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Fragment-orbital-dependent spin fluctuations in the single-component molecular
conductor [Ni(dmdt)2]

Taiki Kawamura and Akito Kobayashi
Department of Physics, Nagoya University, Nagoya, Aichi 464-8602, Japan

Motivated by recent nuclear magnetic resonance experiments, we calculated the spin susceptibility,
Knight shift, and spin-lattice relaxation rate (1/T1T ) of the single-component molecular conductor
[Ni(dmdt)2] using the random phase approximation in a multi-orbital Hubbard model describing
the Dirac nodal line electronic system in this compound. This Hubbard model is composed of three
fragment orbitals and on-site repulsive interactions obtained using ab initio many-body perturbation
theory calculations. We found fragment-orbital-dependent spin fluctuations with the momentum
q=0 and an incommensurate value of the wavenumber q=Q at which a diagonal element of the
spin susceptibility is maximum. The q=0 and Q responses become dominant at low and high
temperatures, respectively, with the Fermi-pocket energy scale as the boundary. We show that
1/T1T decreases with decreasing temperature but starts to increase at low temperature owing to
the q=0 spin fluctuations, while the Knight shift keeps monotonically decreasing. These properties
are due to the intra-molecular antiferromagnetic fluctuations caused by the characteristic wave
functions of this Dirac nodal line system, which is described by an n-band (n ≥ 3) model. We show
that the fragment orbitals play important roles in the magnetic properties of [Ni(dmdt)2].

I. INTRODUCTION

Dirac electron systems in solids are of interest to many
researchers because of not only their quantum transport
phenomena1–4 and large diamagnetism,5,6 but also their
unusual effects induced by the Coulomb interaction.7–12

Dirac electron systems in molecular conductors, such
as α-(BEDT-TTF)2I3, provide suitable platforms for
studying the effect of interaction because the electron
hopping integrals between neighboring molecules are
smaller than the on-site repulsive interactions reflect-
ing the weak inter-molecular coupling.13–19 At high pres-
sure, α-(BEDT-TTF)2I3 is a massless Dirac electron sys-
tem. However, at low pressure, a charge-ordered state
appears presumably due to nearest-neighbor Coulomb
repulsions,20–22 where anomalous spin–charge separation
on spin gaps23,24 and transport phenomena occur.25–27

In addition, the long-range Coulomb interaction re-
shapes the Dirac cone because of a logarithmic velocity
renormalization, which induces an anomalous magnetic
response.28–30 Moreover, ferrimagnetism and spin-triplet
excitonic fluctuations are observed.31,32

The Dirac electron system in α-(BEDT-TTF)2I3 is
two-dimensional19 because it is a layered molecular con-
ductor and the hopping of electrons from one conducting
layer to the neighboring one over the insulating anion
layer is incoherent. By contrast, if the electron hopping
perpendicular to the main conducting layer were coher-
ent, the Dirac point would be connected and draw lines
(rings) in the three-dimensional momentum space, which
are called the Dirac nodal lines (rings).33–36

Such kinds of Dirac nodal line (ring) systems
have indeed been found in graphite,37 transition-
metal monophosphates,38 Cu3N,

39 antiperovskites,40

perovskite iridates,41 and hexagonal pnictides with the
composition CaAgX (X = P, As),42 as well as in the
single-component molecular conductors [Pd(dddt)2],

43–50

[Pt(dmdt)2],
51–55 and [Ni(dmdt)2].

54,55

The Dirac nodal line (ring) systems exhibit not
only the properties in common with two-dimensional
Dirac electron systems, e.g., the in-plane conductivity51,
but also the characteristic electronic properties such
as non-dispersive Landau levels,56 Kondo effect,57

quasi-topological electromagnetic responses,58 and edge
magnetism54 because of the three-dimensionality. How-
ever, the electron correlation effects on the Fermi surface
in the Dirac nodal line systems have not yet been eluci-
dated.
The prime focus of this study is such Dirac nodal

line system in [M(dmdt)2] (M = Pt, Ni), which is a
single-component molecular conductor that consists of
the M(dmdt)2 molecules, where the bracket [· · · ] stand
for a crystal. This material is a triclinic system, as shown
in Fig. 1, and has space-inversion symmetry. One unit
cell contains one M(dmdt)2 molecule. In previous stud-
ies, the electronic properties of [M(dmdt)2] were stud-
ied using density functional theory (DFT), and tight-
binding models were constructed on the basis of the ex-
tended Hückel method and DFT.51–54 These investiga-
tions showed that [M(dmdt)2] is a Dirac nodal line sys-
tem. Furthermore, electronic resistivity measurements
using conventional four-probe methods were performed
and showed that the resistivity of [M(dmdt)2] hardly de-
pends on the temperature (T ), which is consistent with
the property of the Dirac electron system.51 That is the
universal conductivity.59 In addition, we previously sug-
gested that the nesting between the Fermi arcs localized
at the edge and the electronic correlation induce a helical
spin density wave (SDW) at the edge.54

Recently, the spin-lattice relaxation rate 1/T1T,
probing the low-energy spin dynamics, and the Knight
shift, scaling to the spin susceptibility, of [Ni(dmdt)2]
were observed in a 13C nuclear magnetic resonance
(13C-NMR) experiment.60 At high temperature, 1/T 1T
decreases with cooling and is almost proportional to T 2.
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FIG. 1: (Color online) (a) Crystal structure in the b–c plane of
[M(dmdt)2]. This material consists of M(dmdt)2 molecules.
(b) Crystal structure along to the b-axis. The red, blue,
brown, and cyan balls represent Ni, S, C, and H atoms, re-
spectively. The black frames represent the unit cell.

However, at low temperature, it starts to increase with
decreasing temperature and exhibits a peak structure
at approximately 30 K. Meanwhile, the Knight shift is
almost proportional to T because of the linear energy
dispersion and does not increase. The mechanism of
this anomalous temperature dependence of the spin
fluctuations has not been elucidated.

In the present study, we theoretically investigate
the electron correlation using the Fermi surface in
[Ni(dmdt)2] to elucidate the mechanism of this anoma-
lous temperature dependence of the spin fluctuations.
We calculate the spin susceptibility, Knight shift, and
1/T1T using the random phase approximation (RPA) in
a three-orbital Hubbard model describing [Ni(dmdt)2],
which is obtained using ab initio many-body perturba-
tion theory calculations.
The electronic state of a molecular conductor is de-

scribed by the molecular orbitals, which are linear com-
binations of the atomic orbitals in a molecule. The molec-
ular orbital that has the highest energy and is fully occu-
pied by electrons is called the highest occupied molecular
orbital (HOMO), whereas the one having the lowest en-
ergy with no electrons is called the lowest unoccupied
molecular orbital (LUMO). HOMO and LUMO are also
called frontier orbitals. The electronic states of single-
component molecular conductors, e.g., [M(tmdt)2] (M =
Ni, Au, Cu) and [M(dmdt)2] (M = Pt, Ni), are described
by multiple molecular orbitals localized in a part of the
molecule.53,54,61–63 These molecular orbitals are the en-
ergy eigenstates obtained using first-principles calcula-

tions and are called “fragment orbitals”. The fragment
orbitals are transformed into HOMO and LUMO by a
high-symmetry unitary transform.
Based on the band parameters determined from first-

principle calculations, Seo et al. have constructed a Hub-
bard model of [M(tmdt)2](M=Ni, Au, Cu), which is de-
scribed by the fragment orbitals.61,62 The on-site repul-
sion acts between the same fragment orbitals that have
spins of opposite signs, which is similar to the case of the
present study. They have investigated the ordered state
by calculating the electron density and spin density using
mean-field approximation. By contrast, in this study, we
will investigate the spin fluctuations by calculating the
spin susceptibility on the basis of RPA. Furthermore, we
show that the idea of the fragment orbitals is important
for the physical properties of the Dirac nodal line sys-
tems in the single-component molecular conductor. As
the other previous study of the fragment orbitals, some
charge-transfer complexes such as (TTM-TTP)I3 are also
modeled by fragment orbitals.63,64

We found that the q=0 spin fluctuations is enhanced in
two out of the three fragment orbitals, while an enhance-
ment at an incommensurate wavenumber vector devel-
ops in the third orbital. Detailed analysis showed that
these q=0 spin fluctuations do not correspond to a sim-
ple ferromagnetic correlation; rather, they are linked to
an intra-molecular antiferromagnetic fluctuations. This
implies that the spins of the fragment orbitals within the
same molecule are inversely correlated. Further, q=0 im-
plies a direct correlation of the spins between molecules.
Using RPA, we determined that the 1/T1T starts to in-
crease at a low temperature by the q=0 spin fluctuations.
By contrast, the Knight shift does not increase upon cool-
ing because of the intra-molecular antiferromagnetic fluc-
tuations.
At high temperature, an incommensurate spin corre-

lation dominates the temperature dependence of 1/T1T .
These magnetic responses are associated with the geome-
try of the Fermi surface and the characteristic wave func-
tions of the n-orbital (n ≥ 3) Dirac nodal line system.
Thus, it is expected that other Dirac nodal line systems
described by multiple-orbital models may have similar
magnetic properties.
The remainder of this paper is organized as follows.

In Section II, we introduce the spin susceptibility based
on RPA and formulate 1/T1T and the Knight shift. In
Section III, we calculate the band structure, spin suscep-
tibility, Knight shift, 1/T1T , and so on in the absence of
interaction. In Section IV, we calculate the Stoner factor,
Knight shift, and 1/T1T in the presence of interaction by
applying RPA to a Hubbard model. Section V draws
conclusions.

II. FORMULATION

We calculate the spin susceptibility, which incorporates
the electron correlation effect within perturbation theory
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to investigate the enhancement of spin fluctuations in
[Ni(dmdt)2]. Furthermore, we calculate the Knight shift
and the spin-lattice relaxation rate 1/T1T , which are the
physical quantities observed using NMR. We apply RPA
to the Hubbard model to calculate the spin susceptibil-
ity in [Ni(dmdt)2]. Although calculations incorporating
the self-energy, e.g., FLEX, are better approximations
than RPA, RPA is more suitable for investigating spin
fluctuations because the self-energy suppresses spin sus-
ceptibility.
The Hubbard Hamiltonian that we employ is given by

H =
∑

〈i,α;j,β〉,σ

ti,α;j,βc
†
i,α,σcj,β,σ +

∑

i,α

Uαni,α,↑ni,α,↓, (1)

where i and j are the unit-cell indices, and σ is the spin
index. Here, ti,α;j,β is a transfer integral defined between
the orbital α in the unit cell i and the orbital β in the cell
j, and Uα represents the on-site repulsive interaction on
the orbital α, with α and β standing for one of the three
fragment orbitals in the unit cell (A, B, and C in Fig.
2). The indices α and β represent the three fragment
orbitals A, B, and C.

∑

〈··· 〉 represents a summation that

runs only for the hoppings that have a large energy scale
than the cutoff (set to be 0.010 eV in this study).
The electronic states of [Ni(dmdt)2] near the Fermi

energy EF are described by three fragment-decomposed
Wannier orbitals(fragment orbitals) dubbed orbitals A,
B, and C as illustrated in Fig. 2. They are obtained
using Wannier fitting to three isolated energy bands near
EF , which were previously obtained using first-principles
calculations.54

The Wannier fitting and first-principles calculations
were performed using the programs respack65 and
Quantum Espresso66, respectively.54 respack was
also used for calculating the Coulomb interaction and
other factors. Further, Quantum Espresso was used
for first-principles calculations based on the pseudopo-
tential method. Figure 2(a) and (b) show a side and
vertical-axis view, respectively, of the molecule. The or-
bital B in Fig. 2(a) may look like a d orbital, but is a
p orbital of the S atoms, as is evident from Fig. 2(b).
The d orbital of Ni is localized near the Ni atom, and its
contribution to the orbital B is small. The orbitals A and
C have p-orbital-like shapes and are equivalent because
of space-inversion symmetry. In the present study, we
assume that these three fragment orbitals sit in the same
molecule and in the same unit cell.
By performing a Fourier transform, the Hamiltonian

(Eq. 1) is rewritten as

H =
∑

k,α,β,σ

H0
αβ,σ(k)c

†
k,α,σc,k,β,σ

+
1

NL

∑

k,k′,q,α

Uααc
†
k+q,α,↑c

†
k′−q,α,↓ck′,α,↓ck,α,↑,

(2)

where k, k′, and q are the wavenumber vectors. NL is
the number of the unit cells in the system. The first

FIG. 2: (Color online) Schematic of a Ni(dmdt)2 molecule and
the fragment orbitals A, B, and C. The red, blue, brown, and
cyan balls represent Ni, S, C, and H atoms, respectively. The
red dots in orbitals A, B, and C indicate the location of the
Ni atom as a guide to the eye. (a) Side view of the molecule.
The black solid line represents the Ni(dmdt)2 molecule. (b)
Vertical-axis view of the molecule. The red dashed circles in-
dicate C atoms, which are replaced with 13C in the 13C-NMR
experiment.60 These figures are plotted by VESTA. Different
colors represent different signs of the wave functions. The
cut-off of the normalized wave functions is 0.01.

term corresponds to the unperturbed Hamiltonian, and
the second term is treated as a perturbed Hamiltonian.
Here, H0

αβ,σ(k) is defined as

H0
αβ,σ(k) =

∑

〈δ〉

tαβ,σ,δe
ik·δ, (3)

where δ is a lattice vector connecting the neighbor unit
cell. Further, tαβ,σ,δ is the transfer integral between the
fragment orbitals α and β, which are separated by the
lattice vector δ and have the spin σ. We allot tαβ,σ,δ to
the transfer integrals t1, t2, ..., t12 and the site potential
∆ in Table I, where ∆ ≡ tBB,σ,0 − tAA,σ,0. Note that
these transfer integrals were obtained from the Wannier
fitting. And we omit the small hoppings whose sizes are
less than a cutoff energy of 0.010 eV to make the analysis
simple (see Fig. 3 for the schematic illustration of such
a hopping network). Note that t1 connects the nearest-
neighbor fragment orbitals within a molecule, while t2,
t3, ..., t8 connect those between molecules in the crys-
talline b–c plane, which corresponds to the kb–kc plane
in momentum space, where Dirac cones exist. We point
out that t1, t2, and t3 are the three essential transfer in-
tegrals that are needed to create the Dirac cones, while
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t9 creates Fermi surfaces, and t10, t11, and t12 wind the
Dirac nodal lines.

transfer integrals (eV)

t1 -0.2372

t2 -0.1840

t3 -0.2080

t4 0.0302

t5 0.0326

t6 -0.0389

t7 0.0103

t8 -0.0144

t9 -0.0140

t10 -0.0541

t11 -0.0534

t12 0.0116

site potential (eV)

∆ 0.0429

TABLE I: Transfer integrals and site potential of [Ni(dmdt)2].

Previously, we calculated some quantities of
[M(dmdt)2] (M = Pt, Ni) considering the spin–
orbit interaction (SOI) as a parameter. There, we found
that the SOI can reduce the Fermi surface in the bulk
and induce helical edge modes.53,54 However, because
the energy scale of SOI in this material (∼ 0.0016 eV)
seems to be considerably smaller than the energy scale
of the Fermi surface (∼ 0.01 eV),54 in reality SOI should
not be large enough to significantly reduce the size of
the Fermi surface. Therefore, we will omit the influence
of SOI on the Knight shift and 1/T1T .
From the definition in Eq. 3, H0

αβ,σ(k) are expressed
by the following equations.

H0
AA,σ(k) = 2t9 cos ka,

H0
AB,σ(k) = t12e

i(−ka+kb+kc) + t1

+ t5e
i(kb+kc) + t4e

ikc ,

H0
AC,σ(k) = t10e

i(−ka+kb+kc) + t11e
i(ka+kc) + t6

+ t3e
ikc + t2e

i(kb+kc),

H0
BB,σ(k) = ∆+ 2t7 cos (kb + kc) + 2t8 cos kc,

H0
BC,σ(k) = t12e

i(−ka+kb+kc) + t1

+ t5e
i(kb+kc) + t4e

ikc ,

H0
CC,σ(k) = 2t9 cos ka.

(4)

Here, for simplicity, we set all the lattice constants to be
unity. Two of the three bands for which we performed
Wannier fitting are occupied.53 Thus, the tight-binding
model obtained using the Wannier fitting is also 2/3 fill-

ing. The unperturbed Hamiltonian Ĥ0
σ(k) satisfies the

eigenvalue equation

Ĥ0
σ(k) |k, n, σ〉 = En,σ(k) |k, n, σ〉 , (5)

FIG. 3: (Color online) Hopping networks between fragment
orbitals in tight-binding model of [Ni(dmdt)2]. (a) Schematic
illustration of the 2D network of the transfer integrals (shown
by double–headed arrows) in the crystalline bc–plane. The
dashed square stands for the unit cell. (b) Schematic illustra-
tion of the 3D hopping network including the transfer inte-
grals along the a–direction. The black chain lines and vertical
bold lines in (b) are guides to the eyes: The former lines are
parallel to the a–direction, while the latter lines connect the
molecules in the same bcplane.

|k, n, σ〉 =







dA,n,σ(k)

dB,n,σ(k)

dC,n,σ(k),






. (6)

where En,σ(k) is the eigenvalue and |k, n, σ〉 is the eigen
vector; n is the band index; and dα,n,σ(k) denotes the

wave functions. Ĥ0
σ(k) in Eq. 5 consists of the matrix

elements H0
αβ,σ(k) in Eqs. 2 and 4. Reflecting the 2/3-

filling, the chemical potential µ is determined by

1

NL

∑

k,n,σ

fk,n,σ = 4, (7)

ǫk,n,σ(k) ≡ En,σ(k)− µ, (8)

fk,n,σ=1/ [1 + exp (ǫk,n,σ/T )] is the Fermi distribution
function, and we have µ=EF at T=0.

As to the second term in the Hamiltonian Eq. 2, we
introduce the on-site repulsive interaction Uαα defined on
the fragment orbital α, which is defined as the diagonal
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element of the interaction matrix as follows

Û =







UAA 0 0

0 UBB 0

0 0 UCC






(9)

=







λU 0 0

0 U 0

0 0 λU






,

Here, because of the inversion symmetry, we have
UAA=UCC, and we use the relative size of UAA to UBB,
λ=UAA/UBB, as a control parameter of this model.
According to respack, we found U=6.72 eV and λ=0.79
in the unscreened case, and U=2.68 eV and λ=0.95 in
the screened case. In this study, we set λ=0.95 and use
a value of U less than 2.68 eV because Û tends to be
overestimated in RPA.

The longitudinal and transverse spin susceptibilities
are defined as follows67 :

χ̂zz(q, iωl) ≡
1
2

∫ 1/T

0 dτeiωlτ
〈

Tτ Ŝ
z
q(τ)Ŝ

z
−q(0)

〉

, (10)

Ŝz
q = 1

NL

∑

k

(

ĉ†k+q,↑ĉk,↑ − ĉ†k+q,↓ĉk,↓

)

, (11)

χ̂±(q, iωl) ≡
∫ 1/T

0
dτeiωlτ

〈

Tτ Ŝ
+
q (τ)Ŝ

−
−q(0)

〉

, (12)

Ŝ+
q = 1

NL

∑

k ĉ
†
k,↑ĉk+q,↓, (13)

Ŝ−
−q = 1

NL

∑

k ĉ
†
k+q,↓ĉk,↑. (14)

Here, iωl=(2l+1)iπT (l ∈ N) is the Matsubara frequency

and τ is the imaginary time. Ŝzz
q , Ŝ+

q , and Ŝ−
q are the

spin operators. Ŝzz
q (τ), Ŝ+

q (τ), and Ŝ−
q (τ) are described

in the Heisenberg picture. The spin susceptibility is the
proportionality coefficient of the magnetization to the in-
finitesimal magnetic field. It represents the degree of the
“spin fluctuations”, because spins in the system sensi-
tively respond to the infinitesimal magnetic field when
spin susceptibility is large.
By performing a perturbation expansion of Eqs. 10
and 12, we obtain the non-interacting longitudinal spin
susceptibility χ̂zz,0(q, iωl) and non-interacting transverse
spin susceptibility χ̂±,0(q, iωl) as the zeroth-order per-
turbation terms. In this study, SU(2) symmetry is pro-
tected. Therefore, we define χ̂zz,0(q, iωl)=χ̂±,0(q, iωl)≡
χ̂0(q, iωl). Its matrix elements are written as

χ0
αβ(q, iωl)

= −
T

NL

∑

k,m

G0
αβ(k+ q, iωm+l)G

0
βα(k, iωm),

(15)

G0
αβ,σ(k, iωl) =

∑

n

dα,n,σ(k)d
∗
β,n,σ(k)

1

iωl − ǫk,n,σ
.

(16)

Eq. 16 expresses the matrix elements of the non-
interacting Green’s function. The spin index σ is omit-
ted in Eq. 15 because we have ǫk,n,↑=ǫk,n,↓ in Eq.
16. The longitudinal and transverse spin susceptibili-
ties in RPA are represented by the Feynman diagrams
shown in Fig. 4. The first terms in the right-hand

FIG. 4: (Color online) (A) Feynman diagram of χ̂zz,s(q, iωl).
(B) Feynman diagram of χ̂±,s(q, iωl). The solid lines rep-
resent the non-interaction Green’s functions, which describe
the quasi-particles. The dashed lines represent the interac-
tions. The open circles are the vertexes connecting the non-
interaction Green’s functions and the interaction. The black
dots represent the spin operators.

sides of diagrams (A) and (B) correspond to the terms
χ̂zz,0(q, iωl)=χ̂±,0(q, iωl)= χ̂0(q, iωl) (Eq. 15). Because
the interacting longitudinal and transverse spin suscep-
tibilities are represented by summations of the series of
Û χ̂0(q, iωl) in RPA, they are written as

χ̂zz,s(q, iωl) = χ̂±,s(q, iωl) ≡ χ̂s(q, iωl) (17)

= χ̂0(q, iωl)[Î − Û χ̂0(q, iωl)]
−1

,

where Î is the unit matrix.
Here we introduce the Stoner factor ξs(q) representing

the degree of enhancement of the spin fluctuations. The
Stoner factor ξs(q) is defined as the maximum eigenvalue

of Û χ̂0(q, 0). The relation between ξs(q) and χ̂s(q, 0) in
the three-orbital model is given by

χ̂s(q, 0) =
1

(1− ξs(q))

χ̂0(q, 0)P̂ (q)

(1− φ1(q))(1 − φ2(q))
, (18)

where ξs(q), φ1(q), and φ2(q) are the maximum and

other eigenvalues of Û χ̂0(q, 0). P̂ (q) is the adjugate

matrix of Î − Û χ̂0(q, 0). The eigenvalues of Û χ̂0(q, 0)
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is smaller than 1 in the paramagnetic regime. When
ξs(q) → 1, the spin susceptibility χ̂s(q, 0) diverges and
induces a magnetic order, corresponding to the wavenum-
ber q.
Within the framework of linear response theory, the

Knight shift, K, and the spin-lattice relaxation rate,
(1/T1T ), for the orbital α are given by

Kα ∝
∑

β

Re
[

χzz
αβ(0, 0)

]

, (19)

(1/T1T )α ∝ lim
ω→+0

[

1

NL

∑

q

Imχ±
αα(q, ω)

ω

]

(20)

Here, note that Eq. 17 is satisfied. According to Eqs. 18
and 20, all the q components for which ξs(q) becomes
close to unity make a dominant contribution to 1/T1T
because they lead to a large value in the spin suscepti-
bility. By contrast, the Knight shift is solely affected by
the q=0 component that satisfies ξs(q) ∼ 1 (see Eq. 19).
Because the spin susceptibility in the real-frequency

representation χ̂s(q, ω) is necessary for 1/T1T , we obtain
χ̂s(q, ω) by performing an analytic continuation of Eqs.
17. In this way, we use the real-frequency representation
depending on the physical quantities.

III. RESULT IN THE ABSENCE OF U

In this section, we calculate the electronic state, spin
susceptibility, Knight shift, and 1/T1T in the absence of
the repulsive interaction U . Further, we find that the
spin susceptibility in [Ni(dmdt)2] greatly depends on the
fragment orbitals and will explain the relationship be-
tween the spin susceptibilities and the wave functions.

A. Electronic state and spin susceptibility in the

absence of U

We first calculate the energy dispersion of [Ni(dmdt)2]

by diagonalizing the unperturbed Hamiltonian Ĥ0
σ(k) in

Eq. 5. The resulting energy bands are depicted in Fig.
5 (a), where the dispersion seen in the kb–kc plane at
ka=−π/2 is shown. Inside the 2D first Brillouin zone,
two pairs of gapless Dirac cones appear between the first
and second top bands near EF (the Band 1 and 2 in
Fig. 5 (a), where EF is chosen as the energy origin) and
between the second and third bands rather beneath EF

(the Bands 2 and 3), where these band-crossing points
are protected by space-inversion symmetry.
Dirac points between bands 1 and 2 in the kb–kc plane

draw the Dirac nodal lines in the ka direction. The inset
of Fig. 5 (b) shows the Dirac nodal line in the first Bril-
louin zone. Upon changing the momentum along the ka
direction, the positions of the Dirac points near EF move
in the kb–kc plane and eventually form a pair of so-called

Dirac nodal lines in the 3D Brillouin zone [see the in-
set of Fig. 5 (b)]. The band-crossing points accordingly
move up and down across EF with changing the value of
ka as illustrated in Fig. 5 (c), which generates electron
and hole pockets around these nodal lines [see Fig. 5
(b), where the electron and hole pockets are illustrated
as thin magenta and green strips, respectively]. Figure
5(b) shows the Fermi surface in [Ni(dmdt)2]. The energy
scale of such Fermi pockets is approximately 0.010 eV.
The corresponding density of states (DOS), Dtot(ω),

was also calculated, which is given by a sum of a
fragment-orbital dependent DOS, Dα(ω) [α=A(=C) and
B], that is given by

Dα(ω) = − 1
πNL

∑

k,σ ImGR,0
αα,σ(k, ω), (21)

GR,0
αβ,σ(k, ω) =

∑

n dα,n,σ(k)d
∗
β,n,σ(k)

1
ω−ǫk,n,σ+iη .(22)

Here, ĜR,0(k, ω) is the non-interacting retarded Green’s
function, where η=+0. The resulting Dtot(ω) and Dα(ω)
are depicted in Fig. 6. Note that the DOS has linear ω
dependence near EF (corresponding to ω=0 in Fig. 6)
because the energy dispersion of this system near EF is
close to that of a two-dimensional Dirac electron system,
and the three-dimensional effect is only an addition of
a small dispersion along a ka direction. The finite DOS
at EF in this material is ascribed to the presence of the
Fermi pockets induced by that ka-axis dispersion.
Before moving to the analysis of the spin susceptibility,

further comments are needed on the fragment-orbital-
dependent characters of this system. Figure 7 shows the
momentum dependence of the squared wave function for
the orbital B projected onto the second top band [Band
2 in Fig. 5(a)], |dB,2,σ(k)|

2, plotted as a function of kb
and kc at ka=−π/2. Notably, the line segments that
connect the positions of these Dirac points (illustrated
with black lines in Fig. 7) have a vanishing amplitude,
|dB,2,σ(k)|

2=0, which we call the “zero region” in this
paper. By contrast, the wave functions of the orbitals
A and C do not have such ZR. The presence of a sim-
ilar ZR was previously found in other n-band (n ≥ 3)
Dirac electron systems, such as the organic conductors
α-(BEDT-TTF)2I3 (n=4)30.
Second, we calculate the non-interacting spin suscep-

tibility χ̂0(q, ω) to elucidate spin fluctuations, which
can be enhanced in this material. Figure 8 (a),
(b), (c), and (d) show the diagonal elements of the
non-interacting spin susceptibility χ0

AA(q, 0), χ
0
BB(q, 0),

Im[χ0
AA(q, ω0)], and Im[χ0

BB(q, ω0)], respectively, at
T=0.003 eV. These quantities slightly increase with
raising temperature for any q=0 values, while the
magnitude relation χ0

AA(q ∼ 0, 0)<χ0
BB(q ∼ Q, 0)

and Im
[

χ0
AA(q ∼ 0, ω0)

]

>Im
[

χ0
BB(q ∼ Q, ω0)

]

do not

change with temperature. Here, χ0
αα(q, 0) is a real num-

ber. We set ω0=0.001 eV because the imaginary part
of the spin susceptibility at the infinitesimal frequency
is essential to solve Eq. 20. One of qa, qb, and qc must
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FIG. 5: (Color online) (a) Energy dispersion of [Ni(dmdt)2]
in the kb–kc plane, where ka=−π/2. Dirac cones exist be-
tween each pair of bands. Those between bands 1 and 2 draw
the Dirac nodal line. (b) Fermi surface in the first Brillouin
zone. The electron and hole pockets are drawn in magenta
and green, respectively. The inset shows the Dirac nodal line
in the first Brillouin zone. (c) Schematic of the relationship
among the Dirac nodal line, Fermi surface, and wavenumber
ka. The red curved line shows the Dirac nodal line. The dot-
ted transverse line shows EF .

be fixed to show the spin susceptibilities in the three-
dimensional figures. We fix qa=0 in Fig. 8 (a) and (c)
and qa=0.2π in Fig. 8 (b) and (d) because χ0

AA(q, 0)
and χ0

BB(q, 0) have the maximum value at the com-
mensurate wavenumber q=0 and the incommensurate
wavenumber q=Q=(0.20π, 0.73π, 0.58π) at T=0.003 eV,
respectively. We define Q as the wavenumber at which
χ0
BB(q, 0) has the maximum value. Further, Q varies

slightly with temperature. χ0
CC(q, ω) is equivalent to

χ0
AA(q, ω) owing to space-inversion symmetry. In Fig.

8 (a) and (c), χ0
AA(q, 0) and Im[χ0

AA(q, ω0)] have their
maximum value at q=0. In Fig. 8 (b) and (d), χ0

BB(q, 0)

FIG. 6: (Color online) The local density of state Dα(ω)
for the fragment orbital α=A, B, and C in the unit cell of
[Ni(dmdt)2]. The red dotted and blue dashed lines show
DA(ω)(=DC(ω)) and DB(ω), respectively. The black solid
line shows the total density of states Dtot(ω)=DA(ω) +
DB(ω) + DC(ω). The integral value of Dtot(ω) orver ω is
equal to 6 due to the three orbitals and the spins. Its unit is
the number of electrons.

FIG. 7: (Color online) Wave function of orbital B in band 2,
|dB,2,σ(k)|

2, in the kb–kc plane, where ka=−π/2. The up ar-
rows indicate the corresponding positions of the Dirac points
formed between the Bands 1 and 2 in Fig. 5 (a), while the
down arrows indicate those between the Bands 2 and 3. The
color bar represents the magnitude of |dB,2,σ(k)|

2.

and Im[χ0
BB(q, ω0)] have their maximum value at q=Q.

In addition, Im[χ0
BB(q, ω0)] has some peaks other than

that at q=Q.
The difference between χ0

AA(q, 0) and χ0
BB(q, 0) im-

plies that [Ni(dmdt)2] has two candidates for magnetic
order that can be induced in the bulk. They are the
q=0 magnetic order and SDW. To explain the mecha-
nism of the fragment-orbital-dependent spin susceptibil-
ity, we calculate the spectral weights on the Fermi sur-
face. The spectral weight is given by

ρα(k, ω) = −
1

π
ImGR,0

αα (k, ω). (23)

The spin index σ is omitted in Eq. 23, and k=(ka, kb, kc)
is the wavenumber. Eq. 23 with ω=0 yields the spectral



8

FIG. 8: (Color online) The momentum dependences of the di-
agonal elements of the spin susceptibility in the absence of U .
(a) χ0

AA(q, 0) in the qb–qc plane, where qa=0. (b) χ0

BB(q, 0)
in the qb–qc plane, where qa=0.2π. (c) Im[χ0

AA(q, ω0)] in the
qb–qc plane, where qa=0. (d) Im[χ0

BB(q, ω0)] in the qb–qc
plane, where qa=0.2π. The temperature T=0.003 eV.

weight at EF . The spectral weight shows the weights
of the respective fragment orbitals for the energy ω and
the wavenumber k because GR,0

αα (k, ω) in Eq. 23 con-
tains the absolute square of the wave function |dα,n(k)|

2.
Furthermore, the relationship 1

NL

∑

k ρα(k, ω)=Dα(ω) is

satisfied. Figure 9 (a) and (b) show the spectral weight
on the cross-section where the Fermi surface in Fig. 5(b)
is cut on the ka=π plane, which corresponds to the hole
pocket. We set ka=π because the hole pockets are im-
portant for χ0

BB(q, 0), as we discuss below. Figure 9 (a)
and (b), respectively, show ρA(k, 0) and ρB(k, 0) in the
kb–kc plane. In both figures, −0.65π < kb < −0.50π and
0.20π < kc < 0.30π. The spectral weight of A is not
zero on the Fermi surface, but that of B has the appear-
ance of a crescent moon because of a ZR. This differ-
ence in spectral weights results in the fragment-orbital-
dependent spin susceptibilities.
After performing summation over iωm in Eq. 15, the

non-interacting spin susceptibility is written as

χ0
α,β(q, iωl) = −

1

NL

∑

k,m,n

fk+q,m − fk,n
ǫk+q,m − ǫk,n − iωl

× dα,m(k+ q)d∗β,m(k+ q)dβ,n(k)d
∗
α,n(k),

(24)

where the spin index σ is omitted and η=+0. The terms
in which the denominator is close to 0 and the numerator
is close to 1 in Eq. 24 contribute to χ0

αβ(q, 0). Such terms
are given by the wavenumber k+q and k near the Fermi
surface. Thus, the vector q connecting the Fermi surface
is important for the spin susceptibility. This wavenumber
is called the nesting vector. q=Q in Fig. 8 corresponds

FIG. 9: (Color online) (a) Spectral weight ρA(k, 0). It is not
zero on the Fermi surface. (b) Spectral weight ρB(k, 0). A
part of it is zero because of a ZR. In the both figures, ka=π,
−0.65π < kb < −0.50π, and 0.20π < kc < 0.30π. Color bars
represent the magnitude of the spectral weight ρα(π, kb, kc, 0).
The yellow region indicates that the spectral weight at EF is
high.

to the nesting vector Q in Fig. 10. q=Q connects the re-
gions where the spectral weight of orbital B is high on the
hole pockets. Q is the wavenumber at which χ0

BB(q, 0)
has the maximum value. The nesting between the elec-
tron pockets is relatively weaker than that between the
hole pockets. Note that we solved Eq. 15 using a fast
Fourier transform, instead of solving Eq. 24.

FIG. 10: (Color online) Nesting vector Q in the momentum
space. Q connects the regions where the spectral weight of
orbital B is high (in the right figure). Color bars represent
the magnitude of the spectral weight ρB(π, kb, kc, 0). The
electron and hole pockets are drawn in magenta and green,
respectively (in the left figure).

Next, we calculate the temperature dependence of the
matrix elements of χ̂0(0, 0) using Eq. 15 because it is
essential to the following calculations. They are real
numbers because q=0 and ω=0. χ0

AA(0, 0)=χ0
CC(0, 0),

χ0
AB(0, 0)=χ0

BA(0, 0)=χ0
BC(0, 0)=χ0

CB(0, 0), and
χ0
AC(0, 0)=χ0

CA(0, 0) are satisfied owing to space-
inversion symmetry and time-reversal symmetry. Figure
11 shows the temperature dependence of the matrix
elements of χ̂0(0, 0). The diagonal element χ0

AA(0, 0)
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is almost constant. Furthermore, χ0
BB(0, 0) decreases

slowly with decreasing temperature. However, the off-
diagonal elements χ0

AB(0, 0) and χ0
AC(0, 0) are negative

and decrease as the temperature decreases. To show
what determines the sign of χ0

AB(0, 0) and χ0
AC(0, 0),

we define the band-dependent spin susceptibility as

χ0
αβ,mn(q, iωl)

= −
T

NL

∑

k,l′

G0
αβ,m(k+ q, iωl′+l)G

0
βα,n(k, iωl′),

(25)

G0
αβ,m,σ(k, iωl) = dα,m,σ(k)d

∗
β,m,σ(k)

1

iωl − ǫk,m,σ
,

(26)

where m and n are the band indices. Eq. 25 satisfies
∑

m,n χ
0
αβ,mn(q, iωl)= χ0

αβ(q, iωl), where χ0
αβ(q, iωl) is

given by Eq. 15. The inset of Fig. 11 shows the temper-
ature dependence of χ0

AB,12(0, 0) and χ0
AC,12(0, 0). They

are negative. Such terms render the off-diagonal elements
of spin susceptibility, χ0

AB(0, 0) and χ0
AC(0, 0), negative.

FIG. 11: (Color online) Temperature dependence of χ0

αβ(0, 0).
The red dashed, blue solid, green dotted, and purple
chain lines represent χ0

AA(0, 0), χ0

BB(0, 0), χ0

AB(0, 0), and
χ0

AC(0, 0), respectively. The inset shows the band-dependent
spin susceptibilities χ0

AB,12(0, 0) and χ0

AC,12(0, 0) by the green
dotted and purple chain lines, respectively.

B. Knight shift and 1/T1T in the absence of U

We calculate the Knight shift in the absence of U us-
ing Eq. 19. The fragment orbital components of the
Knight shift can be given byKA=χ0

AA(0, 0)+χ0
AB(0, 0)+

χ0
AC(0, 0) andKB=χ0

BB(0, 0)+2χ0
AB(0, 0) using the spin

susceptibilities in Fig. 11 due to the space-inversion
symmetry. Figure 12 shows the Knight shift for the
fragment orbitals A(=C) and B in the absence of U .
T=T ∗∼0.01eV is the energy scale where the Fermi sur-
face affects the Knight shift and 1/T1T . T ∗∼0.01eV is

consistent with the energy scale of the Fermi surface. For
temperatures higher than T ∗, the Knight shift and 1/T1T
are affected by the linear energy dispersion. The Knight
shift of the Dirac electron system in the absence of the

interaction is given by Kα ≃
∫∞

−∞
Dα(ω)

(

− df(ω)
dω

)

dω.67

f(ω) is the Fermi distribution function for the energy ω.
Because Dα(ω) ∝ ω near the Femi energy in Fig. 6, Kα

is proportional to T for T & T ∗ in Fig. 12. In the two-
dimensional Dirac electron system, the Knight shift is
proportional to T at low temperature and becomes zero
at T=0 because DOS is zero at EF . However, Kα in this
material is not proportional to T for T . T ∗ because
Dα(0) 6= 0 in Fig. 6. This is the effect of the Fermi sur-
face. The magnitude relationship KB > KA results from
DB(ω) > DA(ω) near the Fermi energy.

FIG. 12: (Color online) Temperature dependence of Kα in
the absence of U . The red dotted and blue dashed lines show
KA and KB , respectively. The black solid line shows the total
Knight shift Ktotal=KA+KB +KC . The dotted longitudinal
line indicates T=T ∗∼0.01 eV. The green thin line which is
proportional to T is drawn for the eye guide.

Next, we calculate the spin-lattice relaxation rate
1/T1T in the absence of U using Eq. 20. 1/T1T is
determined by

∑

q Im[χ0
αα(q, ω0)]. Im[χ0

AA(q, ω0)] and

Im[χ0
BB(q, ω0)] are shown in Fig. 8. Fig. 13 shows the

temperature dependence of 1/T1T in the absence of U .
(1/T1T )α is proportional to T 2 for T & T ∗ in Fig. 12 be-
cause the 1/T1T of the Dirac electron system is given by

(1/T1T )α ≃
∫∞

−∞
[Dα(ω)]

2
(

− df(ω)
dω

)

dω.67 For T . T ∗,

(1/T1T )α is not proportional to T 2, because of the Fermi
surface.

IV. RESULT IN THE PRESENCE OF U

In this section, we calculate spin fluctuations, the
Knight shift, and 1/T1T in the presence of U . It
is shown that electron correlation effects are impor-
tant for explaining the observed temperature dependence
of the Knight shift and 1/T1T reported by 13C-NMR
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FIG. 13: (Color online) Temperature dependence of (1/T1T )α
in the absence of U . The red solid and blue dotted lines show
(1/T1T )A and (1/T1T )B, respectively. The dashed longitudi-
nal line indicates T=T ∗∼0.01 eV. The green thin line which
is proportional to T 2 is drawn for the eye guide.

experiments.60 According to Eq. 18, the Stoner factor
ξs(q) that has a value close to unity gives major con-
tributions to the spin susceptibility and therefore to the
Knight shift and 1/T1T . Namely, ξs(q = 0) ≈ 1 becomes
predominant for the Knight shift (Eq. 19), whereas
ξs(q = Q) ≈ 1 contributes the most for 1/T1T (Eq. 20).

A. Spin fluctuations

We calculate the temperature dependence of the Stoner
factor ξs(q) because ξs(q) is an important measurement
of spin fluctuations as discussed in Section II. Figure
14 shows the temperature dependence of ξs(q), where
U=0.802 and λ=0.95. λ=0.95 was obtained in the
calculation of the screened Coulomb interaction using
respack. In the case of λ=0.95, ξs(0) is maximum in
the momentum space and increases as T decreases. The
combination of λ=0.95 and U=0.802 yields ξs(0)=0.999
at T=0.003 eV. On the other hand, ξs(Q) decreases
slowly with decreasing T and is less than ξs(0). Q is
the wavenumber at which χ0

BB(q, 0) has the maximum
value. χs

BB(q, 0) also has the maximum value at q=Q.
The magnitude relationship ξs(0) > ξs(Q) implies that
the q=0 magnetic order is easier to induce than SDW
at q=Q. At a low temperature of T.0.003eV, it is dif-
ficult for ξs(q) to converge in the numerical calculation
because enormous Matsubara frequencies and wavenum-
bers are required.
We explain why ξs(0) increases at low temperature.

In fact, ξs(q) isn’t directly determined by the DOS be-

cause the maximum eigenvalue of Û χ̂0(q, 0) contains the
products of the χ0

αβ(q, 0). It means that the electron
correlation effect is important. We calculate the first-
and second-order perturbation terms in Eq. (A) and (B)

FIG. 14: (Color online) Temperature dependence of the
Stoner factors ξs(0) and ξs(Q). The red solid and blue dotted
lines show ξs(0) and ξs(Q), respectively.

in Fig. 4. In this study, Eq. (A) and (B) in Fig. 4

are equivalent. Their matrix elements χs,1st
αβ (q, iωl) and

χs,2nd
αβ (q, iωl) are written as

χs,1st
αβ (q, iωl) =

∑

γ

χ0
αγ(q, iωl)Uγγχ

0
γβ(q, iωl), (27)

χs,2nd
αβ (q, iωl) =

∑

γ,γ′

χ0
αγ(q, iωl)Uγγχ

0
γγ′(q, iωl) (28)

× Uγ′γ′χ0
γ′β(q, iωl).

They are the first- and second-order perturbation terms
in RPA and correspond to the second and third terms
in Eq. (A) or (B) in Fig. 4, respectively. Figure 15

shows the temperature dependence of χs,1st
AA (0, 0) and

χs,2nd
AA (0, 0). They increase as T decreases. Note that

the zero-order perturbation term is identical to the red
dashed line in Fig. 11. Since the off-diagonal elements
of χ̂0(0, 0) are negative and decrease as T decreases in
Fig. 11, their absolute squares increase as T decreases.
Thus, terms such as χ0

AB(0, 0)UBBχ
0
BA(0, 0) in Eq. 27

and χ0
AC(0, 0)UCCχ

0
CC(0, 0)UCCχ

0
CA(0, 0) in Eq. 28 in-

crease χs,1st
AA (0, 0) and χs,2nd

AA (0, 0) at low temperature.
The other higher-order perturbation terms behave simi-
larly. Therefore, ξs(0) increases as T decreases.
Fragment orbitals A and C are sensitive to ξs(0).

On the other hand, fragment orbital B is insensitive
to ξs(0) but sensitive to ξs(Q). We calculate the
matrix elements of χ̂s(0, 0) and χ̂s(Q, 0) to exhibit
this phenomenon using Eqs. 15 and 17. Figure
16(a) shows the temperature dependence of χs

AA(0, 0),
χs
BB(0, 0), χs

AB(0, 0), and χs
AC(0, 0). They are real

numbers because q=0 and ω=0. χs
AA(0, 0)=χs

CC(0, 0),
χs
AB(0, 0)=χs

BA(0, 0)=χs
BC(0, 0)=χs

CB(0, 0), and
χs
AC(0, 0)=χs

CA(0, 0) are satisfied because of space-
inversion symmetry and time-reversal symmetry. The
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FIG. 15: (Color online) First- and second-order perturbation
terms of χs

AA(0, 0) shown by the brown solid and magenta
dotted line, respectively. The horizontal axis represents the
temperature.

inset shows an enlarged view of the region around
χs
BB(0, 0) and χs

AB(0, 0). χs
BB(0, 0) and χs

AB(0, 0)
are difficult to increase at low temperature, whereas
χs
AA(0, 0) sharply increases. Moreover, χs

AC(0, 0) is
negative and sharply decreases as T decreases. ξs(0)
easily affects fragment orbitals A and C but not fragment
orbital B. The situation of χs

AC(0, 0)<0 in Fig. 16(a)
implies intra-molecular antiferromagnetic fluctuations.
The negative off-diagonal elements of the spin suscepti-
bility are due to the characteristic wave function of the
Dirac nodal line system.

Figure 16(b) shows the temperature dependence
of Re [χs

AA(Q, 0)], Re [χs
BB(Q, 0)], Re [χs

AB(Q, 0)], and
Re [χs

AC(Q, 0)]. Re [χ̂s(Q, 0)] reflects ξs(Q) and slowly
varies with temperature. At q=Q, Re [χs

BB(Q, 0)] is the
largest of all matrix elements and increases with temper-
ature. Fragment orbital B is sensitive to ξs(Q). Because
Re [χs

AB(Q, 0)]<0 and Re [χs
AC(Q, 0)]>0, the spins of the

fragment orbitals B and A(C) within a molecule are in-
versely correlated.

Figure 17 schematically illustrates the spin polariza-
tion pictures that we obtained from the calculated re-
sults in Fig. 16 for the paramagnetic regime. Figure
17(a) corresponds to the case in Fig. 16 (a), where
we found intra-molecular antiferromagnetic spin fluctua-
tions, which are commensurate(q=0) between molecules.
The solid arrows in Fig. 17 (a) represents a tendency
where an infinitesimally small downward local magnetic
field at the orbital C(A) induces an upward spin polar-
ization at the orbital A(C) by the linear response relation
MA(C)=χs

AC(CA)HC(A), respectively [M is the magneti-

zation and H is the infinitesimal magnetic field]. Figure
17(b), which is derived from Fig. 16(b), stand for the
spin fluctuations within a molecule that are incommen-
surate (q=Q) between molecules. In this case, the spins
at the orbitals A(=C) and B tend to be inversely corre-

lated within a molecule.

FIG. 16: (Color online) (a) Temperature dependence of
χs
AA(0, 0), χ

s
BB(0, 0), χs

AB(0, 0), and χs
AC(0, 0) shown by the

red dashed, blue solid, green dotted, and purple chain lines,
respectively. The inset shows an enlarged view of the region
around χs

BB(0, 0) and χs
AB(0, 0). (b) Temperature depen-

dence of Re [χs
AA(Q, 0)], Re [χs

BB(Q, 0)], Re [χs
AB(Q, 0)], and

Re [χs
AC(Q, 0)]. The combination of matrix elements and lines

is the same as in (a).

FIG. 17: (Color online) Schematic illustrations of spin po-
larization. (a) intra-molecular antiferromagnetic spin fluctu-
ations linked to the q=0 response shown in Fig. 16(a). (b)
Spin correlations within a molecule given by the q=Q re-
sponse in Fig. 16(b).

Next, we show the diagonal elements of the spin sus-
ceptibilities χs

αα(q, ω) at T=0.003 eV. Figure 18 (a), (b),
(c), and (d) show χs

AA(q, 0), χ
s
BB(q, 0), Im[χs

AA(q, ω0)],
and Im[χs

BB(q, ω0)] in the qb-qc plane, respectively.
χs
αα(q, 0) is a real number. We fix qa=0 in Fig. 18

(a) and (c) and qa=0.2π in Fig. 18 (b) and (d). Fur-
thermore, ω0 is equal to 0.001 eV. Re[χs

AA(q, 0)] and
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Im[χs
AA(q, ω0)] have very large values at q=0 because

ξs(0)=0.999. However, the BB component is difficult
to be affected by ξs(0) but easily affected by ξs(Q). Q

is the wavenumber at which χ0
BB(q, 0) and χs

BB(q, 0)
have the maximum values. χs

AA(0, 0) and Im[χs
AA(0, ω0)]

are much larger than χs
BB(Q, 0) and Im[χs

BB(Q, ω0)] be-
cause ξs(0) > ξs(Q) and the spin susceptibility obtained
using RPA is determined by 1/ (1− ξs(q)). χs

AA(0, 0)
and Im[χs

AA(0, ω0)] in Fig. 18 (a) and (c) decrease
with temperature. On the other hand, χs

BB(Q, 0) and
Im[χs

BB(Q, ω0)] in Fig. 18 (b) and (d) slowly increase
and the peaks become broad with temperature. These
behavior result from temperature dependence of ξs(q) in
Fig. 14

FIG. 18: (Color online) The momentum dependences of the
diagonal elements of the spin susceptibility in the presence of
U (a) χs

AA(q, 0) in the qb–qc plane, where qa=0. (b) χs
BB(q, 0)

in the qb–qc plane, where qa=0.2π. (c) Im[χs
AA(q, ω0)] in the

qb–qc plane, where qa=0. (d) Im[χs
BB(q, ω0)] in the qb–qc

plane, where qa=0.2π. The temperature T=0.003 eV.

B. Knight shift and 1/T1T in the presence of U

In this subsection, we solve Eq. 19 and 20 to inves-
tigate the effects of the fluctuations on the Knight shift
and 1/T1T .
Fig. 19 shows the temperature dependence of the

Knight shift, where U=0.802 and λ=0.95. KB in the
presence of U is larger than that in the absence of U .
However, KA and KC in the presence of U are smaller
than those in the absence of U . In the case of U=0.802
and λ=0.95, KA and KC are negative, while KB and
Ktot(= KA + KB + KC) are positive. Similar behav-
ior was previously observed in the organic conductor α-
(BEDT-TTF)2I3.

30

KA and KC don’t increase at low temperature, al-
though the Stoner factor ξs(0) is almost 1 at T=0.003

eV. The behavior of the Knight shift is understood by
considering the off-diagonal elements of χ̂s(0, 0). Be-
cause χs

AA(0, 0) and χs
AC(0, 0) have opposite signs in

Fig. 16(a), their cancelation prevents the increase of the
Knight shift in Eq. 19. In other words, the q=0 spin
fluctuations is not observed in the Knight shift because
of the intra-molecular antiferromagnetic fluctuations.

FIG. 19: (Color online) Temperature dependence of the
Knight shiftKα for U=0.802 and λ=0.95. The red dashed and
blue dotted lines show KA and KB , respectively. The black
solid line shows the total Knight shift Ktot=KA +KB +KC .

Next, we solve Eq. 20. The spin-lattice relax-
ation rate, 1/T1T , is determined by

∑

q Im[χs
αα(q, ω0)].

Im[χs
AA(q, ω0)] and Im[χs

BB(q, ω0)] are shown in Fig. 18.
Figure 20 shows the temperature dependence of 1/T1T ,
where λ=0.95 and U=0.802. At high temperature, 1/T1T

FIG. 20: (Color online) Temperature dependence of (1/T1T )α
for U=0.802 and λ=0.95. The red solid and blue dotted lines
show (1/T1T )A and (1/T1T )B, respectively.

values for all orbitals decrease with decreasing T . How-
ever, at low temperature, the (1/T1T )A starts to increase
because orbital A is easily affected by ξs(0). The behav-
ior of (1/T1T )C is identical to that of (1/T1T )A because
of space-inversion symmetry. Although (1/T1T )B is dif-
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ficult to be affected by ξs(0) in Fig. 20, ξs(0) → 1
makes (1/T1T )B → ∞. This is because ξs(0) → 1
makes 1/ (1− ξs(0)) → ∞ and RPA imposes the factor
1/ (1− ξs(0)) on the spin susceptibility (Eq. 18). For
T&0.005 eV, (1/T1T )B is more dominant than (1/T1T )A
and (1/T1T )C because ξs(Q) slowly increases with T and
orbital B is easier to be affected by ξs(Q). Q is the
wavenumber at which χ0

BB(q, 0) and χs
BB(q, 0) have the

maximum values.
In the case of a small λ, such as λ=0.79, ξs(Q) is larger

than ξs(0), and SDW can be induced. However, the in-
commensurate spin fluctuations in this material is sup-
pressed at low temperature in Fig. 14. Similar behavior
occurs in the case of a small λ. If U is sufficiently large,
ξs(Q) reaches 1 at low temperature. However, the mag-
netic transition to the SDW phase would have already
been induced at a high temperature. Thus, it is diffi-
cult to explain the upturn of the 1/T1T curve near 30 K,
which is observed in the 13C-NMR experiment, by the
incommensurate spin fluctuations. We calculate λ us-
ing the respack program. Because λ=0.79 is obtained
as the ratio of diagonal elements with the unscreened
on-site Coulomb interaction while λ=0.95 is obtained as
that with the screened on-site Coulomb interaction, we
consider that λ=0.95 is the more realistic ratio.
In this subsection, we showed that the Knight shift

does not increase at low temperature because of the
intra-molecular antiferromagnetic fluctuations. We also
showed that the (1/T1T )A and (1/T1T )C start to increase
at low temperature because of the behavior of ξs(0).
They are dominant in T.0.005 eV, whereas (1/T1T )B
is dominant in T&0.005 eV because of the temperature
dependence of ξs(Q) and fragment-orbital-dependence of
spin susceptibilities. Fig. 21 summarizes the fragment-
orbital dependence of the Fermi surface, non-interacting
spin susceptibilities, Stoner factors, and 1/T1T . Fig. 21
shows the important factors for orbitals A and B. ξs(0) is
the main contributor to orbital A and causes the upturn
of the (1/T1T )A curve at low temperature. However, the
contribution of ξs(0) to orbital B is small. Orbital B
is sensitive to ξs(Q), which dominantly contributes to
(1/T1T )B at high temperature but does not contribute
to orbital A as much. These fragment-orbital-dependent
magnetic properties are caused by the presence of ZR be-
cause ZR biases ρB(k, 0) in Eq. 9 to a part of the Fermi
surface.

V. CONCLUSION

In this study, we found that multiple fragment or-
bitals play important roles in the magnetic properties
of [Ni(dmdt)2]. On orbitals A and C, which are unevenly
distributed toward one side of a molecule, the q=0 spin
fluctuations is enhanced, whereas the incommensurate
spin fluctuations is enhanced on orbital B, which is cen-
tered on the Ni atom. Because of the q=0 spin fluctu-
ations, the A and C components of 1/T1T start to in-

FIG. 21: (Color online) Correspondence table between the
fragment orbitals, shape of the Fermi surface, momenta at
which the non-interacting spin susceptibilities have peaks,
Stoner factors, and 1/T1T .

crease as T decreases at low temperature. However, the
q=0 spin fluctuations does not affect the Knight shift,
because it is an intra-molecular antiferromagnetic fluctu-
ations. The reason why the q=0 spin fluctuations is en-
hanced is understood from the perturbation process and
the off-diagonal elements of the non-interacting spin sus-
ceptibility. The incommensurate spin fluctuations domi-
nantly contribute to the B component of 1/T1T at high
temperature. These fragment-orbital-dependent quanti-
ties result from the presence of ZR. If no ZR exists in
the Brillouin zone, the BB components of the spin sus-
ceptibilities do not have the maximum value at the in-
commensurate wavenumber, because the spectral weight
of fragment orbital B at EF may be similar to those of
A and C. Because ZR biases ρB(k, 0) in Eq. 9 to a part
of the Fermi surface, the BB component of the spin sus-
ceptibility has a maximum value at the incommensurate
wavenumber q = Q. Thus, the wavenumber dependence
of the spin susceptibilities is different between the BB
component and AA(CC) component. ZR is a character-
istic of materials with a Dirac nodal line system described
by an n-band model(n ≥ 3). Thus, it is expected that
the fragment-orbital-dependent properties due to ZR will
be found in other Dirac nodal line systems. Moreover,
it is predicted that transition-metal substitution in the
Ni(dmdt)2 molecule controls spin fluctuations because it
changes λ and U . In the two-dimensional Dirac electron
system under the charge-neutral condition, the spin fluc-
tuations are weak because the Fermi surface is identical
to the Dirac points. On the other hand, the spin fluctu-
ations are enhanced in [Ni(dmdt)2] by the Fermi surface.
The Fermi surface arises from transfer integrals in the
nodal line direction. This is the three-dimensionality of
this material.

In the 13C-NMR experiment, 1/T1T has a peak at
T∼30 K. The experiment was performed for a sample in
which C atoms were replaced with 13C. Fig. 2(b) shows
a Ni(dmdt)2 molecule, and the red dashed circles sur-
round 13C atoms. Therefore, orbitals A and C mainly
contribute to the physical quantities observed in the 13C-
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NMR experiment. Thus, our calculation of 1/T1T is al-
most consistent with the experiment. Furthermore, we
expect that the B component of 1/T1T can be observed
by experiments using a sample in which 12C atoms near
the Ni atom are substituted by 13C. On the other hand,
the A and C components of the Knight shift obtained
in our calculation are negative, but the Knight shift ob-
served in the 13C-NMR experiment is positive. There-
fore, we consider the following possible electronic states
at T.30 K. The first is the q=0 magnetic ordered state,
which is the intra-molecular antiferromagnetism is real-
ized at T.30 K. In this case, it is considered that the
Knight shift observed in the experiment is attributed to
the sum of KA and KB, which is positive. In the second
possible electronic state, U is not so large that KA is neg-
ative. In this case, it is considered that another ordered
state is induced at T.30 K and that the 1/T1T curve is
upturned by the fluctuations corresponding to the order.

Examples of such orders are bond order and topological
order.
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