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We investigate the evolution of the Mott insulators in the triangular lattice Hubbard Model, as a function of
hole doping δ in both the strong and intermediate coupling limits. Using the advanced density matrix renormal-
ization group (DMRG) method, at light hole doping δ . 10%, we find a significant difference between strong
and intermediate couplings. Notably, at intermediate coupling an unusual metallic state emerges, with short
ranged spin correlations but long ranged spin-chirality order. Moreover, no clear Fermi surface or wave-vector
is observed, this chiral metal also exhibits staggered loop current, which breaks the translational symmetry.
These features disappear on increasing interaction strength or on further doping. At strong coupling, the 120
degree magnetic order of the insulating magnet persists for light doping, and produces hole pockets with a well-
defined Fermi surface. On further doping, δ ≈ 10% ∼ 20% SDW order and coherent hole Fermi pockets are
found at both strong and intermediate couplings. At even higher doping δ & 20%, the SDW order is suppressed
and the spin-singlet Cooper pair correlations are simultaneously enhanced. We also briefly comment on the
strong particle-hole asymmetry of the model.

I. INTRODUCTION

A central issue in the physics of strongly correlated ma-
terials is the nature of the correlated phases that emerge on
doping a Mott insulator. Given its relevance to the high tem-
perature cuprate superconductors, much effort have been de-
voted to doped Mott insulators in the square lattice Hubbard
Model [1–4]. However, the analogous problem on the triangu-
lar lattice is equally interesting and likely to exhibit new and
distinct physics, due to magnetic frustration and the absence
of nesting and particle-hole symmetry in the minimal models.

Experimentally, the discovery of the spin liquids [5, 6]
in organic materials [7–12] like κ-(BEDT-TTF)2Cu2(CN)3,
EtMe3Sb[Pd(dmit)2]2 and κ-H3(Cat-EDT-TTF)2 has trig-
gered substantial efforts on the triangular lattice Hub-
bard model, which is suggested to be the simplest
model to understand unconventional correlated physics
in these systems. More recently, the triangular lat-
tice magnets including Ba3CuSb2O9[13], Yb2Ti2O7[14],
Cs2CuCl4 [15, 16], Ba3CoSb2O9[17], YbMgGaO4[18],
TbInO3[19], NaYbO2[20, 21], the transition-metal dichalco-
genide (TMD) [22, 23] as well as twisted bilayers of TMD
[24–26] have been successively suggested to realize triangu-
lar lattice Hubbard models or their effective Heisenberg mod-
els. In a different background, the triangular Hubbard model
was recently realized on optical lattices[27] with loading ul-
tracold fermions [28–30]. In these platforms, both the cou-
pling strength U/t and charge concentration are widely tun-
able and accurately controllable, which allow for probing the
correlated electron physics on frustrated lattices.

Theoretically, the triangular lattice Hubbard model still
poses a great challenge. At half filling, mean field ap-
proaches [31–35] and numerical studies [36–58] have identi-
fied the metal-insulator transition (MIT) around Uc/t ≈5∼8,
and two distinct Mott insulators: a 120◦ Néel ordered phase
in the strong coupling U � t limit, and a quantum disor-
dered state, potentially a spin liquid phase, around the MIT.
Away from half-filling, the slave-boson mean field [59–62],

renormalization group [63] and numerical calculations [64–
69] have mainly focused on superconductivity and its pair-
ing symmetry. Nevertheless, a systematic study of the corre-
lated phases emerging from doped Mott insulators is a much-
needed endeavor, where many open questions are of equiv-
alent importance as the intensively investigated square lat-
tice [2–4]. Motivated by the above, here we study the emer-
gent correlated phases obtained on doping the distinct Mott
insulators, which appear in the intermediate and strong cou-
pling regimes, in the triangular lattice Hubbard model. We
focus on hole doping the t > 0 model in Eqn. 1 below.

II. MODEL AND METHOD

We consider the doped Hubbard model on a triangular lat-
tice described by

H = −t
∑
〈i,j〉,σ

(c†iσcjσ + h.c.) + U
∑
i

ni↑ni↓, (1)

where 〈i, j〉 denotes the nearest neighbor links, c†iσ (ciσ ) and
niσ represent the electron creation (annihilation) operators
and number operators at site i with spin σ (σ = ↑, ↓), respec-
tively, and we take t > 0; U > 0. We perform a compara-
tive study of the doped Mott insulators with distinct emergent
spin backgrounds [50, 52–56]: (i) a quantum disordered spin
background (“spin liquid”) that emerges at intermediate cou-
pling strength and (ii) the magnetic ordered spin background
with larger coupling strength. In this work, we mainly fo-
cus on the hole doped side and identify the nature of various
doping-induced phases. Considering the possible shift of the
intermediate phase boundaries with system size [50, 52–56],
we choose different typical parameters of U/t for the doped
magnetic disordered spin background and the doped magnetic
ordered spin background.

Due to the lack of well controlled theoretical methods
in two-dimensional strongly correlated systems, quasi-one-
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Fig. 1. (Color online) Triangular lattice and the corresponding Bril-
louin zone. (a) The triangular lattice is spanned by the primitive vec-
tors ex = (1, 0) and ey = (1/2,

√
3/2) with size N = Lx × Ly .

(b) The accessible momenta (black dots) in the first Brillouin zone
and the high-symmetry points are shown in (b) for Ly = 3 (left),
Ly = 4 (middle) and Ly = 6 (right) cylinders. The number of inde-
pendent momenta equals to size N , panel (b) shows three examples:
Lx = 36 (left), Lx = 30 (middle) and Lx = 12 (right).

dimensional systems have become a good starting point, al-
lowing two-dimensional characteristics to emerge on growing
the degrees of freedom compared to one dimension. More cru-
cially, they allow performing accurate numerical density ma-
trix renormalization group (DMRG) simulations, which have
proved to be one of the most powerful numerical methods for
strongly correlated systems such as the doped Mott insula-
tors on the square lattice. Since the computational cost of
DMRG [70, 71] increases exponentially with system width,
we focus on cylinders, similar to earlier DMRG studies on
the square lattice. The cylinder is spanned by vectors Lxex =
Lx(1, 0) and Lyey = Ly(1/2,

√
3/2) with circumference Ly ,

as illustrated in Fig. 1 (a).
Figure 1 (b) depicts the corresponding Brillouin zone for

Ly = 3, 4, 6 cylinders, and the black dots represent the acces-
sible momenta points on systems with sizeN = Lx×Ly . Due
to the fact that the spin long-range ordered phase becomes
gapped for even Ly [72], it requires odd Ly and integral mul-
tiple of 3 for both Lx and Ly in order to capture the nature
of the 120◦ Néel order. In particular, K points are inacces-
sible on cylinders with Ly = 4, as shown in Fig. 1 (b), we
can only access K′ points, which are the closest momentum
to K. In the present work, we mainly focus on Ly = 3 and
Ly = 4 in most cases, but also compare withLy = 6 cylinders
when identifying the wave vectors of the spin density waves
(SDWs).

Depending on system size and physical quantity, the bond
dimension is set up to D=45, 000 when implementing U(1)×
U(1) symmetry in the DMRG program, and up to D=23,000
when implementing U(1) × SU(2) symmetry (∼ D=69,000
in U(1) × U(1) program). The cylinder length is pushed up

to Lx = 72. We remark that the longer length also requires
much larger bond dimension to get converged results for quan-
tities such as the chiral correlations. For example, for the
chiral-chiral correlations on Ly = 4 cylinders, we find that, at
light doping, the converged measurement can only be obtained
at D=23, 000 with using U(1) × SU(2) symmetry, which
roughly corresponds to D≈69,000 when using U(1) × U(1)
symmetry in the program. In particular, for the fast decay
of the correlation functions, both power-law and exponential
function could fit the data well; to see it more clearly, we
present both semilogarithmic and double-logarithmic plots for
the same data to compare. To gain the indication of supercon-
ductivity for 2D, we look for power law decay r−η with η < 2,
which would lead to the divergence of superconductivity sus-
ceptibility.

III. RESULTS

A. Evolution of Spin Correlations with Hole Doping

We begin with probing the ground state properties of the
model Hamiltonian (1) as a function of hole doping δ in the
spin channel by examining the spin structure factor

Sq(Q) =
1

N

∑
i,j

〈
Szi S

z
j

〉
eiQ·(ri−rj). (2)

Here, we have confirmed that 〈Szi 〉 is vanishingly small on
each site. In our calculation, the hole doping is realized by
removing equal number of spin-up and spin-down electrons,
and we target the sector with total spin Sz = 0. Figures 2
(a1-a3), (b1-b3), (c1-c3) show the contour plot of Sq at three
typical hole doping concentrations for U/t = 7.5, U/t =
9 and U/t = 18, respectively. The spin structure factor for
U/t = 7.5 and U/t = 9 exhibit similar behavior.

Spin correlations at intermediate coupling for Ly = 3: For
U/t = 7.5 and U/t = 9, Sq are featureless at light dop-
ing [see Figs. 2 (a1,b1) for δ = 1/18], consistent with a
spin disordered phase. With further doping, Sq exhibits sharp
peaks at Q = K for moderate doping [see Figs. 2 (a2, b2) for
δ = 1/6], suggesting a doping induced commensurate SDW.
The intermediate SDWs are finally suppressed on further in-
creasing doping beyond 20% [see Figs. 2 (a3,b3) for δ = 2/9].
To probe the evolution of SDWs with hole doping, we keep
track of Sq(K) as a function of δ, as shown in Figs. 2 (a4,
b4), Sq(K) is independent of Lx for δ . 10% at intermedi-
ate coupling, consistent with a nonmagnetic spin background.
However, on further increasing doping to δ ≈ 10% ∼ 20%,
Sq(K) is significantly enhanced, and its height also increases
with system size, indicating the doping induced SDW, which
finally disappears at δ & 20%.

Spin correlations at strong coupling for Ly = 3: In con-
trast, on doping holes into the strong coupling U/t = 18
model, a 120◦ Néel ordered spin background with sharp peaks
in Sq(K) survives until δ ≈ 20% for Ly = 3 [see Figs. 2
(c1-c3)]. Furthermore, the height of these peaks also increase
with system sizes [see Fig. 2 (c4)], indicating that the com-



3

0% 5% 10% 15% 20% 25% 30% 35%

0.2

0.4

0.6

0.8

1.0

1.2

U/t=18

S
q
(K

)

d

 N=12x3

 N=18x3

 N=24x3

 N=36x3

SDW

(c4)

0% 5% 10% 15% 20% 25% 30% 35%

0.2

0.4

0.6

0.8

1.0

U/t=7.5

S
q
(K

)

d

 N=12x3

 N=18x3

 N=24x3

 N=36x3

SDW

(a4)

0% 5% 10% 15% 20% 25% 30% 35%

0.2

0.4

0.6

0.8

1.0

U/t=9

S
q
(K

)

d

 N=12x3

 N=18x3

 N=24x3

 N=36x3

SDW

(b4)

-1 0 1

-1

0

1

-1

0

1

q
y
/p

qx/p

0.0

0.23

0.46

0.69

0.92(b1) U/t=9  
d=1/18

-1 0 1

-1

0

1

-1

0

1

q
y
/p

qx/p

0.0

0.23

0.46

0.69

0.92
(b2) U/t=9  

d=1/6

-1 0 1

-1

0

1

-1

0

1

q
y
/p

qx/p

0.0

0.23

0.46

0.69

0.92
(b3) U/t=9  

d=2/9

-1 0 1

-1

0

1

-1

0

1

q
y
/p

qx/p

0.0

0.23

0.46

0.69

0.92
(c1) U/t=18  

d=1/18

-1 0 1

-1

0

1

-1

0

1

q
y
/p

qx/p

0.0

0.23

0.46

0.69

0.92

d=1/6
(c2) U/t=18  

-1 0 1

-1

0

1

-1

0

1

q
y
/p

qx/p

0.0

0.23

0.46

0.69

0.92

d=2/9

(c3) U/t=18  

-1 0 1

-1

0

1

-1

0

1

d=1/18

(a1)U/t=7.5
q

y
/p

qx/p

0.0

0.23

0.46

0.69

0.92

-1 0 1

-1

0

1

-1

0

1

d=1/6

(a2) U/t=7.5

q
y
/p

qx/p

0.0

0.23

0.46

0.69

0.92

-1 0 1

-1

0

1

-1

0

1

(a3) U/t=7.5

          d=2/9

q
y
/p

qx/p

0.0

0.23

0.46

0.69

0.92

Fig. 2. (Color online) The static spin structure factor Sq(Q) as a function of hole doping concentration δ on Ly = 3 cylinders. Panels (a,b,c)
show the contour plot of Sq(Q) for U/t = 7.5 (a1-a4) , U/t = 9 (b1-b4) and U/t = 18 (c1-c4) with different δ. From left to right in each
row, we consider three typical hole doping concentrations: δ = 1/18 (a1,b1,c1), δ = 1/6 (a2,b2,c2) and δ = 2/9 (a3,b3,c3). The black
dots represent the accessible momenta in the Brillouin zone (dashed line) for N = 24 × 3 cylinders, and the contour plot is created by using
triangulation interpolation. Panels (a4) , (b4) and (c4) show Sq(Q) at Q = K as a function of δ for U/t = 7.5, U/t = 9 and U/t = 18,
respectively. The bond dimension of such calculation is set up to 6000∼10,000.

mensurate SDW order remains robust against hole doping in
the strong coupling limit. At δ > 20%, the spin correlations
become short ranged and are indistinguishable for all coupling
strengths.

Spin correlations for Ly = 4: For wider cylinders with
Ly = 4, we find the spin backgrounds at δ . 10% also re-
semble the ones at half filling, as shown in Fig. 3(a) and (d).
Although the momenta K are inaccessible for Ly = 4 and
the spin ordered phase becomes spin gapped due to the even-
leg effect, the intensity of Sq is concentrated at the momen-
tum closest to K (i.e., K′) in the strong coupling limit (at
δ . 10%). These facts indicate the nature of spin background
at light doping is mainly determined by coupling strengthU/t.
At moderate doping δ ≈ 10% ∼ 20%, the commensurate
SDWs exhibits competing wave vector M, as shown in Figs. 3
(b, e). To show it more clearly, we study Sq at M and in the
vicinity of K as a function of hole doping, as shown in Figs. 3
(a, d), the intensity of Sq(M) is enhanced at moderate dop-
ing, while the SDWs are finally suppressed for larger doping
δ & 20%.

We also notice the competing wave vectors of the SDW,
which is determined by the coupling strength U/t. The SDW
with wave vector Q = M is dominant at moderate coupling
strength, however, with the increase of coupling strength U/t,
the SDW with Q = K′ becomes competitive, as indicated

from Figs. 3 (a) and (d). We also have checked the t−J model,
which corresponds to the effective Hamiltonian of Hubbard
model in the U/t → ∞ limit, and confirmed that the domi-
nant wave vector of SDW is Q = K′ in the strong coupling
limit. Such competition might be induced by the special fea-
ture of Ly = 4 cylinders, where K points are inaccessible.
To further confirm it, we also check Ly = 6 cylinders and
find that when both the momenta K and M are accessible, the
commensurate SDW with wave vector Q = K is dominant at
these dopings, as shown in Fig. 3 (c) and (f).

B. Evolution of Spin Chirality with Hole Doping

To further investigate the nature of magnetic disordered
spin background at δ . 10% with intermediate coupling
strength, we examine the spin chiral order by computing the
chiral-chiral correlations |〈C4iC4i+r 〉|, where the chiral op-
erator C4i = Si1 · (Si2 × Si3) is defined on the triangle
formed by three nearest neighboring sites i1, i2 and i3. As
shown in Fig. 4 (a) for Ly = 3 cylinders and Fig. 4 (b) for
Ly = 4 cylinders at three typical hole doping concentrations:
δ = 1/18, δ = 1/6 and δ = 1/3.

At light doping δ . 10%, the chiral correlations decay
much slower than r−1 [see the orange line in Fig. 4 (a)] for
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Fig. 3. (Color online) The static spin structure factor Sq(Q) on Ly = 4 and Ly = 6 cylinders. Panel (a) and (d) show Sq as a function of hole
doping δ for U/t = 9 and U/t = 18 at momentum M and K′ on N = 24 × 4 cylinders. Panel (b) and (e) show the contour plot of Sq(Q)
for U/t = 9 (b) and U/t = 18 (e) with δ = 1/6 and N = 24 × 4 . Panel (c) and (f) show the similar plot of Sq(Q) to (b) and (e) but on
Ly = 6 cylinders with Lx = 12. The black dots represent the accessible momenta points in the Brillouin zone (dashed line) and the contour
plot is created by using triangulation interpolation. The bond dimension of these calculations is set up to 30,000∼35,000.

Ly = 3 at U/t = 7.5 and slightly slower than r−2 [see the
red line in Fig. 4 (b)] for Ly = 4 at U/t = 9. The blue lines
in Figs. 4 (a-b) follow the amplitude of the chiral correlations,
which can directly compare with the decay rate r−1 (orange
line) and r−2 (red line), respectively. These results suggest the
(quasi-)long range chiral order at light doping. We also check
U/t = 9 for Ly = 3 and U/t = 10 for Ly = 4, as shown in
Fig. 4 (c), which exhibit similar quasi-long-range chiral cor-
relations decaying in a power-law fashion. Here we point out
that U/t = 9 and U/t = 10 are similar for Ly = 4, while the
chiral correlations at U/t = 9 decay faster than U/t = 7.5
but comparable to r−2, which indicates the increase of the
coupling strength U/t would suppress the chiral correlations,
but the spin background is still nonmagnetic according to the
featureless spin structure factor Sq in Fig. 2 (a1). When we
increase the doping to δ & 10%, the chiral correlations are
strongly suppressed and decay faster than r−2, as shown in
Figs. 4 (a-b).

We also point out that the chiral correlations have sign fluc-
tuations for Ly = 3 but not for Ly = 4 for half filling, consis-
tent with Refs. [53, 54], however, at light doping, both cases
exhibit the change of sign with distance r. In particular, we
notice that, the claim of absence of chiral spin liquid at half-
filling for Ly = 3 in Ref. [73] also conflicts with other DMRG
studies [53, 54, 74].

C. SDW vs. CDW

For the doped Mott insulators on square lattice, the doped
charge would suppress the Néel order at light doping, and the
CDW, such as the unidirectional stripes, would emerge around
δ ≈ 1/8. Here, on the triangular lattice, from the above re-
sults of the spin structure factor Sq(Q) and the chiral-chiral
correlations |〈C4i

C4j
〉|, we find the nature of the spin back-

ground is robust against hole doping and also find the robust
spin density waves at moderate doping δ ≈ 10% ∼ 20%.
In this section, we directly compare the spin-spin correla-
tions |

〈
Szi S

z
i+r

〉
|with the charge density-density correlations

| 〈nini+r〉 − 〈ni〉〈ni+r〉| to examine the dominant correla-
tions.

At light doping δ . 10%, as shown in Figs. 5 (a-b), the
spin-spin correlations decay slightly slower than the charge
density-density correlations or with comparable rate, the am-
plitude of the spin-spin correlations is also larger. The red
lines in Figs. 5 represent the decay rate ∼ r−2, which can be
used for guidance. With increasing the hole doping to mod-
erate level δ ≈ 10% ∼ 20%. The charge density-density
correlations are almost unchanged or slightly suppressed [see
Figs. 5 (a-b)], however, the spin-spin correlations are signifi-
cantly enhanced with both much slower decay rate and larger
amplitude. The orange lines in Figs. 5 suggest the decay rate
of the spin-spin correlations close to ∼ r−1.5 for Ly = 3 and
is further enhanced to ∼ r−0.8 for wider cylinders Ly = 4.



5

10 20 30 40 50

10-7

10-5

10-3

10-1

~r -1

C
h
ir
a
l 
c
o
rr

e
la

ti
o
n
s

r

 d=1/18

 d=1/6

 d=1/3

Ly=3: U/t=7.5 Lx=72

~r -2

10 20 30

10-7

10-5

10-3

10-1

~r -2

C
h
ir
a
l 
c
o
rr

e
la

ti
o
n
s

r

 d=1/18

 d=1/6

 d=1/3

Ly=4: U/t=9 Lx=48

(a)

(b)

(c)

10 20 30
10-7

10-5

10-3

10-1

Lx=72, Ly=3

 U/t=7.5

 U/t=9

d=1/18

~r -2

C
h

ir
a
l 
c
o

rr
e
la

ti
o

n
s

r

Lx=48, Ly=4

 U/t=9

 U/t=10

Fig. 4. (Color online) Chirality correlators. The chiral-chiral cor-
relations as a function of distance r for three typical hole doping
at U/t = 7.5 on N = 72 × 3 cylinders (a) and at U/t = 9 on
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up to 36,000∼69,000 for Ly = 4 in (b). Panel (c) shows additional
results at U/t = 9 on N = 72 × 3 cylinders and at U/t = 10 on
N = 48× 4 cylinders, we also include the results (a-b) to compare.
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Fig. 5. (Color online) Spin-spin correlations and charge density-
density correlations. Panels (a) and (b) show the comparison be-
tween the spin-spin correlations and charge density-density correla-
tions for U/t = 9 on Ly = 4, Lx = 48 and Ly = 3, Lx = 72
cylinders. We consider two typical examples at light doping and
moderate doping. Both correlations decay in a comparable rate at
light doping, however, at moderate doping, the spin-spin correlations
decay much slower than the charge density-density correlations and
also with much larger amplitude. The bond dimension of such cal-
culation is set up to 60,000 for light doping and up to 36,000 for
moderate doping δ . 10%.

Since the power-law decay ∼ r−α with α < 2 suggests the
diverged susceptibility towards 2D, these observations indi-
cate that the SDW would be dominant over the CDW for the
doped Mott insulators on the triangular lattice.

Here we point out that the recent work Ref. [73] also shows
similar findings, i.e., the comparable decay rate of both corre-
lations and the larger amplitude of the spin correlations. Al-
though both correlators can be fitted by the power-law func-
tion with close exponents similar to our findings in Figs. 5
(a-b), their interpretations that the spin correlations are expo-
nentially decaying while the charge density correlations are
power-law in Ref. [73] are inconsistent with our results.
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Fig. 6. (Color online) The properties of doped holes C Fermi surface and charge structure factor. (a-d) The contour plot of electron momentum
distribution nh(k) for U/t = 9 (a-b) and U/t = 18 (c-d) at doping δ = 1/18 and δ = 1/9. The black dots represent the accessible momenta
points in the Brillouin zone, and the contour plot is created by using triangulation interpolation. Panel (e) show the cuts of nh(k) through K
at doping δ = 1/18 (left) and δ = 1/9 (right), respectively. Panel (f) shows the second order derivatives of the density structure factor Nq , the
peaks at q0 indicate the wave vector of charge modulations. Here we consider N = 36× 3 cylinders. The bond dimension of such calculation
is set up to 10,000∼12,000.

Fig. 7. (Color online) The charge current pattern in the chiral metal phase. This panel shows the pattern of Ic〈ij〉 at δ = 1/20 for U/t = 9 on
Ly = 4 cylinders, the width of each bond is proportional to the current magnitude, while the arrow indicates the current direction. Here we
consider N = 16× 4 cylinders. The bond dimension of such calculation is set up to 12, 000.

D. Hole Pockets Evolution with Doping

In the charge channel, we examine the properties of doped
holes by measuring the hole momentum distribution function
nh(k), which can be extracted from the change of electron
momentum distribution after doping:

nh(k) ≡ n0(k)− nδ(k), (3)

where

nδ(k) =
1

N

∑
i,j,σ

〈c†iσcjσ〉e
ik·(ri−rj) (4)

represents the electron momentum distribution at hole dop-
ing δ, n0(k) corresponds to half filling at the same coupling
strength U/t.

At light hole doping δ < 10%, we find the following con-
trasting outcomes depending on whether one is at strong or
intermediate coupling. At strong coupling, the doped holes
form small pockets around momenta K [see Fig. 6 (c) for
U/t = 18], while at intermediate coupling each hole pocket
splits into two parts [see Fig. 6 (a) for U/t = 9]. To see this
more clearly, we show the cuts of nh(k) across the hole pock-
ets in Fig. 6 (e). Strikingly, at strong coupling there is a sharp
drop in nh(k) characterizing a well-defined Fermi momentum
of holes in the spin ordered background, while at intermediate
coupling there is a broad momentum distribution for lightly
doped holes. The latter is indicative of fractionalized spin and
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Fig. 8. (Color online) Real-space correlators at light doping: chiral-
chiral correlations, spin-spin correlations, charge density-density
correlations, single particle propagators. Panel (a) and (b) show dif-
ferent correlators for U/t = 9 on Ly = 4 and for U/t = 7.5 on
Ly = 3 cylinders, respectively. Here we focus on the doping.

charge excitations - although the total momentum of the spin
and charge is conserved [75, 76], the momentum shared be-
tween separated charge and spin excitations would lead to the
absence of a well-defined Fermi momentum for holes [75–
80]. Here we also point out that the splitting of hole pock-
ets at intermediate coupling is independent of Lx, and gradu-
ally disappears with increasing coupling strength to the strong
coupling regime, as shown in the left panel in Fig. 6 (e).

E. Chiral metallic phase

We further compared nh(k) with charge density structure
factor Nq. Nq is defined by the Fourier transformation of
density-density correlations, i.e.,

Nq =
1

N

∑
i,j

(〈ninj〉 − 〈ni〉〈nj〉)eiq·(ri−rj). (5)

As shown in Fig. 6 (f), the peaks in the second order deriva-
tive of Nq characterize wave vectors of the charge modula-
tions q0, or equivalently, the scattering between holes near the
Fermi surface with momentum difference ∆q. For a Fermi
liquid state that appears to be present in the strong coupling
regime, q0 = ∆q, where the corresponding charge modula-
tions (see Appendix A 1) can be attributed to the intra-pocket
scattering.

A striking observation is that in the anomalous chiral metal
(the lightly doped intermediate coupling state) we find charge
modulations with the same wave vectors q0 as in the strong
coupling limit. However, unlike in the strong coupling limit, a
well-defined Fermi momentum for doped holes is lacking [see
Fig. 6 (e)]. The significant difference between Nq and nh(k)
suggests the spin and charge are no longer confined together in
the anomalous chiral metal, consistent with doping a spin liq-
uid. At larger doping δ & 10%, a well-defined hole pocket is
reconstructed even at intermediate coupling strength around
K [see Fig. 6 (b)], while for the strong coupling strength,
the original hole pockets gradually increase with doping [see
Fig. 6 (d)]. Both cases have the same Fermi momentum, as
illustrated by the jump in nh(k) in Fig. 6 (e). The momen-
tum difference ∆q between holes near the Fermi surface ex-
actly matches the peak q0 in the second order derivative of the
charge structure factor, Nq, i.e., q0 = ∆q.

Moreover, we compare various real-space correlators to fur-
ther examine the chiral metallic phase. As shown in Fig. 8 (a)
for Ly = 4 cylinders, we find the single particle propagator
decays in a power-law fashion with a slower decay rate com-
pared with other correlations, suggesting the robust nature of
chiral metallic phase on Ly = 4 cylinders. However, we also
point out that we find a complex feature on Ly = 3 cylin-
ders [see Fig. 8 (b)]: (i)the spin chirality order is dominant
over other correlations for long distance on Ly = 3 cylinders,
indicating a robust time-reversal symmetry breaking phase;
(ii) the single particle propagator decays relatively faster than
Ly = 4 but tends to saturate at longer distance and decays
comparable with chiral correlations; (iii)the spin-spin correla-
tions (∼ r−2.8) decay in a comparable rate with the pair-pair
correlations [see the next section and Fig. 9 (b)] and exhibit-
ing spatial oscillations, which suggests the pair-density-wave
(PDW) pattern is locally robust but the quasi-long-range order
is insignificant. Therefore, the Ly = 3 cylinder exhibits the
competition between the chiral metal and local PDW.

We further probe the nature of this chiral metal state by ex-
amining the bond charge current pattern, which is defined by
Ic〈ij〉 ≡ −i

∑
σ〈c
†
iσcjσ − h.c.〉. A typical example of the cur-

rent pattern at δ = 1/20 for U/t = 9 is shown in Fig. 7, where
the width of each bond is proportional to the current magni-
tude and the arrow indicates the current direction, the bond
current pattern exhibits the translational symmetry breaking
in the bulk along the horizontal direction, though we also no-
tice the existence of domains in the pattern. We find Ly = 3
cylinders exhibit the same feature withLy = 4, and leave such
results in the Appendix A 2. Meanwhile, the time-reversal
invariant spin current Isij ≡ −i〈S+

i S
−
j − S−i S

+
j 〉 [76] is

vanishingly small in the same phase, consistent with the ex-
istence of the spin chirality order for chiral metal. Here, we
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Fig. 9. (Color online) The pair-pair correlations. Panels (a-b) show the pair-pair correlations in singlet channels for U/t = 9 on Ly = 4, Lx =
48 (a) and Ly = 3, Lx = 72 (b) cylinders. The left panels in each figure show the plots in semilogarithmic scale, while the right panels are
the plots in double-logarithmic scale. The bond dimension of such calculation is set up to 60,000.

would like to mention that the chiral metal phase identified
here is consistent with recent mean-field analysis of the doped
Kalmeyer-Laughlin type chiral spin liquid[81], where a chiral
metal with unit cell doubling and staggered loop current or-
der is proposed[82]. Ref. [82] also points out the competition
between the chiral metal and superconductivity, which is also
observed here for Ly = 3. But with the increase of cylinder
width, we find the chiral metallic phase becomes dominant.

F. Evolution of Superconducting Pair-Pair Correlations with
Hole Doping

Below we examine the superconductivity on hole doping by
measuring the pair-pair correlations D(r) ≡

〈
(∆̂s,t

i )†∆̂s,t
i+r

〉
,

in which the Cooper pair operators in the singlet and triplet
channels are defined by ∆̂s

i ≡ 1√
2

∑
σ σci1,σci2,−σ , and

∆̂t
i ≡ 1√

2

∑
σ ci1,σci2,−σ , respectively. Here, we focus on

the local pairing between the nearest sites (i1, i2). We have
fixed one bond in the pair-pair correlations at i along ey and
measure its correlations with pairs along ey,ex and ex − ey,
respectively, then we average the absolute value of pair corre-

lations for a fixed distance. Figures 9 (a-b) show the pair-pair
correlations for U/t = 7.5, 9 for Ly = 3 and U/t = 9 for
Ly = 4 at typical doping levels on Ly = 3, 4 cylinders, and
U/t = 18 gives similar results. For both intermediate cou-
pling and strong coupling models, we find the pairing strength
in singlet channel are stronger than triplet channel, and thus
we will focus on singlet pairing. We also notice that, at larger
doping δ > 20%, while the singlet pairing has stronger cor-
relations at longer distance, the triplet pairing becomes com-
petitive with singlet pairing when further increasing δ, partic-
ularly for wider systems.

In our quasi-one-dimensional setup, true long-range or-
der in the pair correlation function D(r) is forbidden by the
Mermin-Wagner theorem. We therefore content ourselves
with looking for slow power law decay (D(r) ∼ 1/rη where
η ∼ 1 ), which, as we show, appears at the largest cylinder
circumferences and at high doping. To gain the indication of
superconductivity for 2D, we look for power law decay with
η < 2, which would lead to the divergence of superconduc-
tivity susceptibility. For the fast decay of the correlation func-
tions, both power-law and exponential function could fit the
data well, to see it more clearly, we present both semilogarith-
mic and double-logarithmic plot for the same data to compare,
as shown in Fig. 9.
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For Ly = 4 cylinders, as shown in Fig. 9 (a), the pair-pair
correlations D(r) decay exponentially at light doping, while
its amplitude and decay length increase with the increase of
hole doping. At moderate hole doping δ ≈ 10% ∼ 20%,
D(r) could be fitted by an exponential function with long de-
cay length or a power-law function with relatively large ex-
ponent η & 2, as shown in the semilogarithmic and double-
logarithmic plot in Fig. 9 (a). Due to the large exponent, the
power-law fitting and the exponential fitting would be very
close, implying that the superconductivity is not dominant
when the SDWs exist. At δ & 20%, the pair-pair correla-
tions are further enhanced when the SDWs are suppressed.
The double-logarithmic in the right panel of Fig. 9 (a) shows
η ≈ 1.6 at δ = 1/3. Here, we push our calculation with bond
dimension up to 60,000 and also plot the r−2 decay for com-
parison, we find that the power-law decaying behavior with
exponent η < 2 is robust at large doping. The last observa-
tion gives evidence for quasi-long range pair-pair correlations
being stabilized at these relatively large dopings. Although
the short-ranged spin backgrounds appear on wider cylinders
already at δ ∼ 20%, pushing to higher dopings considerably
strengthens the pair-pair correlations.

For Ly = 3 cylinders, as shown in Fig. 9 (b), the pair-pair
correlations D(r) decay rapidly at light doping δ = 1/18. As
shown in the semilogarithmic plot in Fig. 9 (b),D(r) could be
fitted by an exponential function, meanwhile, it is potentially
also consistent with a power law D(r) ∼ 1/rη with large ex-
ponent η ∼ 3.7 for U/t = 9 and η ∼ 2.8 for U/t = 7.5,
see the double-logarithmic plot in Fig. 9 (b). Both fitting are
quite close due to the smallness of correlators both in abso-
lute magnitude and rapid decay rate, which does not point to
a robust superconducting ground state, particularly consider-
ing that η > 2 corresponds to the short-ranged correlations
in 2D or the superconducting susceptibility does not diverge.
In addition, for these doping levels, we have found spatial
charge modulations (see Appendix A 1), the number of peaks
in the hole distribution function equals to the number of doped
holes. This is inconsistent with a strongly paired state, where
the number of peaks would be half the number of doped holes.
Here, we also notice Ref. [73] fitD(r) in to a power-law func-
tion with η > 3.5, which is consistent with our results and
indicates the absence of divergent susceptibility, but it was
claimed to be the evidence of superconducting state [73]. At
larger doping δ & 20% , where the SDWs are strongly sup-
pressed [see Fig. 2 (a4, b4)], D(r) are further enhanced. If we
fit D(r) by a power-law function, as shown in the right panel
of Fig. 9 (b), the exponent η ≈ 3 is relatively large, which sug-
gests that the enhancement for doping below and above 20%
are insignificant. This might be due to the stronger quantum
fluctuations for Ly = 3.

On square lattice, the previous studies mainly focused on
1/8 doping [83–88] and reported the exponential decay of
pair-pair correlations for Ly = 4 ladders [83–86] or 2D [86],
which was attributed to the competition between charge-
density waves (or stripes) and superconductivity. Here, we
have identified the doping induced commensurate SDWs at
δ ≈ 10% ∼ 20%, where the pair-pair correlations are strongly
suppressed, implying the competition between SDWs and su-

Doping Intermediate Coupling Strong Coupling
Light Chiral Order (Ly = 3, 4); SDW;

0 < δ < 10% Metallic(Ly = 4), Metallic

Metallic vs. local PDW(Ly = 3)

Moderate SDW’; SDW’;

10% < δ < 20% Metallic Metallic

High no-SDW no-SDW

20% < δ enhanced singlet pairing enhanced singlet pairing

TABLE I. Summary of results as a function of doping (light, mod-
erate and high as defined above) and coupling strength (intermedi-
ate and strong). The SDW phase has the same wave-vector as the
120◦ magnetic order, but the wave-vector in SDW’ is at a potentially
different (M ) momentum point when K point is inaccessible. The
anomalous chiral metal has short ranged spin correlations but long
ranged spin chirality order. No clear Fermi surface is detected, un-
like in the other regimes.
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δ
10%~ 20%~ 

Enhanced

pair-pair

Correlations

Spin density wave phases

(Q0 =M or Q0 =K’) 

Chiral metal

(Ly=4)
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Correlations

Spin density wave phases

(Q0=K)

Chiral metal 
vs.
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(Ly=3)

(a)

(b)

Ly=4

Ly=3

Fig. 10. (Color online). The schematic phase diagram of hole doped
two distinct spin backgrounds for U/t = 9 and U/t = 18 as a
function of hole doping concentrations δ. Here the chiral metallic
phase is robust on Ly = 4 cylinders while it coexists with local
PDW pattern (short-range PDW) on Ly = 3 cylinders

perconductivity on triangular lattice. We note that the ex-
istence of d-wave superconductivity is reported in the same
triangular-lattice model for Ly = 3 ladders at U/t = 10 [68].
Our findings of the enhanced pairing at larger doping are con-
sistent with hole pairing driven by spin super-exchange cou-
pling, similar to the pairing mechanism proposed for square
lattice case [2–4]. An additional observation that is consis-
tent with the super-exchange scenario is that at intermediate
coupling where the super-exchange J ∼ t2/U exceeds that at
strong coupling, the pair correlations are generally found to be
stronger (compare the intermediate coupling correlators with
the strong coupling correlators in the Appendix A 3).
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Here, we should point out that at doping around δ = 1/3,
although we indeed find the pair-pair correlations are signifi-
cantly enhanced than lower doping and they decay in a power-
law fashion with the exponent η < 2 (D(r) ∼ 1/rη), our
computations show that the single particle propagator also de-
cays in a power-law fashion (see the Appendix A 3), which
may indicate the existence of nodal points in the supercon-
ducting phase or the superconductivity is not robust. We there-
fore claim it as the enhanced pair-pair correlations in the phase
diagram instead of the robust superconductivity. The absence
of clear superconductivity in pure Hubbard model on trian-
gular lattice is similar to the square-lattice case as reported
in Refs. [84–86]. Meanwhile, we also find random sign os-
cillations in D(r), indicating competing spatial symmetries
or even more complicated nature, which we leave for future
studies.

G. Particle-hole Asymmetry

Based on the above measurement, we summarize our find-
ings in Table I and set up the hole doped phase diagram as
depicted in Fig. 10. Now we briefly discuss the particle-hole
asymmetry with respect to electron and hole doping and leave
a systematic study for future work. The particle-hole symme-
try is absent on the nonbipartite triangular lattice. In contrast
to the hole doped case, where light doping δ ∼ 10% does not
change the spin background, even a small density of doped
electrons have a dramatic effect on the spin background (see
Appendix B). For example, at intermediate coupling even for
doping as low as δ ∼ 5% the maxima of the spin-spin corre-
lation function shift to wave vector M (on Ly = 3 cylinders).
The distinct spin backgrounds after doping characterize the
asymmetric roles of the doped holes and electrons, suggesting
even richer physics on triangular lattice compared with the
particle-hole symmetric square-lattice case. We leave the sys-
tematic study of electron doping and particle-hole asymmetry
to future work.

IV. CONCLUSIONS

Our study of the doped triangular lattice Hubbard model re-
veals that different Mott insulators obtained on changing the
coupling strength U/t leads to significantly different physics
at light hole doping. In the strong coupling limit, a Fermi
liquid with well-defined hole pockets at the K± points is ob-
served. In contrast at intermediate coupling, hole pockets
do not exhibit well-defined quasiparticles. Moreover, long
ranged spin chirality correlations along with short ranged
spin-spin correlations are observed. These observations are
consistent with spin-charge separation and spin liquid physics.
However, at moderate doping and high doping, a SDW is es-
tablished across the range of coupling strengths and competes
with superconductivity, which is established on further dop-
ing. This phenomenology should be contrasted with the com-
petition between the emergent charge density wave (CDW)
and superconductivity on the square lattice. We summarize

the main features of different phases versus doping concentra-
tion δ and coupling strength U/t in Table I and the schematic
phase diagram in Fig. 10.

Our findings for the doped Mott insulators here open up the
study of the distinct signatures of correlated electron physics
on frustrated lattices, and the inherent electron-hole asymme-
try in these problems. A promising platform to experimen-
tally study these issues is the recently realized Moiré lattice
TMD or twisted TMD bilayers [25, 26], which should be well
described by the triangular lattice Hubbard model, in which
the coupling strength U/t is widely tunable through the twist
angle, and the doping concentration is also continuously con-
trollable. In a completely different context, in recent years,
quantum simulations using the ultracold fermions in optical
lattices has been significantly advanced by quantum gas mi-
croscopy [28–30], which provides another platform to explore
the physics in the doped Hubbard models. The experimental
architecture makes it possible to tune the lattice geometry, the
charge doping and the coupling strength U/t, and therefore,
the whole phase diagram discovered in this work could be di-
rectly probed.

Note added: After this manuscript appeared, a theoretical
study Ref.[82] also found that a chiral metal naturally emerges
on doping a Kalmeyer-Laughlin chiral spin liquid.
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Appendix A: Additional results for hole doping

1. Charge Modulations

We first present the results of the real-space charge den-
sity distribution of the doped holes. The doped holes dis-
tribute uniformly in each rung of cylinder due to the periodi-
cal boundary conditions along ey, we thus focus on the hole
distribution along ex and define nh (x) ≡

∑Ly

y=1 n
h (x, y),

where nh(x, y) ≡ 1− n(x, y) denotes the hole density on the
site with coordinate (x, y). As shown in Fig. 11 for U/t = 9
and U/t = 18, the doped holes exhibit strongly spatial mod-
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Fig. 11. (Color online) The real-space hole density profile nh(x) for
U/t = 9 and U/t = 18 at doping level δ = 1/18, 1/9, 1/6 on Lx =
36, Ly = 3 cylinders. The inset shows the second order derivatives
of the density structure factor Nq , where the peaks indicate the wave
vectors of the charge modulations q0.

ulations at δ . 20% for both cases, while their amplitude
decrease with the increase of hole concentration. The wave
vectors of the charge modulations q0 can be determined by
the singularity/kinks in the structure factors Nq , as illustrated
in the second order derivative of Nq in the inset of Fig. 11.
Moreover, the number of peaks in nh(x) equals to the number
of doped holes, implying the absence of strongly pairing state.

2. Charge current pattern for Ly = 3 cylinders

In the main text, we have shown the bond charge current
pattern for the chiral metallic phase on Ly = 4 cylinders.
Fig. 12 shows the bond charge current pattern on Ly = 3
cylinders with U/t = 9, the width of each bond is propor-
tional to the current magnitude and the arrow indicates the
current direction, the bond current pattern exhibits the trans-
lational symmetry breaking in the bulk along the horizontal
direction, though we also notice the existence of domains in
the pattern. Meanwhile, the time-reversal invariant spin cur-
rent Isij ≡ −i〈S+

i S
−
j − S−i S

+
j 〉 is vanishingly small in the

same phase, consistent with the existence of the spin chirality
order for chiral metal.

3. Various real-space correlators

To further confirm the dominant physics in each phase, we
compute various correlation functions in the real space and put
them into the same figure to compare, including: (i) the spin-
spin correlation:

〈
Szi S

z
i+r

〉
; (ii) the charge density-density

correlation: 〈nini+r〉 − 〈ni〉〈ni+r〉; (iii) the single particle
propagator:

∑
σ〈c
†
iσci+r,σ〉; and (iv) the chiral-chiral correla-

tions |〈C4i
C4i+r

〉|, as shown in Fig. 13. Figures 13 (a-c) and

(d-f) show Ly = 4, Lx = 48 cylinders and Ly = 3, Lx = 72
cylinders at three typical dopings, respectively.

4. Pair-Pair correlations

We next examine the pair-pair correlations D(r) at hole
doping side. In the main text, we have shown the results on
longer cylinders with size N = 72 × 3 and N = 48 × 4. In
the appendix, we show the bond-dimension dependence of the
pair-pair correlations.

At light doping, the pairing correlators appear to decay ex-
ponentially and there is no systematic change of correlators on
increasing bond dimension on small clusters withN = 36×3,
as shown in Fig. 14 for Ly = 3 cylinders and Fig. 15 for
Ly = 4 cylinders. If we fit D(r) with a power law function
D(r) ∼ r−α as best we can, the resulting exponent is rela-
tively large. For instance, α & 4 for δ = 1/18 when Ly = 3
[see Fig. 14 (b)] and α & 3 for δ = 1/20 when Ly = 4
[see Fig. 15 (b)]. Furthermore, while this behavior is poten-
tially also consistent with a power law with large exponent, we
note that the smallness of correlators both in absolute magni-
tude and rapid decay rate does not point to a superconduct-
ing ground state at small and medium doping. In addition, for
these doping levels, we have found spatial charge modulations
in Fig. 11, the number of peaks in the hole distribution func-
tion equals to the number of doped holes. This is inconsistent
with a strongly paired state, where the number of peaks would
be half the number of doped holes.

Appendix B: Electron Doping

In the main text, we mainly focus on the hole doped side,
in this section, we very briefly compare with electron doping
side. For the electron doping, we choose U/t = 9 and U/t =
18 for comparative study on Ly = 3 cylinders at doping δ >
5%. Here, we should point out that the comprehensive study
of electron doping lies outside the scope of the present work,
which we will leave for future systematical investigations.

We examine the spin channel by measuring the static spin
structure factor Sq(Q) = 1

N

∑
i,j

〈
Szi S

z
j

〉
eiQ·(ri−rj). Fig-

ures 16 (a-d) and (e-h) show the contour plot of Sq against
electron doping with U/t = 9 and U/t = 18, respectively.
For the electron doping with U/t = 9, Sq exhibits peaks
at commensurate momentum q = M up to around δ = 1/6
[see Fig. 16 (a-c)], indicating the commensurate SDWs. For
the electron doped 120◦ Néel ordered spin background with
U/t = 18 [see Fig. 16 (e-g)], Sq exhibits splitting peaks
around q = M, suggesting incommensurate SDWs. At larger
doping δ > 20%, the spin backgrounds are indistinguishable
for U/t = 9 and U/t = 18 [see Fig. 16 (d) and (h)], the spin
correlations become short ranged for both coupling strength.
The different responses of the spin backgrounds against dop-
ing can be served as an evidence of the asymmetry with re-
spect to the electron and hole doping on triangular lattice.
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Fig. 12. (Color online) The charge current pattern in the chiral metal phase. This panel shows the pattern of Ic〈ij〉 at δ = 1/18 for U/t = 9 on
Ly = 3 cylinders, the width of each bond is proportional to the current magnitude, while the arrow indicates the current direction. Here we
consider N = 24× 3 cylinders. The bond dimension of such calculation is set up to 12, 000.
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Fig. 13. (Color online) Real-space correlators: chiral-chiral correlations, spin-spin correlations, charge density-density correlations, single
particle propagators. Panels (a-c) and panels (d-f) show different correlators for U/t = 9 on Ly = 4 and for U/t = 7.5 on Ly = 3 cylinders,
respectively. From left to right in each row, we consider three typical hole doping concentrations: δ = 1/18 (a, d), δ = 1/6 (b,e) and δ = 1/3
(c,f).
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Fig. 14. (Color online)The pair-pair correlations for N = 36 × 3
cylinders at doping δ = 1/18. Panel (a) shows the plots in semilog-
arithmic scale, while panel (b) shows the same data but in double-
logarithmic scale.
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Fig. 15. (Color online)The pair-pair correlations for N = 30 × 4
cylinders at doping δ = 1/20. Panel (a) shows the plots in semilog-
arithmic scale, while panel (b) shows the same data but in double-
logarithmic scale.
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Fig. 16. (Color online) The contour plot of spin structure factor Sq for U/t = 9 [(a) to (d)] and U/t = 18 [(e) to (h)] with different electron
doping concentrations δ. From left to right in each row, the concentrations of the doped electrons are δ = 1/18 (a, e), δ = 1/9 (b, f), δ = 1/6
(c, g), δ = 2/9 (d, h). The black dots represent the momentum points we can access in the Brillouin zone (dashed line) of N = 36 × 3
cylinders.
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lattices: a new Hubbard model simulator, arXiv:1910.08673.

[26] Lei Wang, En-Min Shih, Augusto Ghiotto, Lede Xian, Daniel
A. Rhodes, Cheng Tan, Martin Claassen, Dante M. Kennes, Yu-
song Bai, Bumho Kim, Kenji Watanabe, Takashi Taniguchi,
Xiaoyang Zhu, James Hone, Angel Rubio, Abhay Pasupa-
thy, Cory R. Dean, Magic continuum in twisted bilayer WSe2,
arXiv:1910.12147.

[27] Jin Yang, Liyu Liu, Jirayu Mongkolkiattichai, and Peter
Schauss, Site-Resolved Imaging of Ultracold Fermions in a
Triangular-Lattice Quantum Gas Microscope, PRX Quantum
2, 020344 (2021).

[28] Waseem S. Bakr, Jonathon I. Gillen, Amy Peng, Simon
Foelling, and Markus Greiner, A quantum gas microscope for
detecting single atoms in a Hubbard-regime optical lattice, Na-
ture, 462, 74 (2009); Maxwell F. Parsons, Anton Mazurenko,
Christie S. Chiu, Geoffrey Ji, Daniel Greif, and Markus Greiner,
Site-resolved measurement of the spin-correlation function in
the Fermi-Hubbard model, Science, 353,1253 (2016).

[29] Jacob F. Sherson, Christof Weitenberg, Manuel Endres, Marc
Cheneau, Immanuel Bloch, and Stefan Kuhr, Single-atom-
resolved fluorescence imaging of an atomic Mott insulator, Na-
ture, 467,68 (2010).

[30] Lawrence W. Cheuk, Matthew A. Nichols, Katherine
R.Lawrence, Melih Okan, Hao Zhang, Ehsan Khatami, Nandini
Trivedi, Thereza Paiva, Marcos Rigol, and Martin W. Zwierlei,
Observation of spatial charge and spin correlations in the 2D
Fermi-Hubbard model, Science,353,1260 (2016).

[31] H.R. Krishnamurthy, C. Jayaprakash, S. Sarker, and W. Wen-
zel, Mott-Hubbard metal-insulator transition in nonbipartite
lattices, Phys. Rev. Lett. 64, 950 (1990). C. Jayaprakash, H.R.
Krishnamurthy, S. Sarker, and W. Wenzel, Europhys. Lett. 15,
625 (1991).

[32] Massimo Capone, Luca Capriotti, Federico Becca, and Ser-
gio Caprara, Mott metal-insulator transition in the half-filled
Hubbard model on the triangular lattice, Phys. Rev. B 63,
085104(2001).

[33] Subir Sachdev, Kagome- and triangular-lattice Heisenberg
antiferromagnets: Ordering from quantum fluctuations and
quantum-disordered ground states with unconfined bosonic
spinons, Phys. Rev. B 45, 12377 (1992).

[34] F. Wang and A. Vishwanath, Spin-liquid states on the triangular
and Kagome lattices: A projective-symmetry-group analysis of
Schwinger boson states, Phys. Rev. B 74, 174423 (2006).

[35] Xue-Yang Song, Chong Wang, Ashvin Vishwanath, and Yin-



15

Chen He, Unifying description of competing orders in two-
dimensional quantum magnets, Nature Communications 10,
4254 (2019).

[36] David A. Huse and Veit Elser, Simple Variational Wave Func-
tions for Two-Dimensional Heisenberg Spin-1/2 Antiferromag-
nets, Phys. Rev. Lett. 60, 2531 (1988).

[37] Olexei I. Motrunich, Variational study of triangular lattice
spin-1/2 model with ring exchanges and spin liquid state inκ-
(ET)2Cu2(CN)3, Phys. Rev. B 72, 045105 (2005).

[38] T. Koretsune, Y. Motome, and A. Furusaki, Exact Diagonal-
ization Study of Mott Transition in the Hubbard Model on an
Anisotropic Triangular Lattice, J. Phys. Soc. Jpn. 76, 074719
(2007).

[39] Peyman Sahebsara and David Sénéchal, Hubbard Model on the
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Schollwöck, and Steven R. White,Phys. Rev. B 102, 041106(R)
(2020).

[86] Mingpu Qin, Chia-Min Chung, Hao Shi, Ettore Vitali, Claudius
Hubig, Ulrich Schollwöck, Steven R. White, Shiwei Zhang, Ab-
sence of superconductivity in the pure two-dimensional Hub-
bard model, Phys. Rev. X 10, 031016 (2020).

[87] Michele Dolfi, Bela Bauer, Sebastian Keller, and Matthias
Troyer, Pair correlations in doped Hubbard ladders, Phys. Rev.
B 92, 195139 (2015).

[88] R. M. Noack, N. Bulut, D. J. Scalapino, and M. G. Zacher, En-
hanced dx2 − dy2 pairing correlations in the two-leg Hubbard
ladder, Phys. Rev. B 56, 7162 (1997).


	Doped Mott Insulators in the Triangular Lattice Hubbard Model
	Abstract
	Introduction
	Model and Method
	Results
	Evolution of Spin Correlations with Hole Doping
	Evolution of Spin Chirality with Hole Doping
	SDW vs. CDW
	Hole Pockets Evolution with Doping
	Chiral metallic phase
	Evolution of Superconducting Pair-Pair Correlations with Hole Doping
	Particle-hole Asymmetry

	Conclusions
	Acknowledgments
	Additional results for hole doping
	Charge Modulations 
	Charge current pattern for Ly=3 cylinders
	Various real-space correlators
	Pair-Pair correlations

	Electron Doping
	References


