fit with the CI spectrum in Figs. 1(b) and 4 is
achieved by setting cL = 4.4, ∆EL = 15 µeV, cR = 2.7,
∆ER = 340 µeV, δ1 = 0.657 µeV, δ2 = 0.090 µeV, δ3 =
1.207 µeV, δ4 = 0.075 µeV, and ε0 = 1.50 meV.

The effective matrix Hamiltonian in Eq. (9) reflects
(within the plotted window) two properties of the FCI
spectrum in Fig. 1(b) that are instrumental (see, e.g.,
[9, 56]) for the successful operation of the hybrid qubit,
namely, the quasi-linear dependence of HM on the de-
tuning ε and the quasi-parallel behavior of both the two
(2, 1) states (states #1 and #2) and the two (1, 2) states
(states #4 and #6). We note a difference between Refs.
[9, 15] and the CI result for HM . Namely, Refs. [9, 15]
assume the values cL = 1 and cR = −1 associated with
45o and -45o slopes of the associated lines, respectively,
while the CI result produces different slopes associated
with cL = 4.4 and cR = 2.7. We note, however, that the
topology of the energy spectrum remains unaltered.

We further note that there are several derivations
[8, 38] of the effective Hamiltonian in Eq. (9) starting
from approximate many-body Hamiltonians that include
the interaction at the level of a two-site (left and right
well) Hubbard-type modeling. These derivations involve
several additional qualitative approximations and are not
applicable in the case of strong e − e correlations and
Wigner-molecule formation (see Ref. [42]). Thus the
reaffirmation demonstrated above regarding the overall
structure of the phenomenological-in-nature effective ma-
trix Hamiltonian [Eq. (9)], achieved here through the
use of FCI-based ab-initio calculations carried out in the
regime of strong correlations and Wigner-molecule for-
mation, is a notable result.

IV. CI SPECTRA AS A FUNCTION OF THE
DIELECTRIC CONSTANT

Further insights into the effects of the interelectron in-
teraction can be gained by an inspection of the CI spectra
as a function of the dielectric constant κ. Fig. 8 portrays
the spectrum of the double dot as a function of the dielec-
tric constant κ at a detuning value of ε = 1.50 meV. The
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FIG. 7. The spectrum of the four hybrid-qubit states |1〉, |2〉, |4〉, and |6〉 (with S = 1/2) as a function of the detuning parameter
ε̃ = ε−ε0, calculated with the effective matrix Hamiltonian in Eq. (9); ε0 = 1.51 meV. (a) The full spectrum. (b) Magnification
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corresponding one of the 4 lowest S = 1/2 states in Figs. 1(b) and 4, which was generated from the FCI calculations.

numbering of the lowest 8 states is performed at κ = 30,
and this numbering is maintained for the whole κ range
plotted. The vertical dashed line at κ = 12.7 indicates
the neighborhood of the avoided crossing. Further to the
left of the avoided crossing, the ground state is state #3
of (2, 1; 1/2) character; further to the right of the avoided
crossing, the ground state is state #1 of (1, 2; 1/2) char-
acter. In the neighborhood of the avoided crossing, the
ground state is a mixed state. In this plot, the ground-
state energies were taken at all instances to coincide with
the zero of the energy scale. The (nL, nR;S) designa-
tions are not plotted in this figure, but they can be traced
through Fig. 9, which portrays the associated charge den-
sities.

From the charge densities in Fig. 9, one sees that at
κ = 30 the three excited states #3, #6, and #7 display
a 2e WM in the left dot, with the WM aligned along the
x-axis. With decreasing κ (increasing Coulomb repul-
sion), the energies of this triad of WM states exhibit a
sharp drop in magnitude, and as a result they become the
lowest-energy band for κ < 12.7, a fact which agrees with
the findings in Sec. III A. In addition the #6 (S = 3/2)
and #7 (S = 1/2) curves become quasi-degenerate, and
they exhbit a small energy gap (≤ 3 h·GHz) from the
ground state (#3 state), again in agreement with the
findings in Sec. III A; see curves numbered #1, #2, and
#3 in Fig. 1(b).

Of interest is the fact that the ground state at κ = 30
(#1 state) exhibits a charge density that can be un-
destood purely with the help of three non-interacting
electrons [see Fig. 9(a)], namely one spin-up and one spin-
down electrons occupying the nodeless 1s lowest single-
particle state of the circular right well and one spin-
up electron occupying the nodeless 1sx1sy lowest single-
particle state in the asymmetric left well. Naturally, as κ

decreases, the intrinsic structure of the associated wave
function transitions smoothly to that of a weak 2e WM in
the right dot aligned along the y-axis, namely the charge
density in Fig. 9(a) transitions to that portrayed in Fig.
1(l).

Of interest also are the intrinsic structures (at κ = 30)
of the remaining four excited states, #2, #4, #5, and
#8; they are a testament to the variety and complexity
of the 3e DQD system. Indeed, from Fig. 9(b), one sees
that excited state #2 is a non-interacting 3e state similar
to state #1, but with the single spin-up electron in the
left well promoted to the one-node 1px1sy single-particle
state. On the other hand, the charge densities in Figs.
9(d) and 9(e) demonstrate that both states #4 and #5
exhibit a 2e WM in the right well, with the WM aligned
along the y-axis. Finally, the charge density in Fig. 9(h)
reveals the formation of a 2e WM in the right well, but
with the WM aligned along the x-axis.

V. SUMMARY

We presented extensive FCI numerical results that ad-
dressed both the energetics and the intrinsic structure
of the many-body wave functions through the calcula-
tion of charge and spin-resolved densities, as well as
spin-resolved conditional probability distributions (spin-
resolved two-body correlation functions). Going beyond
the two-particle WMs studied with pilot-project CI treat-
ments in a single dot [14–17], this paper enabled for the
first time the microscopic investigation of key features
appearing in the low-energy spectrum as a function of
detuning of actual experimentally fabricated GaAs three-
electron asymmetric HDQD qubits. These features in-
clude the strong suppression of level gaps compared to
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the non-interacting-electrons case and the appearance of
a pair of avoided crossings between triad of levels corre-
sponding to different electron occupancies in the left and
right wells. Treating the HDQD as an integral unit, we
further showed in depth that these features arise from
the emergence of WMs. Away from the avoided cross-
ings, it was found that the WMs can be associated with
molecular configurations centered in the individual wells.
In the neighborhood of the avoided crossings, the WMs
interact and form more complex resonating structures.

Earlier experimental observations had suggested that
the qubit’s spectral features could be codified using
simple phenomenological effective matrix Hamiltonians
[see, e.g., Eq. (9)]. Our double-dot extensive calcula-
tions, encompassing both energetic and structural as-
pects, enabled tracing of the microscopic origins of such
phenomenological treatments. This phenomenology has
been identified here to emerge from the complex nature
of the many-body problem encountered due to the strong
e-e correlations, leading to electron localization and for-
mation of Wigner molecules.

Previous tentative derivations [8, 38] of matrix Hamil-

tonians [of a similar structure as in Eq. (9)], starting
from approximate two-site Hubbard-type modeling, in-
volve qualitative approximations and are not applicable
in the case of WM formation. Consequently, the present
CI-based derivation of the effective matrix Hamiltonian
in Eq. (9), achieved here via analysis using the results of
FCI calculations that account fully for strong-correlation
effects within each well and WM formation, is an unex-
pected auspicious result.

Our multi-dot FCI method can be expanded to incor-
porate the valley degree of freedom as an isospin in full
analogy with the usual spin. Such an expansion will en-
able the acquisition of numerical results complete with
full spin-isospin assignments that will reveal the under-
lying SU(4) ⊃ SU(2) × SU(2) group-chain organization
of the spectra of Si double-quantum-dot qubits. This val-
leytronic CI [62] will be a most effective tool for analysing
the spectra of qubits and for providing effective matrix
Hamiltonians that differentiate between cases when the
first excited state belongs to the same or different valleys,
as a result of the competition [14, 16] between the valley
gap and strong e − e interactions. In this respect, we
note the case of a 5e-HDQD Si/SiGe qubit where more
complex spectra, requiring an n × n matrix with n > 4,
have been recently experimentally discovered [63]. An
application of the valleytronic CI to two-qubit gates ap-
pears to be feasible [62] in the near future, based on our
estimates of the size of the required Hilbert spaces for
an ensemble of N ≤ 6 electrons confined in two interact-
ing DQDs. Finally, beyond the GaAs-based devices, our
method can be directly applied to similar devices built
from other one-band materials, like holes in Germanium
[57, 58] or Silicon [17] qubits.
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Appendix A: SOLVING THE
TWO-CENTER-OSCILLATOR EIGENVALUE

PROBLEM

For a given interwell separation d, the single-particle
levels of HTCO [ Eq. (3) ] are obtained by numerical di-
agonalization in a basis consisting of the eigenstates of
the auxiliary hamiltonian:

H0 =
p2

2m∗
+

1

2
m∗ω2

yy
2 +

1

2
m∗ω2

xkx
′2
k + hk . (A1)

The eigenvalue problem associated with the auxiliary
hamiltonian [Eq. (A1)] is separable in the x and y vari-
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ables, i.e., the wave functions are written as

ϕi(x, y) = Xµ(x)Yn(y), (A2)

with i ≡ {µ, n}, i = 1, 2, . . . ,K. K specifies the size of
the single-particle basis.

The Yn(y) are the eigenfunctions of a one-dimensional
oscillator, and the Xµ(x ≤ 0) or Xµ(x > 0) can
be expressed through the parabolic cylinder functions
U [γk, (−1)kξk], where ξk = x′k

√
2m∗ωxk/~, γk = (−Ex+

hk)/(~ωxk), and Ex = (µ+ 0.5)~ωx1 + h1 denotes the x-
eigenvalues. The matching conditions at x = 0 for the left
and right domains yield the x-eigenvalues and the eigen-
functions Xµ(x). The n indices are integer. The number
of µ indices is finite; they are in general real numbers.

Appendix B: THE CI METHOD AS ADAPTED TO
THE DOUBLE-DOT CASE

As aforementioned, we use the method of configura-
tion interaction for determining the solution of the many-
body problem specified by the Hamiltonian (1).

In the CI method, one writes the many-body wave
function ΦCI

N (r1, r2, . . . , rN ) as a linear superposition of
Slater determinants ΨN (r1, r2, . . . , rN ) that span the
many-body Hilbert space and are constructed out of the
single-particle spin-orbitals

χj(x, y) = ϕj(x, y)α, if 1 ≤ j ≤ K, (B1)

and

χj(x, y) = ϕj−K(x, y)β, if K < j ≤ 2K, (B2)

where α(β) denote up (down) spins, and the spatial or-
bitals ϕj(x, y) are defined in Eq. (A2). Namely

ΦCI
N,q(r1, . . . , rN ) =

∑
I

CqIΨN
I (r1, . . . , rN ), (B3)

where

ΨN
I =

1√
N !

∣∣∣∣∣∣∣
χj1(r1) . . . χjN (r1)

...
. . .

...
χj1(rN ) . . . χjN (rN )

∣∣∣∣∣∣∣ , (B4)

and the master index I counts [59] the number of ar-
rangements {j1, j2, . . . , jN} under the restriction that
1 ≤ j1 < j2 < . . . < jN ≤ 2K. Of course, q = 1, 2, . . .
counts the excitation spectrum, with q = 1 corresponding
to the ground state.

The many-body Schrödinger equation

HΦCI
N,q = ECI

N,qΦ
CI
N,q (B5)

transforms into a matrix diagonalizatiom problem, which
yields the coefficients CqI and the eigenenergies ECI

N,q.
Because the resulting matrix is sparse, we implement
its numerical diagonalization employing the well known
ARPACK solver [60]. Convergence of the many-body
solutions is guaranteed by using a large enough value
for the dimension K of the single-particle basis; see Ap-
pendix A. The attribute “full” is usually used for such
well converged CI solutions, which naturally contain all
possible np− nh basis Slater determinants.

The matrix elements 〈ΨI
N |H|ΨJ

N 〉 between the basis de-
terminants [see Eq. (B4)] are calculated using the Slater
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rules [44, 61]. Naturally, an important ingredient in this
respect are the matrix elements of the two-body interac-
tion,∫ ∞

−∞

∫ ∞
−∞

dr1dr2ϕ
∗
i (r1)ϕ∗j (r2)V (r1, r2)ϕk(r1)ϕl(r2),

(B6)
in the basis formed out of the single-particle spatial or-
bitals ϕi(r), i = 1, 2, . . . ,K [Eq. (A2)]. In our approach,
these matrix elements are determined numerically and
stored separately.

The Slater determinants ΨN
I [see Eq. (B4)] conserve

the third projection Sz, but not the square Ŝ2 of the to-
tal spin. However, because Ŝ2 commutes with the many-
body Hamiltonian, the CI solutions are automatically
eigenstates of Ŝ2 with eigenvalues S(S+ 1). After diago-
nalization, these eigenvalues are determined by applying
Ŝ2 onto ΦCI

N,q and using the relation [48]

Ŝ2ΨN
I =

(Nα −Nβ)2/4 +N/2 +
∑
i<j

$ij

ΨN
I , (B7)

where the operator$ij interchanges the spins of fermions
i and j provided that these spins are different; Nα andNβ
denote the number of spin-up and spin-down fermions,
respectively.

Appendix C: SINGLE-PARTICLE DENSITIES
AND CONDITIONAL PROBABILITY

DISTRIBUTIONS FROM CI WAVE FUNCTIONS

The single-particle density (charge density) is the ex-
pectation value of the one-body operator

ρ(r) = 〈ΦCI
N |

N∑
i=1

δ(r− ri)|ΦCI
N 〉, (C1)

where, as previously, ΦCI
N denotes the many-body (multi-

determinantal) CI wave function (henceforth, we will
drop the q subscript). For the spin-resolved densities,
the expression above is modified as follows:

ρσ(r) = 〈ΦCI
N |

N∑
i=1

δ(r− ri)δσσi
|ΦCI
N 〉, (C2)

where σ denotes either an up or a down spin.

Naturally several distinct spin structures can corre-
spond to the same charge density. The spin structure
associated with a specific CI wave function can be deter-
mined uniquely with the help of the spin-resolved den-
sities in conjunction with the many-body spin-resolved
CPDs.

The spin-resolved CPDs (referred to also as spin-
resolved two-point anisotropic correlation functions)
yield the conditional probability distribution of finding
another fermion with up (or down) spin σ at a position
r, assuming that a given fermion with up (or down) spin
σ0 is fixed at r0. In detail, a spin-resolved CPD is defined
as

Pσσ0
(r, r0) = 〈ΦCI

N |
∑
i6=j

δ(r− ri)δ(r0 − rj)δσσi
δσ0σj

|ΦCI
N 〉.

(C3)
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